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Figure 1: Frameworks of different person re-identification methods. (a) A framework purely based
on a vision model. (b) A framework combining a vision model and a language model to align global
or local image and text embeddings. (c) Our proposed framework, which is built upon intra-semantic
alignment and inter-semantic adversarial learning.

ABSTRACT

Person re-identification faces two core challenges: precisely locating the fore-
ground target while suppressing background noise and extracting fine-grained fea-
tures from the target region. Numerous visual-only approaches address these is-
sues by partitioning an image and applying attention modules, yet they rely on
costly manual annotations and struggle with complex occlusions. Recent mul-
timodal methods, motivated by CLIP, introduce semantic cues to guide visual
understanding. However, they focus solely on foreground information, but over-
look the potential value of background cues. Inspired by human perception, we
argue that background semantics are as important as the foreground semantics
in ReID, as humans tend to eliminate background distractions while focusing
on target appearance. Therefore, this paper proposes an end-to-end framework
that jointly models foreground and background information within a dual-branch
bidirectional cross-attention feature extraction pipeline. To help the network dis-
tinguish between the two domains, we propose an intra-semantic alignment and
inter-semantic adversarial learning strategy. Specifically, we align visual and tex-
tual features that share the same semantics across domains, while simultaneously
penalizing similarity between foreground and background features to enhance the
network’s discriminative power. This strategy drives the model to actively sup-
press noisy background regions and enhance attention toward identity-relevant
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foreground cues. Comprehensive experiments on two holistic and two occluded
ReID benchmarks demonstrate the effectiveness and generality of the proposed
method, with results that match or surpass those of current state-of-the-art ap-
proaches.

1 INTRODUCTION

Person Re-identification (ReID) aims to match the same person across different scenes and camera
views. Due to environmental complexity, the main challenges arise from diverse viewpoints, pose
variations, background interference, and occlusions Ning et al. (2024). Addressing these challenges
boils down to a single objective: learning fine-grained feature representations that are both robust
to noise and invariant to diverse perturbations. More precisely, (1) how to locate the target’s fore-
ground while ignoring background disturbances; and (2) how to extract fine-grained features from
that foreground region. Extensive efforts have been made to achieve this objective, which can be
grouped into two major directions: model-driven and data-driven approaches Tan et al. (2024).

Model-driven methods focus on local feature learning, employing strategies such as pose estimation
Wang et al. (2020), body segmentation Huang et al. (2025); Kim et al. (2022), semantic segmen-
tation Gao et al. (2020); Zhu et al. (2020), and attention modules Mao et al. (2023) to provide
structured body-part cues. While effective in regular scenarios, these tools are typically limited to
spatial segmentation and require manual annotations, making them less adaptive to irregular or un-
seen occlusions. Meanwhile, data-driven methods aim to construct occlusion-enhanced data from
existing datasets or manually generated samples Tan et al. (2024); Xia et al. (2024); Wu et al. (2024).
However, manually introducing occlusions cannot deal with complex or previously unseen scenar-
ios, such as irregular objects like trees and handrails.

(a) w/o diversity loss (b) w/ diversity loss

Figure 2: t-SNE visualization of cross-modal fea-
tures, where each point represents an image fea-
ture. (a) Without diversity loss: ‘f’ and ‘b’ (fore-
ground and background) features are entangled
and ‘v’ and ‘t’ (visual and text) are misaligned. (b)
With diversity loss: ‘v’ and ‘t’ features are well
aligned, and ‘f’ and ‘b’ are clearly separated.

Some other methods explicitly differentiate
foreground from background and apply a mask
to indicate the target region Liu et al. (2021);
Yang et al. (2023); Liu et al. (2022). However,
these methods do not genuinely understand the
semantic content of images as humans do, and
they are likely to miss the visual cues critical
for identity recognition. What do we, as hu-
man beings, think when we encounter someone
we’ve met before? The initial process involves
filtering out background distractions while con-
currently retrieving from memory visual cues
of similar appearance, which aligns well with
the challenges described above.

Multimodal supervision provide a possible so-
lution to capture semantic cues beyond rigid
masks, enabling better generalization to irreg-
ular and unseen scenarios. CLIP-ReID Li et al.
(2023), as the pioneer in aligning semantic and
visual information in ReID, has achieved great
performance in some benchmarks. Inspired by
this success, more and more image-text based methods have been proposed to achieve better token-
level and feature-level alignment Yan et al. (2023); Jiang & Ye (2023); Wang et al. (2023); Yang
& Zhang (2024); Wu et al. (2024). However, existing methods focus solely on modeling the fore-
ground region and neglect the potentially informative background context. We argue that incorporat-
ing background information helps the model better distinguish semantic cues between foreground
and background, reducing feature confusion when constraints or alignments are applied solely to
the target region. Additionally, providing a semantic logit for the background enables the model
to handle unseen or irregular background objects and textures that a purely visual pipeline would
overlook.

In this paper, we propose FBA (Foreground and Background Adversarial Person Re-identification),
a language-enhanced end-to-end framework that emulates human perception by jointly modeling
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foreground and background information in a cross-modal feature-extraction pipeline. To capture
precise semantic cues of different components in the image and guide attention toward the target
regions, the proposed framework is built upon intra-semantic alignment and inter-semantic ad-
versarial learning, as shown in Fig. 1. The former adopts an alignment strategy similar to CLIP
Radford et al. (2021) to capture fine-grained multimodal features, while the latter introduces a di-
versity loss to help the model distinguish foreground targets from background distractions under the
guidance of both visual and semantic information. Fig. 2 visualizes the feature distances across
different domains, providing insight into our strategy.

Unlike CLIP-based approaches that simply align global visual and text embeddings after encod-
ing, we perform local patch-to-prompt intersections similar to Yang et al. (2024) but employing a
dual-branch bidirectional cross-attention mechanism with four weight-shared cross-attention mod-
ules to associate image patches and prompt tokens belonging to the same semantic group. A shared
four-layer self-attention module and feed-forward network further enhance both global and local
fine-grained feature extraction. Following Kang et al. (2025), who demonstrate that CLIP’s latent
space lacks compositional expressivity, we retain all patch and token embeddings for local inter-
sections. An attention map differential pooling strategy is then applied to filter out non-informative
embeddings. The overall structure of our network is shown in Fig. 3.

The main contributions of this work could be summarized as follows:

• We propose FBA, an end-to-end dual-branch bidirectional cross-attention framework that
treats both foreground and background semantics as equally important. It employs local
patch-to-prompt interactions to capture fine-grained representations and to build human-
level understanding of the image.

• We introduce an intra-semantic alignment and inter-semantic adversarial learning strategy
that aligns semantically consistent multimodal features and penalizes the feature distance
between distractor and target regions.

• Our model achieves competitive results on both holistic and occluded ReID datasets,
demonstrating its strong performance and generalization capability.

2 RELATED WORKS

2.1 PERSON RE-IDENTIFICATION

Person re-identification has been studied for a long time, yet several critical challenges remain to
be addressed. The primary challenges arise from diverse viewpoints, pose variations, noise inter-
ference, and occlusions. More generally, how to extract fine-grained features from the target re-
gion across multiple cameras while remaining robust to noise is still challenging. To capture local
features, PCB Sun et al. (2018) partitions the feature map into fixed horizontal stripes and learns
independent part-level descriptors for each stripe. HOReID Wang et al. (2020) utilizes high-order
mapping of multilevel feature similarities to achieve fine-grained semantic pose alignment. ISP Zhu
et al. (2020) generates pseudo pixel-level labels for both body parts and personal belongings, then
extracts local features of only the visible regions. PAT Li et al. (2021) employs an transformer
encoder-decoder to discover diverse part prototypes via pixel-context encoding and prototype-based
decoding for robust occluded person ReID. TransReID He et al. (2021), the first pure ViT-based
ReID approach, extracts both global and local features with a jigsaw patch module and employs
side-information embeddings to mitigate camera/view bias. With the powerful global receptive field,
an increasing number of ViT-based methods have been proposed Zhu et al. (2022); Tan et al. (2022);
Zhu et al. (2023); Xia et al. (2024). While these methods depend on improved feature alignment,
other studies have adopted data-driven strategies, such as random erasing Zhong et al. (2020) and
manually generated samples Wang et al. (2022a;b); Tan et al. (2024); Xia et al. (2024); Wu et al.
(2024).

Other approaches explicitly distinguish between foreground and background, employing a mask to
delineate the target region. FA-Net Liu et al. (2021) introduces an end-to-end branch that explicitly
localizes pedestrian foregrounds and extracts foreground-focused features. F-BDMTrack Yang et al.
(2023) employs fore-background distribution-aware attention within a transformer architecture to
robustly discriminate targets and suppress background. However, these approaches lack human-level
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semantic understanding of images and may overlook visual cues in background that are essential for
identity recognition.

2.2 VISION-LANGUAGE PRE-TRAINING

Recent work shows that large-scale vision–language pre-training (VLP) provides Re-ID models with
richer semantic priors than image-only pre-training. General-purpose VLP models such as CLIP
Radford et al. (2021) learn aligned image–text representations, enabling the injection of textual
cues (for example, clothing color or carried objects) that are difficult to capture using only RGB
images. The pioneering CLIP-ReID Li et al. (2023) adopts a two-stage strategy. In the first stage, it
trains a set of learnable text tokens for each image, similar to prompt learning in CoOp Zhou et al.
(2022). In the second stage, it optimizes the visual encoder. Inspired by it, various works have been
focused on VLP based text-to-image person retrieval tasks. CFine Yan et al. (2023) utilizes CLIP’s
rich multi-modal knowledge to mine fine-grained intra-modal and inter-modal discriminative clues.
IRRA Jiang & Ye (2023) adds random masking to text tokens and employs a token classifier after the
cross attention layers to mine fine-grained global representations. TP-PS Wang et al. (2023) further
explores the modality association by constraints of various integrity and prompts for attribute hints.
MGCC Wu et al. (2024) applies a token selection mechanism to filter out non informative tokens and
then feeds the remaining tokens into a global and local contrastive consistency alignment module.
However, these methods restrict cross modal alignment to foreground features at both global and
local levels, overlooking background semantic cues and the interaction between foreground and
background that humans naturally use in similar recognition tasks.

3 PRELIMINARY

3.1 OVERVIEW OF CLIP-BASED METHODS

Before introducing our proposed framework, we briefly review the CLIP-based methods. The CLIP
and CLIP based methods align the visual and textual embeddings (namely class [CLS] and end
[EOS] tokens) after visual encoder V(·) and text encoder T (·) with contrastive loss as in Radford
et al. (2021). The image-to-text contrastive loss is calculated as:

Li2t(i) = − log
exp(s(vi, ti))∑B
j=1 exp(s(vi, tj))

(1)

where (vi, ti) denote the visual and textual embeddings of the i-th matched pair, s(·, ·) is the sim-
ilarity function (e.g., cosine similarity), and B is the batch size. The text-to-image contrastive loss
shares the similar form. Derivative methods based on CLIP further address its limitation in handling
multiple images of the same identity, which should ideally share similar textual descriptions Li et al.
(2023); Yang et al. (2024).

Currently, many approaches focus on improving modality alignment and exploring the representa-
tional potential of CLIP in both vision and language. However, these methods often overlook the
intuitive strategy adopted by humans in similar tasks, which involves first distinguishing between
foreground and background. Although some methods based on masks or attention mechanisms have
considered this characteristic, they do not effectively exploit the rich semantic information contained
in the image, especially the background semantics that are present but usually ignored.

4 METHODOLOGY

To address the aforementioned gap, we propose FBA, an adversarial ReID framework that fully
leverages interactions between foreground and background visual–semantic information to mimic
human perception. It also exploits the great potential of CLIP embeddings.

4.1 MULTIMODAL REPRESENTATION ENCODING

To effectively capture both visual and textual information, we design a dual-stream encoding frame-
work. The visual encoder V(·) is trainable, whereas the text encoder T (·) remains frozen to supply
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Figure 3: Overview of the proposed Foreground and Background Adversarial Image-Text Person
Re-Identification framework (FBA). Embeddings from the visual and text encoders are fed into a
dual-branch bidirectional cross-attention module, with one branch dedicated to the foreground and
the other to the background. Each branch operates in two directions, where either visual or tex-
tual embeddings can serve as Query, enabling the model to capture fine-grained cues from different
components. The optimization is performed through intra-semantic alignment and inter-semantic
adversarial learning, which forces the model to actively suppress noisy background regions and en-
hance attention toward identity-relevant foreground cues. Furthermore, an attention map differential
pooling strategy is proposed to enhance informative patch selection.

stable language priors. The foreground and background textual descriptions are generated from a
large language model Liu et al. (2023) with the prompts:

Foreground Prompt: “Describe the appearance of persons in the image, focus-
ing on their appearance, attire and accessories.”
Background Prompt: “Describe the background in the image with less than 50
words, focusing on any objects or elements that might obscure the view of the
person.”

The foreground text describes the target identity and background text provides contextual informa-
tion. These embeddings are then forwarded into the cross-modal interaction module.

4.2 DUAL-BRANCH BIDIRECTIONAL CROSS-ATTENTION MODULE

To disentangle foreground and background semantics, we employ two parallel transformer branches,
each consisting of a cross-attention module and four stacked self-attention and FFN modules. The
outputs from the encoders are divided into two groups, {Vf , Tf} and {Vb, Tb}, which are then fed
into the dual-branch cross-attention module. The subscripts f and b denote the foreground and
background, respectively. Vi∈(f,b) = [[CLS],v1

i ,v
2
i , ...,v

N
i ], where N is the number of image

patches. Ti∈(f,b) = [[SOS], t1i , t
2
i , ..., t

M
i , [EOS]], where M is the number of text tokens. In the

cross-attention module, most existing methods adopt image embeddings solely as Key and Value in
cross-modal attention. In contrast, our method also utilizes image embeddings as Query, enabling
a bidirectional interaction where both modalities can attend to each other more effectively. At the
same time, all patches and tokens are preserved to fully exploit the fine-grained local cues. In
summary, we adopt four weight shared Transformer blocks with two for foreground intersection and
two for background.
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The [CLS] and [EOS] tokens are then selected from the outputs of the cross-attention module,
specifically {FT

f ,FV
f } for the foreground branch and {FT

b ,FV
b } for the background branch. The

superscripts V and T indicate that vision or text is used as the Query, respectively. Before com-
puting the loss, the foreground text-guided embeddings are processed using a pooling strategy in-
troduced in the following section.

4.3 ATTENTION MAP DIFFERENTIAL POOLING

An attention map differential pooling strategy is proposed to further explore useful cues across all
token embeddings, rather than focusing solely on the most critical ones. This idea is inspired by the
work in Kang et al. (2025). With the aim of assigning more attention to tokens that better distinguish
foreground from background, we first calculate the attention weights Wf ∈ RN×M from the cross-
attention layer of the foreground branch and Wb ∈ RN×M from the background branch. To quantify
the discrepancy between these two attention maps, we compute the cosine similarity between their
corresponding column vectors, resulting in an M -dimensional vector s ∈ R1×M :

sj =
⟨W(:,j)

f ,W(:,j)
b ⟩

∥W(:,j)
f ∥2 · ∥W(:,j)

b ∥2
, j = 1, 2, . . . ,M (2)

We then apply a min-max normalization to this similarity vector to generate a token-wise attention
mask w ∈ R1×M :

wj = 1− s̃j = 1− sj −min(s)

max(s)−min(s) + ε
(3)

where ε is a small constant for numerical stability and wj ∈ w. This normalized mask is then used
to aggregate the foreground text guided token embeddings as a pooling strategy:

F̄T
f =

∑
j

αjfj , αj =
exp(τwj)∑
k exp(τwk)

(4)

where fj is the j-th foreground text-guided embedding and τ is the temperature. To avoid ambiguity,
we simply write F̄T

f as FT
f hereafter. In other words, by focusing on tokens that exhibit stronger

identity-related attention across foreground and background, the final feature representation incor-
porates richer identity cues.

4.4 OBJECTIVE FUNCTION

The overall framework is optimized using a combination of identity classification (ID) loss and
triplet loss to ensure discriminative feature learning. These two losses are applied only to the
foreground-guided features FT

f and FV
f , and the features generated from the visual encoder back-

bone.

LID = − 1

B

B∑
i=1

yi log ŷi (5)

LTriplet = max
(
∥fa − fp∥22 − ∥fa − fn∥22 +m, 0

)
(6)

In the ID loss, ŷi denotes the predicted probability of the ground-truth class yi, and B is the batch
size. In the triplet loss, fa, fp, and fn are the feature embeddings of the anchor, positive, and
negative samples, respectively. The margin m controls the minimum distance between positive and
negative pairs.

Additionally, to encourage feature diversity between foreground and background representations, we
introduce a diversity loss Ldiv that penalizes inter-semantic (fore–back) similarity while promoting
intra-semantic (fore–fore and back–back) alignment.

Ltri-div =
∑

a,b,c,d∈P

La,b|c,d
Triplet (7)

Lcon = (1− s(FT
f ,FV

f )) + (1− s(FT
b ,FV

b )) (8)

Ldiv = Ltri-div + Lcon (9)
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where La,b|c,d
Triplet denotes the triplet loss sum of two triplets (a, b|a, c) and (a, b|a, d). The set P

contains all four complementary configurations between foreground and background features:

P =


(FT

f ,FV
f | FT

b ,FV
b ),

(FT
b ,FV

b | FT
f ,FV

f ),

(FV
f ,FT

f | FT
b ,FV

b ),

(FV
b ,FT

b | FT
f ,FV

f )

 (10)

While Ltri-div enforces a multi-view triplet-based alignment of intra-semantic features and penalizes
inter-semantic features, it primarily focuses on the relative distance between positive and negative
samples. To further enhance the absolute consistency of modality-specific representations, we in-
troduce an auxiliary contrastive loss Lcon, which directly encourages similarity between paired text
and visual features within the same semantic region.

The overall objective function combines identity loss, triplet loss, and proposed diversity loss. The
training objective is formulated as follows:

Ltotal = LID + LTriplet + LC
ID + LC

Triplet + λLdiv (11)
where the superscript C denotes the loss calculated from cross-modal features. The hyperparameter
λ balances the contribution of the diversity loss. During inference, the model employs only the
foreground-guided features, concatenated with those from the visual backbone.

5 EXPERIMENTS

5.1 DATASETS AND EVALUATION PROTOCOLS

The proposed method in this work is fully evaluated through four person re-identification datasets,
including two holistic datasets DukeMTMC-reID Zheng et al. (2017) and CUHK03-NP (labeled)
Li et al. (2014), and two occluded datasets Occluded-Duke Miao et al. (2019) and Occluded-ReID
Zhuo et al. (2018). The details of those datasets are summarized in Appendix A.2. The Market-1501
dataset is excluded from our evaluation because its noisy annotations and detection errors can easily
interfere with the stability of such adversarial training. Following established practices, we adopt
mean Average Precision (mAP) and Rank-1 (R-1) accuracy as the primary evaluation metrics.

5.2 IMPLEMENTATION DETAILS

We adopt the ViT-B/16 model pre-trained by CLIP as our backbone with a sliding-window setting
as in He et al. (2021). The visual backbone consists of 12 transformer layers with a hidden size of
768. A linear projection layer is used to map the 512-dimensional output of the text encoder to 768
dimensions. Foreground and background captions are generated using the LLaVA v1.5-7b model
Liu et al. (2023). All input images are resized to 384 × 128, with a batch size of 64, comprising
16 identities and 4 images per identity. We use the Adam optimizer with a weight decay of 1e-4.
The model is trained for 60 epochs, including 10 warm-up epochs during which the learning rate
increases linearly from 0.001×base learning rate to the base learning rate, followed by a cosine
decay to 0.01×base learning rate. To accommodate the varying scale and complexity of different
datasets, we empirically set the base learning rate for each dataset (8e-5 for DukeMTMC-reID and
Occluded-Duke, and 1.2e-4 for CUHK03-NP). For fairness, baseline methods were trained with
their official hyperparameters or re-implemented under the same search range, and we found their
results consistent with reported numbers. Note that the Occluded-ReID is used only as a test set.
This per-dataset adjustment improves training stability and convergence performance. The margin
m for the triplet loss is set to 0.3, and the balance factor in Eq. (11) is λ = 0.5. The entire framework
is implemented using PyTorch and trained on 4 NVIDIA A6000 GPUs.

5.3 COMPARISON WITH STATE-OF-THE-ART METHODS

This section compares our proposed method with several state-of-the-art approaches, including those
based on CNN and ViT backbones. A detailed analysis of the results presented in Table 1 is provided
below. More samples are visualized in Appendix A.1.
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Table 1: Comparison of CNN- and ViT-based methods on DukeMTMC, CUHK03-NP (labeled),
Occluded-Duke, and Occluded-ReID datasets.

Backbone Method Reference DukeMTMC CUHK03-NP Occluded-Duke Occluded-ReID

mAP R-1 mAP R-1 mAP R-1 mAP R-1

CNN

PCB ECCV’2018 69.2 83.3 57.5 63.7 - - - -
DSR CVPR’2018 - - - - 30.4 40.8 62.8 72.8
OSNet ICCV’2019 73.5 88.6 67.8 72.3 - - - -
HOReID CVPR’2020 75.6 86.9 - - 43.8 55.1 70.2 80.3
PVPM CVPR’2020 - - - - 37.7 47.0 59.5 66.8
ISP ECCV’2020 80.0 89.6 74.1 76.5 52.3 62.8 - -
PAT CVPR’2021 78.2 88.8 - - 53.6 64.5 72.1 81.6
ALDER TIP’2021 78.9 89.9 78.7 81.0 - - - -
Part-Label ICCV’2021 - - - - 46.3 62.2 71.0 81.0
LTReID TMM’2022 80.4 90.5 80.3 82.1 - - - -
DRL-Net TMM’2022 76.6 88.1 - 50.8 65.0 - -
CLIP-ReID AAAI’2023 80.7 90.0 - - 53.5 61.0 - -
PromptSG CVPR’2024 80.4 90.2 79.8 80.5 - - - -

ViT

TransReID ICCV’2021 82.0 90.7 - - 59.2 66.4 - -
FED CVPR’2022 78.0 89.4 - - 56.4 68.1 79.3 86.3
AAFormer TNNLS’2023 80.9 90.1 79.0 80.3 58.2 67.1 - -
CLIP-ReID AAAI’2023 82.5 90.0 - - 59.5 67.1 - -
PromptSG CVPR’2024 81.6 91.0 83.1 85.1 - - - -

Baseline 80.0 88.8 82.9 84.8 53.5 60.8 74.0 76.3
FBA Ours 81.7 91.5 85.3 86.6 60.5 69.5 84.0 85.4

5.3.1 HOLISTIC REID

We compare the performance of FBA with several existing methods on two holistic person ReID
datasets. On DukeMTMC, FBA achieves a notable improvement over the baseline (+1.7% mAP,
+2.7% R-1), and surpasses previous state-of-the-art methods in terms of R-1 accuracy. This result
suggests that the integration of foreground-background semantic information with visual features
enhances the model’s ability to handle more challenging samples. However, the overall effect of
the adversarial learning appears limited in mAP. We speculate that this may be due to multiple
individuals often appearing in the same image, leading to less precise descriptions.

On the CUHK03-NP benchmark, our approach surpasses all existing methods, achieving 2.2% mAP
and 1.5% R-1 improvement over PromptSG Yang et al. (2024). This demonstrates that the intro-
duction of multimodal interaction and the diversity loss effectively enhances the model’s ability to
distinguish between foreground and background content.

5.3.2 OCCLUDED REID

Although our method does not incorporate explicit mechanisms designed for occlusion handling, as
seen in works such as HOReID Wang et al. (2020), ISP Zhu et al. (2020), PAT Li et al. (2021), FED
Wang et al. (2022b), and AAFormer Zhu et al. (2023), we still evaluate it on two occluded ReID
datasets. This is because the adversarial learning design in our method is intrinsically capable of
suppressing interference from obstructions. On Occluded-Duke, FBA outperforms all other meth-
ods (+1.0% mAP, +1.4% R-1). For Occluded-ReID, which is a test-only dataset, we use the model
trained on CUHK03-NP and obtain 84% mAP, surpassing previous records, with R-1 accuracy sec-
ond only to FED. These results demonstrate the robustness and strong generalization capability of
FBA, particularly in handling challenging occluded scenarios.

5.4 ABLATION STUDIES

To quantitatively analyze the contribution of each component in our approach, we conduct ablation
studies on the DukeMTMC and CUHK03-NP datasets, as shown in Table 2. In the first row, the
baseline model uses only the features extracted by the backbone visual encoder. In the second row,
the cross-modal interaction is introduced, while only the foreground branch contributes to the loss
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computation. Comparing the first and second rows, the introduction of cross-modal interaction leads
to a noticeable improvement in R-1 accuracy. The third row introduces the diversity loss, which
improves both mAP and R-1 accuracy, demonstrating its effectiveness in helping the model better
distinguish the target region from noise. In the last row, we incorporate the attention map differential
pooling strategy, which allows the model to aggregate information beyond a single token. At this
stage, all components together constitute the complete FBA architecture.

Table 2: Ablation study on the effectiveness of each loss component on DukeMTMC and CUHK03-
NP.

Components DukeMTMC CUHK03-NP

LID + LTriplet LC
ID + LC

Triplet Ldiv Diff mAP R-1 R-5 R-10 mAP R-1 R-5 R-10

✓ 80.0 88.8 94.5 95.9 82.9 84.8 93.2 96.4
✓ ✓ 80.0 90.3 94.6 95.6 83.1 85.0 93.1 96.8
✓ ✓ ✓ 80.7 90.4 94.6 96.1 84.9 86.3 94.1 97.1
✓ ✓ ✓ ✓ 81.7 91.5 95.3 96.3 85.3 86.6 94.3 97.1

Additional experiments are provided in the Appendix: hyperparameter analysis in Appendix A.3,
inference feature combinations in Appendix A.4, and network design studies in Appendix A.5.

5.5 QUALITATIVE ANALYSIS

To better demonstrate the effectiveness of our method in distinguishing foreground from back-
ground, we visualize the attention maps in Fig. 4 using samples from the Occluded-Duke and
Occluded-ReID datasets. These samples contain various types of occlusions, such as vehicles, rail-
ings, and non-target pedestrians, which pose considerable challenges. The attention weights are
directly extracted from the cross-attention layers.

Occluded-Duke Occluded-ReID

Figure 4: Attention map visualization of FBA
on Occluded-Duke and Occluded-ReID. The first
row represents the raw images and the second row
presents the attention maps.

Our method demonstrates a strong ability to un-
derstand the semantic structure of foreground
and background regions and to distinguish tar-
get person from distracting elements. For in-
stance, in the first column of Occluded-Duke,
FBA effectively identifies and suppresses inter-
ference from vehicles in the scene, directing at-
tention to key attributes of the target individual
such as the coat, backpack, and hair. In the sec-
ond column, despite the presence of a distract-
ing pedestrian with a backpack in front of the
target, our method accurately avoids the inter-
ference. In the third column of Occluded-ReID,
the target person is occluded by multiple layers
of metal railings. Remarkably, the model fo-
cuses precisely on the person, avoiding the rail-
ings, and is even able to capture the body parts
visible between the bars.

5.6 CONCLUSION

This paper proposes a language-enhanced end-to-end adversarial framework for person re-
identification, named FBA. By employing a dual-branch bidirectional cross-attention module, FBA
simultaneously models foreground and background semantics. A diversity loss and an attention
map-based differential pooling strategy are further introduced to effectively distinguish target re-
gions from background distractions. Experimental results show that FBA achieves or approaches
state-of-the-art performance in terms of mAP and R-1 accuracy in both holistic and occluded person
re-identification tasks. Future work will explore refined prompt engineering and lightweight model
designs to improve large-scale, real-time deployment.
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A APPENDIX

A.1 MATCHING RESULTS ON DUKEMTMC (SAMPLES)

Fig. 5 shows sample matching results of the baseline and our method on DukeMTMC. In both
occluded and non-occluded cases, our method achieves higher matching accuracy than the baseline.
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Figure 5: Sample matching results of the baseline and our method on DukeMTMC. The first image
of each identity is the gallery image, followed by the top-5 matches. Red labels indicate incorrect
matches, while Green labels indicate correct ones.
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A.2 STATISTICS OF THE DATASETS

Table 3: Statistics of ReID datasets in our experiments.

Dataset IDs Images Cams

DukeMTMC-reID 1,404 36,411 8
CUHK03-NP 1,467 13,164 2
Occluded-Duke 1,404 35,489 8
Occluded-ReID 200 2,000 -

A.3 ABLATION STUDY ON IMAGE SIZE AND STRIDE SIZE

We compare the performance of FBA on the CUHK03-NP dataset under different image sizes and
stride settings, as shown in Table 4. When increasing the image resolution from 256 × 128 to
384 × 128, the R-1 accuracy remains nearly unchanged, while the mAP improves by 0.5%. A
reduction in stride size from 16 to 12 notably improves performance, yielding a 1.3% increase in
mAP and a 1.3-1.4% rise in R-1 accuracy. This suggests that a smaller stride enables the model to
capture more fine-grained features. Notably, even under the least optimal configuration, our method
still outperforms other approaches.

Table 4: Ablation analysis of different image and stride sizes during training on CUHK03-NP.

Image Size Stride Size mAP R-1

256×128 16 83.5 85.3
384×128 16 84.0 85.2
256×128 12 84.8 86.6
384×128 12 85.3 86.6

A.4 ABLATION STUDY ON INFERENCE SETTINGS

Table 5 presents different feature combinations used during inference. Fbase denotes the feature
from visual backbone, which is trainable. Ff

cross and Fb
cross represent the cross-attention features

from the foreground and background branches, respectively. Under the adversarial training mech-
anism, the foreground branch achieves much better performance than background since it focuses
more on target regions, while the backbone also learns to capture fine-grained foreground cues after
training. It is worth noting that on Occluded-Duke, where occlusions are more complex, combining
Fbase with Ff

cross yields better accuracy in challenging cases (as reflected in R-1). In contrast, on
the relatively clean CUHK03 dataset, the trained backbone alone is already sufficiently powerful.

Table 5: Ablation study on different feature combinations during inference.

Features Occluded-Duke CUHK03-NP

Fbase Ff
cross Fb

cross mAP R-1 mAP R-1

✓ 60.6 69.1 85.4 86.6
✓ 54.8 64.3 80.6 82.9

✓ 28.3 45.9 61.7 67.9
✓ ✓ 60.5 69.5 85.3 86.6

A.5 ABLATION STUDY ON NETWORK DESIGN

Table 6 presents the evaluation results of different cross-attention designs. Using text alone as the
query (GT ) outperforms using visual features as the query (GV ), indicating that text-guided cross-
attention is more effective in capturing target features. The bidirectional cross-attention (GV +
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GT ) further improves performance on both datasets, demonstrating the complementarity of the two
queries and their ability to better model complex scenarios.

Table 6: Ablation analysis of bidirectional vs. unidirectional cross-attention.

Datasets Methods mAP R-1

Occluded-Duke GV 54.2 62.7
GT 59.0 67.9

GV +GT 60.5 69.5

CUHK03-NP GV 82.4 83.4
GT 84.1 85.6

GV +GT 85.3 86.6

A.6 THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) were only employed to assist in minor language polish-
ing and grammatical refinement. All ideas, analyses, models, and experiments were fully deployed
and implemented by the authors, while LLMs served solely as a tool for improving clarity and
readability of the text.
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