
Provable Benefit of Cutout and CutMix
for Feature Learning

Junsoo Oh
KAIST AI

junsoo.oh@kaist.ac.kr

Chulhee Yun
KAIST AI

chulhee.yun@kaist.ac.kr

Abstract

Patch-level data augmentation techniques such as Cutout and CutMix have demon-
strated significant efficacy in enhancing the performance of vision tasks. However,
a comprehensive theoretical understanding of these methods remains elusive. In
this paper, we study two-layer neural networks trained using three distinct meth-
ods: vanilla training without augmentation, Cutout training, and CutMix training.
Our analysis focuses on a feature-noise data model, which consists of several
label-dependent features of varying rarity and label-independent noises of differing
strengths. Our theorems demonstrate that Cutout training can learn low-frequency
features that vanilla training cannot, while CutMix training can learn even rarer
features that Cutout cannot capture. From this, we establish that CutMix yields
the highest test accuracy among the three. Our novel analysis reveals that CutMix
training makes the network learn all features and noise vectors “evenly” regardless
of the rarity and strength, which provides an interesting insight into understanding
patch-level augmentation.

1 Introduction
Data augmentation is a crucial technique in deep learning, particularly in the image domain. It
involves creating additional training examples by applying various transformations to the original
data, thereby enhancing the generalization performance and robustness of deep learning models.
Traditional data augmentation techniques typically focus on geometric transformations such as
random rotations, horizontal and vertical flips, and cropping (Krizhevsky et al., 2012), or color-based
adjustments such as color jittering (Simonyan and Zisserman, 2014).

In recent years, several new data augmentation techniques have appeared. Among them, patch-level
data augmentation techniques like Cutout (DeVries and Taylor, 2017) and CutMix (Yun et al., 2019)
have received considerable attention for their effectiveness in improving generalization. Cutout
is a straightforward method where random rectangular regions of an image are removed during
training. In comparison, CutMix adopts a more complex strategy by cutting and pasting sections
from different images and using mixed labels, encouraging the model to learn from blended contexts.
The success of Cutout and CutMix has triggered the development of numerous variants including
Random Erasing (Zhong et al., 2020), GridMask (Chen et al., 2020a), CutBlur (Yoo et al., 2020),
Puzzle Mix (Kim et al., 2020), and Co-Mixup (Kim et al., 2021). However, despite the empirical
success of these patch-level data augmentation techniques in various image-related tasks, a lack of
comprehensive theoretical understanding persists: why and how do they work?

In this paper, we aim to address this gap by offering a theoretical analysis of two important patch-level
data augmentation techniques: Cutout and CutMix. Our theoretical framework draws inspiration
from a study by Shen et al. (2022), which explores a data model comprising multiple label-dependent
feature vectors and label-independent noises of varying frequencies and intensities. The key idea of
this work is that learning features with low frequency can be challenging due to strong noises (i.e.,
low signal-to-noise ratio). We focus on how Cutout and CutMix can aid in learning such rare features.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

1.1 Our Contributions

In this paper, we consider a patch-wise data model consisting of features and noises, and use two-layer
convolutional neural networks as learner networks. We focus on three different training methods:
vanilla training without any augmentation, Cutout training, and CutMix training. We refer to these
training methods in our problem setting as ERM, Cutout, and CutMix. We investigate how these
methods affect the network’s ability to learn features. We summarize our contributions below:

• We analyze ERM, Cutout, and CutMix, revealing that Cutout outperforms ERM since it enables
the learning of rarer features compared to ERM (Theorem 3.1 and Theorem 3.2). Furthermore,
CutMix demonstrates almost perfect performance (Theorem 3.3) by learning all features.

• Our main intuition behind the negative result for ERM is that ERM learns to classify training
samples by memorizing noise vectors instead of learning meaningful features if the features do
not appear frequently enough. Hence, ERM suffers low test accuracy because it cannot learn rare
features. However, Cutout alleviates this challenge by removing some of the strong noise patches,
allowing it to learn rare features to some extent.

• We prove the near-perfect performance of CutMix based on a novel technique that views the
non-convex loss as a composition of a convex function and reparameterization. This enables us to
characterize the global minimum of the loss and show that CutMix forces the model to activate
almost uniformly across every patch of inputs, allowing it to learn all features.

1.2 Related Works

Feature Learning Theory. Our work aligns with a recent line of studies investigating how training
methods and neural network architectures influence feature learning. These studies focus on a specific
data distribution composed of two components: label-dependent features and label-independent
noise. The key contribution of this body of work is the exploration of which training methods or
neural networks are most effective at learning meaningful features and achieving good generalization
performance. Allen-Zhu and Li (2020) demonstrate that an ensemble model can achieve near-perfect
performance by learning diverse features, while a single model tends to learn only certain parts of the
feature space, leading to lower test accuracy. In other works, Cao et al. (2022); Kou et al. (2023a)
explore the phenomenon of benign overfitting when training a two-layer convolutional neural network.
The authors identify the specific conditions under which benign overfitting occurs, providing valuable
insights into how these networks behave during training. Several other studies seek to understand
various aspects of deep learning through the lens of feature learning (Zou et al., 2021; Jelassi and Li,
2022; Chen et al., 2022, 2023; Li and Li, 2023; Huang et al., 2023a,b).

Theoretical Analysis of Data Augmentation. Several works aim to analyze traditional data
augmentation from different perspectives, including kernel theory (Dao et al., 2019), margin-based
approach (Rajput et al., 2019), regularization effects (Wu et al., 2020), group invariance (Chen et al.,
2020b), and impact on optimization (Hanin and Sun, 2021). Moreover, many papers have explored
various aspects of a recent technique called Mixup (Zhang et al., 2017). For example, studies have
explored its regularization effects (Carratino et al., 2020; Zhang et al., 2020), its role in improving
calibration (Zhang et al., 2022), its ability to find optimal decision boundaries (Oh and Yun, 2023)
and its potential negative effects (Chidambaram et al., 2021; Chidambaram and Ge, 2024). Some
works investigate the broader framework of Mixup, including CutMix, which aligns with the scope
of our work. Park et al. (2022) study the regularization effect of mixed-sample data augmentation
within a unified framework that contains both Mixup and CutMix. In Oh and Yun (2023), the authors
analyze masking-based Mixup, which is a class of Mixup variants that also includes CutMix. In
their context, they show that masking-based Mixup can deviate from the Bayes optimal classifier
but require less training sample complexity. However, neither work provides a rigorous explanation
for why CutMix has been successful. The studies most closely related to our work include Shen
et al. (2022); Chidambaram et al. (2023); Zou et al. (2023). Shen et al. (2022) regard traditional data
augmentation as a form of feature manipulation and investigate its advantages from a feature learning
perspective. Both Chidambaram et al. (2023) and Zou et al. (2023) analyze Mixup within a feature
learning framework. However, patch-level data augmentation such as Cutout and CutMix, which are
the focus of our work, have not yet been explored within this context.

2

2 Problem Setting

In this section, we introduce the data distribution and neural network architecture, and formally
describe the three training methods considered in this paper.

2.1 Data Distribution

We consider a binary classification problem on structured data, consisting of patches of label-
dependent vectors (referred to as features) and label-independent vectors (referred to as noise).
Definition 2.1 (Feature Noise Patch Data). We define a data distribution D on Rd×P ×{−1, 1} such
that (X, y) ∼ D where X =

(
x(1), . . . ,x(P)

)
∈ Rd×P and y ∈ {±1} is constructed as follows.

1. Choose the label y ∈ {±1} uniformly at random.

2. Let {vs,k}s∈{±1},k∈[K] ⊂ Rd be a set of orthonormal feature vectors. Choose the feature vector
v ∈ Rd for data point X as v = vy,k with probability ρk from {vy,k}k∈[K] ⊂ Rd, where
ρ1 + · · · + ρK = 1 and ρ1 ≥ · · · ≥ ρK . In our setting, there are three types of features
with significantly different frequencies: common features, rare features, and extremely rare
features, ordered from most to least frequent. The indices of these features partition [K] into
(KC ,KR,KE).

3. We construct P patches of X as follows.

• Feature Patch: Choose p∗ uniformly from [P] and we set x(p∗) = v.
• Dominant Noise Patch: Choose p̃ uniformly from [P]\{p∗}. We construct x(p̃) = αu+ξ(p̃)

where αu is feature noise drawn uniformly from {αv1,1, αv−1,1} with 0 < α < 1 and ξ(p̃) is
Gaussian dominant noise drawn from N(0, σ2

dΛ).
• Background Noise Patch: The remaining patches p ∈ [P] \ {p∗, p̃} consist of Gaussian

background noise, i.e., we set x(p) = ξ(p) where ξ(p) ∼ N(0, σ2
bΛ).

Here, the noise covariance matrix is defined as Λ := I −
∑

s,k vs,kv
⊤
s,k which ensures that

Gaussian noises are orthogonal to all features. We assume that the dominant noise is stronger
than the background noise, i.e., σb < σd.

Our data distribution captures characteristics of image data, where the input consists of several
patches. Some patches contain information relevant to the image labels, such as cat faces for the
label “cat,” while other patches contain information irrelevant to the labels, such as the background.
Intuitively, there are two ways to fit the given data: learning features or memorizing noise. If a model
fits the data by learning features, it can correctly classify test data having the same features. However,
if a model fits the data by memorizing noise, it cannot generalize to unseen data because noise patches
are not relevant to labels. Thus, learning more features is crucial for achieving better generalization.

In real-world scenarios, different features may appear with varying frequencies. For instance, the
occurrences of cat’s faces and cat’s tails in a dataset might differ significantly, although both are
relevant to the “cat” label. Our data distribution reflects these characteristics by considering features
with varying frequencies. To emphasize the distinctions between the three training methods we
analyze, we categorize features into three groups: common, rare, and extremely rare. We refer to data
points containing these features as common data, rare data, and extremely rare data, respectively.
We emphasize that these terminologies are chosen merely to distinguish the three different levels of
rarity, and even “extremely rare” features appear in a nontrivial fraction of the training data with high
probability (see our assumptions in Section 2.4).

Comparison to Previous Work. Our data distribution is similar to those considered in Shen et al.
(2022) and Zou et al. (2023), which investigate the benefits of standard data augmentation methods
and Mixup by comparing them to vanilla training without any augmentation. These results consider
two types of features—common and rare—with different levels of rarity, along with two types of
noise: feature noise and Gaussian noise. However, we consider three types of features: common, rare,
and extremely rare, and three types of noise: feature noise, dominant noise, and background noise.
This distinction allows us to compare three distinct methods and demonstrate the differences between
them, whereas Shen et al. (2022) and Zou et al. (2023) compared only two methods.

3

2.2 Neural Network Architecture

For the prediction model, we focus on the following two-layer convolutional neural network where
the weights in the second layer are fixed at 1 and −1, with only the first layer being trainable. Several
works including Shen et al. (2022) and Zou et al. (2023) also focus on similar two-layer convolutional
neural networks.

Definition 2.2 (2-Layer CNN). We define 2-layer CNN fW : Rd×P → R parameterized by
W = {w1,w−1} ∈ Rd×2. For each input X =

(
x(1), . . . ,x(P)

)
∈ Rd×P , we define

fW (X) :=
∑
p∈[P]

ϕ
(〈

w1,x
(p)
〉)

−
∑
p∈[P]

ϕ
(〈

w−1,x
(p)
〉)

,

where ϕ(·) is a smoothed version of leaky ReLU activation, defined as follows.

ϕ(z) :=


z − (1−β)r

2 z ≥ r
1−β
2r z2 + βz 0 ≤ z ≤ r

βz z ≤ 0

,

where 0 < β ≤ 1 and r > 0.

Previous works on the theory of feature learning often consider neural networks with (smoothed)
ReLU or polynomial activation functions. However, we adopt a smoothed leaky ReLU activation,
which always has a positive slope, to exclude the possibility of neurons “dying” during the complex
optimization trajectory. Using smoothed leaky ReLU to analyze the learning dynamics of neural
networks is not entirely new; there is a body of work that studies phenomena such as benign
overfitting (Frei et al., 2022a) and implicit bias (Frei et al., 2022b; Kou et al., 2023b) by analyzing
neural networks with (smoothed) leaky ReLU activation.

A key difference between ReLU and leaky ReLU lies in the possibility of ReLU neurons “dying”
in the negative region, where some negatively initialized neurons remain unchanged throughout
training. As a result, using ReLU activation requires multiple neurons to ensure the survival of
neurons at initialization, which becomes increasingly probable as the number of neurons increases.
In contrast, the derivative of leaky ReLU is always positive, ensuring that a single neuron is often
sufficient. Therefore, for mathematical simplicity, we consider the case where the network has a
single neuron for each positive and negative output. We believe that our analysis can be extended to
the multi-neuron case as we validate numerically in Appendix A.2.

2.3 Training Methods

Using a training set sampled from the distribution D, we would like to train our network fW to learn
to correctly classify unseen data points from D. We consider three learning methods: vanilla training
without any augmentation, Cutout, and CutMix. We first introduce necessary notation for our data
and parameters, and then formalize training methods within our framework.

Training Data. We consider a training set Z = {(Xi, yi)}i∈[n] comprising n data points, each
independently drawn from D. For each i ∈ [n], we denote Xi = (x

(1)
i , . . . ,x

(P)
i).

Initialization. We initialize the model parameters in our neural network using random initializa-
tion. Specifically, we initialize the model parameter W (0) = {w(0)

1 ,w
(0)
−1}, where w

(0)
1 ,w

(0)
−1

i.i.d.∼
N(0, σ2

0Id). Let us denote updated model parameters at iteration t as W (t) = {w(t)
1 ,w

(t)
−1}.

2.3.1 Vanilla Training

The vanilla approach to training a model fW is solving the empirical risk minimization problem
using gradient descent. We refer to this method as ERM. Then, ERM updates parameters W (t) of a
model using the following rule.

W (t+1) = W (t) − η∇WLERM

(
W (t)

)
,

4

where η is a learning rate and LERM(·) is the ERM training loss defined as

LERM(W) :=
1

n

∑
i∈[n]

ℓ(yifW (Xi)), (1)

where ℓ(·) is the logistic loss ℓ(z) = log(1 + e−z).

2.3.2 Cutout Training.

Cutout (DeVries and Taylor, 2017) is a data augmentation technique that randomly cuts out rectangular
regions of image inputs. In our patch-wise data, we regard Cutout training as using inputs with
masked patches from the original data. For each subset C of [P] and i ∈ [n], we define augmented
data Xi,C ∈ Rd×P as a data point generated by cutting the patches with indices in C out of Xi. We
can represent Xi,C as

Xi,C =
(
x
(1)
i,C , . . . ,x

(P)
i,C

)
, where x

(p)
i,C =

{
x
(p)
i if p /∈ C,

0 otherwise.

Note that the output of the model fW (·) on this augmented data point Xi,C is

fW (Xi,C) =
∑
p/∈C

ϕ
(〈

w1,x
(p)
i

〉)
−
∑
p/∈C

ϕ
(〈

w−1,x
(p)
i

〉)
.

Then, the objective function for Cutout training can be defined as

LCutout(W) :=
1

n

∑
i∈[n]

EC∼DC [ℓ(yifW (Xi,C))],

where DC is a uniform distribution on the collection of subsets of [P] with cardinality C, where C
is a hyperparameter satisfying 1 ≤ C < P

2 .1 We refer to the process of training our model using
gradient descent on Cutout loss LCutout(W) as Cutout, and its update rule is

W (t+1) = W (t) − η∇WLCutout

(
W (t)

)
, (2)

where η is a learning rate.

2.3.3 CutMix Training.

CutMix (Yun et al., 2019) involves not only cutting parts of images, but also pasting them into
different images as well as assigning them mixed labels. For each subset S of [P] and i, j ∈ [n], we
define the augmented data point Xi,j,S ∈ Rd×P as the data obtained by cutting patches with indices
in S from data Xi and pasting them into Xj at the same indices S. We can write Xi,j,S as

Xi,j,S =
(
x
(1)
i,j,S , . . . ,x

(P)
i,j,S

)
, where x

(p)
i,j,S =

{
x
(p)
i if p ∈ S,

x
(p)
j otherwise.

The one-hot encoding of the labels yi and yj are also mixed with proportions |S|
P and 1 − |S|

P ,
respectively. This mixed label results in the loss of the form

|S|
P

ℓ(yifW (Xi,j,S)) +

(
1− |S|

P

)
ℓ(yjfW (Xi,j,S)).

From this, the CutMix training loss LCutMix(W) can be defined as

LCutMix(W) :=
1

n2

∑
i,j∈[n]

ES∼DS

[
|S|
P

ℓ(yifW (Xi,j,S)) +

(
1− |S|

P

)
ℓ(yjfW (Xi,j,S))

]
,

where DS is a probability distribution on the set of subsets of [P] which samples S ∼ DS as follows.2

1DeVries and Taylor (2017) also employ a moderate size of cutting, such as cutting 16 × 16 pixels on
CIFAR-10 data, which originally has 32× 32 pixels.

2Other types of distributions, such as those considered in Yun et al. (2019), make the same conclusion. We
adopt this distribution to make presentation simpler.

5

1. Choose the cardinality s of S uniformly at random from {0, 1, . . . , P}, and

2. Choose S uniformly at random from the collection of subsets of [P] with cardinality s.

We refer to the process of training our network using gradient descent on CutMix loss LCutMix(W)
as CutMix, and its update rule is

W (t+1) = W (t) − η∇WLCutMix

(
W (t)

)
, (3)

where η is a learning rate.

2.4 Assumptions on the Choice of Problem Parameters

To control the quantities that appear in the analysis of training dynamics, we make assumptions on
several quantities in our problem setting. For simplicity, we use choices of problem parameters as a
function of the dimension of patches d and consider sufficiently large d.

We use the standard asymptotic notation O(·),Ω(·),Θ(·), o(·), ω(·) to express the dependency on d.
We also use Õ(·), Ω̃(·), Θ̃(·) to hide logarithmic factors of d. Additionally, poly(d) (or polylog(d))
represents quantities that increase faster than dc1(or (log d)c1) and slower than dc2 (or (log d)c2)
for some constant 0 < c1 < c2. Similarly, o(1/poly(d)) (or o(1/polylog(d))) denotes some
quantities that decrease faster than 1/dc (or 1/(log d)c) for any constant c. Finally, we use f(d) =
o(g(d)/polylog(d)) when f(d)/g(d) = o(1/polylog(d)) for some function f and g of d.

Assumptions. We assume that P = Θ(1) and P ≥ 8 for simplicity. Additionally, we consider a
high-dimensional regime where the number of data points is much smaller than the dimension d,
which is expressed as n = o

(
αβσ−1

d σbd
1
2 /polylog(d)

)
. We also assume that ρkn = ω

(
n

1
2 log d

)
for all k ∈ [K], which ensures the sufficiency of data points with each feature.

In addition, as we will describe in Section 4, the relative scales between the frequencies of features
and the strengths of noises play crucial roles in our analysis, as they serve as a proxy for the “learning
speed” in the initial phase. For common features k ∈ KC , we assume ρk = Θ(1) and the learning
speed of common features is much faster than that of dominant noise, which translates into the
assumption σ2

dd = o(βn). For rare features k ∈ KR, we assume ρk = Θ(ρR) for some ρR, and we
consider the case where the learning speed of rare features is much slower than that of dominant
noise but faster than background noise, which is expressed as ρRn = o

(
α2σ2

dd/polylog(d)
)

and
σ2
bd = o(βρRn). Finally, for extremely rare features k ∈ KE , we say ρk = Θ(ρE) for some

ρE and their learning is even slower than that of background noises, which can be expressed as
ρEn = o

(
α2σ2

bd/polylog(d)
)
.

Lastly, we assume the strength of feature noise satisfies α = o
(
n−1βσ2

dd/polylog(d)
)
, and

r, σ0, η > 0 are sufficiently small so that σ0, r = o (α/polylog(d)), η = o
(
rσ−2

d d−1/polylog(d)
)
.

We list our assumptions in Assumption B.1 and there are many choices of parameters satisfying the
set of assumptions, including:

P = 8, C = 2, n = Θ
(
d0.4

)
, α = Θ

(
d−0.02

)
, β =

1

polylog(d)
, σ0 = Θ(d−0.2), r = Θ(d−0.2),

σd = Θ
(
d−0.305

)
, σb = Θ

(
d−0.375

)
, ρR = Θ

(
d−0.1

)
, ρE = Θ

(
d−0.195

)
, η = Θ(d−1).

3 Main Results

In this section, we provide a characterization of the high probability guarantees for the behavior of
models trained using three distinct methods we have introduced. We denote by T ∗ the maximum
admissible training iterates and we assume T ∗ = poly(d)

η with a sufficiently large polynomial in
d. In all of our theorem statements, the randomness is over the sampling of training data and the
initialization of models and all results hold under the condition that d is sufficiently large.

The following theorem characterizes training accuracy and test accuracy achieved by ERM.

6

Theorem 3.1. Let W (t) be iterates of ERM. Then with probability at least 1− o
(

1
poly(d)

)
, there

exists TERM such that any T ∈ [TERM, T ∗] satisfies the following:

• (Perfectly fits training set): For all i ∈ [n], yifW (T)(Xi) > 0.

• (Random on (extremely) rare data): P(X,y)∼D [yfW (T)(X)>0]=1− 1
2

∑
k∈KR∪KE

ρk±o
(

1
poly(d)

)
.

The proof is provided in Appendix C.2. Theorem 3.1 demonstrates that ERM achieves perfect training
accuracy; however, it performs almost like random guessing on unseen data points with rare and
extremely rare features. This is because ERM can only learn common features and overfit rare or
extremely rare data in the training set by memorizing noises to achieve perfect training accuracy.

In comparison, we show that Cutout can perfectly fit both augmented training data and original
training data, and it can also learn rare features that ERM cannot. However, Cutout still makes
random guesses on test data with extremely rare features. We state these in the following theorem
with the proof provided in Appendix D.2:

Theorem 3.2. Let W (t) be iterates of Cutout training. Then with probability at least 1−o
(

1
poly(d)

)
,

there exists TCutout such that any T ∈ [TCutout, T
∗] satisfies the following:

• (Perfectly fits augmented data): For all i ∈ [n] and C ⊂ [P] with |C| = C, yifW (T)(Xi,C) > 0.

• (Perfectly fits original training data): For all i ∈ [n], yifW (T)(Xi) > 0.

• (Random on extremely rare data): P(X,y)∼D [yfW (T)(X) > 0] = 1− 1
2

∑
k∈KE

ρk ± o
(

1
poly(d)

)
.

In the case of CutMix, it is challenging to discuss training accuracy directly because the augmented
data have soft labels generated by mixing pairs of labels. Instead, we prove that CutMix achieves
a sufficiently small gradient of the loss, and the training accuracy on the original training data is
perfect. We also demonstrate that CutMix achieves almost perfect test accuracy, as it learns all types
of features regardless of rarity.

Theorem 3.3. Let W (t) be iterates of CutMix training. Then with probability at least 1−o
(

1
poly(d)

)
,

there exists some TCutMix ∈ [0, T ∗] that satisfies the following:

• (Finds a near stationary point):
∥∥∇WLCutMix

(
W (TCutMix)

)∥∥ = 1
poly(d) .

• (Perfectly fits original training data): For all i ∈ [n], yifW (TCutMix)(Xi) > 0.

• (Almost perfectly classifies test data): P(X,y)∼D

[
yf

W (TCutMix)(X) > 0
]
= 1− o

(
1

poly(d)

)
.

To prove Theorem 3.3, we characterize the global minimum of objective loss of CutMix. Surprisingly,
at the global minimum, the model has the same outputs for all patches of the input data. In other
words, the contributions of all feature vectors and noise vectors to the final outcome of the network
are identical, regardless of their frequency and strength (see Section 4.2 for more details). Moreover,
this uniform “contribution” is large enough, which allows the model to learn all types of features by
reaching the global minimum. We provide the detailed proof in Appendix E.2.

Our three main theorems elucidate the benefits of Cutout and CutMix. Cutout enables a model to
learn rarer features than ERM, while CutMix can even outperform Cutout. These advantages in
learning rarer features lead to improvements in generalization performance.

4 Overview of Analysis

In this section, we discuss key proof ideas and the main challenges in our analysis. For ease of
presentation, we consider the case α = 0. Although our assumptions do not allow the choice α = 0,
the choice of nonzero α is to show guarantees on the test accuracy and does not significantly affect
the feature learning aspect.

7

To provide the proof overview, let us introduce some additional notation. For each i ∈ [n], recall that
the corresponding input point can be written as Xi = (x

(1)
i , . . . ,x

(P)
i). We use p∗i and p̃i to denote

the indices of its feature patch and dominant noise patch, respectively. For each feature vector vs,k,
where s ∈ {±1} and k ∈ [K], let Vs,k ⊂ [n] represent the set of indices of data points having the
feature vector vs,k, and Vs =

⋃K
k=1 Vs,k denotes the set of indices of data with label s. For each data

point i ∈ [n] and dominant or background noise patch p ∈ [P] \ {p∗i }, we refer to the Gaussian noise
inside x

(p)
i as ξ(p)i .

4.1 Vanilla Training and Cutout Training

We now explain why ERM fails to learn (extremely) rare features, while Cutout can learn rare features
but not extremely rare features. Let us consider ERM. From (1), for s, s′ ∈ {±1}, k ∈ [K], i ∈ [n]
and p ∈ [P] \ {p∗i }, the component of ws in the feature vector vs′,k’s direction is updated as〈

w(t+1)
s ,vs′,k

〉
=
〈
w(t)

s ,vs′,k

〉
− ss′η

n

∑
j∈Vs′,k

ℓ′(yjfW (t)(Xj))ϕ
′
(〈

w(t)
s ,vs′,k

〉)
, (4)

and similarly, the “update” of inner product of ws with a noise patch ξ
(p)
i can be written as〈

w(t+1)
s , ξ

(p)
i

〉
≈
〈
w(t)

s , ξ
(p)
i

〉
− syiη

n
ℓ′(yifW (t)(Xi))ϕ

′
(〈

w(t)
s , ξ

(p)
i

〉)∥∥∥ξ(p)i

∥∥∥2 , (5)

where the approximation is due to the near-orthogonality of Gaussian random vectors in the high-
dimensional regime. This approximation shows that ⟨w(t+1)

s ,vs′,k⟩’s and ⟨w(t)
s , ξ

(p)
i ⟩’s are almost

monotonically increasing or decreasing. We address the approximation errors using a variant of the
technique introduced by Cao et al. (2022), as detailed in Appendix B.3.

From (4) and (5), we can observe that in the early phase of training satisfying −ℓ′(yifW (t)(Xi)) =
Θ(1), the main factor for the speed of learning features and noises are the number of feature
occurrence |Vs′,k| and the strength of noise ∥ξ(p)i ∥2. From our assumptions introduced in Section 2.4,
if we compare the learning speed of different components, we have

common features ≫ dominant noises ≫ rare features ≫ background noises ≫ extremely rare features,

in terms of “learning speed.” Based on this observation, we conduct a three-phase analysis for ERM.

• Phase 1: Learning common features quickly.
• Phase 2: Fitting (extremely) rare data by memorizing dominant noises instead of learning features.
• Phase 3: A model cannot learn (extremely) rare features since gradients of all data are small.

The main intuition behind why ERM cannot learn (extremely) rare features is that the gradients of all
data containing these features become small after quickly memorizing dominant noise patches. In
contrast, since Cutout randomly cuts some patches out, there exist augmented data points that do not
contain dominant noises and have only features and background noises. This allows Cutout to learn
rare features, thanks to these augmented data. However, extremely rare features cannot be learned
since the learning speed of background noise is much faster and there are too many background noise
patches to cut them all out.
Remark 4.1. Shen et al. (2022) conduct analysis on vanilla training and training using standard data
augmentation, sharing the same intuition in similar but different data models and neural networks.
Also, we emphasize that we proved the model cannot learn (extremely) rare features even if we run
poly(d)

η iterations of GD, whereas Shen et al. (2022) only consider the first iteration that achieves
perfect training accuracy.

Practical Insights. In practice, images contain features and noise across several patches. A larger
cutting size can be more effective in removing noise but may also remove important features that
the model needs to learn. Thus, there is a trade-off in choosing the optimal cutting size, a trend also
observed in DeVries and Taylor (2017). One limitation of Cutout is that it may not effectively remove
dominant noise. Thus, dominant noise can persist in the augmented data, leading to potential noise
memorization. We believe that developing strategies that can more precisely detect and remove these
noise components from the image input could enhance the effectiveness of these methods.

8

4.2 CutMix Training

In learning dynamics of ERM and Cutout, inner products between weight and data patches evolve
(approximately) monotonically, which makes the analysis much more feasible. However, analyz-
ing the learning dynamics of CutMix involves non-monotone change of inner products, which is
inevitable since CutMix uses mixed labels; this is also demonstrated in our experimental results
(Section 5,especially the leftmost plot in Figure 1). Non-monotonicity and non-convexity of the
problem necessitates novel proof strategies.

Let us define Z := {zs,k}s∈{±1},k∈[K] ∪ {z(p)i }i∈[n],p∈[P]\{p∗
i } as a function of W as follows,

z
(p)
i := ϕ

(〈
w1, ξ

(p)
i

〉)
− ϕ

(〈
w−1, ξ

(p)
i

〉)
, zs,k := ϕ(⟨w1,vs,k⟩)− ϕ(⟨w−1,vs,k⟩).

Then, Z represents the contribution of each noise patch and feature vector to the neural network
output, and the nonconvex function LCutMix(W) can be viewed as the composition of Z(W) and a
convex function h(Z). By using the convexity of h(Z), we can characterize the global minimum of
LCutMix(W). Surprisingly, we show that any global minimizer W ∗ = {w∗

1 ,w
∗
−1} satisfies

ϕ
(〈

w∗
s ,x

(p)
i

〉)
− ϕ

(〈
w∗

−s,x
(p)
i

〉)
= Cs,

for all s ∈ {±1}, i ∈ Vs, and p ∈ [P], with some constants C1, C−1 = Θ(1). In other words, at
the global minimum, the output of model on each patch of the training data is uniform across the
set of data with the same labels. We also prove that CutMix can achieve a point close to the global
minimum within poly(d)

η iterations. As a result, the model trained by CutMix can learn all features
including extremely rare features. The complete proof of Theorem 3.3 appears in Appendix E.2.
Remark 4.2. Zou et al. (2023) investigate Mixup in a similar feature-noise model and show that Mixup
can learn rarer features than vanilla training, with its benefits emerging from the early dynamics of
training. However, our characterization of the global minimum of LCutMix(W) and experimental
results in our setting (Section 5, Figure 1) suggest that the benefits of CutMix, especially for learning
extremely rare features, arise from the later stages of training. This suggests that Mixup and CutMix
have different underlying mechanisms for promoting feature learning.

Practical Insights. The main underlying mechanism of CutMix is that it learns information almost
uniformly from all patches in the training data. However, this approach also involves memorizing
noise, which can potentially degrade performance in real-world scenarios. We believe that a more
sophisticated strategy such as considering the positional information of patches as used in Puzzle
Mix (Kim et al., 2020) or Co-Mixup (Kim et al., 2021) could improve the ability to learn more from
patches containing features and reduce the impact of noise.

5 Experiments

We conduct experiments both in our setting and real-world data CIFAR-10 to support our theoretical
findings and intuition. We defer CIFAR-10 experiment results to Appendix A.1.

For the numerical experiments on our setting, we set the number of patches P = 3, dimension
d = 2000, number of data points n = 300, dominant noise strength σd = 0.25, background noise
strength σb = 0.15, and feature noise strength α = 0.005. The feature vectors are given as the
standard basis e1, e2, e3, e4, e5, e6 ∈ Rd, where e1, e2, e3 are features for the positive label y = 1
and e4, e5, e6 are features for the negative label y = −1. We categorize e1 and e4 as common
features with a frequency of 0.8, e2 and e5 as rare features with a frequency of 0.15, and lastly, e3
and e6 as extremely rare features with a frequency of 0.05. For the learner network, we set the slope
of negative regime β = 0.1 and the length of the smoothed interval r = 1. We train models using
three methods: ERM, Cutout, and CutMix with a learning rate η = 1. For Cutout, we cut a single
patch of data (C = 1). We apply full-batch gradient descent for all methods; for Cutout and CutMix,
we utilize all possible augmented data points.3 We note that this choice of problem parameters does
not exactly match the technical assumptions in Section 2.4. However, we empirically observe the
same conclusions, which suggests that our analysis could be extended beyond our assumptions.

3For CutMix, this may induce different choices of DS from those assumed in our analysis, but we mention
that other general choices of DS do not alter the conclusions in our analysis.

9

For each feature vector v of the positive label, we plot the output of the learned filters for the feature
vector ϕ(⟨w(t)

1 ,v⟩)− ϕ(⟨w(t)
−1,v⟩) throughout training in Figure 1. Our numerical findings confirm

that ERM can only learn common features, Cutout can learn common and rare features but cannot
learn extremely rare features, and CutMix can learn all types of features. Especially, CutMix learn
common features, rare features, and extremely rare features almost evenly. Also, we observed non-
monotone behavior of the output in the case of CutMix, which motivated our novel proof technique.
The same trends are observed with different architectures, such as a smoothed (leaky) ReLU network
with multiple neurons, as detailed in Appendix A.2.

0 2000 4000 6000 8000 10000
Iterations

0

2

4

6

8

10

Co
m

m
on

 Fe
at

ur
e

Ou
tp

ut

ERM
Cutout
CutMix

0 2000 4000 6000 8000 10000
Iterations

0.0

0.2

0.4

0.6

0.8

Ra
re

 Fe
at

ur
e

Ou
tp

ut

ERM
Cutout
CutMix

0 2000 4000 6000 8000 10000
Iterations

0.0

0.2

0.4

0.6

0.8

Ex
tre

m
el

y
Ra

re
 Fe

at
ur

e
Ou

tp
ut

ERM
Cutout
CutMix

Figure 1: Numerical results on our problem setting. We validate our findings on the trends of ERM,
Cutout, and CutMix in learning common feature (Left), rare feature (Center), and extremely rare
feature (Right). The output of the common feature trained by CutMix shows non-monotone behavior.

6 Conclusion

We studied how Cutout and CutMix influence the ability to learn features in a patch-wise feature-
noise data model learning with two-layer convolutional neural networks by comparing them with
vanilla training. We showed that Cutout enables the learning of rare features that cannot be learned
through vanilla training by mitigating the problem of memorizing label-independent noises instead of
learning label-dependent features. Surprisingly, we further proved that CutMix can learn extremely
rare features that Cutout cannot learn. We also present our theoretical insights on the underlying
mechanism of these methods and provide experimental support.

Limitation and Future Work. Our work has some limitations related to the neural network
architecture, specifically, the use of a 2-layer two-neuron smoothed leaky ReLU network. Extending
our results to neural networks with deeper, wider, and more general activation functions is a direction
for future work. Another future direction is to develop patch-level data augmentation based on our
theoretical findings. Also, it would be interesting to perform theoretical analysis on state-of-the-art
patch-level data augmentation such as Puzzle Mix (Kim et al., 2020) or Co-Mixup (Kim et al., 2021).
These methods utilize patch location information, thus it may require the development of a theoretical
framework capturing more complex characteristics of image data.

Acknowledgement

This work was supported by three Institute of Information & communications Technology Planning
& Evaluation (IITP) grants (No. RS-2019-II190075, Artificial Intelligence Graduate School Program
(KAIST); No. RS-2022-II220184, Development and Study of AI Technologies to Inexpensively
Conform to Evolving Policy on Ethics; No. RS-2024-00457882, AI Research Hub Project) funded
by the Korean government (MSIT), and a National Research Foundation of Korea (NRF) grant (No.
RS-2019-NR040050) funded by the Korean government (MSIT). CY acknowledges support from a
grant funded by Samsung Electronics Co., Ltd.

10

References
Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and

self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends®
in Machine Learning, 8(3-4):231–357, 2015.

Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convo-
lutional neural networks. Advances in neural information processing systems, 35:25237–25250,
2022.

Luigi Carratino, Moustapha Cissé, Rodolphe Jenatton, and Jean-Philippe Vert. On mixup regulariza-
tion. arXiv preprint arXiv:2006.06049, 2020.

Pengguang Chen, Shu Liu, Hengshuang Zhao, and Jiaya Jia. Gridmask data augmentation. arXiv
preprint arXiv:2001.04086, 2020a.

Shuxiao Chen, Edgar Dobriban, and Jane H Lee. A group-theoretic framework for data augmentation.
In Proceedings of the 34th International Conference on Neural Information Processing Systems,
pages 21321–21333, 2020b.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding the
mixture-of-experts layer in deep learning. Advances in neural information processing systems, 35:
23049–23062, 2022.

Zixiang Chen, Junkai Zhang, Yiwen Kou, Xiangning Chen, Cho-Jui Hsieh, and Quanquan Gu. Why
does sharpness-aware minimization generalize better than sgd? In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Muthu Chidambaram and Rong Ge. For better or for worse? learning minimum variance features
with label augmentation. arXiv preprint arXiv:2402.06855, 2024.

Muthu Chidambaram, Xiang Wang, Yuzheng Hu, Chenwei Wu, and Rong Ge. Towards understanding
the data dependency of mixup-style training. arXiv preprint arXiv:2110.07647, 2021.

Muthu Chidambaram, Xiang Wang, Chenwei Wu, and Rong Ge. Provably learning diverse features
in multi-view data with midpoint mixup. In International Conference on Machine Learning, pages
5563–5599. PMLR, 2023.

Tri Dao, Albert Gu, Alexander Ratner, Virginia Smith, Chris De Sa, and Christopher Ré. A kernel
theory of modern data augmentation. In International conference on machine learning, pages
1528–1537. PMLR, 2019.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Spencer Frei, Niladri S Chatterji, and Peter Bartlett. Benign overfitting without linearity: Neural
network classifiers trained by gradient descent for noisy linear data. In Conference on Learning
Theory, pages 2668–2703. PMLR, 2022a.

Spencer Frei, Gal Vardi, Peter L Bartlett, Nathan Srebro, and Wei Hu. Implicit bias in leaky relu
networks trained on high-dimensional data. arXiv preprint arXiv:2210.07082, 2022b.

Boris Hanin and Yi Sun. How data augmentation affects optimization for linear regression. Advances
in Neural Information Processing Systems, 34:8095–8105, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Wei Huang, Yuan Cao, Haonan Wang, Xin Cao, and Taiji Suzuki. Graph neural networks provably ben-
efit from structural information: A feature learning perspective. arXiv preprint arXiv:2306.13926,
2023a.

11

Wei Huang, Ye Shi, Zhongyi Cai, and Taiji Suzuki. Understanding convergence and generalization in
federated learning through feature learning theory. In The Twelfth International Conference on
Learning Representations, 2023b.

Samy Jelassi and Yuanzhi Li. Towards understanding how momentum improves generalization in
deep learning. In International Conference on Machine Learning, pages 9965–10040. PMLR,
2022.

Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. Characterizing structural
regularities of labeled data in overparameterized models. In International Conference on Machine
Learning, pages 5034–5044. PMLR, 2021.

Jang-Hyun Kim, Wonho Choo, and Hyun Oh Song. Puzzle mix: Exploiting saliency and local
statistics for optimal mixup. In International Conference on Machine Learning, pages 5275–5285.
PMLR, 2020.

Jang-Hyun Kim, Wonho Choo, Hosan Jeong, and Hyun Oh Song. Co-mixup: Saliency guided joint
mixup with supermodular diversity. arXiv preprint arXiv:2102.03065, 2021.

Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu. Benign overfitting in two-layer
relu convolutional neural networks. In International Conference on Machine Learning, pages
17615–17659. PMLR, 2023a.

Yiwen Kou, Zixiang Chen, and Quanquan Gu. Implicit bias of gradient descent for two-layer relu
and leaky relu networks on nearly-orthogonal data. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023b.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Binghui Li and Yuanzhi Li. Why clean generalization and robust overfitting both happen in adversarial
training. arXiv preprint arXiv:2306.01271, 2023.

Junsoo Oh and Chulhee Yun. Provable benefit of mixup for finding optimal decision boundaries. In
International Conference on Machine Learning, pages 26403–26450. PMLR, 2023.

Chanwoo Park, Sangdoo Yun, and Sanghyuk Chun. A unified analysis of mixed sample data
augmentation: A loss function perspective. Advances in Neural Information Processing Systems,
35:35504–35518, 2022.

Shashank Rajput, Zhili Feng, Zachary Charles, Po-Ling Loh, and Dimitris Papailiopoulos. Does data
augmentation lead to positive margin? In International Conference on Machine Learning, pages
5321–5330. PMLR, 2019.

Ruoqi Shen, Sébastien Bubeck, and Suriya Gunasekar. Data augmentation as feature manipulation.
In International conference on machine learning, pages 19773–19808. PMLR, 2022.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Sen Wu, Hongyang Zhang, Gregory Valiant, and Christopher Ré. On the generalization effects of
linear transformations in data augmentation. In International Conference on Machine Learning,
pages 10410–10420. PMLR, 2020.

Jaejun Yoo, Namhyuk Ahn, and Kyung-Ah Sohn. Rethinking data augmentation for image super-
resolution: A comprehensive analysis and a new strategy. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 8375–8384, 2020.

Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings
of the IEEE/CVF international conference on computer vision, pages 6023–6032, 2019.

12

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, 2017.

Linjun Zhang, Zhun Deng, Kenji Kawaguchi, Amirata Ghorbani, and James Zou. How does mixup
help with robustness and generalization? arXiv preprint arXiv:2010.04819, 2020.

Linjun Zhang, Zhun Deng, Kenji Kawaguchi, and James Zou. When and how mixup improves
calibration. In International Conference on Machine Learning, pages 26135–26160. PMLR, 2022.

Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data aug-
mentation. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
13001–13008, 2020.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of adam in
learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371, 2021.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. The benefits of mixup for feature learning. In
International Conference on Machine Learning, pages 43423–43479. PMLR, 2023.

13

Contents

1 Introduction 1

1.1 Our Contributions . 2

1.2 Related Works . 2

2 Problem Setting 3

2.1 Data Distribution . 3

2.2 Neural Network Architecture . 4

2.3 Training Methods . 4

2.4 Assumptions on the Choice of Problem Parameters 6

3 Main Results 6

4 Overview of Analysis 7

4.1 Vanilla Training and Cutout Training . 8

4.2 CutMix Training . 9

5 Experiments 9

6 Conclusion 10

A Additional Experimental Results 15

A.1 Experiments on CIFAR-10 Dataset . 15

A.2 Additional Experimental Results on Our Data Distribution 19

B Proof Preliminaries 20

B.1 Properties of the Choice of Problem Parameters 20

B.2 Quantities at the Beginning . 21

B.3 Feature Noise Decomposition . 23

C Proof for ERM 29

C.1 Proof of Lemma B.3 for ERM . 29

C.2 Proof of Theorem 3.1 . 30

D Proof for Cutout 45

D.1 Proof of Lemma B.3 for Cutout . 45

D.2 Proof of Theorem 3.2 . 46

E Proof for CutMix 62

E.1 Proof of Lemma B.3 for CutMix . 62

E.2 Proof of Theorem 3.3 . 62

F Technical Lemmas 75

14

A Additional Experimental Results

For all experiments described in this section and in Section 5, we use NVIDIA RTX A6000 GPUs.

A.1 Experiments on CIFAR-10 Dataset

A.1.1 Experimental Support for Our Intuition

We compare three methods, ERM training, Cutout training, and CutMix training on CIFAR-10
classification. For ERM training, we apply only random cropping and random horizontal flipping
on train dataset. In comparison, for Cutout training and CutMix training, we additionally apply
Cutout and CutMix, respectively, on training data. For Cutout training, we randomly cut 16 × 16
pixels of input images, and for CutMix training, we sample the mixing ratio from a beta distribution
Beta(0.5, 0.5). We train ResNet-18 (He et al., 2016) for 200 epochs with a batch size of 128 using
SGD with a learning rate 0.1, momentum 0.9, and weight decay 5 × 10−4. Trained models using
ERM, Cutout, and CutMix achieve test accuracy 95.16%, 96.05%, and 96.29%, respectively.

We randomly generate augmented data using CutMix from pairs of cat images and dog images in
CIFAR-10 with varying mixing ratios λ = 1, 0.8, 0.6 (Dog:Cat = λ : 1 − λ). We randomly make
5, 000 (cat, dot)-pairs in CIFAR-10 training set and apply CutMix randomly 10 times. By repeating
this procedure 10 times, we generate total 5, 000× 10× 10 = 500, 000 augmented samples for each
mixing ratio λ. We plot a histogram of dog prediction output subtracted by cat prediction output
(before applying the softmax function), evaluated on 500, 000 augmented data in Figure 2.

15 10 5 0 5 10 15 20
Dog Output - Cat Output

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
eq

ue
nc

y

ERM
Cutout
CutMix

15 10 5 0 5 10 15 20
Dog Output - Cat Output

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Fr
eq

ue
nc

y

ERM
Cutout
CutMix

15 10 5 0 5 10 15 20
Dog Output - Cat Output

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fr
eq

ue
nc

y

ERM
Cutout
CutMix

Figure 2: Histogram of dog prediction output subtracted by cat prediction output evaluated on
data points augmented by CutMix data using cat data and dog data with varying mixing ratio λ
(Dog : Cat = λ : 1− λ) (Left) λ = 1 , (Center) λ = 0.8, (Right) λ = 0.6

The leftmost plot represents the evaluation results for original dog images, as it uses a mixing ratio of
λ = 1. We can observe that the output of the model trained using Cutout is skewed toward higher
values compared to the output of the model trained using other methods. We believe this aligns with
the theoretical intuition that Cutout learns more information from the original image using augmented
data.

The remaining two plots show the output for randomly augmented data using CutMix. We observe
that the models trained with CutMix exhibit a shorter tail, supporting our intuition from the CutMix
analysis that the models learn uniformly across all patches.

A.1.2 Experimental Support for Our Findings

We train ResNet-18 using ERM training, Cutout training, and CutMix training following the same
experimental details described in Appendix A.1.1, except using only 10% of the training set. This
data-hungry setting is intended to highlight the benefits of Cutout and CutMix. We then evaluated the
trained models on the remaining 90% of the CIFAR-10 training dataset. The reason for evaluating
the remaining training dataset is to analyze the misclassified data using C-score (Jiang et al., 2021),
which is publicly available only for the training dataset.

15

C-score measures the structural regularity of data, with lower values indicating examples that are more
difficult to classify correctly. In our framework, data with harder-to-learn features (corresponding
to rarer features) would likely have lower C-scores. Since directly extracting and quantitatively
evaluating features learned by the models is challenging, we use the C-score as a proxy to evaluate
the misclassified data across models trained by ERM, Cutout, and CutMix.

Table 1 illustrates that Cutout tends to misclassify data with lower C-scores compared to ERM,
indicating that Cutout learns more hard-to-learn features than vanilla training. Furthermore, the data
misclassified by CutMix has even lower C-scores than those misclassified by Cutout, suggesting that
CutMix is effective at learning features that are the most challenging to classify. This observation
aligns with our theoretical findings, demonstrating that CutMix captures even more difficult features
compared to both ERM and Cutout.

Table 1: Mean and quantiles of the C-score on misclassified data across models trained with ERM,
Cutout, and CutMix. The results indicate that Cutout tends to misclassify data with lower C-scores
compared to ERM, while CutMix exhibits even lower C-scores.

Method Mean Q1 Q2 Q3
ERM 0.687 0.615 0.782 0.841
Cutout 0.679 0.599 0.775 0.837
CutMix 0.670 0.575 0.767 0.835

Since directly visualizing features learned by a model is challenging, we present data that were
misclassified by the model trained with ERM but correctly classified by the model trained with Cutout
instead. In Figure 3, we show 7 samples per class with the lowest C-scores, which are considered to
have rare features. Similarly, we also visualize data misclassified by the model trained with Cutout
but correctly classified by the model trained with CutMix to represent extremely rare data in Figure 4.
This approach allows us to interpret some (extremely) rare features in CIFAR-10, such as frogs with
unusual colors.

16

C-score: 0.024

C-score: 0.028

C-score: 0.029

C-score: 0.032

C-score: 0.032

C-score: 0.033

C-score: 0.037

C-score: 0.037

C-score: 0.038

C-score: 0.043 C-score: 0.045

C-score: 0.047

C-score: 0.049

C-score: 0.053

C-score: 0.056

C-score: 0.056

C-score: 0.057

C-score: 0.059

C-score: 0.060

C-score: 0.060

C-score: 0.065

C-score: 0.068

C-score: 0.072

C-score: 0.072

C-score: 0.077

C-score: 0.080

C-score: 0.081

C-score: 0.081 C-score: 0.083

C-score: 0.085 C-score: 0.085

C-score: 0.087 C-score: 0.088

C-score: 0.090

C-score: 0.091 C-score: 0.091

C-score: 0.094

C-score: 0.099

C-score: 0.102

C-score: 0.103

C-score: 0.105

C-score: 0.105

C-score: 0.108

C-score: 0.109

C-score: 0.111

C-score: 0.122

C-score: 0.124

C-score: 0.135 C-score: 0.143

C-score: 0.146

C-score: 0.150

C-score: 0.168 C-score: 0.180 C-score: 0.187

C-score: 0.187

C-score: 0.188 C-score: 0.204 C-score: 0.212

C-score: 0.213 C-score: 0.215

C-score: 0.222

C-score: 0.235 C-score: 0.255

C-score: 0.264 C-score: 0.308 C-score: 0.327 C-score: 0.344 C-score: 0.360 C-score: 0.432 C-score: 0.440

Figure 3: Examples of rare data in CIFAR-10

17

C-score: 0.017

C-score: 0.017

C-score: 0.019

C-score: 0.021

C-score: 0.022

C-score: 0.029

C-score: 0.033

C-score: 0.033

C-score: 0.035

C-score: 0.037

C-score: 0.037

C-score: 0.039

C-score: 0.041

C-score: 0.042

C-score: 0.045

C-score: 0.048

C-score: 0.049

C-score: 0.051 C-score: 0.052

C-score: 0.052

C-score: 0.054

C-score: 0.054 C-score: 0.055

C-score: 0.056

C-score: 0.059

C-score: 0.059

C-score: 0.062 C-score: 0.064 C-score: 0.065

C-score: 0.069

C-score: 0.069

C-score: 0.071

C-score: 0.074

C-score: 0.074

C-score: 0.082

C-score: 0.091 C-score: 0.091

C-score: 0.096

C-score: 0.101

C-score: 0.103

C-score: 0.104

C-score: 0.105

C-score: 0.110

C-score: 0.111

C-score: 0.113

C-score: 0.114

C-score: 0.118

C-score: 0.124

C-score: 0.126

C-score: 0.128

C-score: 0.132

C-score: 0.134

C-score: 0.136

C-score: 0.139

C-score: 0.148

C-score: 0.148

C-score: 0.154 C-score: 0.168

C-score: 0.171

C-score: 0.174

C-score: 0.178

C-score: 0.196

C-score: 0.206 C-score: 0.212

C-score: 0.216

C-score: 0.247

C-score: 0.247

C-score: 0.250 C-score: 0.276

C-score: 0.283

Figure 4: Examples of extreme data in CIFAR-10

18

A.2 Additional Experimental Results on Our Data Distribution

In addition to the results described in Section 5, we further conducted numerical experiments on our
data distribution by applying two variations to our architecture: increasing the number of neurons,
and increasing the number of neurons with a smoothed ReLU activation (instead of smoothed leaky
ReLU). We observed the same trends as predicted by our theoretical findings and shown in Figure 1.

Let us describe the setting of our experiments in detail. In both cases, We set the number of patches
P = 3, dimension d = 2000, and the number of data n = 300. The feature vectors are given by
the standard basis e1, e2, e3, e4, e5, e6 ∈ Rd, where e1, e2, e3 are features for the positive label
y = 1 and e4, e5, e6 are features for the negative label y = −1. We categorize e1 and e4 as common
features, e2 and e5 as rare features, and lastly, e3 and e6 as extremely rare features. We apply
full-batch gradient descent with learning rate η = 1 and for Cutout and CutMix, we utilize all
possible augmented data.

For the multi-neuron with smoothed Leaky ReLU case (Figure 5), we use 10 neurons for each
positive/negative output with the slope of negative regime β = 0.1 and the length of polynomial
regime r = 1. We set the strength of dominant noise σd = 0.25, the strength of background noise
σb = 0.12, and the strength of feature noise α = 0.05. In addition, frequencies of common features,
rare features, and extremely rare features are set to 0.72, 0.15, and 0.03, respectively.

For the multi-neuron with smoothed ReLU case i.e., β = 0 (Figure 6), we set the length of the
polynomial regime as r = 1, and we use 10 neurons for each positive/negative output. We set the
remaining problem parameters as follows: the strength of dominant noise σd = 0.25, the strength of
background noise σb = 0.12, and the strength of feature noise α = 0.05. In addition, frequencies of
common features, rare features, and extremely rare features are set to 0.75, 0.2, and 0.05, respectively.

0 2000 4000 6000 8000 10000
Iterations

0

2

4

6

8

Co
m

m
on

 Fe
at

ur
e

Ou
tp

ut

ERM
Cutout
CutMix

0 2000 4000 6000 8000 10000
Iterations

0

1

2

3

4

Ra
re

 Fe
at

ur
e

Ou
tp

ut

ERM
Cutout
CutMix

0 2000 4000 6000 8000 10000
Iterations

0.0

0.2

0.4

0.6

0.8
Ex

tre
m

el
y

Ra
re

 Fe
at

ur
e

Ou
tp

ut
ERM
Cutout
CutMix

Figure 5: Multi-neuron with a smoothed leaky ReLU actiation

0 2000 4000 6000 8000 10000
Iterations

0

2

4

6

8

10

Co
m

m
on

 Fe
at

ur
e

Ou
tp

ut

ERM
Cutout
CutMix

0 2000 4000 6000 8000 10000
Iterations

0.0

0.5

1.0

1.5

2.0

Ra
re

 Fe
at

ur
e

Ou
tp

ut

ERM
Cutout
CutMix

0 2000 4000 6000 8000 10000
Iterations

0.0

0.2

0.4

0.6

0.8

Ex
tre

m
el

y
Ra

re
 Fe

at
ur

e
Ou

tp
ut

ERM
Cutout
CutMix

Figure 6: Multi-neuron with a smoothed ReLU

19

B Proof Preliminaries

B.1 Properties of the Choice of Problem Parameters

In our analysis, we consider the choice of problem parameters as a function of the dimension of
patches d and consider sufficiently large d. Let us summarize the assumptions on the parameters for
the problem setting and assume they hold.

Assumption B.1. The following conditions hold.

A1. (The number of patches) P = Θ(1) and P ≥ 8.

A2. (Overparameterized regime): n = o
(
αβσ−1

d σbd
1
2 /polylog(d)

)
.

A3. (Sufficient feature data): For all k ∈ [K], ρkn = ω
(
n

1
2 log d

)
.

A4. (Common feature vs dominant noise): For all k ∈ KC , ρk = Θ(1) and σ2
dd = o(βn).

A5. (Rare feature vs noise): For all k ∈ KR, ρk = Θ(ρR) with ρRn = o
(
α2σ2

dd/polylog(d)
)

and
σ2
bd = o(βρRn).

A6. (Extremely rare feature vs background noise) For all k ∈ KE , ρk = Θ(ρE) with ρEn =
o
(
α2σ2

bd/polylog(d)
)
.

A7. (Strength of feature noise) α = o
(
n−1βσ2

dd/polylog(d)
)
.

A8. σ0σ
2
dd, r = o (α/polylog(d)) , η = o

(
rσ−2

d d−1/polylog(d)
)

We now present some properties derived from Assumption B.1, which are frequently used throughout
our proof.

From (A3), for all k ∈ [K], we have the following inequality:

n ≥ ρ1n ≥ ρ2kn = ω
(
log2 d

)
(6)

From (A1) and (A2), and given that β < 1, σb < σd, we have

d > (βσ−1
d σbd

1
2)2 > n2P > nP. (7)

From (A2), (A3), and (A6), and given that α, β < 1, we have

σ2
dd > σ2

bd = ω(ρEn) = ω(1). (8)

From (A1), (A2) and the fact that 0 < α < 1, we have

nPβ−1σdσ
−1
b d−

1
2 = o

(
α

polylog(d)

)
= o

(
1

polylog(d)

)
(9)

From (A7) and (A4), we have

αβ−1 < αβ−2 = o

(
n−1β−1σ2

dd

polylog(d)

)
= o

(
1

polylog(d)

)
(10)

From (8) and (A8), η = o(1) and then we have

η ≤ log(ηT ∗)

2
. (11)

From (A2), (A3), (A4), and (A5) we have

α−2 = o

(
σ2
dd

ρRn

)
= o

(
ρ−1
R

)
= o

(
n

1
2

)
= o

(
d

1
4

)
. (12)

20

B.2 Quantities at the Beginning

We characterize some quantities at the beginning of training.
Lemma B.2. Let Einit the event such that all the following holds:

• 25
52n ≤ |V1|, |V−1| ≤ 27

52n

• For each s ∈ {±1} and k ∈ [K], ρkn
4 ≤ |Vs,k| ≤ 3ρkn

4

• ∪i∈V1,1
{p∗i } = [P]

• For any s, s′ ∈ {±1} and k ∈ [K],
∣∣∣〈w(0)

s ,vs′,k

〉∣∣∣ ≤ σ0 log d.

• For any s ∈ {±1} and i ∈ [n],
∣∣∣〈w(0)

s , ξ
(p̃i)
i

〉∣∣∣ ≤ σ0σdd
1
2 log d.

• For any s ∈ {±1}, i ∈ [n] and p ∈ [P] \ {p∗i , p̃i},
∣∣∣〈w(0)

s , ξ
(p)
i

〉∣∣∣ ≤ σ0σbd
1
2 log d.

• For any i, j ∈ [n] with i ̸= j, 1
2σ

2
dd ≤

∥∥∥ξ(p̃i)
i

∥∥∥2 ≤ 3
2σ

2
dd and

∣∣∣〈ξ(p̃i)
i , ξ

(p̃j)
j

〉∣∣∣ ≤ σ2
dd

1
2 log d.

• For any i, j ∈ [n] and p ∈ [P] \ {p∗j , p̃j},
∣∣∣〈ξ(p̃i)

i , ξ
(p)
j

〉∣∣∣ ≤ σdσbd
1
2 log d.

• For any i, j ∈ [n] and p ∈ [P] \ {p∗i , p̃i}, q ∈ [P] \ {p∗j , p̃j} with (i, p) ̸= (j, q),
1
2σ

2
bd ≤

∥∥∥ξ(p)i

∥∥∥2 ≤ 3
2σ

2
bd and

∣∣∣〈ξ(p)i , ξ
(q)
j

〉∣∣∣ ≤ σ2
bd

1
2 log d.

• {vs,k}s∈{±1},k∈[K] ∪ {x(p)
i }i∈[n],p∈[P]\{p∗

i } is linearly independent.

Then, the event Einit occurs with probability at least 1 − o
(

1
poly(d)

)
. Also, if ξ ∼ N(0, σ2Λ) is

independent of w(0)
1 ,w

(0)
−1 and {(Xi, yi)}i∈[n], we have∣∣∣〈w(0)

1 , ξ
〉∣∣∣ , ∣∣∣〈w(0)

−1, ξ
〉∣∣∣ ≤ σ0σd

1
2 log d, and

∣∣∣〈ξ, ξ(p)i

〉∣∣∣ ≤ σσdd
1
2 log d,

for all i ∈ [n] and p ∈ [P] \ {p∗i }, with probability at least 1− o
(

1
poly(d)

)
.

Proof of Lemma B.2. Let us prove the first three points hold with probability at least 1− o
(

1
poly(d)

)
.

By Höeffding’s inequality,

P
[∣∣∣|V1| −

n

2

∣∣∣ > n

52

]
= P

∣∣∣∣∣∣
∑
i∈[n]

(1yi=1 − E[1yi=1])

∣∣∣∣∣∣ > n

52


≤ 2 exp

(
− 2

522
n

)
= o

(
1

poly(d)

)
,

where the last equality is due to (6). In addition, for each s ∈ {±1}, k ∈ [K], by Höeffding’s
inequality

P
[∣∣∣|Vs,k| −

ρk
2
n
∣∣∣ > ρk

4
n
]
= P

∣∣∣∣∣∣
∑
i∈[n]

(
1i∈Vs,k

− E[1i∈Vs,k
]
)∣∣∣∣∣∣ > ρk

4
n


≤ 2 exp

(
−ρ2k

8
n

)
= o

(
1

poly(d)

)
,

where the last equality is due to (6). Also, for each i ∈ [n] and p ∈ [P],

P[{i ∈ V1,1} ∩ {p∗i = p}] = ρ1
P
.

21

Hence,

P
[
∪i∈V1,1

{p∗i } ≠ [P]
]
≤
∑
p∈[P]

P
[
∩i∈[n]

(
({i ∈ V1,1} ∩ {p∗i = p})∁

)]
= P

(
1− ρ1

P

)n
≤ P exp

(
−ρ1
P
n
)

= o

(
1

poly(d)

)
.

Next, we will prove the remaining. Let us refer to the standard deviation of the Gaussian noise vector
in p-th patch of i-th data as σi,p. In other words, for each i ∈ [n] and p ∈ [P] \ {p∗i },

σi,p =

{
σd if p = p̃i,
σb otherwise.

For each s, s′ ∈ {±1} and k ∈ [K],
〈
w

(0)
s ,vs′,k

〉
∼ N(0, σ0). Hence, by Höeffding’s inequality,

we have

P
[∣∣∣〈w(0)

s ,vs′,k

〉∣∣∣ > σ0 log d
]
≤ 2 exp

(
− (σ0 log d)

2

2σ2
0

)
= o

(
1

poly(d)

)
.

Let {ul}l∈[d−2K] be an orthonormal basis of the orthogonal complement of
Span({vs,k}s∈{±1},k∈[K]). Note that for each s ∈ {±1}, i ∈ [n] and p ∈ [P] \ {p∗i }, we
can write ξ

(p)
i and ξ as

ws(0) = σ0

∑
l∈[d−2K]

zs,lul, ξ
(p)
i = σi,p

∑
l∈[d−2K]

z
(p)
i,l ul, ξ = σ

∑
l∈[d−2K]

zlul

where zs,l, z
(p)
i,l , zl

i.i.d.∼ N(0, 1). The sub-gaussian norm of standard normal distribution N(0, 1) is√
8
3 . Then

(
z
(p)
i,l

)2
− 1’s are mean zero sub-exponential with sub-exponential norm 8

3 (Lemma 2.7.6

in Vershynin (2018)). In addition, zs,lz
(p)
i,l ’s, z(p)i,l z

(q)
j,l ’s and z

(p)
i,l zl’s are mean zero sub-exponential

with sub-exponential norm less than or equal to 8
3 (Lemma 2.7.7 in Vershynin (2018)). We use

Bernstein’s inequality (Theorem 2.8.1 in Vershynin (2018)), with c being the absolute constant stated
therein. We then have the following:

1− P
[
1

2
σ2
i,pd ≤

∥∥∥ξ(p)i

∥∥∥2 ≤ 3

2
σ2
i,pd

]
≤ P

[∣∣∣∣∥∥∥ξ(p)i

∥∥∥2 − σ2
i,p(d− 2K)

∣∣∣∣ ≥ σ2
i,pd

1
2 log d

]

= P

∣∣∣∣∣∣
∑

l∈[d−2K]

((
z
(p)
i,l

)2
− 1

)∣∣∣∣∣∣ ≥ d
1
2 log d


≤ 2 exp

(
− 9cd log2 d

64(d− 2K)

)
≤ 2 exp

(
−9c log2 d

64

)
= o

(
1

poly(d)

)
,

in addition,

P
[∣∣∣〈ξ(p)i , ξ

(q)
j

〉∣∣∣ ≥ σi,pσj,qd
1
2 log d

]
= P

∣∣∣∣∣∣
∑

l∈[d−2K]

z
(p)
i,l z

(q)
j,l

∣∣∣∣∣∣ ≥ d
1
2 log d


≤ 2 exp

(
− 9cd log2 d

64(d− 2K)

)
≤ 2 exp

(
−9c log2 d

64

)
= o

(
1

poly(d)

)
.

22

Similarly, we have

P
[∣∣∣〈w(0)

s , ξ
(p)
i

〉∣∣∣ ≥ σ0σi,pd
1
2 log d

]
≤ 2 exp

(
−9c log2 d

64

)
= o

(
1

poly(d)

)
.

Lastly, the last result holds almost surely due to (7). Applying the union bound to all events, each of
which is at most poly(d) due to (7), leads us to our first conclusion.

In addition, for each s ∈ {±1}, i ∈ [n] and p ∈ [P] \ {p∗i },

P
[∣∣∣〈w(0)

s , ξ
〉∣∣∣ ≥ σ0σd

1
2 log d

]
≤ 2 exp

(
−9c log2 d

64

)
= o

(
1

poly(d)

)
,

and

P
[∣∣∣〈ξ(p)i , ξ

〉∣∣∣ ≥ σi,pσd
1
2 log d

]
≤ 2 exp

(
−9c log2 d

64

)
= o

(
1

poly(d)

)
.

Applying the union bound to all events, each of which is at most poly(d) due to (7), leads us to our
second conclusion.

B.3 Feature Noise Decomposition

In our analysis, we use a technique that analyzes the coefficients of linear combinations of feature
and noise vectors. A similar technique in a different data and network setting is introduced by Cao
et al. (2022).
Lemma B.3. If we run one of ERM, Cutout, and CutMix training to update parameters W (t) of a
model fW (t) , then there exist coefficients (corresponding to each method) γ(t)

s (s′, k)’s and ρ
(t)
s (i, p)’s

so that we can write W (t) = {w(t)
1 ,w

(t)
−1} as

w(t)
s = w(0)

s +
∑

k∈[K]

γ(t)
s (s, k)vs,k −

∑
k∈[K]

γ(t)
s (−s, k)v−s,k

+
∑

i∈Vs,p∈[P]\{p∗
i }

ρ(t)s (i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2 −
∑

i∈V−s,p∈[P]\{p∗
i }

ρ(t)s (i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2
+ α

∑
i∈Fs

syiρ
(t)
s (i, p̃i)

vs,1∥∥∥ξ(p̃i)
i

∥∥∥2 +
∑

i∈F−s

syiρ
(t)
s (i, p̃i)

v−s,1∥∥∥ξ(p̃i)
i

∥∥∥2


where Fs denotes the set of indices of data with feature noise vs,1. Furthermore, if we run one of
ERM and Cutout, the coefficients γ(t)

s (s′, k)’s and ρ
(t)
s (i, p)’s are monotone increasing.

We provide proof of Lemma B.3 for ERM in Appendix C.1, for Cutout in Appendix D.1 and for
CutMix in Appendix E.1.

Since Gaussian vectors in a high-dimensional regime are nearly orthogonal, we can use the coefficients
to approximate the inner products or outputs of neurons. The following lemma quantifies the
approximation error.

Lemma B.4. Suppose the event Einit occurs and 0 ≤ γ
(t)
s (s′, k), ρ

(t)
s (i, p) ≤ Õ(β−1) for all s, s′ ∈

{±1}, k ∈ [K], i ∈ [n] and p ∈ [P] \ {p∗i } at iteration t. Then, for each s ∈ {±1}, k ∈ [K], i ∈ [n],
and p ∈ [P] \ {p∗i }, the following holds:

•
∣∣∣〈w(t)

s ,vs,k

〉
− γ

(t)
s (s, k)

∣∣∣ , ∣∣∣ϕ(〈w(t)
s ,vs,k

〉)
− γ

(t)
s (s, k)

∣∣∣ = o
(

1
polylog(d)

)
•
∣∣∣〈w(t)

s ,v−s,k

〉
+ γ

(t)
s (−s, k)

∣∣∣ , ∣∣∣ϕ(〈w(t)
s ,v−s,k

〉)
+ βγ

(t)
s (−s, k)

∣∣∣ = o
(

1
polylog(d)

)
•
∣∣∣〈w(t)

yi , ξ
(p)
i

〉
− ρ

(t)
yi (i, p)

∣∣∣ , ∣∣∣ϕ(〈w(t)
yi , ξ

(p)
i

〉)
− ρ

(t)
yi (i, p)

∣∣∣ = o
(

1
polylog(d)

)
•
∣∣∣〈w(t)

−yi
, ξ

(p)
i

〉
+ ρ

(t)
−yi

(i, p)
∣∣∣ , ∣∣∣ϕ(〈w(t)

−yi
, ξ

(p)
i

〉)
+ βρ

(t)
−yi

(i, p)
∣∣∣ = o

(
1

polylog(d)

)
23

•
∣∣∣ϕ(〈w(t)

yi ,x
(p̃i)
i

〉)
− ρ

(t)
yi (i, p̃i)

∣∣∣ , ∣∣∣ϕ(〈w(t)
−yi

,x
(p̃i)
i

〉)
+ βρ

(t)
−yi

(i, p̃i)
∣∣∣ = o

(
1

polylog(d)

)
Proof of Lemma B.4. For each s ∈ {±1}, k ∈ [K] \ {1}, by (A8) and (8), we have∣∣∣〈w(t)

s ,vs,k

〉
− γ(t)

s (s, k)
∣∣∣ = ∣∣∣〈w(0)

s ,vs,k

〉∣∣∣ = Õ(σ0) = o

(
1

polylog(d)

)
.

Similarly, by (A8) and (8),∣∣∣〈w(t)
s ,v−s,k

〉
+ γ(t)

s (−s, k)
∣∣∣ = ∣∣∣〈w(0)

s ,v−s,k

〉∣∣∣ = Õ(σ0) = o

(
1

polylog(d)

)
,

Next, we will consider the case of v1,1 and v−1,1. For each s ∈ {±1}, we have∣∣∣〈w(t)
s ,vs,1

〉
− γ(t)

s (s, 1)
∣∣∣

≤
∣∣∣〈w(0)

s ,vs,1

〉∣∣∣+ α
∑
i∈[n]

ρ(t)s (i, p̃i)
∥∥∥ξ(p̃i)

i

∥∥∥−2

≤ Õ(σ0) + Õ
(
αnβ−1σ−2

d d−1
)

= o

(
1

polylog(d)

)
,

where the last equality is due to (8) and (A7). Similarly, we have∣∣∣〈w(t)
s ,v−s,1

〉
+ γ(t)

s (−s, 1)
∣∣∣

≤
∣∣∣〈w(0)

s ,v−s,1

〉∣∣∣+ α
∑
i∈[n]

ρ(t)s (i, p̃i)
∥∥∥ξ(p̃i)

i

∥∥∥−2

≤ Õ(σ0) + Õ
(
αnβ−1σ−2

d d−1
)

= o

(
1

polylog(d)

)
.

Hence, from (A8) and the fact that |ϕ(z)− z| ≤ (1−β)r
2 for any z ≥ 0, we have∣∣∣ϕ(〈w(t)

s ,vs,k

〉)
− γ(t)

s (s, k)
∣∣∣

≤
∣∣∣ϕ(〈w(t)

s ,vs,k

〉)
− ϕ

(
γ(t)
s (s, k)

)∣∣∣+ ∣∣∣ϕ(γ(t)
s (s, k)

)
− γ(t)

s (s, k)
∣∣∣

≤
∣∣∣〈w(t)

s ,vs,k

〉
− γ(t)

s (s, k)
∣∣∣+ (1− β)r

2

= o

(
1

polylog(d)

)
.

and ∣∣∣ϕ(〈w(t)
s ,v−s,k

〉)
+ βγ(t)

s (−s, k)
∣∣∣ = ∣∣∣ϕ(〈w(t)

s ,v−s,k

〉)
− ϕ

(
−γ(t)

s (−s, k)
)∣∣∣

≤
∣∣∣〈w(t)

s ,v−s,k

〉
+ γ(t)

s (−s, k)
∣∣∣

= o

(
1

polylog(d)

)
.

For each i ∈ [n], and p ∈ [P] \ {p∗i }, we have

∣∣∣〈w(t)
yi

, ξ
(p)
i

〉
− ρ(t)yi

(i, p)
∣∣∣ ≤ ∣∣∣〈w(0)

yi
, ξ

(p)
i

〉∣∣∣+ ∑
j∈[n],q∈[P]\{p∗

i }
(j,q)̸=(i,p)

ρ(t)yi
(j, q)

∣∣∣〈ξ(p)i , ξ
(q)
j

〉∣∣∣∥∥∥ξ(q)j

∥∥∥2
24

≤ Õ
(
σ0σdd

1
2

)
+ Õ

(
nPβ−1σdσ

−1
b d−

1
2

)
= o

(
1

polylog(d)

)
,

where the last equality is due to (A8) and (9). By triangular inequality, (A8), and the fact that ϕ′ ≤ 1

and |ϕ(z)− z| ≤ (1−β)r
2 for any z ≥ 0, we have∣∣∣ϕ(〈w(t)

yi
, ξ

(p)
i

〉)
− ρ(t)yi

(i, p)
∣∣∣

≤
∣∣∣ϕ(〈w(t)

yi
, ξ

(p)
i

〉)
− ϕ

(
ρ(t)yi

(i, p)
)∣∣∣+ ∣∣∣ϕ(ρ(t)yi

(i, p)
)
− ρ(t)yi

(i, p)
∣∣∣

≤
∣∣∣〈w(t)

yi
, ξ

(p)
i

〉
− ρ(t)yi

(i, p)
∣∣∣+ (1− β)r

2

= o

(
1

polylog(d)

)
.

Also, if i ∈ Fs for some s ∈ {±1},∣∣∣ϕ(〈w(t)
yi

,x
(p̃i)
i

〉)
− ρ(t)yi

(i, p̃i)
∣∣∣

≤
∣∣∣ϕ(〈w(t)

yi
, ξ

(p̃i)
i

〉)
− ρ(t)yi

(i, p̃i)
∣∣∣+ ∣∣∣ϕ(〈w(t)

yi
,x

(p̃i)
i

〉)
− ϕ

(〈
w(t)

yi
, ξ

(p̃i)
i

〉)∣∣∣
≤
∣∣∣ϕ(〈w(t)

yi
, ξ

(p̃i)
i

〉)
− ρ(t)yi

(i, p̃i)
∣∣∣+ α

∣∣∣〈w(t)
yi

,vs,1

〉∣∣∣
≤
∣∣∣ϕ(〈w(t)

yi
, ξ

(p̃i)
i

〉)
− ρ(t)yi

(i, p̃i)
∣∣∣+ αγ(t)

yi
(s, 1) + α · o

(
1

polylog(d)

)
≤ Õ

(
αβ−1

)
+ o

(
1

polylog(d)

)
= o

(
1

polylog(d)

)
,

where we apply the triangular inequality, the fact that ϕ′ ≤ 1, the triangular inequality again,
ρ
(t)
yi (s, 1) = Õ(β−1) and (10) sequentially.

Similarly,

∣∣∣〈w(t)
−yi

, ξ
(p)
i

〉
+ ρ

(t)
−yi

(i, p)
∣∣∣ ≤ ∣∣∣〈w(0)

−yi
, ξ

(p)
i

〉∣∣∣+ ∑
j∈[n],q∈[P]\{p∗

i }
(j,q) ̸=(i,p)

ρ
(t)
−yi

(j, q)

∣∣∣〈ξ(p)i , ξ
(q)
j

〉∣∣∣∥∥∥ξ(q)j

∥∥∥2
≤ Õ(σ0σdd

1
2) + Õ

(
nPβ−1σdσ

−1
b d−

1
2

)
= o

(
1

polylog(d)

)
,

and ∣∣∣ϕ(〈w(t)
−yi

, ξ
(p)
i

〉)
+ βρ

(t)
−yi

(i, p)
∣∣∣ = ∣∣∣ϕ(〈w(t)

−yi
, ξ

(p)
i

〉)
− ϕ

(
−ρ

(t)
−yi

(i, p)
)∣∣∣

≤
∣∣∣〈w(t)

−yi
, ξ

(p)
i

〉
+ ρ

(t)
−yi

(i, p)
∣∣∣

= o

(
1

polylog(d)

)
,

Also, if i ∈ Fs for some s ∈ {±1},∣∣∣ϕ(〈w(t)
−yi

,x
(p̃i)
i

〉)
+ βρ

(t)
−yi

(i, p̃i)
∣∣∣

=
∣∣∣ϕ(〈w(t)

−yi
, ξ

(p̃i)
i

〉)
+ βρ

(t)
−yi

(i, p̃i)
∣∣∣+ ∣∣∣ϕ(〈w(t)

−yi
,x

(p̃i)
i

〉)
− ϕ

(〈
w

(t)
−yi

, ξ
(p̃i)
i

〉)∣∣∣
25

≤
∣∣∣ϕ(〈w(t)

−yi
, ξ

(p̃i)
i

〉)
+ βρ

(t)
−yi

(i, p̃i)
∣∣∣+ α

∣∣∣〈w(t)
−yi

,vs,1

〉∣∣∣
≤
∣∣∣ϕ(〈w(t)

−yi
, ξ

(p̃i)
i

〉)
+ βρ

(t)
−yi

(i, p̃i)
∣∣∣+ αγ

(t)
−yi

(s, 1) + α · o
(

1

polylog(d)

)
≤ Õ

(
αβ−1

)
+ o

(
1

polylog(d)

)
= o

(
1

polylog(d)

)
.

We define the set W as the collection of W = {w1,w−1}, where w1 − w
(0)
1 ,w−1 − w

(0)
−1 are

elements of the subspace spanned by {vs,k}s∈{±1},k∈[K] ∪
{
x
(p)
i

}
i∈[n],p∈[P]\{p∗

i }
. The follow-

ing lemma guarantees the unique expression of any W ∈ W in the form of the feature noise
decomposition.
Lemma B.5. Suppose the event Einit occurs. For each element W = {w1,w−1} ∈ W , there exist
unique coefficients γs(s′, k)’s and ρs(i, p)’s such that

ws = w(0)
s +

∑
k∈[K]

γs(s, k)vs,k −
∑

k∈[K]

γs(−s, k)v−s,k

+
∑
i∈Vs

p∈[P]\{p∗
i }

ρs(i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2 −
∑

i∈V−s

p∈[P]\{p∗
i }

ρs(i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2

+ α

∑
i∈Fs

syiρs(i, p̃i)
vs,1∥∥∥ξ(p̃i)
i

∥∥∥2 +
∑

i∈F−s

syiρs(i, p̃i)
v−s,1∥∥∥ξ(p̃i)
i

∥∥∥2


for each s ∈ {±1}. Using this fact, for each s∗ ∈ {±1} and k∗ ∈ [K], we can introduce a function
Q(s∗,k∗) : W → Rd×2 such that for each W = {w1,w−1} ∈ W ,

Q(s∗,k∗)(W) =
{
Q

(s∗,k∗)
1 (w1), Q

(s∗,k∗)
−1 (w−1)

}
is given by:

Q(s∗,k∗)
s (ws) = ss∗γs(s

∗, k∗)vs∗,k∗ + ss∗
∑

i∈Vs∗,k∗ ,p∈[P]\{p∗
i }

ρs(i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2
+ α

 ∑
i∈Fs∩Vs∗,k∗

ss∗ρs(i, p̃i)
vs,1∥∥∥ξ(p̃i)
i

∥∥∥2 +
∑

i∈F−s∩Vs∗,k∗

ss∗ρs(i, p̃i)
v−s,1∥∥∥ξ(p̃i)
i

∥∥∥2
 .

The function Q(s∗,k∗) plays a crucial role in Section C.2.4 and Section D.2.4. The key intuition
behind our definition of Q(s∗,k∗) is that Q(s∗,k∗)(W (t)) represents the term updated by the data
having the feature vector vs∗,k∗ , where W (t) are the iterates of either ERM or Cutout. As expected
from this intuition, if we sum all Q(s∗,k∗)

1 (w1) and Q
(s∗,k∗)
−1 (w−1) over all s∗ ∈ {±1} and k∗ ∈ [K],

the result will be equal to w1 −w
(0)
1 and w−1 −w

(0)
−1 , respectively.

Proof. From linear independency of {vs,k}s∈{±1},k∈[K] ∪
{
x
(p)
i

}
i∈[n],p∈[P]\{p∗

i }
, we can express

any element W = {w1,w−1} ∈ W as

ws = w(0)
s +

∑
k∈[K]

γ̃s(s, k)vs,k −
∑

k∈[K]

γ̃s(−s, k)v−s,k

26

+
∑
i∈Vs,

p∈[P]\{p∗
i }

ρs(i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥ −
∑

i∈V−s,
p∈[P]\{p∗

i }

ρs(i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥ (13)

with unique {γ̃s(s, k), γ̃s(−s, k)}s∈{±1},k∈[K] and {ρs(i, p)}s∈{±1},i∈[n],p∈[P]\{i∗}. If we define
γs(s, k) and γs(−s, k) as γs(s, k) = γ̃s(s, k), γs(−s, k) = γ̃s(−s, k) for k ̸= 1, and

γs(s, 1) = γ̃s(s, 1)− α
∑
i∈Fs

syiρs(i, p̃i)
∥∥∥ξ(p̃i)

i

∥∥∥−2

,

γs(−s, 1) = γ̃s(−s, 1) + α
∑

i∈F−s

syiρs(i, p̃i)
∥∥∥ξ(p̃i)

i

∥∥∥−2

,

then we have
ws = w(0)

s +
∑

k∈[K]

γs(s, k)vs,k −
∑

k∈[K]

γs(−s, k)v−s,k

+
∑
i∈Vs

p∈[P]\{p∗
i }

ρs(i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2 −
∑

i∈V−s

p∈[P]\{p∗
i }

ρs(i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2

+ α

∑
i∈Fs

syiρs(i, p̃i)
vs,1∥∥∥ξ(p̃i)
i

∥∥∥2 +
∑

i∈F−s

syiρs(i, p̃i)
v−s,1∥∥∥ξ(p̃i)
i

∥∥∥2
 .

Next, we want to show the uniqueness part. Suppose {γ̂s(s, k), γ̂s(−s, k)}s∈{±1},k∈[K] and
{ρ̂s(i, p)}s∈{±1},i∈[n],p∈[P]\{i∗} satisfies

ws = w(0)
s +

∑
k∈[K]

γ̂s(s, k)vs,k −
∑

k∈[K]

γ̂s(−s, k)v−s,k

+
∑
i∈Vs

p∈[P]\{p∗
i }

ρ̂s(i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2 −
∑

i∈V−s

p∈[P]\{p∗
i }

ρ̂s(i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2

+ α

∑
i∈Fs

syiρ̂s(i, p̃i)
vs,1∥∥∥ξ(p̃i)
i

∥∥∥2 +
∑

i∈F−s

syiρ̂s(i, p̃i)
v−s,1∥∥∥ξ(p̃i)
i

∥∥∥2
 .

We have
ws = w(0)

s +
∑

k∈[K]\{1}

γ̂s(s, k)vs,k −
∑

k∈[K]\{1}

γ̂s(−s, k)v−s,k

+

(
γ̂s(s, 1) + α

∑
i∈Fs

syiρ̂s(i, p̃i)
∥∥∥ξ(p̃i)

i

∥∥∥−2
)
vs,1

−

γ̂s(−s, 1)− α
∑

i∈F−s

syiρ̂s(i, p̃i)
∥∥∥ξ(p̃i)

i

∥∥∥−2

v−s,1

+
∑
i∈Vs

p∈[P]\{p∗
i }

ρ̂s(i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2 −
∑

i∈V−s

p∈[P]\{p∗
i }

ρ̂s(i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2 .
From the uniqueness of (13), we have

γ̂s(s, k) = γ̃s(s, k) = γs(s, k), γ̂s(−s, k) = γ̃s(−s, k) = γs(−s, k),

for each s ∈ {±1}, k ∈ [K] \ {1}, and ρ̂s(i, p) = ρs(i, p) for each i ∈ [n], p ∈ [P] \ {p∗i }.
Furthermore,

γ̂s(s, 1) + α
∑
i∈Fs

syiρ̂s(i, p̃i)
∥∥∥ξ(p̃i)

i

∥∥∥−2

= γ̃s(s, 1) = γs(s, 1) + α
∑
i∈Fs

syiρs(i, p̃i)
∥∥∥ξ(p̃i)

i

∥∥∥−2

,

27

and

γ̂s(−s, 1)−α
∑

i∈F−s

syiρ̂s(i, p̃i)
∥∥∥ξ(p̃i)

i

∥∥∥−2

= γ̃s(−s, 1) = γs(−s, 1)−α
∑

i∈F−s

syiρs(i, p̃i)
∥∥∥ξ(p̃i)

i

∥∥∥−2

.

Hence, we obtain the uniqueness of the expression and Q(s∗,k∗) is well defined for each s∗ ∈ {±1}
and k∗ ∈ [K].

28

C Proof for ERM

In this section, we use g
(t)
i := 1

1+exp(yifW (t) (Xi))
for each data i and iteration t, for simplicity.

C.1 Proof of Lemma B.3 for ERM

For s ∈ {±1} and iterate t,

w(t+1)
s −w(t)

s

= −η∇ws
LERM

(
W (t)

)
=

η

n

∑
i∈[n]

syig
(t)
i

∑
p∈[P]

ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
i

=
η

n

∑
i∈Vs

g
(t)
i

∑
p∈[P]

ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
i −

∑
i∈V−s

g
(t)
i

∑
p∈[P]

ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
i

 ,

and we have∑
i∈Vs

g
(t)
i

∑
p∈[P]

ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
i

=
∑

k∈[K]

∑
i∈Vs,k

g
(t)
i ϕ′

(〈
w(t)

s ,vs,k

〉)
vs,k +

∑
i∈Vs

g
(t)
i

∑
p∈[P]\{p∗

i ,p̃i}

ϕ′
(〈

w(t)
s , ξ

(p)
i

〉)
ξ
(p)
i

+
∑

i∈Vs∩Fs

g
(t)
i ϕ′

(〈
w(t)

s , αvs,1 + ξ
(p̃i)
i

〉)(
αvs,1 + ξ

(p̃i)
i

)
+

∑
i∈Vs∩F−s

g
(t)
i ϕ′

(〈
w(t)

s , αv−s,1 + ξ
(p̃i)
i

〉)(
αv−s,1 + ξ

(p̃i)
i

)
,

and ∑
i∈V−s

g
(t)
i

∑
p∈[P]

ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
i

=
∑

k∈[K]

∑
i∈V−s,k

g
(t)
i ϕ′

(〈
w(t)

s ,v−s,k

〉)
v−s,k +

∑
i∈V−s

g
(t)
i

∑
p∈[P]\{p∗

i ,p̃i}

ϕ′
(〈

w(t)
s , ξ

(p)
i

〉)
ξ
(p)
i

+
∑

i∈V−s∩Fs

g
(t)
i ϕ′

(〈
w(t)

s , αvs,1 + ξ
(p̃i)
i

〉)(
αvs,1 + ξ

(p̃i)
i

)
+

∑
i∈V−s∩F−s

g
(t)
i ϕ′

(〈
w(t)

s , αv−s,1 + ξ
(p̃i)
i

〉)(
αv−s,1 + ξ

(p̃i)
i

)
.

Hence, if we define γ
(t)
s (s′, k)’s and ρ

(t)
s (i, p)’s recursively by using the rule

γ(t+1)
s (s′, k) = γ(t)

s (s′, k) +
η

n

∑
i∈Vs′,k

g
(t)
i ϕ′

(〈
w(t)

s ,vs′,k

〉)
, (14)

ρ(t+1)
s (i, p) = ρ(t)s (i, p) +

η

n
g
(t)
i ϕ′

(〈
w(t)

s ,x
(p)
i

〉)∥∥∥ξ(p)i

∥∥∥2 , (15)

starting from γ
(0)
s (s′, k) = ρ

(0)
s (i, p) = 0 for each s, s′ ∈ {±1}, k ∈ [K], i ∈ [n] and p ∈ [P]\{p∗i },

then we have

w(t)
s = w(0)

s +
∑

k∈[K]

γ(t)
s (s, k)vs,k −

∑
k∈[K]

γ(t)
s (−s, k)v−s,k

+
∑

i∈Vs,p∈[P]\{p∗
i }

ρ(t)s (i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2 −
∑

i∈V−s,p∈[P]\{p∗
i }

ρ(t)s (i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2
29

+ α

∑
i∈Fs

syiρ
(t)
s (i, p̃i)

vs,1∥∥∥ξ(p̃i)
i

∥∥∥2 +
∑

i∈F−s

syiρ
(t)
s (i, p̃i)

v−s,1∥∥∥ξ(p̃i)
i

∥∥∥2
 ,

for each s ∈ {±1}. Furthermore, γ(t)
s (s′, k)’s and ρ

(t)
s (i, p)’s are monotone increasing. □

C.2 Proof of Theorem 3.1

To show Theorem 3.1, we present a structured proof comprising the following five steps:

1. Establish upper bounds on γ
(t)
s (s′, k)’s and ρ

(t)
s (i, p)’s to apply Lemma B.4 (Section C.2.1).

2. Demonstrate that the model learns common features quickly (Section C.2.2).
3. Show that the model overfits dominant noise in (extremely) rare data instead of learning its feature

(Section C.2.3).
4. Confirm the persistence of this tendency until T ∗ iterates (Section C.2.4).
5. Characterize train accuracy and test accuracy (Section C.2.5).

C.2.1 Bounds on the Coefficients in Feature Noise Decomposition

The following lemma provides upper bounds on Lemma B.3 during T ∗ iterations.
Lemma C.1. Suppose the event Einit occurs. For any t ∈ [0, T ∗], we have

0 ≤ γ(t)
s (s, k) + βγ

(t)
−s(s, k) ≤ 4 log(ηT ∗), 0 ≤ ρ(t)yi

(i, p) + βρ
(t)
−yi

(i, p) ≤ 4 log (ηT ∗) ,

for all s ∈ {±1}, k ∈ [K], i ∈ [n] and p ∈ [P]\{p∗i }. Consequently,γ(t)
s (s′, k), ρ

(t)
s (i, p) = Õ(β−1)

for all s, s′ ∈ {±1}, k ∈ [K], i ∈ [n] and p ∈ [P] \ {p∗i }.

Proof of Lemma C.1. The first argument implies the second argument since log(ηT ∗) = polylog(d)
and

γ(t)
s (s′, k) ≤ β−1

(
γ
(t)
s′ (s

′, k) + βγ
(t)
s′ (s

′, k)
)
, ρ(t)s (i, p) ≤ β−1

(
ρ(t)yi

(i, p) + βρ
(t)
−yi

(i, p)
)
,

for all s, s′ ∈ {±1}, k ∈ [K], i ∈ [n] and p ∈ [P] \ {p∗i }.

We will prove this by using induction on t. The initial case t = 0 is trivial. Suppose the given
statement holds at t = T and consider the case t = T + 1.

Let T̃s,k ≤ T denote the smallest iteration where γ
(T̃s,k+1)
s (s, k) + βγ

(T̃s,k+1)
−s (s, k) > 2 log(ηT ∗).

We assume the existence of T̃s,k, as its absence would directly lead to our desired conclusion; to see
why, note that the following holds, due to (14) and (11):

γ(T+1)
s (s, k) + βγ

(T+1)
−s (s, k)

= γ(T)
s (s, k) + βγ

(T)
−s (s, k) +

η

n

∑
i∈Vs,k

g
(T)
i

(
ϕ′
(〈

w(T)
s ,vs,k

〉)
+ βϕ′

(〈
w

(T)
−s ,vs,k

〉))
≤ 2 log(ηT ∗) + 2η ≤ 4 log(ηT ∗)

Now suppose there exists such T̃s,k ≤ T . By (14), we have

γ(T+1)
s (s, k) + βγ

(T+1)
−s (s, k)

= γ
(T̃s,k)
s (s, k) + βγ

(T̃s,k)
−s (s, k)

+

T∑
t=T̃s,k

(
γ(t+1)
s (s, k) + βγ

(t+1)
−s (s, k)− γ(t)

s (s, k)− βγ
(t)
−s(s, k)

)

≤ 2 log(ηT ∗) + log(ηT ∗) +
η

n

T∑
t=T̃s,k+1

∑
i∈Vs,k

g
(t)
i

(
ϕ′
(〈

w(t)
s ,vs,k

〉)
+ βϕ′

(〈
w

(t)
−s,vs,k

〉))
.

30

The inequality is due to γ
(T̃s,k)
s (s, k) + βγ

(T̃s,k)
−s (s, k) ≤ 2 log(ηT ∗) from our choice of T̃s,k and

η

n

∑
i∈Vs,k

g
(T̃s,k)
i

(
ϕ′
(〈

w
(T̃s,k)
s ,vs,k

〉)
+ βϕ′

(〈
w

(T̃s,k)
−s ,vs,k

〉))
≤ 2η ≤ log(ηT ∗),

from (11).

For each t = T̃s,k + 1, . . . T , and i ∈ Vs,k, we have

yifW (t)(Xi)

= ϕ
(〈

w(t)
s ,vs,k

〉)
− ϕ

(〈
w

(t)
−s,vs,k

〉)
+

∑
p∈[P]\{p∗

i }

(
ϕ
(〈

w(t)
s ,x

(p)
i

〉)
− ϕ

(〈
w

(t)
−s,x

(p)
i

〉))

≥ γ(t)
s (s, k) + βγ

(t)
−s(s, k) +

∑
p∈[P]\{p∗

i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
− 2P · o

(
1

polylog(d)

)

≥ 3

2
log(ηT ∗)

The first inequality is due to Lemma B.4 and the second inequality holds due to (A7), (8), and our
choice of t, γ(t)

s (s, k) + βγ
(t)
−s(s, k) ≥ 2 log(ηT ∗).

Hence, we obtain

η

n

T∑
t=T̃s,k

∑
i∈Vs,k

g
(t)
i

(
ϕ′
(〈

w(t)
s ,vs,k

〉)
+ βϕ′

(〈
w

(t)
−s,vs,k

〉))

≤ 2η

n

T∑
t=T̃s,k

∑
i∈Vs,k

exp (−yifW (t)(Xi))

≤ 2|Vs,k|
n

(ηT ∗) exp

(
−3

2
log(ηT ∗)

)
≤ 2√

ηT ∗ ≤ log(ηT ∗),

where the last inequality holds for any reasonably large T ∗. Merging all inequalities together, we
have γ

(T+1)
s (s, k) + βγ

(T+1)
−s (s, k) ≤ 4 log(ηT ∗).

Next, we will follow similar arguments to show that

ρ(T+1)
yi

(i, p) + βρ
(T+1)
−yi

(i, p) ≤ 4 log(ηT ∗)

for each i ∈ [n] and p ∈ [P] \ {p∗i }.

Let T̃ (p)
i ≤ T be the smallest iteration such that ρ(T̃

(p)
i +1)

yi (i, p) + βρ
(T̃

(p)
i +1)

−yi
(i, p) > 2 log(ηT ∗).

We assume the existence of T̃ (p)
i , as its absence would directly lead to our desired conclusion; to see

why, note that the following holds, due to (15) and (11):

ρ(T+1)
yi

(i, p) + βρ
(T+1)
−yi

(i, p)

= ρ(T)
yi

(i, p) + βρ
(T)
−yi

(i, p) +
η

n
g
(T)
i

(
ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
+ βϕ′

(〈
w(t)

s ,x
(p)
i

〉))∥∥∥ξ(p)i

∥∥∥2
≤ 2 log(ηT ∗) + 2η ≤ 4 log(ηT ∗),

where the first inequality is due to
∥∥∥ξ(p)i

∥∥∥ ≤ 3
2σ

2
dd and (A4), and the last inequality is due to (11).

Now suppose there exists such T̃
(p)
i ≤ T . By (15), we have

ρ(T+1)
yi

(i, p) + βρ
(T+1)
−yi

(i, p)

31

= ρ
(T̃

(p)
i)

yi (i, p) + βρ
(T̃

(p)
i)

−yi
(i, p)

+

T∑
t=T̃

(p)
i

(
ρ(t+1)
yi

(i, p) + βρ
(t+1)
−yi

(i, p)− ρ(t)yi
(i, p)− βρ

(t)
−yi

(i, p)
)

≤ 2 log(ηT ∗) + log(ηT ∗)

+
η

n

T∑
t=T̃

(p)
i +1

g
(t)
i

(
ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
+ βϕ′

(〈
w

(t)
−s,x

(p)
i

〉))∥∥∥ξ(p)i

∥∥∥2
The inequality is due to ρ

(T̃
(p)
i)

yi (i, p) + βρ
(T̃

(p)
i)

−yi
(i, p) ≤ 2 log(ηT ∗) from our choice of T̃ (p)

i and

η

n
g
(T̃

(p)
i)

i

[
ϕ′
(〈

w
(T̃

(p)
i)

s ,x
(p)
i

〉)
+ βϕ′

(〈
w

(T̃
(p)
i)

−s ,x
(p)
i

〉)]∥∥∥ξ(p)i

∥∥∥2 ≤ 2η ≤ log(ηT ∗),

from
∥∥∥ξ(p)i

∥∥∥2 ≤ 3
2σ

2
dd, (A4), and (11).

For each t = T̃
(p)
i + 1, . . . , T , if i ∈ Vs,k, then we have

yifW (t)(Xi)

= ϕ
(〈

w(t)
yi

,x
(p)
i

〉)
− ϕ

(〈
w

(t)
−yi

,x
(p)
i

〉)
+

∑
q∈[P]\{p}

(
ϕ
(〈

w(t)
yi

,x
(p)
i

〉)
− ϕ

(〈
w

(t)
−yi

,x
(p)
i

〉))
≥ ρ(t)yi

(i, p) + βρ
(t)
−yi

(i, p) + γ(t)
yi

(s, k) + βγ
(t)
−yi

(s, k)

+
∑

q∈[P]\{p,p∗
i }

(
ρ(t)yi

(i, q) + βρ
(t)
−yi

(i, q)
)
− 2P · o

(
1

polylog(d)

)

≥ 3

2
log(ηT ∗).

The first inequality is due to Lemma B.4 and the second inequality holds because from our choice of
t, ρ(t)yi (i, p) + βρ

(t)
−yi

(i, p) ≥ 2 log(ηT ∗).

Therefore, we have

η

n

T∑
t=T̃

(p)
i +1

g
(t)
i

(
ϕ′
(〈

w(t)
yi

,x
(p)
i

〉)
+ βϕ′

(〈
w

(t)
−yi

,x
(p)
i

〉))∥∥∥ξ(p)i

∥∥∥2

≤ η

T∑
t=T̃

(p)
i +1

exp (−yifW (t)(Xi)) ≤ (ηT ∗) exp

(
−3

2
log(ηT ∗)

)

≤ 1√
ηT ∗ ≤ log(ηT ∗),

where the first inequality is due to
∥∥∥ξ(p)i

∥∥∥2 ≤ 3
2σ

2
d, (A4) and the last inequality holds for any

reasonably large T ∗. Merging all inequalities together, we conclude ρ
(T+1)
yi (i, p) + βρ

(T+1)
−yi

(i, p) ≤
4 log(ηT ∗).

C.2.2 Learning Common Features

In the initial stages of training, the model quickly learns common features while exhibiting minimal
overfitting to Gaussian noise.

First, we establish lower bounds on the number of iterations ensuring that noise coefficients ρ(t)s (i, p)
remain small, up to the order of 1

P .

Lemma C.2. Suppose the event Einit occurs. There exists T̃ > n
6ηPσ2

dd
such that ρ(t)s (i, p) ≤ 1

4P

for all 0 ≤ t < T̃ , s ∈ {±1}, i ∈ [n] and p ∈ [P] \ {p∗i }.

32

Proof of Lemma C.2. Let T̃ be the smallest iteration such that ρ(T̃)
s (i, p) ≥ 1

4P for some s ∈
{±1}, i ∈ [n] and p ∈ [P] \ {p∗i }. We assume the existence of T̃ , as its absence would directly lead
to our conclusion. Then, for any 0 ≤ t < T̃ , we have

ρ(t+1)
s (i, p) = ρ(t)s (i, p) +

η

n
g
(t)
i ϕ′

(〈
w(t)

s ,x
(p)
i

〉)∥∥∥ξ(p)i

∥∥∥2 ≤ ρ(t)s (i, p) +
3ησ2

dd

2n
,

where the inequality is due to g
(t)
i < 1, ϕ′ ≤ 1, and

∥∥∥ξ(p)i

∥∥∥2 ≤ 3
2σ

2
dd. Hence, we have

1

4P
≤ ρ(T̃)

s (i, p) =

T̃−1∑
t=0

(
ρ(t+1)
s (i, p)− ρ(t)s (i, p)

)
<

3ησ2
dd

2n
T̃ ,

and we conclude T̃ > n
6ηPσ2

dd
which is the desired result.

Next, we will show that the model learns common features in at least constant order within T̃ iterates.

Lemma C.3. Suppose the event Einit occurs and ρk = ω
(

σ2
dd
βn

)
for some k ∈ [K]. Then, for each

s ∈ {±1}, there exists Ts,k ≤ 9n
ηβ|Vs,k| such that γ(t)

s (s, k) + βγ
(t)
−s(s, k) ≥ 1 for any t > Ts,k.

Proof of Lemma C.3. Suppose γ
(t)
s (s, k) + βγ

(t)
−s(s, k) < 1 for all 0 ≤ t ≤ n

6ηPσ2
dd

. For each
i ∈ Vs,k, we have

yifW (t)(Xi)

= ϕ
(〈

w(t)
s ,vs,k

〉)
− ϕ

(〈
w

(t)
−s,vs,k

〉)
+

∑
p∈[P]\{p∗

i }

(
ϕ
(〈

w(t)
s ,x

(p)
i

〉)
− ϕ

(〈
w

(t)
−s,x

(p)
i

〉))

≤ γ(t)
s (s, k) + βγ

(t)
−s(s, k) +

∑
p∈[P]\{p∗

i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
+ 2P · o

(
1

polylog(d)

)

≤ 1 + 2P · 1

4P
+ 2P · o

(
1

polylog(d)

)
≤ 2.

The first inequality is due to Lemma B.4, the second inequality holds since we can apply Lemma C.2,
and the last inequality is due to (A1). Thus, g(t)i = 1

1+exp(yifW (t) (Xi))
> 1

9 and we have

γ(t+1)
s (s, k) + βγ

(t+1)
−s (s, k)

= γ(t)
s (s, k) + βγ

(t)
−s(s, k) +

η

n

∑
i∈Vs,k

g
(t)
i

(
ϕ′
(〈

w(t)
s ,vs,k

〉)
+ βϕ′

(〈
w

(t)
−s,vs,k

〉))

≥ γ(t)
s (s, k) + βγ

(t)
−s(s, k) +

ηβ|Vs,k|
9n

.

Notice that |Vs,k| = ρkn. From the condition in the lemma statement, we have 9n
ηβ|Vs,k| =

o
(

n
6ηPσ2

dd

)
. If we choose t0 ∈

[
9n

ηβ|Vs,k| ,
n

6ηPσ2
dd

]
, then

1 > γ(t0)
s (s, k) + βγ

(t0)
−s (s, k) ≥ ηβ|Vs,k|

9n
t0 ≥ 1,

and this is contradictory; therefore, it cannot hold that γ(t)
s (s, k) + βγ

(t)
−s(s, k) < 1 for all 0 ≤ t ≤

n
6ηPσ2

dd
. Hence, there exists 0 ≤ Ts,k < n

6ηPσ2
dd

such that γ(Ts,k+1)
s (s, k) + βγ

(Ts,k+1)
−s (s, k) ≥ 1

and choose the smallest one. Then we obtain

1 > γ
(Ts,k)
s (s, k) + βγ

(Ts,k)
−s (s, k) ≥ ηβ|Vs,k|

9n
Ts,k.

Therefore, Ts,k < 9n
ηβ|Vs,k| and this is what we desired.

33

What We Have So Far. For any common feature vs,k with s ∈ {±1} and k ∈ KC , it satisfies ρk =

w
(

σ2
dd
βn

)
due to (A4). By Lemma C.3, at any iterate t ∈

[
T̄1, T

∗] with T̄1 := maxs∈{±1},k∈KC
Ts,k,

the following properties hold if the event Einit occurs:

• (Learn common features): For any s ∈ {±1} and k ∈ KC ,

γ(t)
s (s, k) + βγ

(t)
−s(s, k) = Ω(1).

• For any s ∈ {±1}, i ∈ [n], and p ∈ [P] \ {p∗i }, ρ
(t)
s (i, p) = Õ

(
β−1

)
.

C.2.3 Overfitting (extremely) Rare Data

In the previous step, we have shown that common data can be well-classified by learning common
features. In this step, we will show that the model correctly classifies (extremely) rare data by
overfitting dominant noise instead of learning its features.

We first introduce lower bounds on the number of iterates such that feature coefficients γ(t)
s (s′, k)

remain small, up to the order of α2β−1. This lemma holds for any kind of features, but we will focus
on (extremely) rare features. This does not contradict the results from Section C.2.2 for common
features since the upper bound on the number of iterations in Lemma C.3 is larger than the lower
bound on the number of iterations in this lemma.

Lemma C.4. Suppose the event Einit occurs. For each s ∈ {±1} and k ∈ [K], there exists
T̃s,k > nα2

ηβ|Vs,k| such that γ(t)
s′ (s, k) ≤ α2β−1 for any 0 ≤ t < T̃s,k and s′ ∈ {±1}.

Proof of Lemma C.4. Let T̃s,k be the smallest iterate such that γ(T̃s,k)
s′ (s, k) > α2β−1 for some

s′ ∈ {±1}. We assume the existence of T̃s,k, as its absence would directly lead to our conclusion.

For any 0 ≤ t < T̃s,k,

γ
(t+1)
s′ (s, k) = γ

(t)
s′ (s, k) +

η

n

∑
i∈Vs,k

g
(t)
i ϕ′

(〈
w

(t)
s′ ,vs,k

〉)
≤ γ

(t)
s′ (s, k) +

η|Vs,k|
n

,

and we have

α2β−1 < γ
(T̃s,k)
s′ (s, k) =

T̃s,k−1∑
t=0

(
γ
(t+1)
s′ (s, k)− γ

(t)
s′ (s, k)

)
≤ η|Vs,k|

n
T̃s,k.

We conclude T̃s,k > nα2

ηβ|Vs,k| which is the desired result.

Next, we will show that the model overfits (extremely) rare data by memorizing dominant noise
patches in at least constant order within T̃s,k iterates.

Lemma C.5. Suppose the event Einit occurs and ρk = o
(

α2σ2
dd

n

)
. Then, for each i ∈ Vs,k, there

exists Ti ∈
[
T̄1,

18n
ηβσ2

dd

]
such that∑

p∈[P]\{p∗
i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
≥ 1,

for any t > Ti.

Proof of Lemma C.5. Suppose
∑

p∈[P]\{p∗
i }

(
ρ
(t)
s (i, p) + βρ

(t)
−s(i, p)

)
< 1 for 0 ≤ t ≤ nα2

ηβ|Vs,k| .

From Lemma B.4 and Lemma C.4, we have

yifW (t)(Xi)

34

= ϕ
(〈

w(t)
s ,vs,k

〉)
− ϕ

(〈
w

(t)
−s,vs,k

〉)
+

∑
p∈[P]\{p∗

i }

(
ϕ
(〈

w(t)
s ,x

(p)
i

〉)
− ϕ

(〈
w

(t)
−s,x

(p)
i

〉))

≤ γ(t)
s (s, k) + βγ

(t)
−s(s, k) +

∑
p∈[P]\{p∗

i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
+ 2P · o

(
1

polylog(d)

)

≤ (1 + β)α2β−1 + 1 + 2P · o
(

1

polylog(d)

)
≤ 2,

where the last inequality is due to (10). Thus, we have g
(t)
i = 1

1+exp(yifW (t) (Xi))
≥ 1

9 . Also,

ρ(t+1)
s (i, p̃i) + βρ

(t+1)
−s (i, p̃i)

= ρ(t)s (i, p̃i) + βρ
(t)
−s(i, p̃i) +

η

n
g
(t)
i

(
ϕ′
(〈

w(t)
s ,x

(p̃i)
i

〉)
+ βϕ′

(〈
w

(t)
−s,x

(p̃i)
i

〉))∥∥∥ξ(p̃i)
i

∥∥∥2
≥ ρ(t)s (i, p̃i) + βρ

(t)
−s(i, p̃i) +

ηβσ2
dd

18n
,

where the last inequality is due to
∥∥∥ξ(p̃i)

i

∥∥∥2 ≥ 1
2σ

2
dd and ϕ′ ≥ β.

Notice that |Vs,k| = ρkn. From the given condition in the lemma statement, we have 18n
ηβσ2

dd
=

o
(

nα2

ηβ|Vs,k|

)
. If we choose t0 ∈

[
18n

ηβσ2
dd
, nα2

ηβ|Vs,k|

]
, then we have

1 >
∑

p∈[P]\{p∗
i }

(
ρ(t0)s (i, p) + βρ

(t0)
−s (i, p)

)
≥ ρ(t0)s (i, p̃i) + βρ

(t0)
−s (i, p̃i) ≥

ηβσ2
dd

18n
t0 ≥ 1.

This is a contradiction; therefore it cannot hold that
∑

p∈[P]\{p∗
i }

(
ρ
(t)
s (i, p) + βρ

(t)
−s(i, p)

)
< 1

for all 0 ≤ t ≤ nα2

ηβ|Vs,k| . Hence, we can choose the smallest 0 ≤ Ti < nα2

ηβ|Vs,k| such that∑
p∈[P]\{p∗

i }

(
ρ
(Ti+1)
s (i, p) + βρ

(Ti+1)
−s (i, p)

)
≥ 1.

For any 0 ≤ t < Ti,

1 ≥
∑

p∈[P]\{p∗
i }

(
ρ(Ti)
s (i, p) + βρ

(Ti)
−s (i, p)

)
≥ ρ(Ti)

s (i, p̃i) + βρ
(Ti)
−s (i, p̃i) ≥

ηβσ2
dd

18n
Ti,

and we conclude that Ti ≤ 18n
ηβσ2

dd
.

Lastly, we move on to prove Ti > T̄1. Combining Lemma C.2 and Lemma C.3 leads to∑
p∈[P]\{p∗

i }

(
ρ(T̄1)
s (i, p) + βρ

(T̄1)
−s (i, p)

)
≤ 1

2
.

Thus, we have Ti > T̄1 and this is what we desired.

What We Have So Far. For any k ∈ KR ∪ KE , it satisfies ρk = o
(

α2σ2
dd

n

)
due to (A5). By

Lemma C.5 at iterate t ∈ [TERM, T ∗] with

TERM := max
s∈{±1}

k∈KR∪KE

max
i∈Vs,k

Ti ∈
[
T̄1, T

∗]
the following properties hold if the event Einit occurs:

• (Learn common features): For s ∈ {±1} and k ∈ KC ,

γ(t)
s (s, k) + βγ

(t)
−s(s, k) = Ω(1),

35

• (Overfit (extremely) rare data): For any s ∈ {±1}, k ∈ KR ∪ KE , and i ∈ Vs,k,∑
p∈[P]\{p∗

i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
= Ω(1),

• (Do not learn (extremely) rare features at TERM): For any s, s′ ∈ {±1} and k ∈ KR ∪ KE ,
γ
(TERM)
s′ (s, k) ≤ α2β−1.

• For any s ∈ {±1}, i ∈ [n], and p ∈ [P] \ {p∗i }, ρ(t)s (i, p) = Õ
(
β−1

)
.

C.2.4 ERM cannot Learn (extremely) Rare Features Within Polynomial Times

In this step, we will show that ERM cannot learn (extremely) rare features within the maximum
admissible iterations T ∗ = poly(d)

η .

From now on, we fix any s∗ ∈ {±1} and k∗ ∈ KR ∪ KE . Recall that we defined the set W and
the function Q(s∗,k∗) : W → Rd×2 in Lemma B.5. Let us omit superscripts for simplicity. For
each iteration t, Q(W (t)) represents the cumulative updates contributed by data points with feature
vector vs∗,k∗ until t-th iteration. We will sequentially introduce several technical lemmas and by
combining these lemmas, quantify update by data with feature vector vs∗,k∗ after TERM and derive
our conclusion.

Let us define W ∗ = {w∗
1 ,w

∗
−1}, where

w∗
s = w(TERM)

s +M
∑

i∈Vs∗,k∗

ξ
(p̃i)
i∥∥∥ξ(p̃i)
i

∥∥∥2 ,
for each s ∈ {±1} with M = 4β−1 log

(
2ηβ2T∗

α2

)
. Note that (12), β < 1, and T ∗ = poly(d)

η together

imply M = Õ
(
β−1

)
. Note that W (t),W ∗ ∈ W for any t ≥ 0.

Lemma C.6. Suppose the event Einit occurs. Then,∥∥∥Q(W (TERM)
)
−Q(W ∗)

∥∥∥2 ≤ 12M2|Vs∗,k∗ |σ−2
d d−1,

where ∥·∥ denotes the Frobenius norm.

Proof of Lemma C.6. For each s ∈ {±1},

ss∗
(
Qs (w

∗
s)−Qs

(
w(TERM)

s

))
= Qs

ss∗M
∑

i∈Vs∗,k∗

ξ
(p̃i)
i∥∥∥ξ(p̃i)
i

∥∥∥


= M
∑

i∈Vs∗,k∗

ξ
(p̃i)
i∥∥∥ξ(p̃i)
i

∥∥∥2 + αM

 ∑
i∈Fs∩Vs∗,k∗

vs,1∥∥∥ξ(p̃i)
i

∥∥∥2 +
∑

i∈F−s∩Vs∗,k∗

v−s,1∥∥∥ξ(p̃i)
i

∥∥∥2
 ,

and we have∥∥∥Q(W (TERM)
)
−Q(W ∗)

∥∥∥2

=
∥∥∥Q1(w

∗
1)−Q1

(
w

(TERM)
1

)∥∥∥2 + ∥∥∥Q−1(w
∗
−1)−Q−1

(
w

(TERM)
−1

)∥∥∥2
≤ 2M2

 ∑
i∈Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

+
∑

i,j∈Vs∗,k∗ ,i̸=j

∣∣∣〈ξ(p̃i)
i , ξ

(p̃j)
j

〉∣∣∣∥∥∥ξ(p̃i)
i

∥∥∥2 ∥∥∥ξ(p̃j)
j

∥∥∥2


36

+ 2M2

α2

 ∑
i∈Fs∩Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

2

+ α2

 ∑
i∈F−s∩Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

2
 .

From the event Einit defined in Lemma B.2 and (A2), we have

∑
i,j∈Vs∗,k∗ ,i̸=j

∣∣∣〈ξ(p̃i)
i , ξ

(p̃j)
j

〉∣∣∣∥∥∥ξ(p̃i)
i

∥∥∥2 ∥∥∥ξ(p̃j)
j

∥∥∥2 ≤
∑

i∈Vs∗,k∗

∑
j∈Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

Õ
(
d−

1
2

)

≤
∑

i∈Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

Õ
(
nd−

1
2

)
≤

∑
i∈Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

In addition, we have

α2

 ∑
i∈Fs∩Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

2

+ α2

 ∑
i∈F−s∩Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

2

≤

 ∑
i∈Fs∩Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

2

+

 ∑
i∈F−s∩Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

2

≤
∑

i∈Fs∩Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

+
∑

i∈F−s∩Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

=
∑

i∈Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

,

where the first inequality is due to α < 1 and the second inequality is due to
∑

i∈Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

≤
2|Vs∗,k∗ |σ−2

d d−1 < 1 from (A5). Hence, from Einit, we obtain∥∥∥Q(W (TERM)
)
−Q(W ∗)

∥∥∥2 ≤ 6M2
∑

i∈Vs∗,k∗

∥∥∥ξ(p̃i)
i

∥∥∥−2

≤ 12M2|Vs∗,k∗ |σ−2
d d−1.

Lemma C.7. Suppose the Einit occurs. For any t ≥ TERM and i ∈ Vs∗,k∗ , it holds that

⟨yi∇W fW (t)(Xi), Q(W ∗)⟩ ≥ Mβ

2
.

Proof of Lemma C.7. We have

⟨yi∇W fW (t)(Xi), Q(W ∗)⟩

=
∑
p∈[P]

(
ϕ′
(〈

w
(t)
s∗ ,x

(p)
i

〉)〈
Qs∗(w

∗
s∗),x

(p)
i

〉
− ϕ′

(〈
w

(t)
−s∗ ,x

(p)
i

〉)〈
Q−s∗(w

∗
−s∗),x

(p)
i

〉)
.

For any s ∈ {±1} and p ∈ [P] \ {p∗i , p̃i},

ss∗
〈
Qs(w

∗
s), ξ

(p)
i

〉
= ρ(TERM)

s (i, p) +
∑

j∈Vs∗,k∗ ,q∈[P]\{p∗
j }

(j,q)̸=(i,p)

ρ(TERM)
s (j, q)

〈
ξ
(p)
i , ξ

(q)
j

〉
∥∥∥ξ(q)j

∥∥∥2 +
∑

j∈Vs∗,k∗

M

〈
ξ
(p)
i , ξ

(p̃j)
j

〉
∥∥∥ξ(p̃j)

j

∥∥∥2
37

≥ −Õ
(
nPβ−1σdσ

−1
b d−

1
2

)
− Õ

(
nMσbσ

−1
d d−

1
2

)
= −o

(
1

polylog(d)

)
, (16)

where the last equality is due to (9) and M = Õ
(
β−1

)
. Also, for any s ∈ {±1},

ss∗ ⟨Qs(w
∗
s),vs∗,k∗⟩ = γ

(TERM)
s (s∗, k∗) ≥ 0. In addition,

ss∗
〈
Qs(w

∗
s),x

(p̃i)
i

〉
= ss∗

〈
Qs(w

∗
s), ξ

(p̃i)
i

〉
+ ss∗

〈
Qs(w

∗
s),x

(p̃i)
i − ξ

(p̃i)
i

〉
≥ ss∗

〈
Qs(w

∗
s), ξ

(p̃i)
i

〉
− Õ

(
α2β−1ρk∗nσ−2

d d−1
)

= M + ρ(TERM)
s (i, p̃i) +

∑
j∈Vs∗,k∗ ,q∈[P]\{p∗

i }
(j,q) ̸=(i,p̃i)

ρ(TERM)
s (j, q)

〈
ξ
(p̃i)
i , ξ

(q)
j

〉
∥∥∥ξ(q)j

∥∥∥2
+

∑
j∈Vs∗,k∗\{i}

M

〈
ξ
(p̃i)
i , ξ

(p̃j)
j

〉
∥∥∥ξ(p̃j)

j

∥∥∥2 − Õ
(
α2β−1ρk∗nσ−2

d d−1
)

≥ M − Õ
(
nPβ−1σdσ

−1
b d−

1
2

)
− Õ

(
α2β−1ρk∗nσ−2

d d−1
)

= M − o

(
1

polylog(d)

)
≥ M

2
, (17)

where the first inequality is due to the definition of Q and the second-to-last line is due to (9) and
(A7).

Hence, applying (16) and (17) for s = s∗,−s∗ and combining with ϕ′ ≥ β, we have

⟨yi∇W fW (t)(Xi), Q(W ∗)⟩ ≥ Mβ − o

(
1

polylog(d)

)
≥ Mβ

2
.

By combining Lemma C.6 and Lemma C.7, we can obtain the following result.

Lemma C.8. Suppose the event Einit occurs.

η

n

T∗∑
t=TERM

∑
i∈Vs∗,k∗

ℓ (yifW (t)(Xi)) ≤
∥∥∥Q(W (TERM)

)
−Q(W ∗)

∥∥∥2 + 2ηT ∗e−
Mβ
4 ,

where ∥·∥ denotes the Frobenius norm.

Proof of Lemma C.8. Note that for any TERM ≤ t < T ∗,

Q
(
W (t+1)

)
= Q

(
W (t)

)
− η

n
∇W

∑
i∈Vs∗,k∗

ℓ (yifW (t)(Xi)) ,

and thus∥∥∥Q(W (t)
)
−Q (W ∗)

∥∥∥2 − ∥∥∥Q(W (t+1)
)
−Q (W ∗)

∥∥∥2
=

2η

n

〈
∇W

∑
i∈Vs∗,k∗

ℓ (yifW (t)(Xi)) , Q
(
W (t)

)
−Q (W ∗)

〉
− η2

n2

∥∥∥∥∥∥∇W

∑
i∈Vs∗,k∗

ℓ (yifW (t)(Xi))

∥∥∥∥∥∥
2

38

=
2η

n

〈
∇W

∑
i∈Vs∗,k∗

ℓ(yifW (t)(Xi)), Q
(
W (t)

)〉

− 2η

n

∑
i∈Vs∗,k∗

ℓ′(yifW (t)(Xi)) ⟨∇W yifW (t)(Xi), Q (W ∗)⟩ − η2

n2

∥∥∥∥∥∥∇W

∑
i∈Vs∗,k∗

ℓ (yifW (t)(Xi))

∥∥∥∥∥∥
2

≥ 2η

n

〈
∇W

∑
i∈Vs∗,k∗

ℓ(yifW (t)(Xi)), Q
(
W (t)

)〉

− Mβη

n

∑
i∈Vs∗,k∗

ℓ′(yifW (t)(Xi))−
η2

n2

∥∥∥∥∥∥∇W

∑
i∈Vs∗,k∗

ℓ (yifW (t)(Xi))

∥∥∥∥∥∥
2

,

where the last inequality is due to Lemma C.7. By the chain rule, we have〈
∇W

∑
i∈Vs∗,k∗

ℓ(yifW (t)(Xi)), Q
(
W (t)

)〉

=
∑

i∈Vs∗,k∗

[
ℓ′(yifW (t)(Xi))

×
∑
p∈[P]

(
ϕ′
(〈

w
(t)
s∗ ,x

(p)
i

〉)〈
Qs∗

(
w

(t)
s∗

)
,x

(p)
i

〉
− ϕ′

(〈
w

(t)
−s∗ ,x

(p)
i

〉)〈
Q−s∗

(
w

(t)
−s∗

)
,x

(p)
i

〉)]
.

For each s ∈ {±1}, i ∈ Vs∗,k∗ , and p ∈ [P],∣∣∣〈w(t)
s ,x

(p)
i

〉
−
〈
Qs

(
w(t)

s

)
,x

(p)
i

〉∣∣∣
=
∣∣∣〈w(t)

s −Qs

(
w(t)

s

)
,x

(p)
i

〉∣∣∣
≤

∑
j∈[n]\Vs∗,k∗ ,q∈[P]\{p∗

i }

∣∣∣∣∣∣∣
〈
ρ(t)s (j, q)

ξ
(q)
j∥∥∥ξ(q)j

∥∥∥2 ,x(p)
i

〉∣∣∣∣∣∣∣
+ α

∑
j∈F1\Vs∗,k∗

ρ(t)s (j, p̃j)
∥∥∥ξ(p̃j)

j

∥∥∥−2 ∣∣∣〈v1,1,x
(p)
i

〉∣∣∣
+ α

∑
j∈F−1\Vs∗,k∗

ρ(t)s (j, p̃j)
∥∥∥ξ(p̃j)

j

∥∥∥−2 ∣∣∣〈v−1,1,x
(p)
i

〉∣∣∣
≤ Õ

(
nPβ−1σdσ

−1
b d−

1
2

)
+ Õ

(
α2β−1nσ−2

d d−1
)

= o

(
1

polylog(d)

)
,

where the last inequality is due to Lemma C.1 and the event Einit. By Lemma F.1,∑
p∈[P]

(
ϕ′
(〈

w
(t)
s∗ ,x

(p)
i

〉)〈
Qs∗

(
w

(t)
s∗

)
,x

(p)
i

〉
− ϕ′

(〈
w

(t)
−s∗ ,x

(p)
i

〉)〈
Q−s∗

(
w

(t)
s∗

)
,x

(p)
i

〉)

≤
∑
p∈[P]

(
ϕ
(〈

w
(t)
s∗ ,x

(p)
i

〉)
− ϕ

(〈
w

(t)
−s∗ ,x

(p)
i

〉))
+ rP + o

(
1

polylog(d)

)

= yifW (t)(Xi) + o

(
1

polylog(d)

)
where the last equality is due to r = o

(
1

polylog(d)

)
. Therefore, we have∥∥∥Q(W (t)

)
−Q (W ∗)

∥∥∥2 − ∥∥∥Q(W (t+1)
)
−Q(W ∗)

∥∥∥2
39

≥ 2η

n

∑
i∈Vs∗,k∗

ℓ′ (yifW (t)(Xi))

(
yifW (t)(Xi) + o

(
1

polylog(d)

)
− Mβ

2

)

− η2

n2

∥∥∥∥∥∥∇W

∑
i∈Vs∗,k∗

ℓ(yifW (t)(Xi))

∥∥∥∥∥∥
2

≥ 2η

n

∑
i∈Vs∗,k∗

ℓ′(yifW (t)(Xi))

(
yifW (t)(Xi)−

Mβ

4

)

− η2

n2

∥∥∥∥∥∥∇W

∑
i∈Vs∗,k∗

ℓ(yifW (t)(Xi))

∥∥∥∥∥∥
2

.

From the convexity of ℓ(·),∑
i∈Vs∗,k∗

ℓ′(yifW (t)(Xi))

(
yifW (t)(Xi)−

Mβ

4

)
≥

∑
i∈Vs∗,k∗

(
ℓ(yifW (t)(Xi))− ℓ

(
Mβ

4

))
≥

∑
i∈Vs∗,k∗

ℓ(yifW (t)(Xi))− ne−
Mβ
4 .

In addition, by Lemma F.2,

η2

n2

∥∥∥∥∥∥∇
∑

i∈Vs∗,k∗

ℓ (yifW (t)(Xi))

∥∥∥∥∥∥
2

≤ 8η2P 2σ2
dd|Vs∗,k∗ |
n2

∑
i∈Vs∗,k∗

ℓ(yifW (t)(Xi))

≤ η

n

∑
i∈Vs∗,k∗

ℓ(yifW (t)(Xi)),

where the last inequality is due to (A8), and we have∥∥∥Q(W (t)
)
−Q(W ∗)

∥∥∥2 − ∥∥∥Q(W (t+1)
)
−Q(W ∗)

∥∥∥2
≥ η

n

∑
i∈Vs∗,k∗

ℓ(yifW (t)(Xi))− 2ηe−
Mβ
4 .

From telescoping summation, we have

η

n

T∗∑
t=TERM

∑
i∈Vs∗,k∗

ℓ (yifW (t)(Xi)) ≤
∥∥∥Q(W (TERM)

)
−Q (W ∗)

∥∥∥2 + 2ηT ∗e−
Mβ
4 .

Finally, we can prove that the model cannot learn (extremely) rare features within T ∗ iterations.

Lemma C.9. Suppose the event Einit occurs. For any T ∈ [TERM, T ∗], we have γ
(T)
s (s∗, k∗) =

Õ
(
α2β−2

)
for each s ∈ {±1}.

Proof of Lemma C.9. For any T ∈ [TERM, T ∗], we have

γ(T)
s (s, k) = γ(TERM)

s (s∗, k∗) +
η

n

T−1∑
t=TERM

∑
i∈Vs∗,k∗

g
(t)
i ϕ′

(〈
w(t)

s ,vs∗,k∗

〉)

≤ γ(TERM)
s (s∗, k∗) +

η

n

T−1∑
t=TERM

∑
i∈Vs∗,k∗

g
(t)
i

40

≤ γ(TERM)
s (s∗, k∗) +

η

n

T−1∑
t=TERM

∑
i∈Vs∗,k∗

ℓ (yifW (t)(Xi)) ,

where the first inequality is due to ϕ′ ≤ 1 and the second inequality is due to −ℓ′ ≤ ℓ. From the result
of Section C.2.3 we know γ

(TERM)
s (s∗, k∗) ≤ α2β−1. Additionally, by Lemma C.8 and Lemma C.6,

we have

η

n

(T−1)∑
t=TERM

∑
i∈Vs∗,k∗

ℓ (yifW (t)(Xi)) ≤
η

n

(T∗)∑
t=TERM

∑
i∈Vs∗,k∗

ℓ (yifW (t)(Xi))

≤
∥∥∥Q(W (TERM)

)
−Q(W ∗)

∥∥∥2 + 2ηT ∗e−
Mβ
4

≤ 12M2|Vs∗,k∗ |σ−2
d d−1 + 2ηT ∗e−

Mβ
4

= Õ
(
α2β−2

)
.

The last line is due to (A5) and our choice M = 4β−1 log
(

2ηβ2T∗

α2

)
. Thus, we have our conclusion.

What We Have So Far. Suppose the event Einit occurs. For any t ∈ [TERM, T ∗], we have

• (Learn common features): For each s ∈ {±1} and k ∈ KC ,

γ(t)
s (s, k) + βγ

(t)
−s(s, k) = Ω(1).

• (Overfit (extremely) rare data): For each s ∈ {±1}, k ∈ KR ∪ KE and i ∈ Vs,k,∑
p∈[P]\{p∗

i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
= Ω(1).

• (Cannot learn (extremely) rare features): For each s ∈ {±1} and k ∈ KR ∪ KE ,

γ(t)
s (s, k), γ

(t)
−s(s, k) = O

(
α2β−2

)
.

• For any s ∈ {±1}, i ∈ [n], and p ∈ [P] \ {p∗i }, ρ
(t)
s (i, p) = Õ

(
β−1

)
,

C.2.5 Train and Test Accuracy

In this step, we will prove that the model trained by ERM has perfect training accuracy but has
near-random guesses on (extremely) rare data.

For any i ∈ Vs,k with s ∈ {±1} and k ∈ KC , by Lemma B.4, we have

yifW (t)(Xi)

=
∑
p∈[P]

(
ϕ
(〈

w(t)
s ,x

(p)
i

〉)
− ϕ

(〈
w

(t)
−s,x

(p)
i

〉))
≥ γ(t)

s (s, k) + βγ
(t)
−s(s, k) +

∑
p∈[P]\{p∗

i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
− 2P · o

(
1

polylog(d)

)

≥ γ(t)
s (s, k) + βγ

(t)
−s(s, k)− o

(
1

polylog(d)

)
= Ω(1)− o

(
1

polylog(d)

)
> 0,

for any t ∈ [TERM, T ∗]. In addition, for any i ∈ Vs,k with s ∈ {±1} and k ∈ KR ∪ KE , we have

yifW (t)(Xi)

41

=
∑
p∈[P]

(
ϕ
(〈

w(t)
s ,x

(p)
i

〉)
− ϕ

(〈
w

(t)
−s,x

(p)
i

〉))

= γ(t)
s (s, k) + βγ

(t)
−s(s, k) +

∑
p∈[P]\{p∗

i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
− 2P · o

(
1

polylog(d)

)

≥
∑

p∈[P]\{p∗
i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
− o

(
1

polylog(d)

)

= Ω(1)− o

(
1

polylog(d)

)
> 0,

for any t ∈ [TERM, T ∗]. We can conclude that ERM with t ∈ [TERM, T ∗] iterates achieve perfect
training accuracy.

Next, let us move on to the test accuracy part. Let (X, y) ∼ D be a test data with X =(
x(1), . . . ,x(P)

)
∈ Rd×P having feature patch index p∗, dominant noise patch index p̃, and feature

vector vy,k. We have x(p) ∼ N(0, σ2
bΛ) for each p ∈ [P] \ {p∗, p̃} and x(p̃) − αvs,1 ∼ N(0, σ2

dΛ)
for some s ∈ {±1}. Therefore, for all t ∈ [TERM, T ∗] and p ∈ [P] \ {p∗, p̃},∣∣∣ϕ(〈w(t)

1 ,x(p)
〉)

− ϕ
(〈

w
(t)
−1,x

(p)
〉)∣∣∣

≤
∣∣∣〈w(t)

1 −w
(t)
−1,x

(p)
〉∣∣∣

≤
∣∣∣〈w(0)

1 −w
(0)
−1,x

(p)
〉∣∣∣+ ∑

i∈[n],q∈[P]\{p∗
i }

∣∣∣ρ(t)1 (i, q)− ρ
(t)
−1(i, q)

∣∣∣
∣∣∣〈ξ(q)i ,x(p)

〉∣∣∣∥∥∥ξ(q)i

∥∥∥2
≤ Õ

(
σ0σbd

1
2

)
+ Õ

(
nPβ−1σdσ

−1
b d−

1
2

)
= o

(
α

polylog(d)

)
, (18)

with probability at least 1− o
(

1
poly(d)

)
due to Lemma B.2, (A8), (8), and (9). In addition, for any

s′ ∈ {±1}, we have∣∣∣〈w(t)
s′ ,x

(p̃) − αvs,1

〉∣∣∣
≤
∣∣∣〈w(0)

s′ ,x(p̃) − αvs,1

〉∣∣∣+ ∑
i∈[n],q∈[P]\{p∗

i }

ρ
(t)
s′ (i, q)

∣∣∣〈ξ(q)i ,x(p̃) − αvs,1

〉∣∣∣∥∥∥ξ(q)i

∥∥∥2
= Õ

(
σ0σdd

1
2

)
+ Õ

(
nPβ−1σdσ

−1
b d−

1
2

)
= o

(
α

polylog(d)

)
, (19)

with probability at least 1− o
(

1
poly(d)

)
due to Lemma B.2, (A8), (8), and (9).

Case 1: k ∈ KC

By Lemma B.2, (A8), and (10),∣∣∣ϕ(〈w(t)
1 ,x(p̃)

〉)
− ϕ

(〈
w

(t)
−1,w

(p̃)
〉)∣∣∣

≤
∣∣∣〈w(t)

1 −w
(t)
−1,x

(p̃)
〉∣∣∣

≤ α
∣∣∣〈w(t)

1 −w
(t)
−1,vs,1

〉∣∣∣+ ∣∣∣〈w(t)
1 −w

(t)
−1,x

(p) − αvs,1

〉∣∣∣
42

≤ α
(
γ
(t)
1 (s, 1) + γ

(t)
−1(s, 1)

)
+ α

∣∣∣〈w(0)
1 ,vs,1

〉∣∣∣+ α
∣∣∣〈w(0)

−1,vs,1

〉∣∣∣+ o

(
1

polylog(d)

)
≤ Õ

(
αβ−1

)
+ Õ (ασ0) + o

(
1

polylog(d)

)
= o

(
1

polylog(d)

)
, (20)

with probability at least 1− o
(

1
poly(d)

)
. Suppose (18) and (20) holds. By Lemma B.4, we have

yfW (t)(X)

=

(
ϕ
(〈

w(t)
y ,vy,k

〉)
− ϕ

(〈
w

(t)
−y,vy,k

〉))
+

∑
p∈[P]\{p∗}

(
ϕ
(〈

w(t)
y ,x(p)

〉)
− ϕ

(〈
w

(t)
−y,x

(p)
〉))

= γ(t)
y (y, k) + βγ

(t)
−y(y, k)− o

(
1

polylog(d)

)
= Ω(1)− o

(
1

polylog(d)

)
> 0.

Therefore, we have

P(X,y)∼D

[
yfW (t)(X) > 0 | x(p∗) = vy,k, k ∈ KC

]
≥ 1− o

(
1

poly(d)

)
. (21)

Case 2: k ∈ KR ∪ KE By triangular inequality and ϕ′ ≤ 1, we have

ϕ
(〈

w(t)
s ,x(p̃)

〉)
− ϕ

(〈
w

(t)
−s,x

(p̃)
〉)

= ϕ
(〈

w(t)
s , αvs,1

〉)
− ϕ

(〈
w

(t)
−s, αvs,1

〉)
+

(
ϕ
(〈

w(t)
s ,x(p̃)

〉)
− ϕ

(〈
w(t)

s , αvs,1

〉))
−
(
ϕ
(〈

w
(t)
−s,x

(p̃)
〉)

− ϕ
(〈

w
(t)
−s, αvs,1

〉))
≥ ϕ

(〈
w(t)

s , αvs,1

〉)
− ϕ

(〈
w

(t)
−s, αvs,1

〉)
−
∣∣∣〈w(t)

s ,x(p̃) − αvs,1

〉∣∣∣− ∣∣∣〈w(t)
−s,x

(p̃) − αvs,1

〉∣∣∣ .
In addition,

ϕ
(〈

w(t)
s , αvs,1

〉)
− ϕ

(〈
w

(t)
−s, αvs,1

〉)
=

(
ϕ
(
αγ(t)

s (s, 1)
)
− ϕ

(
−αγ

(t)
−s(s, 1)

))
+

(
ϕ
(〈

w(t)
s , αvs,1

〉)
− ϕ

(
αγ(t)

s (s, 1)
))

−
(
ϕ
(〈

w
(t)
−s, αvs,1

〉)
− ϕ

(
−αγ

(t)
−s(s, 1)

))
≥
(
ϕ
(
αγ(t)

s (s, 1)
)
− ϕ

(
−αγ

(t)
−s(s, 1)

))
− α

∣∣∣〈w(t)
s ,vs,1

〉
− γ(t)

s (s, 1)
∣∣∣− α

∣∣∣〈w(t)
−s,vs,1

〉
+ γ

(t)
−s(s, 1)

∣∣∣
= α

(
γ(t)
s (s, 1) + βγ

(t)
−s(s, 1)

)
− α · o

(
1

polylog(d)

)

43

= Ω(α),

where the second equality is due to Lemma B.4 and (A8). If (19) holds, we have

ϕ
(〈

w(t)
s ,x(p̃)

〉)
− ϕ

(〈
w

(t)
−s,x

(p̃)
〉)

= Ω(α)− o

(
α

polylog(d)

)
= Ω(α). (22)

Note that

yfW (t)(X)

= ϕ
(〈

w(t)
y ,vy,k

〉)
− ϕ

(〈
w

(t)
−y,vy,k

〉)
+ ϕ

(〈
w(t)

y ,x(p̃)
〉)

− ϕ
(〈

w
(t)
−y,x

(p̃)
〉)

+
∑

p∈[P]\{p∗,p̃}

(
ϕ
(〈

w(t)
y ,x(p)

〉)
− ϕ

(〈
w

(t)
−y,x

(p)
〉))

,

and ∣∣∣ϕ(〈w(t)
y ,vy,k

〉)
− ϕ

(〈
w

(t)
−y,vy,k

〉)∣∣∣
+

∣∣∣∣∣∣
∑

p∈[P]\{p∗,p̃}

(
ϕ
(〈

w(t)
y ,x(p)

〉)
− ϕ

(〈
w

(t)
−y,x

(p)
〉))∣∣∣∣∣∣

≤
∣∣∣〈w(t)

y −w
(t)
−y,vy,k

〉∣∣∣+ o

(
α

polylog(d)

)
≤ γ

(t)
1 (y, k) + γ

(t)
−1(y, k) +

∣∣∣〈w(0)
y −w

(0)
−y,vy,k

〉∣∣∣+ o

(
α

polylog(d)

)
≤ O(α2β−2) + Õ(σ0) + o

(
α

polylog(d)

)
= o

(
α

polylog(d)

)
< ϕ

(〈
w(t)

s ,x(p̃)
〉)

− ϕ
(〈

w
(t)
−s,x

(p̃)
〉)

,

where the first inequality is due to (18), second-to-last line is due to (A8), (8) and (10), and the last
inequality is due to (22). Therefore, we have yfW (t)(X) > 0 if y = s. Otherwise, yfW (t)(X) < 0.
Therefore, we have

P(X,y)∼D

[
yfW (t)(X) > 0 | x(p∗) = vy,k, k ∈ KR ∪ KE

]
=

1

2
± o

(
1

poly(d)

)
. (23)

Hence, combining (21) and (23) implies

P(X,y)∼D [yfW (t)(X) > 0] =
∑

k∈KC

ρk +
1

2

(
1−

∑
k∈KC

ρk

)
± o

(
1

poly(d)

)
= 1− 1

2

∑
k∈KR∪KE

ρk ± o

(
1

poly(d)

)
.

□

44

D Proof for Cutout

In this section, we use g
(t)
i,C := 1

1+exp(yifW (t) (Xi,C))
for each data i, C ⊂ [P] with |C| = C and

iteration t, for simplicity.

D.1 Proof of Lemma B.3 for Cutout

For s ∈ {±1} and iterate t,

w(t+1)
s −w(t)

s

= −η∇wsLCutout

(
W (t)

)
=

η

n

∑
i∈[n]

syiEC∼DC

g(t)i,C

∑
p/∈C

ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
i


=

η

n

∑
i∈Vs

EC∼DC

g(t)i,C

∑
p/∈C

ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
i


−
∑

i∈V−s

EC∼DC

g(t)i,C

∑
p/∈C

ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
i

 ,

and we have∑
i∈Vs

EC∼DC

g(t)i,C

∑
p/∈C

ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
i


=
∑

k∈[K]

∑
i∈Vs,k

EC∼DC

[
g
(t)
i,Cϕ

′
(〈

w(t)
s ,vs,k

〉)
· 1p∗

i /∈C

]
vs,k

+
∑
i∈Vs

∑
p∈[P]\{p∗

i ,p̃i}

EC∼DC

[
g
(t)
i,Cϕ

′
(〈

w(t)
s , ξ

(p)
i

〉)
· 1p/∈C

]
ξ
(p)
i

+
∑

i∈Vs∩Fs

EC∼DC

[
g
(t)
i,Cϕ

′
(〈

w(t)
s , αvs,1 + ξ

(p̃i)
i

〉)
· 1p̃i /∈C

] (
αvs,1 + ξ

(p̃i)
i

)
+

∑
i∈Vs∩F−s

EC∼DC

[
g
(t)
i,Cϕ

′
(〈

w(t)
s , αv−s,1 + ξ

(p̃i)
i

〉)
· 1p̃i /∈C

] (
αv−s,1 + ξ

(p̃i)
i

)
,

and ∑
i∈V−s

EC∼DC

g(t)i,C

∑
p/∈C

ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
i


=
∑

k∈[K]

∑
i∈V−s,k

EC∼DC

[
g
(t)
i,Cϕ

′
(〈

w(t)
s ,v−s,k

〉)
· 1p∗

i /∈C

]
v−s,k

+
∑

i∈V−s

∑
p∈[P]\{p∗

i ,p̃i}

EC∼DC

[
g
(t)
i,Cϕ

′
(〈

w(t)
s , ξ

(p)
i

〉)
· 1p/∈C

]
ξ
(p)
i

+
∑

i∈V−s∩Fs

EC∼DC

[
g
(t)
i,Cϕ

′
(〈

w(t)
s , αvs,1 + ξ

(p̃i)
i

〉)
· 1p̃i /∈C

] (
αvs,1 + ξ

(p̃i)
i

)
+

∑
i∈V−s∩F−s

EC∼DC

[
g
(t)
i,Cϕ

′
(〈

w(t)
s , αv−s,1 + ξ

(p̃i)
i

〉)
· 1p̃i /∈C

] (
αv−s,1 + ξ

(p̃i)
i

)
.

Hence, if we define γ
(t)
s (s′, k)’s and ρ

(t)
s (i, p)’s recursively by using the rule

γ(t+1)
s (s′, k) = γ(t)

s (s′, k) +
η

n

∑
i∈Vs′,k

EC∼DC

[
g
(t)
i,Cϕ

′
(〈

w(t)
s ,vs′,k

〉)
· 1p∗

i /∈C

]
, (24)

45

ρ(t+1)
s (i, p) = ρ(t)s (i, p) +

η

n
EC∼DC

[
g
(t)
i,Cϕ

′
(〈

w(t)
s ,x

(p)
i

〉)
· 1p/∈C

] ∥∥∥ξ(p)i

∥∥∥2 , (25)

starting from γ
(0)
s (s′, k) = ρ

(0)
s (i, p) = 0 for each s, s′ ∈ {±1}, k ∈ [K], i ∈ [n] and p ∈ [P]\{p∗i },

then we have

w(t)
s = w(0)

s +
∑

k∈[K]

γ(t)
s (s, k)vs,k −

∑
k∈[K]

γ(t)
s (−s, k)v−s,k

+
∑

i∈Vs,p∈[P]\{p∗
i }

ρ(t)s (i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2 −
∑

i∈V−s,p∈[P]\{p∗
i }

ρ(t)s (i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2
+ α

∑
i∈Fs

syiρ
(t)
s (i, p̃i)

vs,1∥∥∥ξ(p̃i)
i

∥∥∥2 +
∑

i∈F−s

syiρ
(t)
s (i, p̃i)

v−s,1∥∥∥ξ(p̃i)
i

∥∥∥2
 ,

for each s ∈ {±1}. Furthermore, γ(t)
s (s′, k)’s and ρ

(t)
s (i, p)’s are monotone increasing. □

D.2 Proof of Theorem 3.2

To show Theorem 3.2, we present a structured proof comprising the following five steps:

1. Establish upper bounds on γ
(t)
s (s′, k)’s and ρ

(t)
s (i, p)’s to apply Lemma B.4 (Section D.2.1).

2. Demonstrate that the model quickly learns common and rare features (Section D.2.2).
3. Show that the model overfits augmented data if it does not contain common or rare features

(Section D.2.3).
4. Confirm the persistence of this tendency until T ∗ iterates (Section D.2.4).
5. Characterize train accuracy and test accuracy (Section D.2.5).

D.2.1 Bounds on the Coefficients in Feature Noise Decomposition

The following lemma provides upper bounds on Lemma B.3 during T ∗ iterations.
Lemma D.1. Suppose the event Einit occurs. For any 0 ≤ t ≤ T ∗, we have

0 ≤ γ(t)
s (s, k) + βγ

(t)
−s(s, k) ≤ 4 log(ηT ∗), 0 ≤ ρ(t)yi

(i, p) + βρ
(t)
−yi

(i, p) ≤ 4 log (ηT ∗) ,

for all s ∈ {±1}, k ∈ [K], i ∈ [n] and p ∈ [P]\{p∗i }. Consequently, γ(t)
s (s′, k), ρ

(t)
s (i, p) = Õ(β−1)

for all s, s′ ∈ {±1}, k ∈ [K], i ∈ [n] and p ∈ [P] \ {p∗i }.

Proof of Lemma D.1. The first argument implies the second argument since log(ηT ∗) = polylog(d)
and

γ(t)
s (s′, k) ≤ β−1

(
γ
(t)
s′ (s

′, k) + βγ
(t)
s′ (s

′, k)
)
, ρ(t)s (i, p) ≤ β−1

(
ρ(t)yi

(i, p) + βρ
(t)
−yi

(i, p)
)
,

for all s, s′ ∈ {±1}, k ∈ [K], i ∈ [n] and p ∈ [P] \ {p∗i }.

We will prove the first argument by using induction on t. The initial case t = 0 is trivial. Suppose the
statement holds at t = T and consider the case t = T + 1.

Let T̃s,k ≤ T denote the smallest iteration where γ
(T̃s,k+1)
s (s, k) + βγ

(T̃s,k+1)
−s (s, k) > 2 log(ηT ∗).

We assume the existence of T̃s,k, as its absence would directly lead to our desired conclusion; to see
why, note that the following holds, due to (24) and (11):

γ(T+1)
s (s, k) + βγ

(T+1)
−s (s, k)

= γ(T)
s (s, k) + βγ

(T)
−s (s, k)

+
η

n

∑
i∈Vs,k

EC∼DC

[
g
(T)
i,C · 1p∗

i /∈C

](
ϕ′
(〈

w(T)
s ,vs,k

〉)
+ βϕ′

(〈
w

(T)
−s ,vs,k

〉))

46

≤ 2 log(ηT ∗) + 2η ≤ 4 log(ηT ∗)

By (24), we have

γ(T+1)
s (s, k) + βγ

(T+1)
−s (s, k)

= γ
(T̃s,k)
s (s, k) + βγ

(T̃s,k)
−s (s, k)

+

T∑
t=T̃s,k

(
γ(t+1)
s (s, k) + βγ

(t+1)
−s (s, k)− γ(t)

s (s, k)− βγ
(t)
−s(s, k)

)
≤ 2 log(ηT ∗) + log(ηT ∗)

+
η

n

T∑
t=T̃s,k+1

∑
i∈Vs,k

EC∼DC

[
g
(t)
i,C

(
ϕ′
(〈

w(t)
s ,vs,k

〉)
+ βϕ′

(〈
w

(t)
−s,vs,k

〉))
· 1p∗

i /∈C

]
.

The inequality is due to γ
(T̃s,k)
s (s, k) + βγ

(T̃s,k)
−s (s, k) ≤ 2 log(ηT ∗) and

η

n

∑
i∈Vs,k

EC∼DC

[
g
(T̃s,k)
i,C

(
ϕ′
(〈

w
(T̃s,k)
s ,vs,k

〉)
+ βϕ′

(〈
w

(T̃s,k)
−s ,vs,k

〉))
· 1p∗

i /∈C

]
≤ 2η ≤ log(ηT ∗),

from our choice of T̃s,k and η.

For each t = T̃s,k + 1, . . . T , i ∈ Vs,k, and C ⊂ [P] such that |C| = C and p∗i /∈ C, we have

yifW (t)(Xi,C)

= ϕ
(〈

w(t)
s ,vs,k

〉)
− ϕ

(〈
w

(t)
−s,vs,k

〉)
+

∑
p/∈C∪{p∗

i }

(
ϕ
(〈

w(t)
s ,x

(p)
i

〉)
− ϕ

(〈
w

(t)
−s,x

(p)
i

〉))

≥ γ(t)
s (s, k) + βγ

(t)
−s(s, k) +

∑
p/∈C∪{p∗

i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
− 2P · o

(
1

polylog(d)

)

≥ 3

2
log(ηT ∗)

The first inequality is due to Lemma B.4 and the second inequality holds due to (A7), (8), and our
choice of t, γ(t)

s (s, k) + βγ
(t)
−s(s, k) ≥ 2 log(ηT ∗).

Hence, we obtain

η

n

T∑
t=T̃s,k

∑
i∈Vs,k

EC∼DC

[
g
(t)
i,C

(
ϕ′
(〈

w(t)
s ,vs,k

〉)
+ βϕ′

(〈
w

(t)
−s,vs,k

〉))
· 1p∗

i /∈C

]

≤ 2η

n

T∑
t=T̃s,k

∑
i∈Vs,k

EC∼DC

[
exp (−yifW (t)(Xi,C)) · 1p∗

i /∈C
]

≤ 2|Vs,k|
n

(ηT ∗) exp

(
−3

2
log(ηT ∗)

)
≤ 2√

ηT ∗ ≤ log(ηT ∗),

where the last inequality holds for any reasonably large T ∗. Merging all inequalities together, we
have γ

(T+1)
s (s, k) + βγ

(T+1)
−s (s, k) ≤ 4 log(ηT ∗).

Next, we will follow similar arguments to show that

ρ(T+1)
yi

(i, p) + βρ
(T+1)
−yi

(i, p) ≤ 4 log(ηT ∗)

for each i ∈ [n] and p ∈ [P] \ {p∗i }.

47

Let T̃ (p)
i ≤ T be the smallest iteration such that ρ(T̃

(p)
i +1)

yi (i, p) + βρ
(T̃

(p)
i +1)

−yi
(i, p) > 2 log(ηT ∗).

We assume the existence of T̃ (p)
i , , as its absence would directly lead to our desired conclusion; to see

why, note that the following holds, due to (25) and (11):

ρ(T+1)
yi

(i, p) + βρ
(T+1)
−yi

(i, p)

= ρ(T)
yi

(i, p) + βρ
(T)
−yi

(i, p)

+
η

n
EC∼DC

[
g
(T)
i,C · 1p/∈C

](
ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
+ βϕ′

(〈
w(t)

s ,x
(p)
i

〉))∥∥∥ξ(p)i

∥∥∥2
≤ 2 log(ηT ∗) + 2η ≤ 4 log(ηT ∗),

where the first inequality is due to
∥∥∥ξ(p)i

∥∥∥ ≤ 3
2σ

2
dd and (A4), and the last inequality is due to (11).

Now we suppose there exists such T̃i ≤ T . By (25), we have

ρ(T+1)
yi

(i, p) + βρ
(T+1)
−yi

(i, p)

= ρ
(T̃

(p)
i)

yi (i, p) + βρ
(T̃

(p)
i)

−yi
(i, p)

+

T∑
t=T̃

(p)
i

(
ρ(t+1)
yi

(i, p) + βρ
(t+1)
−yi

(i, p)− ρ(t)yi
(i, p)− βρ

(t)
−yi

(i, p)
)

≤ 2 log(ηT ∗) + log(ηT ∗)

+
η

n

T∑
t=T̃

(p)
i +1

EC∼DC

[
g
(t)
i,C · 1p/∈C

](
ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
+ βϕ′

(〈
w

(t)
−s,x

(p)
i

〉))∥∥∥ξ(p)i

∥∥∥2
The inequality is due to ρ

(t)
yi (i, p) + βρ

(t)
−yi

(i, p) ≤ 2 log(ηT ∗) our choice of T̃ (p)
i and

η

n
EC∼DC

[
g
(T̃

(p)
i)

i,C · 1p/∈C

](
ϕ′
(〈

w
(T̃

(p)
i)

s ,x
(p)
i

〉)
+ βϕ′

(〈
w

(T̃
(p)
i)

−s ,x
(p)
i

〉))∥∥∥ξ(p)i

∥∥∥2
≤ 2η ≤ log(ηT ∗),

from
∥∥∥ξ(p)i

∥∥∥2 ≤ 3
2σ

2
dd, (A4), and (11).

For each t = T̃
(p)
i + 1, . . . , T , and C ⊂ [P] such that |C| = C and p /∈ C, we have

yifW (t)(Xi,C)

= ϕ
(〈

w(t)
yi

,x
(p)
i

〉)
− ϕ

(〈
w

(t)
−yi

,x
(p)
i

〉)
+

∑
q/∈C∪{p}

(
ϕ
(〈

w(t)
yi

,x
(q)
i

〉)
− ϕ

(〈
w

(t)
−yi

,x
(q)
i

〉))
≥ ρ(t)yi

(i, p) + βρ
(t)
−yi

(i, p)− 2P · o
(

1

polylog(d)

)
≥ 3

2
log(ηT ∗).

The first inequality is due to Lemma B.4 and the second inequality holds since from our choice of t,
ρ
(t)
yi (i, p) + βρ

(t)
−yi

(i, p) ≥ 2 log(ηT ∗).

Therefore, we have

η

n

T∑
t=T̃

(p)
i +1

EC∼DC

[
g
(t)
i,C · 1p/∈C

](
ϕ′
(〈

w(t)
yi

,x
(p)
i

〉)
+ βϕ′

(〈
w

(t)
−yi

,x
(p)
i

〉))∥∥∥ξ(p)i

∥∥∥2

≤ η

T∑
t=T̃

(p)
i +1

EC∼DC

[
exp (−yifW (t)(Xi,C))1p/∈C

]
≤ (ηT ∗) exp

(
−3

2
log(ηT ∗)

)

48

≤ 1√
ηT ∗ ≤ log(ηT ∗),

where the first inequality is due to
∥∥∥ξ(p)i

∥∥∥2 ≤ 3
2σ

2
dd and (A4). Hence, we conclude ρ

(T+1)
yi (i, p) +

βρ
(T+1)
−yi

(i, p) ≤ 4 log(ηT ∗).

D.2.2 Learning Common Features and Rare Features

In the initial stages of training, the model quickly learns common features while exhibiting minimal
overfitting to Gaussian noise.

First, we establish lower bounds on the number of iterations, ensuring that background noise coeffi-
cients ρ(t)s (i, p) for p ̸= p∗i , p̃i remain small, up to the order of 1

P .

Lemma D.2. Suppose the event Einit occurs. There exists T̃ > n
6ηPσ2

bd
such that ρ(t)s (i, p) ≤ 1

4P for

all 0 ≤ t < T̃ , s ∈ {±1}, i ∈ [n] and p ∈ [P] \ {p∗i , p̃i}.

Proof of Lemma D.2. Let T̃ be the smallest iteration such that ρ(T̃)
s (i, p) ≥ 1

4P for some s ∈
{±1}, i ∈ [n] and p ∈ [P] \ {p∗i }. We assume the existence of T̃ , as its absence would directly lead
to our conclusion. Then, for any 0 ≤ t < T̃ , we have

ρ(t+1)
s (i, p) = ρ(t)s (i, p) +

η

n
EC∼DC

[
g
(t)
i,Cϕ

′
(〈

w(t)
s ,x

(p)
i

〉)
· 1p/∈C

] ∥∥∥ξ(p)i

∥∥∥2 < ρ(t)s (i, p) +
3ησ2

bd

2n
,

where the inequality is due to g
(t)
i,C < 1, ϕ′ ≤ 1, and

∥∥∥ξ(p)i

∥∥∥2 ≤ 3
2σ

2
bd. Hence, we have

1

4P
≤ ρ(T̃)

s (i, p) =

T̃−1∑
t=0

(
ρ(t+1)
s (i, p)− ρ(t)s (i, p)

)
<

3ησ2
bd

2n
T̃ ,

and we conclude T̃ > n
6ηPσ2

bd
which is the desired result.

Next, we will show that the model learns common features in at least constant order within T̃ iterates.

Lemma D.3. Suppose the event Einit occurs and ρk = ω
(

σ2
bd
βn

)
for some k ∈ [K]. Then, for each

s ∈ {±1}. there exists Ts,k ≤ 9nP
ηβ|Vs,k| such that γ(t)

s (s, k) + βγ
(t)
−s(s, k) ≥ 1 for any t > Ts,k.

Proof of Lemma D.3. Suppose γ
(t)
s (s, k) + βγ

(t)
−s(s, k) < 1 for all 0 ≤ t ≤ n

6ηPσ2
bd

. For each
i ∈ Vs,k and C ⊂ [P] with |C| = C such that p∗i /∈ C and p̃i ∈ C, we have

yifW (t)(Xi,C)

= ϕ
(〈

w(t)
s ,vs,k

〉)
− ϕ

(〈
w

(t)
−s,vs,k

〉)
+

∑
p/∈C∪{p∗

i }

(
ϕ
(〈

w(t)
s ,x

(p)
i

〉)
− ϕ

(〈
w

(t)
−s,x

(p)
i

〉))

≤ γ(t)
s (s, k) + βγ

(t)
−s(s, k) +

∑
p/∈C∪{p∗

i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
+ 2P · o

(
1

polylog(d)

)

≤ 1 + 2P · 1

4P
+ 2P · o

(
1

polylog(d)

)
≤ 2.

The first inequality is due to Lemma B.4, the second inequality holds since we can apply Lemma D.2,
and the last inequality is due to (A1). Thus, g(t)i,C = 1

1+exp(yifW (t) (Xi,C))
> 1

9 and we have

γ(t+1)
s (s, k) + βγ

(t+1)
−s (s, k)

49

= γ(t)
s (s, k) + βγ

(t)
−s(s, k)

+
η

n

∑
i∈Vs,k

EC∼DC

[
g
(t)
i,C

(
ϕ′
(〈

w(t)
s ,vs,k

〉)
+ βϕ′

(〈
w

(t)
−s,vs,k

〉))
· 1p∗

i /∈C

]

≥ γ(t)
s (s, k) + βγ

(t)
−s(s, k) +

ηβ

9n

∑
i∈Vs,k

EC∼DC [1p∗
i /∈C∧p̃i∈C]

= γ(t)
s (s, k) + βγ

(t)
−s(s, k) +

ηβ|Vs,k|C(P − C)

9nP (P − 1)

≥ γ(t)
s (s, k) + βγ

(t)
−s(s, k) +

ηβ|Vs,k|
9nP

.

From the given condition in the lemma statement, we have 9nP
ηβ|Vs,k| = o

(
n

6ηPσ2
bd

)
. If we choose

t0 ∈
[

9nP
ηβ|Vs,k| ,

n
6ηPσ2

bd

]
, then

1 > γ(t0)
s (s, k) + βγ

(t0)
−s (s, k) ≥ ηβ|Vs,k|

9nP
t0 ≥ 1,

and this is contradictory; therefore, it cannot hold that γ(t)
s (s, k) + βγ

(t)
−s(s, k) < 1 for all 0 ≤ t ≤

n
6ηPσ2

bd
. Hence, there exists 0 ≤ Ts,k < n

6ηPσ2
bd

such that γ(Ts,k+1)
s (s, k) + βγ

(Ts,k+1)
−s (s, k) ≥ 1

and choose the smallest one. Then we obtain

1 ≥ γ(t)
s (s, k) + βγ

(t)
−s(s, k) ≥

ηβ|Vs,k|
9nP

Ts,k.

Therefore, Ts,k ≤ 9nP
ηβ|Vs,k| and this is what we desired.

What We Have So Far. For any common feature or rare feature vs,k with s ∈ {±1} and k ∈
KC ∪ KR, it satisfies ρk = ω

(
σ2
bd
βn

)
due to (A5). By Lemma D.3, at any iterate t ∈

[
T̄1, T

∗] with

T̄1 := maxs∈{±1},k∈C Ts,k, the following properties hold if the event Einit occurs:

• (Learn common/rare features): For s ∈ {±1} and k ∈ KC ∪KR, γ(t)
s (s, k)+βγ

(t)
−s(s, k) = Ω(1),

• For any s ∈ {±1}, i ∈ [n], and p ∈ [P] \ {p∗i }, ρ
(t)
s (i, p) = Õ

(
β−1

)
.

D.2.3 Overfitting Augmented Data

In the previous step, we have shown that data containing common or rare features can be well-
classified by learning common and rare features. In this step, we will show that the model correctly
classifies the remaining training data by overfitting background noise instead of learning its features.

We first introduce lower bounds on the number of iterates such that feature coefficients γ(t)
s (s′, k)

remain small, up to the order of α2β−1. This lemma holds to any kind of features, but we will focus
on extremely rare features. This does not contradict the results from Section D.2.2 for common
features and rare features since the upper bound on the number of iterations in Lemma D.3 is larger
than the lower bound on the number of iterations in this lemma.
Lemma D.4. Suppose the event Einit occurs. For each s ∈ {±1} and k ∈ [K], there exists
T̃s,k ≥ nα2

ηβ|Vs,k| such that γ(t)
s′ (s, k) ≤ α2β−1 for any 0 ≤ t < T̃s,k and s′ ∈ {±1}.

Proo of Lemma D.4. Let T̃s,k be the smallest iterate such that γ(t)
s′ (s, k) > α2β−1 for some s′ ∈

{±1}. We assume the existence of T̃s,k, as its absence would directly lead to our conclusion.

For any 0 ≤ t < T̃s,k,

γ
(t+1)
s′ (s, k) = γ

(t)
s′ (s, k)+

η

n

∑
i∈Vs,k

EC∼DC

[
g
(t)
i,Cϕ

′
(〈

w
(t)
s′ ,vs,k

〉)
· 1p∗

i /∈C

]
≤ γ

(t)
s′ (s, k)+

η|Vs,k|
n

,

50

and we have

α2β−1 ≤ γ
(T̃s,k)
s′ (s, k) =

T̃s,k−1∑
t=0

(
γ
(t+1)
s′ (s, k)− γ

(t)
s′ (s, k)

)
≤ η|Vs,k|

n
T̃s,k.

We conclude T̃s,k ≥ nα2

ηβ|Vs,k| which is the desired result.

Next, we will show that the model overfits data augmented not containing common or rare features in
at least constant order within T̃s,k iterates.

Lemma D.5. Suppose the event Einit occurs and ρk = o
(

α2σ2
bd

n

)
. For each i ∈ [n] and C ⊂ [P] with

|C| = C, if (1) i ∈ Vyi,k and p∗i /∈ C or (2) i ∈ [n] and p∗i ∈ C, then there exists Ti,C ∈
[
T̄1,

18n(PC)
ηβσ2

bd

]
such that ∑

p/∈C∪{p∗
i }

(
ρ(t)yi

(i, p) + βρ
(t)
−yi

(i, p)
)
≥ 1,

for any t > Ti,C .

Proof of Lemma D.5. We can address both cases in the statement simultaneously. Suppose∑
p/∈C∪{p∗

i }

(
ρ
(t)
yi (i, p) + βρ

(t)
−yi

(i, p)
)
< 1 for all 0 ≤ t ≤ nα2

ηβ|Vyi,k
| .

From Lemma B.4 and Lemma D.4, we have

yifW (t)(Xi,C)

=
∑
p/∈C

(
ϕ
(〈

w(t)
yi

,x
(p)
i

〉)
− ϕ

(〈
w

(t)
−yi

,x
(p)
i

〉))

≤ γ(t)
yi

(yi, k) + βγ
(t)
−yi

(yi, k) +
∑

p/∈C∪{p∗
i }

(
ρ(t)yi

(i, p) + βρ
(t)
−yi

(i, p)
)
+ 2P · o

(
1

polylog(d)

)

≤ (1 + β)α2β−1 + 1 + 2P · o
(

1

polylog(d)

)
≤ 2,

and g
(t)
i,C = 1

1+exp(yifW (t) (Xi,C))
≥ 1

9 . Also, for each p /∈ C ∪ {p∗i }, we have

ρ(t+1)
s (i, p) + βρ

(t+1)
−s (i, p)

≥ ρ(t)s (i, p) + βρ
(t)
−s(i, p)

+
η

n
PC′∼DC [C′ = C]g(t)i,C

(
ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
+ βϕ′

(〈
w

(t)
−s,x

(p)
i

〉))∥∥∥ξ(p)i

∥∥∥2
≥ ρ(t)s (i, p) + βρ

(t)
−s(i, p) +

ηβσ2
bd

18n
(
P
C

) ,
where the last inequality is due to

∥∥∥ξ(p)i

∥∥∥2 ≥ 1
2σ

2
bd and ϕ′ ≥ β. We also have∑

p/∈C∪{p∗
i }

(
ρ(t+1)
s (i, p) + βρ

(t+1)
−s (i, p)

)
≥

∑
p/∈C∪{p∗

i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
+

ηβσ2
bd

18n
(
P
C

)
From the given condition in the lemma statement, we have

18n(PC)
ηβσ2

bd
= o

(
nα2

ηβ|Vs,k|

)
. If we choose

t0 ∈
[
18n(PC)
ηβσ2

bd
, nα2

ηβ|Vs,k|

]
, then we have

1 >
∑

p/∈C∪{p∗
i }

(
ρ(t0)s (i, p) + βρ

(t0)
−s (i, p)

)
≥ ηβσ2

bd

18n
(
P
C

) t0 ≥ 1,

51

and this is a contradiction; therefore, it cannot hold that
∑

p/∈C∪{p∗
i }

(
ρ
(t)
yi (i, p) + βρ

(t)
−yi

(i, p)
)
<

1 for all 0 ≤ t ≤ nα2

ηβ|Vyi,k
| . Thus, there exists 0 ≤ Ti,C < nα2

ηβ|Vs,k| satisfying∑
p/∈C∪{p∗

i }

(
ρ
(Ti,C+1)
s (i, p) + βρ

(Ti,C+1)
−s (i, p)

)
≥ 1 and let us choose the smallest one.

For any 0 ≤ t < Ti,C , we have

1 ≥
∑

p/∈C∪{p∗
i }

(
ρ(Ti,C)
s (i, p) + βρ

(Ti,C)
−s (i, p)

)
≥ ησ2

bd

18n
(
P
C

)Ti,

and we conclude that Ti,C ≤ 18n(PC)
ηβσ2

bd
.

Lastly, we move on to prove Ti,C > T̄1. Combining Lemma D.2 and Lemma D.3 leads to∑
p/∈C∪{p∗

i }\{p∗
i }

(
ρ(T̄1)
s (i, p) + βρ

(T̄1)
−s (i, p)

)
≤ 1

2
.

Thus, we have Ti,C > T̄1 and this is what we desired.

What We Have So Far. For any k ∈ KE , it satisfies ρk = o
(

α2n
σ2
bd

)
due to (A6). By Lemma D.5 at

iterate t ∈ [TCutout, T
∗] with

TCutout := max

{
max

k∈KE ,i∈Vyi,k
,p∗

i /∈C
Ti,C , max

i∈[n],p∗
i ∈C

Ti,C

}
∈
[
T̄1, T

∗]
the following properties hold if the event Einit occurs:

• (Learn common/rare features): For any s ∈ {±1} and k ∈ KC ∪ KR,

γ(t)
s (s, k) + βγ

(t)
−s(s, k) = Ω(1),

• (Overfit augmented data with extremely rare features or no feature): For each i ∈ [n], k ∈ KE ,
C ⊂ [P] with |C| = C such that (1) i ∈ Vyi,k and p∗i /∈ C or (2) i ∈ [n] and p∗i ∈ C∑

p/∈C∪{p∗
i }

(
ρ(t)yi

(i, p) + βρ
(t)
−yi

(i, p)
)
= Ω(1).

• (Do not learn extremely rare features at TCutout): For any s, s′ ∈ {±1} and k ∈ KE ,

γ
(TCutout)
s′ (s, k) ≤ α2β−1.

• For any s ∈ {±1}, i ∈ [n], and p ∈ [P] \ {p∗i }, ρ
(t)
s (i, p) = Õ

(
β−1

)
.

D.2.4 Cutout cannot Learn Extremely Rare Features Within Polynomial Times

In this step, We will show that Cutout cannot learn extremely rare features within the maximum
admissible iterate T ∗ = poly(d)

η .

we fix any s∗ ∈ {±1} and k∗ ∈ KE . Recall the function Q(s∗,k∗) : W → Rd×2, defined in
Lemma B.5 and omit superscripts for simplicity. For each iteration t, Q(W (t)) represents quantities
updates by data with feature vector vs∗,k∗ until t-th iteration. We will sequentially introduce several
technical lemmas and by combining these lemmas, quantify update by data with feature vector vs∗,k∗

after TCutout and derive our conclusion.

Let us define W ∗ = {w∗
1 ,w

∗
−1}, where

w∗
s = w(TCutout)

s +M
∑

i∈Vs∗,k∗

∑
p∈[P]\{p∗

i ,p̃i}

ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2 ,
where M = 4β−1 log

(
2ηβ2T∗

α2

)
. Note that (12), β < 1, and T ∗ = poly(d)

η together imply M =

Õ
(
β−1

)
. Note that W (t),W ∗ ∈ W for any t ≥ 0.

52

Lemma D.6. Suppose the event Einit occurs. Then,∥∥∥Q(W (TCutout)
)
−Q(W ∗)

∥∥∥2 ≤ 8M2P |Vs∗,k∗ |σ−2
b d−1.

where ∥·∥ denotes the Frobenius norm.

Proof of Lemma D.6. For each s ∈ {±1},

ss∗
(
Qs (w

∗
s)−Qs

(
w(TCutout)

s

))
= Qs

ss∗M
∑

i∈Vs∗,k∗

∑
p∈[P]\{p∗

i ,p̃i}

ξ
(p)
i∥∥∥ξ(p)i

∥∥∥


= M
∑

i∈Vs∗,k∗

∑
p∈[P]\{p∗

i ,p̃i}

ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2 ,
and we have∥∥∥Q(W (TCutout)

)
−Q(W ∗)

∥∥∥2
=
∥∥∥Q1(w

∗
1)−Q1

(
w

(TCutout)
1

)∥∥∥2 + ∥∥∥Q−1(w
∗
−1)−Q−1

(
w

(TCutout)
−1

)∥∥∥2

≤ 2M2


∑

i∈Vs∗,k∗ ,p∈[P]\{p∗
i ,p̃i}

∥∥∥ξ(p)i

∥∥∥−2

+
∑

i,j∈Vs∗,k∗

p∈[P]\{p∗
i ,p̃i},q∈[P]\{p∗

j ,p̃j}
(i,p)̸=(j,q)

∣∣∣〈ξ(p)i , ξ
(q)
j

〉∣∣∣∥∥∥ξ(p)i

∥∥∥2 ∥∥∥ξ(q)j

∥∥∥2
 .

From Einit and (A2), we have

∑
i,j∈Vs∗,k∗

p∈[P]\{p∗
i ,p̃i},q∈[P]\{p∗

j ,p̃j}
(i,p)̸=(j,q)

∣∣∣〈ξ(p)i , ξ
(q)
j

〉∣∣∣∥∥∥ξ(p)i

∥∥∥2 ∥∥∥ξ(q)j

∥∥∥2 ≤
∑

i∈Vs∗,k∗

p∈[P]\{p∗
i ,p̃i}

∑
j∈Vs∗,k∗

p∈[P]\{p∗
j ,p̃j}

∥∥∥ξ(p̃)i

∥∥∥−2

Õ
(
d−

1
2

)

≤
∑

i∈Vs∗,k∗

p∈[P]\{p∗
i ,p̃i}

∥∥∥ξ(p̃)i

∥∥∥−2

Õ
(
nPd−

1
2

)

≤
∑

i∈Vs∗,k∗

p∈[P]\{p∗
i ,p̃i}

∥∥∥ξ(p)i

∥∥∥−2

From the event Einit defined in Lemma B.2, we have∑
i∈Vs∗,k∗

p∈[P]\{p∗
i ,p̃i}

∥∥∥ξ(p)i

∥∥∥−2

≤ 2P |Vs∗,k∗ |σ−2
d d−1,

and we obtain∥∥∥Q(W (TCutout)
)
−Q(W ∗)

∥∥∥2 ≤ 4M2
∑

i∈Vs∗,k∗ ,p∈[P]\{p∗
i }

∥∥∥ξ(p)i

∥∥∥−2

≤ 8M2P |Vs∗,k∗ |σ−2
b d−1.

Lemma D.7. Suppose the Einit occurs. For any t ≥ TCutout, i ∈ Vs∗,k∗ and any C ⊂ [P] with
|C| = C, it holds that

⟨yi∇W fW (t)(Xi,C), Q(W ∗)⟩ ≥ Mβ

2
.

53

Proof of Lemma D.7. We have

⟨yi∇W fW (t)(Xi,C), Q(W ∗)⟩

=
∑
p/∈C

(
ϕ′
(〈

w
(t)
s∗ ,x

(p)
i

〉)〈
Qs∗(w

∗
s∗),x

(p)
i

〉
− ϕ′

(〈
w

(t)
−s∗ ,x

(p)
i

〉)〈
Q−s∗(w

∗
−s∗),x

(p)
i

〉)
.

For any s ∈ {±1} and p ∈ [P] \ {p∗i , p̃i},

ss∗
〈
Qs(w

∗
s), ξ

(p)
i

〉
≥ M + ρ(TCutout)

s (i, p)−
∑

j∈[n],q∈[P]\{p∗
j }

(j,q) ̸=(i,p)

ρ(TCutout)
s (j, q)

∣∣∣〈ξ(p)i , ξ
(q)
j

〉∣∣∣∥∥∥ξ(q)j

∥∥∥2

−M
∑

j∈Vs∗,k∗ ,q∈[P]\{p∗
j ,p̃j}

(j,q) ̸=(i,p)

∣∣∣〈ξ(p)i , ξ
(q)
j

〉∣∣∣∥∥∥ξ(q)j

∥∥∥2
≥ M − Õ

(
nPβ−1σdσ

−1
b d−

1
2

)
= M − o

(
1

polylog(d)

)
≥ M

2
, (26)

where the last equality is due to (9). Also, for any s ∈ {±1}, ss∗ ⟨Qs(w
∗
s),vs∗,k∗⟩ =

γ
(TCutout)
s (s∗, k∗) ≥ 0. In addition,

ss∗
〈
Qs(w

∗
s),x

(p̃i)
i

〉
= ss∗

〈
Qs(w

∗
s), ξ

(p̃i)
i

〉
+ ss∗

〈
Qs(w

∗
s),x

(p̃i)
i − ξ

(p̃i)
i

〉
= ss∗

〈
Qs(w

∗
s), ξ

(p̃i)
i

〉
− Õ

(
α2β−1ρk∗nσ−2

d d−1
)

= ρ(TCutout)
s (i, p̃i) +

∑
j∈[n],q∈[P]\{p∗

i }
(j,q)̸=(i,p̃i)

ρ(TCutout)
s (j, q)

〈
ξ
(p̃i)
i , ξ

(q)
j

〉
∥∥∥ξ(q)j

∥∥∥2 − Õ
(
α2β−1ρk∗nσ−2

d d−1
)

≥ −Õ
(
nPβ−1σdσ

−1
b d−

1
2

)
− Õ

(
α2β−1ρk∗nσ−2

d d−1
)

= −o

(
1

polylog(d)

)
, (27)

where the last equality is due to (9) and (A7).

For any C ⊂ [P] with |C| = C, there exists p ∈ [P] \ {p∗i , p̃i} such that p ̸= C since C < P
2 . By

applying (26) and (27) for s = s∗,−s∗ and combining with ϕ′ ≥ β, we have

⟨yi∇W fW (t)(Xi,C), Q(W ∗)⟩

≥
(
ϕ′
(〈

w
(t)
s∗ ,x

(p)
i

〉)〈
Qs∗(w

∗
s∗),x

(p)
i

〉
− ϕ′

(〈
w

(t)
−s∗ ,x

(p)
i

〉)〈
Q−s∗(w

∗
−s∗),x

(p)
i

〉)
+

∑
q/∈C∪{p}

(
ϕ′
(〈

w
(t)
s∗ ,x

(q)
i

〉)〈
Qs∗(w

∗
s∗),x

(q)
i

〉
− ϕ′

(〈
w

(t)
−s∗ ,x

(q)
i

〉)〈
Q−s∗(w

∗
−s∗),x

(q)
i

〉)

≥ Mβ − o

(
1

polylog(d)

)
≥ Mβ

2
.

54

By combining Lemma D.6 and Lemma D.7, we can obtain the following result.
Lemma D.8. Suppose the event Einit occurs.

η

n

T∗∑
t=TCutout

∑
i∈Vs∗,k∗

EC∼DC [ℓ (yifW (t)(Xi,C))] ≤
∥∥∥Q(W (TCutout)

)
−Q(W ∗)

∥∥∥2 + 2ηT ∗e−
Mβ
4 ,

where ∥·∥ denotes the Frobenius norm.

Proof of Lemma D.8. Note that for any TCutout ≤ t < T ∗,

Q
(
W (t+1)

)
= Q

(
W (t)

)
− η

n
∇W

∑
i∈Vs∗,k∗

EC∼DC [ℓ (yifW (t)(Xi,C))] .

Therefore, we have∥∥∥Q(W (t)
)
−Q (W ∗)

∥∥∥2 − ∥∥∥Q(W (t+1)
)
−Q (W ∗)

∥∥∥2
=

2η

n

〈
∇W

∑
i∈Vs∗,k∗

EC∼DC [ℓ (yifW (t)(Xi,C))] , Q
(
W (t)

)
−Q (W ∗)

〉

− η2

n2

∥∥∥∥∥∥∇W

∑
i∈Vs∗,k∗

EC∼DC [ℓ (yifW (t)(Xi,C))]

∥∥∥∥∥∥
2

=
2η

n

〈
∇W

∑
i∈Vs∗,k∗

EC∼DC [ℓ(yifW (t)(Xi,C))] , Q
(
W (t)

)〉

− 2η

n

∑
i∈Vs∗,k∗

⟨EC∼DC [ℓ
′(yifW (t)(Xi,C))∇W yifW (t)(Xi,C)] , Q (W ∗)⟩

− η2

n2

∥∥∥∥∥∥∇W

∑
i∈Vs∗,k∗

EC∼DC [ℓ (yifW (t)(Xi,C))]

∥∥∥∥∥∥
2

≥ 2η

n

〈
∇W

∑
i∈Vs∗,k∗

EC∼DC [ℓ(yifW (t)(Xi,C))] , Q
(
W (t)

)〉

− Mβη

n

∑
i∈Vs∗,k∗

EC∼DC [ℓ
′(yifW (t)(Xi,C))]−

η2

n2

∥∥∥∥∥∥∇W

∑
i∈Vs∗,k∗

EC∼DC [ℓ (yifW (t)(Xi,C))]

∥∥∥∥∥∥
2

,

where the last inequality is due to Lemma D.7. By the chain rule, for each C ⊂ [P] with |C| = C, we
have〈

∇W

∑
i∈Vs∗,k∗

ℓ(yifW (t)(Xi,C)), Q
(
W (t)

)〉

=
∑

i∈Vs∗,k∗

[
ℓ′(yifW (t)(Xi,C))

×
∑
p/∈C

(
ϕ′
(〈

w
(t)
s∗ ,x

(p)
i

〉)〈
Qs∗

(
w

(t)
s∗

)
,x

(p)
i

〉
− ϕ′

(〈
w

(t)
−s∗ ,x

(p)
i

〉)〈
Q−s∗

(
w

(t)
−s∗

)
,x

(p)
i

〉)]
.

For each s ∈ {±1}, i ∈ Vs∗,k∗ , and p ∈ [P],∣∣∣〈w(t)
s ,x

(p)
i

〉
−
〈
Qs

(
w(t)

s

)
,x

(p)
i

〉∣∣∣
=
∣∣∣〈w(t)

s −Qs

(
w(t)

s

)
,x

(p)
i

〉∣∣∣
55

≤
∑

j∈[n]\Vs∗,k∗ ,q∈[P]\{p∗
i }

∣∣∣∣∣∣∣
〈
ρ(t)s (j, q)

ξ
(q)
j∥∥∥ξ(q)j

∥∥∥2 ,x(p)
i

〉∣∣∣∣∣∣∣
+ α

∑
j∈F1\Vs∗,k∗

ρ(t)s (j, p̃j)
∥∥∥ξ(p̃j)

j

∥∥∥−2 ∣∣∣〈v1,1,x
(p)
i

〉∣∣∣
+ α

∑
j∈F−1\Vs∗,k∗

ρ(t)s (j, p̃j)
∥∥∥ξ(p̃j)

j

∥∥∥−2 ∣∣∣〈v−1,1,x
(p)
i

〉∣∣∣
≤ Õ

(
nPβ−1σdσ

−1
b d−

1
2

)
+ Õ

(
α2β−1nσ−2

d d−1
)

= o

(
1

polylog(d)

)
,

where the last inequality is due to Lemma D.1 and the event Einit. By Lemma F.1,∑
p/∈C

(
ϕ′
(〈

w
(t)
s∗ ,x

(p)
i

〉)〈
Qs∗

(
w

(t)
s∗

)
,x

(p)
i

〉
− ϕ′

(〈
w

(t)
−s∗ ,x

(p)
i

〉)〈
Q−s∗

(
w

(t)
s∗

)
,x

(p)
i

〉)

≤
∑
p/∈C

(
ϕ
(〈

w
(t)
s∗ ,x

(p)
i

〉)
− ϕ

(〈
w

(t)
−s∗ ,x

(p)
i

〉))
+ rP + o

(
1

polylog(d)

)

= yifW (t)(Xi,C) + o

(
1

polylog(d)

)
,

where the last equality is due to r = o
(

1
polylog(d)

)
. Therefore, we have∥∥∥Q(W (t)

)
−Q (W ∗)

∥∥∥2 − ∥∥∥Q(W (t+1)
)
−Q(W ∗)

∥∥∥2
≥ 2η

n

∑
i∈Vs∗,k∗

EC∼DC

[
ℓ′ (yifW (t)(Xi,C))

(
yifW (t)(Xi,C) + o

(
1

polylog(d)

)
− Mβ

2

)]

− η2

n2

∥∥∥∥∥∥∇W

∑
i∈Vs∗,k∗

EC∼DC [ℓ(yifW (t)(Xi,C))]

∥∥∥∥∥∥
2

≥ 2η

n

∑
i∈Vs∗,k∗

EC∼DC

[
ℓ′(yifW (t)(Xi,C))

(
yifW (t)(Xi,C)−

Mβ

4

)]

− η2

n2

∥∥∥∥∥∥∇W

∑
i∈Vs∗,k∗

EC∼DC [ℓ(yifW (t)(Xi,C))]

∥∥∥∥∥∥
2

.

From the convexity of ℓ(·),∑
i∈Vs∗,k∗

EC∼DC

[
ℓ′(yifW (t)(Xi,C))

(
yifW (t)(Xi,C)−

Mβ

4

)]

≥
∑

i∈Vs∗,k∗

EC∼DC

[(
ℓ(yifW (t)(Xi,C))− ℓ

(
Mβ

4

))]
≥

∑
i∈Vs∗,k∗

EC∼DC [ℓ(yifW (t)(Xi,C))]− ne−
Mβ
4 .

In addition, by Lemma F.3,

η2

n2

∥∥∥∥∥∥∇
∑

i∈Vs∗,k∗

EC∼DC [ℓ (yifW (t)(Xi,C))]

∥∥∥∥∥∥
2

56

≤ 8η2P 2σ2
dd|Vs∗,k∗ |
n2

∑
i∈Vs∗,k∗

EC∼DC [ℓ(yifW (t)(Xi,C))]

≤ η

n

∑
i∈Vs∗,k∗

EC∼DC [ℓ(yifW (t)(Xi,C))],

where the last inequality is due to (A8), and we have∥∥∥Q(W (t)
)
−Q(W ∗)

∥∥∥2 − ∥∥∥Q(W (t+1)
)
−Q(W ∗)

∥∥∥2
≥ η

n

∑
i∈Vs∗,k∗

EC∼DC [ℓ(yifW (t)(Xi,C))]− 2ηe−
Mβ
4 .

From telescoping summation, we have

η

n

T∗∑
t=TCutout

∑
i∈Vs∗,k∗

EC∼DC [ℓ (yifW (t)(Xi,C))] ≤
∥∥∥Q(W (TCutout)

)
−Q (W ∗)

∥∥∥2 + 2ηT ∗e−
Mβ
4 .

Finally, we can prove that the model cannot learn extremely rare features within T ∗ iterations.

Lemma D.9. Suppose the event Einit occurs. For any T ∈ [TCutout, T
∗], we have γ

(T)
s (s∗, k∗) =

Õ(α2β−2) for each s ∈ {±1}.

Proof of Lemma D.9. For any T ∈ [TCutout, T
∗], we have

γ(T)
s (s∗, k∗) = γ(TCutout)

s (s∗, k∗) +
η

n

T−1∑
t=TCutout

∑
i∈Vs∗,k∗

EC∼DC

[
g
(t)
i,C · 1p/∈C

]
ϕ′
(〈

w(t)
s ,vs∗,k∗

〉)

≤ γ(TCutout)
s (s∗, k∗) +

η

n

T−1∑
t=TCutout

∑
i∈Vs∗,k∗

EC∼DC

[
g
(t)
i,C

]

≤ γ(TCutout)
s (s∗, k∗) +

η

n

T−1∑
t=TCutout

∑
i∈Vs∗,k∗

EC∼DC [ℓ (yifW (t)(Xi,C))] ,

where the first inequality is due to ϕ′ ≤ 1 and the second inequality is due to −ℓ′ ≤ ℓ. From the
result of Section D.2.3, γ(TCutout)

s (s∗, k∗) ≤ α2β−1 and by Lemma D.8 and Lemma D.6, we have

η

n

(T−1)∑
t=TCutout

∑
i∈Vs∗,k∗

EC∼DC [ℓ (yifW (t)(Xi,C))] ≤
η

n

(T∗)∑
t=TCutout

∑
i∈Vs∗,k∗

EC∼DC [ℓ (yifW (t)(Xi,C))]

≤
∥∥∥Q(W (TCutout)

)
−Q(W ∗)

∥∥∥2 + 2ηT ∗e−
Mβ
2

≤ 8M2P |Vs∗,k∗ |σ−2
b d−1 + 2ηT ∗e−

Mβ
4

= Õ
(
α2β−2

)
.

The last line is due to (A6) and M = 4β−1 log
(

2ηβ2T∗

α2

)
. This finishes the proof.

What We Have So Far. Suppose the event Einit occurs. For any t ∈ [TCutout, T
∗], we have

• (Learn common/rare features): γ
(t)
s (s, k) + βγ

(t)
−s(s, k) = Ω(1) for each s ∈ {±1} and k ∈

KC ∪ KR

• (Overfit augmented data with extremely rare features or no feature): For each i ∈ [n], k ∈ KE , C ⊂
[P] with |C| = C such that (1) i ∈ Vyi,k and p∗i /∈ C or (2) i ∈ [n] and p∗i ∈ C∑

p/∈C∪{p∗
i }

(
ρ(t)yi

(i, p) + βρ
(t)
−yi

(i, p)
)
= Ω(1).

57

• (Cannot learn extreme features): γ
(t)
s (s, k), γ

(t)
−s(s, k) = O

(
α2β−2

)
for each s ∈ {±1} and

k ∈ KE .

• For any s ∈ {±1}, i ∈ [n], and p ∈ [P] \ {p∗i }, ρ
(t)
s (i, p) = Õ

(
β−1

)
,

D.2.5 Train and Test Accuracy

In this step, we will prove that the model trained by Cutout has perfect training accuracy on both
augmented data and original data but has near-random guesses on test data with extremely rare data.

For any i ∈ Vs,k with s ∈ {±1}, k ∈ KC ∪ KR and C ⊂ [P] with |C| = C and p∗i /∈ C,

yifW (t)(Xi,C)

=
∑
p/∈C

(
ϕ
(〈

w(t)
s ,x

(p)
i

〉)
− ϕ

(〈
w

(t)
−s,x

(p)
i

〉))
= γ(t)

s (s, k) + βγ
(t)
−s(s, k) +

∑
p/∈C∪{p∗

i }

(
ρ(t)s (i, p) + βρ

(t)
−s(i, p)

)
− 2(P − C) · o

(
1

polylog(d)

)

≥ γ(t)
s (s, k) + βγ

(t)
−s(s, k)− 2(P − C) · o

(
1

polylog(d)

)
= Ω(1)− o

(
1

polylog(d)

)
= Ω(1),

for any t ∈ [TCutout, T
∗]. In addition, for any i ∈ [n] and C ⊂ [P] with |C| = C that does not

correspond to the case above, by Lemma D.5 and Lemma B.4, we have

yifW (t)(Xi,C)

=
∑
p/∈C

(
ϕ
(〈

w(t)
yi

,x
(p)
i

〉)
− ϕ

(〈
w

(t)
−yi

,x
(p)
i

〉))

≥
∑

p/∈C∪{p∗
i }

(
ρ(t)yi

(i, p) + βρ
(t)
−yi

(i, p)
)
− 2(P − C) · o

(
1

polylog(d)

)

= Ω(1)− o

(
1

polylog(d)

)
= Ω(1),

for any t ∈ [TCutout, T
∗]. We can conclude that Cutout with t ∈ [TCutout, T

∗] iterates achieve
perfect training accuracy on augmented data.

Next, we will show that Cutout achieves perfect training accuracy on the original data. For any
i ∈ [n], let us choose C ⊂ [P] with |C| = C such that p∗i ∈ C. Then, from the result above, we have

yifW (t)(Xi) = yifW (t)(Xi,C) +
∑
p∈C

(
ϕ
(〈

w(t)
yi

,x
(p)
i

〉)
− ϕ

(〈
w

(t)
−yi

,x
(p)
i

〉))

≥ yifW (t)(Xi,C) +
∑

p∈C\{p∗
i }

(
ρ(t)yi

(i, p) + βρ
(t)
−yi

(i, p)
)
− C · o

(
1

polylog(d)

)
≥ Ω(1),

for any t ∈ [TCutout, T
∗] and we conclude that Cutout with t ∈ [TCutout, T

∗] iterates achieve perfect
training accuracy on original data.

Lastly, let us move on to the test accuracy part. Let (X, y) ∼ D be a test data with X =(
x(1), . . . ,x(P)

)
∈ Rd×P having feature patch p∗, dominant noise patch p̃, and feature vector

vy,k. We have x(p) ∼ N(0, σ2
bΛ) for each p ∈ [P] \ {p∗, p̃} and x(p̃) − αvs,1 ∼ N(0, σ2

dΛ) for
some s ∈ {±1}. Therefore, for all t ∈ [TCutout, T

∗] and p ∈ [P] \ {p∗, p̃},∣∣∣ϕ(〈w(t)
1 ,x(p)

〉)
− ϕ

(〈
w

(t)
−1,x

(p)
〉)∣∣∣
58

≤
∣∣∣〈w(t)

1 −w
(t)
−1,x

(p)
〉∣∣∣

≤
∣∣∣〈w(0)

1 −w
(0)
−1,x

(p)
〉∣∣∣+ ∑

i∈[n],q∈[P]\{p∗
i }

∣∣∣ρ(t)1 (i, q)− ρ
(t)
−1(i, q)

∣∣∣
∣∣∣〈ξ(q)i ,x(p)

〉∣∣∣∥∥∥ξ(q)i

∥∥∥2
≤ Õ

(
σ0σbd

1
2

)
+ Õ

(
nPβ−1σdσ

−1
b d−

1
2

)
= o

(
α

polylog(d)

)
, (28)

with probability at least 1− o
(

1
poly(d)

)
due to Lemma B.2, (A8), (8), and (9).. In addition, for any

s′ ∈ {±1}, we have∣∣∣〈w(t)
s′ ,x

(p̃) − αvs,1

〉∣∣∣
≤
∣∣∣〈w(0)

s′ ,x(p̃) − αvs,1

〉∣∣∣+ ∑
i∈[n],q∈[P]\{p∗

i }

ρ
(t)
s′ (i, q)

∣∣∣〈ξ(q)i ,x(p̃) − αvs,1

〉∣∣∣∥∥∥ξ(q)i

∥∥∥2
= Õ

(
σ0σdd

1
2

)
+ Õ

(
nPβ−1σdσ

−1
b d−

1
2

)
= o

(
α

polylog(d)

)
, (29)

with probability at least 1− o
(

1
poly(d)

)
due to Lemma B.2, (A8), (8), and (9).

Case 1: k ∈ KC ∪ KR

By Lemma B.2, (A7), and (10),∣∣∣ϕ(〈w(t)
1 ,x(p̃)

〉)
− ϕ

(〈
w

(t)
−1,x

(p̃)
〉)∣∣∣

≤
∣∣∣〈w(t)

1 −w
(t)
−1,x

(p̃)
〉∣∣∣

≤ α
∣∣∣〈w(t)

1 −w
(t)
−1,vs,1

〉∣∣∣+ ∣∣∣〈w(t)
1 −w

(t)
−1,x

(p) − αvs,1

〉∣∣∣
≤ α

(
γ
(t)
1 (s, 1) + γ

(t)
−1(s, 1)

)
+ α

∣∣∣〈w(0)
1 ,vs,1

〉∣∣∣+ α
∣∣∣〈w(0)

−1,vs,1

〉∣∣∣+ o

(
1

polylog(d)

)
≤ Õ

(
αβ−1

)
+ Õ (ασ0) + o

(
1

polylog(d)

)
= o

(
1

polylog(d)

)
, (30)

with probability at least 1− o
(

1
poly(d)

)
. Suppose (28) and (30) holds. By Lemma B.4, we have

yfW (t)(X)

=

(
ϕ
(〈

w(t)
y ,vy,k

〉)
− ϕ

(〈
w

(t)
−y,vy,k

〉))
+

∑
p∈[P]\{p∗}

(
ϕ
(〈

w(t)
y ,x(p)

〉)
− ϕ

(〈
w

(t)
−y,x

(p)
〉))

= γ(t)
y (y, k) + βγ

(t)
−y(y, k)− o

(
1

polylog(d)

)
= Ω(1)− o

(
1

polylog(d)

)

59

> 0.

Therefore, we have

P(X,y)∼D

[
yfW (t)(X) > 0 | x(p∗) = vy,k, k ∈ KC ∪ KR

]
≥ 1− o

(
1

poly(d)

)
. (31)

Case 2: k ∈ KE

By triangular inequality and ϕ′ ≤ 1, we have

ϕ
(〈

w(t)
s ,x(p̃)

〉)
− ϕ

(〈
w

(t)
−s,x

(p̃)
〉)

= ϕ
(〈

w(t)
s , αvs,1

〉)
− ϕ

(〈
w

(t)
−s, αvs,1

〉)
+

(
ϕ
(〈

w(t)
s ,x(p̃)

〉)
− ϕ

(〈
w(t)

s , αvs,1

〉))
−
(
ϕ
(〈

w
(t)
−s,x

(p̃)
〉)

− ϕ
(〈

w
(t)
−s, αvs,1

〉))
≥ ϕ

(〈
w(t)

s , αvs,1

〉)
− ϕ

(〈
w

(t)
−s, αvs,1

〉)
−
∣∣∣〈w(t)

s ,x(p̃) − αvs,1

〉∣∣∣− ∣∣∣〈w(t)
−s,x

(p̃) − αvs,1

〉∣∣∣ .
In addition,

ϕ
(〈

w(t)
s , αvs,1

〉)
− ϕ

(〈
w

(t)
−s, αvs,1

〉)
=
(
ϕ
(
αγ(t)

s (s, 1)
)
− ϕ

(
−αγ

(t)
−s(s, 1)

))
+
(
ϕ
(〈

w(t)
s , αvs,1

〉)
− ϕ

(
αγ(t)

s (s, 1)
))

−
(
ϕ
(〈

w
(t)
−s, αvs,1

〉)
− ϕ

(
−αγ

(t)
−s(s, 1)

))
≥
(
ϕ
(
αγ(t)

s (s, 1)
)
− ϕ

(
−αγ

(t)
−s(s, 1)

))
− α

∣∣∣〈w(t)
s ,vs,1

〉
− γ(t)

s (s, 1)
∣∣∣− α

∣∣∣〈w(t)
−s,vs,1

〉
+ γ

(t)
−s(s, 1)

∣∣∣
= α

(
γ(t)
s (s, 1) + βγ

(t)
−s(s, 1)

)
− α · o

(
1

polylog(d)

)
= Ω(α),

where the second equality is due to Lemma B.4 and (A8). If (29) holds, we have

ϕ
(〈

w(t)
s ,x(p̃)

〉)
− ϕ

(〈
w

(t)
−s,x

(p̃)
〉)

= Ω(α)− o

(
α

polylog(d)

)
= Ω(α). (32)

Note that

yfW (t)(X)

= ϕ
(〈

w(t)
y ,vy,k

〉)
− ϕ

(〈
w

(t)
−y,vy,k

〉)
+ ϕ

(〈
w(t)

y ,x(p̃)
〉)

− ϕ
(〈

w
(t)
−y,x

(p̃)
〉)

+
∑

p∈[P]\{p∗,p̃}

(
ϕ
(〈

w(t)
y ,x(p)

〉)
− ϕ

(〈
w

(t)
−y,x

(p)
〉))

,

and ∣∣∣ϕ(〈w(t)
y ,vy,k

〉)
− ϕ

(〈
w

(t)
−y,vy,k

〉)∣∣∣
+

∣∣∣∣∣∣
∑

p∈[P]\{p∗,p̃}

(
ϕ
(〈

w(t)
y ,x(p)

〉)
− ϕ

(〈
w

(t)
−y,x

(p)
〉))∣∣∣∣∣∣

≤
∣∣∣〈w(t)

y −w
(t)
−y,vy,k

〉∣∣∣+ o

(
α

polylog(d)

)

60

≤ γ
(t)
1 (y, k) + γ

(t)
−1(y, k) +

∣∣∣〈w(0)
y −w

(0)
−y,vy,k

〉∣∣∣+ o

(
α

polylog(d)

)
≤ O(α2β−2) + Õ(σ0) + o

(
α

polylog(d)

)
= o

(
α

polylog(d)

)
< ϕ

(〈
w(t)

s ,x(p̃)
〉)

− ϕ
(〈

w
(t)
−s,x

(p̃)
〉)

,

where the first inequality is due to (28), the second-to-last line is due to (A8), (8), and (10) , and the last
inequality is due to (32). Therefore, we have yfW (t)(X) > 0 if y = s. Otherwise, yfW (t)(X) < 0.

P(X,y)∼D

[
yfW (t)(X) > 0 | x(p∗) = vy,k, k ∈ KE

]
=

1

2
± o

(
1

poly(d)

)
. (33)

Hence, combining (31) and (33) implies

P(X,y)∼D [yfW (t)(X) > 0] =
∑

k∈KC∪KR

ρk +
1

2

(
1−

∑
k∈KC∪KR

ρk

)
± o

(
1

poly(d)

)
= 1− 1

2

∑
k∈KE

ρk ± o

(
1

poly(d)

)
.

□

61

E Proof for CutMix

E.1 Proof of Lemma B.3 for CutMix

For each i, j ∈ [n] and S ⊂ [P], let

g
(t)
i,j,S := −|S|

P
yiℓ

′(yifW (t)(Xi,j,S)
)
−
(
1− |S|

P

)
yjℓ

′(yjfW (t)(Xi,j,S)
)
.

For s ∈ {±1} and iterate t,

w(t+1)
s −w(t)

s

= −η∇ws
LCutMix

(
W (t)

)
=

η

n2

∑
i,j∈[n]

ES∼DS

sg(t)i,j,S

∑
p∈S

ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
i +

∑
p/∈S

ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
j


=

sη

n2

∑
s′∈{±1},k∈[K]

∑
i∈Vs′,k,j∈[n]

ES∼DS

[
g
(t)
i,j,S1p∗

i ∈S + g
(t)
j,i,S1p∗

i /∈S

]
ϕ′
(〈

w(t)
s ,vs′,k

〉)
vs′,k

+
sη

n2

∑
i,j∈[n],p∈[P]\{p∗

i }

ES∼DS

[
g
(t)
i,j,S1p∈S + g

(t)
j,i,S1p/∈S

]
ϕ′
(〈

w(t)
s ,x

(p)
i

〉)
x
(p)
i .

Hence, if we define γ
(t)
s (s′, k)’s and ρ

(t)
s (i, p)’s recursively by using the rule

γ(t+1)
s (s′, k) = γ(t)

s (s′, k) +
ss′η

n2

∑
i∈Vs′,k,j∈[n]

ES∼DS

[
g
(t)
i,j,S1p∗i ∈S + g

(t)
j,i,S1p∗i /∈S

]
ϕ′
(〈

w(t)
s ,vs′,k

〉)
,

ρ(t+1)
s (i, p) = ρ(t)s (i, p) +

syiη

n2

∑
j∈[n]

ES∼DS

[
g
(t)
i,j,S1p∈S + g

(t)
j,i,S1p/∈S

]
ϕ′
(〈

w(t)
s ,x

(p)
i

〉)∥∥∥ξ(p)i

∥∥∥2 ,
starting from γ

(0)
s (s′k) = ρ

(0)
s (i, p) = 0 for each s, s′ ∈ {±1}, k ∈ [K], i ∈ [n] and p ∈ [P] \ {p∗i },

then we have
w(t)

s = w(0)
s +

∑
k∈[K]

γ(t)
s (s, k)vs,k −

∑
k∈[K]

γ(t)
s (−s, k)v−s,k

+
∑
i∈Vs

p∈[P]\{p̃i}

ρ(t)s (i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2 −
∑

i∈V−s

p∈[P]\{p̃i}

ρ(t)s (i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2

+ α

∑
i∈Fs

syiρ
(t)
s (i, p̃i)

vs,1∥∥∥ξ(p̃i)
i

∥∥∥2 +
∑

i∈F−s

syiρ
(t)
s (i, p̃i)

v−s,1∥∥∥ξ(p̃i)
i

∥∥∥2
 ,

for each s ∈ {±1}. □

E.2 Proof of Theorem 3.3

We will prove that the conclusion of Theorem 3.3 holds when the event Einit occurs. The proof of
Theorem 3.3 is structured into the following six steps:

1. Introduce a reparametrization of the CutMix loss LCutMix(W) to a convex function h(Z) for
ease of analysis (Section E.2.1).

2. Characterize a global minimum of h(Z) (Section E.2.2).
3. Evaluate strong convexity constant in the region near the global minimum of h(Z) (Section E.2.3).
4. Show that near stationary point of h(Z) is close to a global minimum (Section E.2.4).
5. Prove that gradient descent on the CutMix loss LCutMix(W) achieves a near-stationary point of

the reparametrized function h(Z) and perfect accuracy on original training data (Section E.2.5).
6. Evaluate the test accuracy of a model in near-stationary point (Section E.2.6).

62

E.2.1 Reparametrization of CutMix Loss

It is complicated to characterize the stationary points of CutMix loss LCutMix(W) due to its non-
convexity. We will overcome this problem by introducing reparameterization of the objective function.
Let us define

z
(p)
i := ϕ

(〈
w1,x

(p)
i

〉)
− ϕ

(〈
w−1,x

(p)
i

〉)
,

for i ∈ [n], p ∈ [P] and
zs,k := ϕ(⟨w1,vs,k⟩)− ϕ(⟨w−1,vs,k⟩),

for each s ∈ {±1}, k ∈ [K]. We can rewrite CutMix loss LCutMix(W) as a function h(Z) of the
defined variables Z := {zs,k}s∈{±1},k∈[K] ∪ {z(p)i }i∈[n],p∈[P]\{p∗

i } as follows.

h(Z) :=
1

n2

∑
i,j∈[n]

ES∼DS

 |S|
P

ℓ

yi

∑
p∈S

z
(p)
i +

∑
p/∈S

z
(p)
j



+

(
1− |S|

P

)
ℓ

yj

∑
p∈S

z
(p)
i +

∑
p/∈S

z
(p)
j


 ,

where we write z
(p∗

i)
i = zs,k if i ∈ Vs,k. For notational simplicity, let us consider Z as vectors

in R2K+n(P−1) with the standard orthonormal basis {es,k}s∈{±1},k∈[K] ∪
{
e
(p)
i

}
i∈[n],p∈[P]\{p∗

i }
which means

Z = {zs,k}s∈{±1},k∈[K] ∪
{
z
(p)
i

}
i∈[n],p∈[P]\{p∗

i }

=
∑

s∈{±1},k∈[K]

zs,kes,k +
∑

i∈[n],p∈[P]\{p∗
i }

z
(p)
i e

(p)
i .

If there is no confusion, we will use e
(p∗

i)
i to represent es,k, for i ∈ Vs,k.

By the chain rule,
∇WLCutMix(W) = J(W)∇Zh(Z),

where each column of Jacobian matrix J(W) ∈ R2d×(n(P−1)+2K) is

∇W zs,k =

(
ϕ′(⟨w1,vs,k⟩)vs,k

−ϕ′(⟨w−1,vs,k⟩)vs,k

)
∈ R2d,∇W z

(p)
i =

 ϕ′
(〈

w1,x
(p)
i

〉)
x
(p)
i

−ϕ′
(〈

w−1,x
(p)
i

〉)
x
(p)
i

 ∈ R2d.

Let us characterize the smallest singular value σmin(J(W)) of the Jacobian matrix J(W). For any
unit vector c = {cs,k}s∈{±1},k∈[K] ∪

{
c
(p)
i

}
i∈[n],p∈[P]\{p∗

i }
∈ R2K+n(P−1), we have

∥J(W)c∥2 =
∑

s∈{±1},k∈[K]

c2s,k ∥∇W zs,k∥2 +
∑

i∈[n],p∈[P]\{p∗
i }

(
c
(p)
i

)2 ∥∥∥∇W z
(p)
i

∥∥∥2
+

∑
s1,s2∈{±1},k1,k2∈[K]

(s1,k1) ̸=(s2,k2)

cs1,k1
cs2,k2

⟨∇W zs1,k1
,∇W zs2,k2

⟩

+ 2
∑

s∈{±1},k∈[K]
i∈[n],p∈[P]\{p∗

i }

cs,kc
(p)
i

〈
∇W zs,k,∇W z

(p)
i

〉

+
∑

i∈[n],p∈[P]\{p∗
i }

j∈[n],q∈[P]\{p∗
j }

(i,p)̸=(j,q)

c
(p)
i c

(q)
j

〈
∇W z

(p)
i ,∇W z

(q)
j

〉
.

63

For each s1, s2 ∈ {±1}, k1, k2 ∈ [K] such that (s1, k1) ̸= (s2, k2), and i ∈ [n], p ∈ [P] \ {p∗i , p̃i},

⟨∇W zs1,k1
,∇W zs2,k2

⟩ =
〈
∇W zs1,k1

,∇W z
(p)
i

〉
= 0,

and if k1 > 1 〈
∇W zs1,k1

,∇W z
(p)
i

〉
=
〈
∇W zs1,k1

,∇W z
(p̃i)
i

〉
= 0,

since ⟨vs1,k1
,vs2,k2

⟩ =
〈
vs1,k1

, ξ
(p)
i

〉
=
〈
vs1,k1

, ξ
(p̃i)
i

〉
= 0. Also, for each s ∈ {±1} and i ∈ Fs,

then

2
∣∣∣cs,1c(p̃i)

i

〈
∇W zs,1,∇W z

(p̃i)
i

〉∣∣∣
= 2

∣∣∣cs,1c(p̃i)
i

∣∣∣ (ϕ′(⟨w1,vs,1⟩)ϕ′
(〈

w1,x
(p̃i)
i

〉)
+ ϕ′(⟨w−1,vs,1⟩)ϕ′

(〈
w−1,x

(p̃i)
i

〉))
α

≤ 4c2s,1
(
ϕ′(⟨w1,vs,1⟩)2 + ϕ′(⟨w−1,vs,1⟩)2

) α2∥∥∥x(p̃i)
i

∥∥∥2
+

1

4

(
c
(p̃i)
i

)2(
ϕ′
(〈

w1,x
(p̃i)
i

〉)2
+ ϕ′

(〈
w−1,x

(p̃i)
i

〉)2)∥∥∥x(p̃i)
i

∥∥∥2
<

1

2n
c2s,1

(
ϕ′(⟨w1,vs,1⟩)2 + ϕ′(⟨w−1,vs,1⟩)2

)
+

1

4

(
c
(p̃i)
i

)2(
ϕ′
(〈

w1,x
(p̃i)
i

〉)2
+ ϕ′

(〈
w−1,x

(p̃i)
i

〉)2)∥∥∥x(p̃i)
i

∥∥∥2 ,
where the last inequality holds since∥∥∥x(p̃i)

i

∥∥∥2 = α2 +
∥∥∥ξ(p̃i)

i

∥∥∥2 ≥ 1

2
σ2
dd = ω(nα2),

where we apply the fact from the event Einit defined in Lemma B.2 and (A7). Also,〈
∇W z−s,1,∇W z

(p̃i)
i

〉
= 0.

Furthermore, for each i, j ∈ [n], p ∈ [P] \ {p∗i }, q ∈ [P] \ {p∗j} with (i, p) ̸= (j, q) satisfies∣∣∣c(p)i c
(q)
j

〈
∇W z

(p)
i ,∇W z

(q)
j

〉∣∣∣
=

∣∣∣c(p)i c
(q)
j

∣∣∣ (ϕ
′
(〈

w1,x
(p)
i

〉)
ϕ
′
(〈

w1,x
(q)
j

〉)
+ ϕ

′
(〈

w−1,x
(p)
i

〉)
ϕ
′
(〈

w−1,x
(q)
j

〉)) ∣∣∣〈x(p)
i ,x

(q)
j

〉∣∣∣
≤

1

4Pn

(
c
(p)
i

)2
(
ϕ
′
(〈

w1,x
(p)
i

〉)2
+ ϕ

′
(〈

w−1,x
(p)
i

〉)2
)∥∥∥x(p)

i

∥∥∥2

+
1

4Pn

(
c
(q)
j

)2
(
ϕ
′
(〈

w1,x
(q)
j

〉)2
+ ϕ

′
(〈

w−1,x
(q)
j

〉)2
)∥∥∥x(q)

j

∥∥∥2

=
1

4Pn

((
c
(p)
i

)2 ∥∥∥∇W z
(p)
i

∥∥∥2
+

(
c
(q)
j

)2 ∥∥∥∇W z
(q)
j

∥∥∥2
)

where the last inequality is due to AM-GM inequality and∥∥∥x(p)
i

∥∥∥ · ∥∥∥x(q)
j

∥∥∥ ≥ 2nP
∣∣∣〈x(p)

i ,x
(q)
j

〉∣∣∣ ,
which we show through a case analysis. For the case p = p̃i and q = p̃j , this inequality holds since∥∥∥x(p)

i

∥∥∥ · ∥∥∥x(q)
j

∥∥∥ ≥
∥∥∥ξ(p)i

∥∥∥ · ∥∥∥ξ(q)j

∥∥∥ ≥ 2nP
(∣∣∣〈ξ(p)i , ξ

(q)
j

〉∣∣∣+ α2
)
≥ 2nP

∣∣∣〈x(p)
i ,x

(q)
j

〉∣∣∣ ,
where the second inequality is due to

1

2

∥∥∥ξ(p)i

∥∥∥ · ∥∥∥ξ(q)j

∥∥∥ ≥ 2nP
∣∣∣〈ξ(p)i , ξ

(q)
j

〉∣∣∣ , 1

2

∥∥∥ξ(p)i

∥∥∥ · ∥∥∥ξ(q)j

∥∥∥ ≥ 2nPα2.

which is implied by the fact from the event Einit defined in Lemma B.2, (A1), (A2), and (A7). In the
remaining case,∥∥∥x(p)

i

∥∥∥ · ∥∥∥x(q)
j

∥∥∥ ≥
∥∥∥ξ(p)i

∥∥∥ · ∥∥∥ξ(q)j

∥∥∥ ≥ 2nP
∣∣∣〈ξ(p)i , ξ

(q)
j

〉∣∣∣ = 2nP
∣∣∣〈x(p)

i ,x
(q)
j

〉∣∣∣ ,
64

where the second inequality is due to the fact from event Einit defined in Lemma B.2, (A1), and (A2).
For s ∈ {±1}, k ∈ [K] and i ∈ [n], p ∈ [P] \ {p∗i },

∥∇W zs,k∥2 = ϕ′(⟨w1,vs,k⟩)2 + ϕ′(⟨w−1,vs,k⟩)2 ≥ 2β2,

and ∥∥∥∇W z
(p)
i

∥∥∥2 =

(
ϕ′
(〈

w1,x
(p)
i

〉)2
+ ϕ′

(〈
w−1,x

(p)
i

〉)2)∥∥∥x(p)
i

∥∥∥2
≥ β2σ2

i,pd

≥ β2,

where the last inequality is due to (8). By merging all inequalities together, we have

∥J(W)c∥2

=
∑

s∈{±1},k∈[K]

c2s,k∥∇W zs,k∥2 +
∑

i∈[n],p∈[P]\{p∗
i }

(
c
(p)
i

)2 ∥∥∥∇W z
(p)
i

∥∥∥2
+

∑
s∈{±1},i∈Fs

cs,1c
(p̃i)
i

〈
∇W zs,1,∇W z

(p̃i)
i

〉
+

∑
i∈[n],p∈[P]\{p∗

i }
j∈[n],q∈[P]\{p∗

j }
(i,p)̸=(j,q)

c
(p)
i c

(q)
j

〈
∇W z

(p)
i ,∇W z

(q)
j

〉

≥
∑

s∈{±1},k∈[K]

c2s,k∥∇W zs,k∥2 +
∑

i∈[n],p∈[P]\{p∗
i }

(
c
(p)
i

)2 ∥∥∥∇W z
(p)
i

∥∥∥2
−

∑
s∈{±1},i∈Fs

(
1

2n
c2s,1∥∇W zs,1∥2 +

1

4

(
c
(p̃i)
i

)2 ∥∥∥∇W z
(p̃i)
i

∥∥∥2)

− 1

4Pn

∑
i∈[n],p∈[P]\{p∗

i }
j∈[n],q∈[P]\{p∗

j }
(i,p)̸=(j,q)

((
c
(p)
i

)2 ∥∥∥∇W z
(p)
i

∥∥∥2 + (c(q)j

)2 ∥∥∥∇W z
(q)
j

∥∥∥2)

>
1

4

∑
s∈{±1},k∈[K]

c2s,k∥∇W zs,k∥2 +
1

4

∑
i∈[n],p∈[P]\{p∗

i }

(
c
(p)
i

)2 ∥∥∥∇W z
(p)
i

∥∥∥2 ≥ β2

4
,

and we conclude σmin(J(W)) ≥ β
2 for any W .

E.2.2 Characterization of a Global Minimum of CutMix Loss

In this section, we will check that h(Z) is strictly convex and it has a global minimum.

For each i, j ∈ [n] and S ⊂ [P] let us define ai,j,S ∈ R2K+n(P−1) as

ai,j,S =
∑
p∈S

e
(p)
i +

∑
p/∈S

e
(p)
j ,

and then

h(Z) =
1

n2

∑
i,j∈[n]

ES∼DS

[
|S|
P

ℓ (yi⟨ai,j,S ,Z⟩) +
(
1− |S|

P

)
ℓ (yj⟨ai,j,S ,Z⟩)

]
.

Since ℓ(·) is convex, h(Z) is also convex. Note that

∇h(Z) =
1

n2

∑
i,j∈[n]

ES∼DS

[(
|S|
P

yiℓ
′(yi⟨ai,j,S ,Z⟩) +

(
1− |S|

P

)
yjℓ

′(yj⟨ai,j,S ,Z⟩)
)
ai,j,S

]
,

and

∇2h(Z)

65

=
1

n2

∑
i,j∈[n]

ES∼DS

[(
|S|
P

ℓ′′(yi⟨ai,j,S ,Z⟩) +
(
1− |S|

P

)
ℓ′′(yj⟨ai,j,S ,Z⟩)

)
ai,j,Sa

⊤
i,j,S

]
=

1

n2

∑
i,j∈[n]

ES∼DS

[
ℓ′′(⟨ai,j,S ,Z⟩)ai,j,Sa

⊤
i,j,S

]
,

where the last equality holds since ℓ′′(z) = ℓ′′(−z) for any z ∈ R. From the equation above, it
suffices to show that {ai,j,S}i,j∈[n],S⊂[P] spans R2K+n(P−1) to show strict convexity of h(Z).

We define a function I : [P] → [n] such that for each p ∈ [P], p∗I(p) = p with x
(p)
I(p) = v1,1, where

the existence is guaranteed by Lemma B.2 (but not necessarily unique). Then for any i ∈ [n] and
p ∈ [p], we have

ai,i,∅ +
∑

q∈[P]\{p}

aI(q),i,{q} − (P − 1)aI(p),i,{p}

=
∑

p′∈[P]

e
(p′)
i +

∑
q∈[P]\{p}

e1,1 +
∑

p′∈[P]\{q}

e
(p′)
i

− (P − 1)

e1,1 +
∑

p′∈[P]\{p}

e
(p′)
i


=
∑

p′∈[P]

e
(p′)
i +

(P − 1)e
(p)
i + (P − 2)

∑
p′∈[P]\{p}

e
(p′)
i

− (P − 1)
∑

p′∈[P]\{p}

e
(p′)
i

= Pe
(p)
i . (34)

Hence, {ai,j,S}i,j∈[n],S⊂[P] spans R2K+n(P−1) and h(Z) is strictly convex. Thus, it can have at
most one global minimum. We want to show the existence of the global minimum and characterize it.

n2∇h(Z)

=
∑

i,j∈[n]

ES∼DS

[(
|S|
P

yiℓ
′(yi⟨ai,j,S ,Z⟩) +

(
1− |S|

P

)
yjℓ

′(yj⟨ai,j,S ,Z⟩)
)
ai,j,S

]

= 2
∑

i,j∈[n]
p∈[P]

ES∼DS

[(
|S|
P

yiℓ
′(yi⟨ai,j,S ,Z⟩) +

(
1− |S|

P

)
yjℓ

′(yj⟨ai,j,S ,Z⟩)
)
1p∈S

]
e
(p)
i .

We can simplify terms as∑
j∈[n]

ES∼DS

[(
|S|
P

yiℓ
′(yi⟨ai,j,S ,Z⟩) +

(
1− |S|

P

)
yjℓ

′(yj⟨ai,j,S ,Z⟩)
)
1p∈S

]

=
∑

j∈Vyi

ES∼DS

[(
|S|
P

yiℓ
′(yi⟨ai,j,S ,Z⟩) +

(
1− |S|

P

)
yjℓ

′(yj⟨ai,j,S ,Z⟩)
)
1p∈S

]

+
∑

j∈V−yi

ES∼DS

[(
|S|
P

yiℓ
′(yi⟨ai,j,S ,Z⟩) +

(
1− |S|

P

)
yjℓ

′(yj⟨ai,j,S ,Z⟩)
)
1p∈S

]
= yi

∑
j∈Vyi

ES∼DS [ℓ
′(yi⟨ai,j,S ,Z⟩)1p∈S]

+ yi
∑

j∈V−yi

ES∼DS

[(
ℓ′(yi⟨ai,j,S ,Z⟩) +

(
1− |S|

P

))
1p∈S

]

= yi|V−yi
|ES∼DS

[(
1− |S|

P

)
1p∈S

]
+ yi

∑
j∈[n]

ES∼DS [ℓ
′(yi⟨ai,j,S ,Z⟩)1p∈S],

where the second equality holds since ℓ′(z) + ℓ′(−z) = −1. Also, for any p ∈ [P],

ES∼DS

[(
1− |S|

P

)
1p∈S

]
=

1

P

∑
q∈[P]

ES∼DS

[(
1− |S|

P

)
1q∈S

]

66

=
1

P
ES∼DS

(1− |S|
P

)∑
q∈S

1q∈S


=

1

P
ES∼DS

[(
1− |S|

P

)
|S|
]
=

P − 1

6P
.

Hence, if ∑
j∈[n]

ES∼DS [ℓ
′(yi⟨ai,j,S ,Z⟩)1p∈S] +

P − 1

6P
|V−yi

| = 0,

for all i ∈ [n] and p ∈ [P], then we have ∇h(Z) = 0. Let us consider a specific Z parameterized by
z1, z−1, of the form z

(p)
i = yizyi for all i ∈ [n] and p ∈ [P]. We will find a stationary point with this

specific form and then it should be the unique global minimum in the entire domain. Then for each
i ∈ [n] and p ∈ [P], we have∑

j∈[n]

ES∼DS [ℓ
′(yi⟨ai,j,S ,Z⟩)1p∈S]

=
∑

j∈Vyi

ES∼DS [ℓ
′(yi ⟨ai,j,S ,Z⟩)1p∈S] +

∑
j∈V−yi

ES∼DS [ℓ
′(yi⟨ai,j,S ,Z⟩)1p∈S]

= |Vyi | · ES∼DS [ℓ
′(Pzyi)1p∈S] + |V−yi | · ES∼DS [ℓ

′(|S|zyi − (P − |S|)z−yi)1p∈S]

=
1

P

∑
q∈[P]

(
|Vyi | · ES∼DS [ℓ

′(Pzyi)1q∈S] + |V−yi | · ES∼DS [ℓ
′(|S|zyi − (P − |S|)z−yi)1q∈S]

)

=
1

P

|Vyi
| · ES∼DS

ℓ′(Pzyi
)
∑
q∈S

1q∈S


+|V−yi

| · ES∼DS

ℓ′(|S|zyi
− (P − |S|)z−yi

)
∑
q∈S

1q∈S


=

1

P

(
|Vyi | · ES∼DS [|S|ℓ′(Pzyi)] + |V−yi | · ES∼DS [|S|ℓ′(|S|zyi − (P − |S|)z−yi)]

)
=

|Vyi |
2

ℓ′(Pzyi
) +

|V−yi |
P

ES∼DS [|S|ℓ′(|S|zyi
− (P − |S|)z−yi

)].

From Lemma F.4, there exists a unique minimizer Ẑ = {ẑs,k}s∈{±1},k∈[K] ∪
{
ẑ
(p)
i

}
i∈[n],p∈[P]\{p∗

i }

of h(Z) and it satisfies sẑs,k = z∗s = Θ(1) for all k ∈ [K] and yiẑ
(p)
i = z∗yi

= Θ(1) for all i ∈ [n]
and p ∈ [P] \ {p∗i } due to (A1).

E.2.3 Strong Convexity Near Global Minimum

We will show that h(Z) is strongly convex in a set G containing a global minimum Ẑ where G is
defined as follows.

G :=
{
Z ∈ R2K+n(P−1) : ∥Z − Ẑ∥∞ < ∥Ẑ∥∞

}
,

here ∥·∥∞ is ℓ∞ norm. For any Z ∈ G and a unit vector c ∈ R2K+n(P−1) with c =∑
s∈{±1},k∈[K] cs,kes,k +

∑
i∈[n],p∈[P]\{p∗

i }
c
(p)
i e

(p)
i , we have

c⊤∇2h(Z)c =
1

n2

∑
i,j∈[n]

ES∼DS

[
ℓ′′(⟨ai,j,S ,Z⟩)⟨ai,j,S , c⟩2

]
≥ ℓ′′(2P∥Ẑ∥∞)

n2

∑
i,j∈[n]

ES∼DS [⟨ai,j,S , c⟩2].

67

Note that for each i ∈ [n], p ∈ [P], from (34), we have

c
(p)
i =

〈
c, e

(p)
i

〉
=

1

P
⟨c,ai,i,∅⟩+

1

P

∑
q∈[P]\{p}

⟨c,aI(q),i,{q}⟩ −
P − 1

P

〈
c,aI(p),i,{p}

〉
,

where we use the notational convention c
(p∗

i)
i = cs,k for s ∈ {±1}, k ∈ [K] and i ∈ Vs,k. By

Cauchy-Schwartz inequality and the fact that PS∼DS [S = ∅],PS∼DS [S = {q}] ≥ 1
P (P+1) for all

q ∈ [P],(
c
(p)
i

)2
=

 1

P
⟨c,ai,i,∅⟩+

1

P

∑
q∈[P]\{p}

〈
c,aI(q),i,{q}

〉
− P − 1

P

〈
c,aI(p),i,{p}

〉2

≤

(
1

P 2
+

P − 1

P 2
+

(
−P − 1

P

)2
)⟨c,ai,i,∅⟩2 +

∑
q∈[P]\{p}

〈
c,aI(q),i,{q}

〉2
+
〈
c,aI(p),i,{p}

〉2
≤

(
1

P 2
+

P − 1

P 2
+

(
−P − 1

P

)2
)
P (P + 1)

∑
i,j∈[n]

ES∼DS [⟨c,ai,j,S⟩2]

≤ 2P 2
∑

i,j,∈[n]

ES∼DS

[
⟨c,ai,j,S⟩2

]
.

Hence, we have

c⊤∇2h(Z)c ≥ ℓ′′(2P∥Ẑ∥∞)

(4K + 2n(P − 1))P 2n2
(4K + 2n(P − 1))P 2

∑
i,j∈[n]

ES∼DS

[
⟨c,ai,j,S⟩2

]

≥ ℓ′′(2P∥Ẑ∥∞)

(4K + 2n(P − 1))P 2n2

 ∑
s∈{±1},k∈[K]

c2s,k +
∑

i∈[n],q∈[P]\{p∗
i }

(
c
(q)
i

)2
=

ℓ′′(2P∥Ẑ∥∞)

(4K + 2n(P − 1))P 2n2
,

and we conclude h(Z) is µ-strongly convex in G where µ := ℓ′′(2P∥Ẑ∥∞)
(4K+2n(P−1))P 2n2 . Due to (A1), (A2),

and the fact that ∥Ẑ∥∞ = Θ(1), we have µ ≥ 1
poly(d) .

E.2.4 Near Stationary Points are Close to Global Minimum

In this step, we want to show that near stationary points of h(Z) are close to a global minimum Ẑ.

Lemma E.1. Suppose Z ∈ R2K+n(P−1) satisfies ∥∇h(Z)∥ < µϵ with some 0 < ϵ <
∥Ẑ∥∞

2 . Then,

we have
∥∥∥Z − Ẑ

∥∥∥ < ϵ.

Proof of Lemma E.1. If Z = Ẑ, we immediately have our conclusion. We may assume Z ̸= Ẑ.

Let us define a function g : R → R as g(t) = h
(
Ẑ + t(Z − Ẑ)

)
. Then g is convex and

g′(t) =
〈
∇h
(
Ẑ + t(Z − Ẑ)

)
,Z − Ẑ

〉
,

g′′(t) =
(
Z − Ẑ

)⊤
∇2h

(
Ẑ + t(Z − Ẑ)

)(
Z − Ẑ

)
.

Furthermore, for 0 ≤ t ≤ t0 where t0 :=
∥Ẑ∥∞

2∥Z−Ẑ∥∞

,

Ẑ + t(Z − Ẑ) ∈ G, ∴ g′′(t) ≥ µ
∥∥∥Z − Ẑ

∥∥∥2 .
68

We can conclude g is µ
∥∥∥Z − Ẑ

∥∥∥2-strongly convex in [0, t0]. From strong convexity in [0, t0] and
convexity in R, we have

(g′(t0)− g′(0))t0 = g′(t0)t0 ≥ µ
∥∥∥Z − Ẑ

∥∥∥2 t20, (g′(1)− g′(t0))(1− t0) ≥ 0.

If t0 < 1, we have

∥∇h(Z)∥
∥∥∥Z − Ẑ

∥∥∥ ≥
〈
∇h(Z),Z − Ẑ

〉
= g′(1) ≥ g′(t0) ≥ µ

∥∥∥Z − Ẑ
∥∥∥2 t0,

and

∥∇h(Z)∥ ≥ µ
∥∥∥Z − Ẑ

∥∥∥ t0 =
µ
∥∥∥Z − Ẑ

∥∥∥∥∥∥Ẑ∥∥∥
∞

2
∥∥∥Z − Ẑ

∥∥∥
∞

≥
µ
∥∥∥Ẑ∥∥∥

∞
2

,

this is contradictory. Thus, we have t0 ≥ 1 and Z ∈ G. From the strong convexity of h(Z) in G, we
have

µ
∥∥∥Z − Ẑ

∥∥∥ ≤
∥∥∥∇h(Z)−∇h(Ẑ)

∥∥∥ = ∥∇h(Z)∥ < µϵ,

and we have our conclusion
∥∥∥Z − Ẑ

∥∥∥ < ϵ.

E.2.5 Gradient Descent Achieves a Near Stationary Point

We will show that LCutMix(W) is a smooth function.

Lemma E.2. Suppose the event Einit occurs. CutMix Loss LCutMix(W) is L-smooth with L =
9r−1Pσ2

dd.

Proof of Lemma E.2. Note that

∇w1
LCutMix(W)

=
1

n2

∑
i,j∈[n]

ES∼DS

[(
|S|
P

yiℓ
′(yifW (Xi,j,S)) +

(
1− |S|

P

)
yjℓ

′(yjfW (Xi,j,S))

)

×

∑
p∈S

ϕ′
(〈

w1,x
(p)
i

〉)
x
(p)
i +

∑
p/∈S

ϕ′
(〈

w1,x
(p)
j

〉)
x
(p)
j

 .

Let W̃ = {w̃1, w̃−1} and W = {w1,w−1} be any parameters of the neural network fW . For any
i, j ∈ [n] and S ⊂ [P],(|S|

P
yiℓ

′
(yifW̃ (Xi,j,S)) +

(
1 −

|S|
P

)
yjℓ

′
(yjfW̃ (Xi,j,S))

)

×

∑
p∈S

ϕ
′
(〈

w̃1,x
(p)
i

〉)
x

(p)
i +

∑
p/∈S

ϕ
′
(〈

w̃1,x
(p)
j

〉)
x

(p)
j


−

(|S|
P

yiℓ
′
(yifW (Xi,j,S)) +

(
1 −

|S|
P

)
yjℓ

′
(yjfW (Xi,j,S))

)

×

∑
p∈S

ϕ
′
(〈

w1,x
(p)
i

〉)
x

(p)
i +

∑
p/∈S

ϕ
′
(〈

w1,x
(p)
j

〉)
x

(p)
j


=

(|S|
P

yiℓ
′
(yifW̃ (Xi,j,S)) +

(
1 −

|S|
P

)
yjℓ

′
(yjfW̃ (Xi,j,S))

)

×

∑
p∈S

ϕ
′
(〈

w̃1,x
(p)
i

〉)
x

(p)
i +

∑
p/∈S

ϕ
′
(〈

w̃1,x
(p)
j

〉)
x

(p)
j


−

(|S|
P

yiℓ
′
(yifW̃ (Xi,j,S)) +

(
1 −

|S|
P

)
yjℓ

′
(yjfW̃ (Xi,j,S))

)

×

∑
p∈S

ϕ
′
(〈

w1,x
(p)
i

〉)
x

(p)
i +

∑
p/∈S

ϕ
′
(〈

w1,x
(p)
j

〉)
x

(p)
j



69

+

(|S|
P

yiℓ
′
(yifW̃ (Xi,j,S)) +

(
1 −

|S|
P

)
yjℓ

′
(yjfW̃ (Xi,j,S))

)

×

∑
p∈S

ϕ
′
(〈

w1,x
(p)
i

〉)
x

(p)
i +

∑
p/∈S

ϕ
′
(〈

w1,x
(p)
j

〉)
x

(p)
j


−

(|S|
P

yiℓ
′
(yifW (Xi,j,S)) +

(
1 −

|S|
P

)
yjℓ

′
(yjfW (Xi,j,S))

)

×

∑
p∈S

ϕ
′
(〈

w1,x
(p)
i

〉)
x

(p)
i +

∑
p/∈S

ϕ
′
(〈

w1,x
(p)
j

〉)
x

(p)
j

 .

Since |ℓ′| ≤ 1, ∣∣∣∣ |S|P yiℓ
′ (yifW̃ (Xi,j,S)

)
+

(
1− |S|

P

)
yjℓ

′ (yjfW̃ (Xi,j,S)
)∣∣∣∣ ≤ 1,

and since |ϕ′| ≤ 1,∥∥∥∥∥∥
∑
p∈S

ϕ′
(〈

w1,x
(p)
i

〉)
x
(p)
i +

∑
p/∈S

ϕ′
(〈

w1,x
(p)
j

〉)
x
(p)
j

∥∥∥∥∥∥ ≤ P max
i∈[n],p∈[P]

∥∥∥x(p)
i

∥∥∥ .
In addition, since ϕ is r−1-smooth,∥∥∥∥∥∥

∑
p∈S

ϕ′
(〈

w̃1,x
(p)
i

〉)
x
(p)
i +

∑
p/∈S

ϕ′
(〈

w̃1,x
(p)
j

〉)
x
(p)
j


−

∑
p∈S

ϕ′
(〈

w1,x
(p)
i

〉)
x
(p)
i +

∑
p/∈S

ϕ′
(〈

w1,x
(p)
j

〉)
x
(p)
j

∥∥∥∥∥∥
≤
∑
p∈S

∣∣∣ϕ′
(〈

w̃1,x
(p)
i

〉)
− ϕ′

(〈
w1,x

(p)
i

〉)∣∣∣ ∥∥∥x(p)
i

∥∥∥
+
∑
p/∈S

∣∣∣ϕ′
(〈

w̃1,x
(p)
j

〉)
− ϕ′

(〈
w1,x

(p)
j

〉)∣∣∣ ∥∥∥x(p)
j

∥∥∥
≤ r−1

∑
p∈S

∣∣∣〈w̃1 −w1,x
(p)
i

〉∣∣∣ ∥∥∥x(p)
i

∥∥∥+ r−1
∑
p/∈S

∣∣∣〈w̃1 −w1,x
(p)
j

〉∣∣∣ ∥∥∥x(p)
j

∥∥∥
≤ r−1P

(
max

i∈[n],p∈[P]

∥∥∥x(p)
i

∥∥∥)2

∥w̃1 −w1∥ ,

and since ℓ′ and ϕ are 1-Lipschitz, we have∣∣∣∣∣
(
|S|
P

yiℓ
′(yifW̃ (Xi,j,S)) +

(
1− |S|

P

)
yjℓ

′(yjfW̃ (Xi,j,S))

)

−
(
|S|
P

yiℓ
′(yifW (Xi,j,S)) +

(
1− |S|

P

)
yjℓ

′(yjfW (Xi,j,S))

) ∣∣∣∣∣
≤
∣∣f

W̃
(Xi,j,S)− fW (Xi,j,S)

∣∣
≤
∑
p∈S

(∣∣∣〈w̃1 −w1,x
(p)
i

〉∣∣∣+ ∣∣∣〈w̃−1 −w−1,x
(p)
i

〉∣∣∣)
+
∑
p/∈S

(∣∣∣〈w̃1 −w1,x
(p)
j

〉∣∣∣+ ∣∣∣〈w̃−1 −w−1,x
(p)
j

〉∣∣∣)
≤ P max

i∈[n],j∈[P]

∥∥∥x(p)
i

∥∥∥ (∥w̃1 −w1∥+ ∥w̃−1 −w−1∥)

≤
√
2P max

i∈[n],j∈[P]

∥∥∥x(p)
i

∥∥∥∥∥∥W̃ −W
∥∥∥ .

70

Therefore,∥∥∥∇w1
LCutMix(W̃)−∇w1

LCutMix(W)
∥∥∥

≤ r−1P

(
max

i∈[n],p∈[P]

∥∥∥x(p)
i

∥∥∥)2

∥w̃1 −w1∥+
√
2P 2

(
max

i∈[n],p∈[P]

∥∥∥x(p)
i

∥∥∥)2 ∥∥∥W̃ −W
∥∥∥

≤ 2r−1P

(
max

i∈[n],p∈[P]

∥∥∥x(p)
i

∥∥∥)2 ∥∥∥W̃ −W
∥∥∥ ,

where the last equality is due to (A1) and (A8). In the same way, we can obtain∥∥∥∇w−1
LCutMix(W̃)−∇w−1

LCutMix(W)
∥∥∥ ≤ 2r−1P

(
max

i∈[n],p∈[P]

∥∥∥x(p)
i

∥∥∥)2 ∥∥∥W̃ −W
∥∥∥ ,

and ∥∥∥∇LCutMix(W̃)−∇LCutMix(W)
∥∥∥ ≤ 4r−1P

(
max

i∈[n],p∈[P]

∥∥∥x(p)
i

∥∥∥)2 ∥∥∥W̃ −W
∥∥∥

≤ 9r−1Pσ2
dd
∥∥∥W̃ −W

∥∥∥ ,
where the last inequality holds since

∥∥∥ξ(p)i

∥∥∥2 < 3
2σ

2
dd and α2 ≤ 3

4σ
2
dd due to (A7). Hence,

LCutMix(W) is L-smooth with L := 9r−1Pσ2
dd.

Since our objective function LCutMix(W) is L-smooth and η ≤ 1
L due to (A8), descent lemma (see

Lemma 3.4 in Bubeck et al. (2015)) implies

LCutMix

(
W (t+1)

)
− LCutMix

(
W (t)

)
≤ −η

2

∥∥∥∇LCutMix

(
W (t)

)∥∥∥2 ,
and by telescoping sum, we have

1

T

T−1∑
t=0

∥∥∥∇LCutMix

(
W (t)

)∥∥∥2 ≤
2LCutMix

(
W (0)

)
ηT

=
Θ(1)

ηT
, (35)

for any T > 0.

Choose ϵ = µβ∥Ẑ∥∞
polylog(d) . Then from (35), there exists TCutMix ≤ poly(d)

η such that∥∥∥∇LCutMix

(
W (TCutMix)

)∥∥∥ ≤ ϵ.

From characterization of σmin(J(W)) in Section E.2.1,

ϵ ≥
∥∥∥∇LCutMix

(
W (TCutMix)

)∥∥∥ ≥ σmin

(
J
(
W (TCutMix)

))∥∥∥∇h
(
Z(TCutMix)

)∥∥∥
≥ β

2

∥∥∥∇h
(
Z(TCutMix)

)∥∥∥ ,
and thus ∥∥∥∇h

(
Z(TCutMix)

)∥∥∥ ≤ 2β−1ϵ = µ · 2∥Ẑ∥∞
polylog(d)

.

For sufficiently large d, the RHS becomes smaller than µ · ∥Ẑ∥∞
4 . Then, by Lemma E.1 we have seen

in Section E.2.4, ∥∥∥Z(TCutMix) − Ẑ
∥∥∥ ≤ ∥Ẑ∥∞

4
,

and thus
ϕ
(〈

w(TCutMix)
yi

,x
(p)
i

〉)
− ϕ

(〈
w

(TCutMix)
−yi

,x
(p)
i

〉)
= Θ(1),

for all i ∈ [n] and p ∈ [P], and therefore it reaches perfect training accuracy.

71

E.2.6 Test Accuracy of Solution Found by Gradient Descent

The final step is showing that W (TCutMix) reaches almost perfect test accuracy.

From the results of Section E.2.5, we have

ϕ
(〈

w(TCutMix)
s ,vs,k

〉)
− ϕ

(〈
w

(TCutMix)
−s ,vs,k

〉)
= Θ(1),

ϕ
(〈

w(TCutMix)
yi

, ξ
(p)
i

〉)
− ϕ

(〈
w

(TCutMix)
−yi

, ξ
(p)
i

〉)
= Θ(1),

for each s ∈ {±1}, k ∈ [K], i ∈ [n] and p ∈ [P] \ {p∗i }.

For any u > v, by the mean value theorem, we have

β(u− v) ≤ ϕ(u)− ϕ(v) = (u− v)
ϕ(u)− ϕ(v)

u− v
≤ (u− v).

Hence, we have

ϕ
(〈

w(TCutMix)
s ,vs,k

〉)
− ϕ

(〈
w

(TCutMix)
−s ,vs,k

〉)
≤
〈
w(TCutMix)

s −w
(TCutMix)
−s ,vs,k

〉
,〈

w(TCutMix)
s −w

(TCutMix)
−s ,vs,k

〉
≤ β−1

(
ϕ
(〈

w(TCutMix)
s ,vs,k

〉)
− ϕ

(〈
w

(TCutMix)
−s ,vs,k

〉))
,

and
Ω(1) ≤

〈
w(TCutMix)

s −w
(TCutMix)
−s ,vs,k

〉
≤ O(β−1),

for each s ∈ {±1} and k ∈ [K]. Similarly, for all i ∈ [n] and p ∈ [P] \ {p∗i },

ϕ
(〈

w(TCutMix)
yi

, ξ
(p)
i

〉)
− ϕ

(〈
w

(TCutMix)
−yi

, ξ
(p)
i

〉)
≤
〈
w(TCutMix)

yi
−w

(TCutMix)
−yi

, ξ
(p)
i

〉
,〈

w(TCutMix)
yi

−w
(TCutMix)
−yi

, ξ
(p)
i

〉
≤ β−1

(
ϕ
(〈

w(TCutMix)
yi

, ξ
(p)
i

〉)
− ϕ

(〈
w

(TCutMix)
−yi

, ξ
(p)
i

〉))
,

and
Ω(1) ≤

〈
w(TCutMix)

yi
−w

(TCutMix)
−yi

, ξ
(p)
i

〉
≤ O(β−1).

By Lemma B.3,

w
(TCutMix)
1 −w

(TCutMix)
−1

= w
(0)
1 −w

(0)
−1 +

∑
s∈{±1},k∈[K]

sγ(s, k)vs,k +
∑

i∈[n],p∈[P]\{p∗
i }

yiρ(i, p)
ξ
(p)
i∥∥∥ξ(p)i

∥∥∥2 ,
where for each s ∈ {±1},

γ(s, 1) = γ
(TCutMix)
1 (s, 1) + γ

(TCutMix)
−1 (s, 1)

+ α
∑
i∈Fs

yi

(
ρ
(TCutMix)
1 (i, p̃i) + ρ

(TCutMix)
−1 (i, p̃i)

)∥∥∥ξ(p̃i)
i

∥∥∥−2

,

and

γ(s, k) = γ
(TCutMix)
1 (s, k) + γ

(TCutMix)
−1 (s, k),

ρ(i, p) = ρ
(TCutMix)
1 (i, p) + ρ

(TCutMix)
−1 (i, p),

for each s ∈ {±1}, k ∈ [K] \ {1}, i ∈ [n] and p ∈ [P] \ {p∗i }. If we choose j ∈ [n], q ∈ [P] \ {p∗j}
such that ρ(j, q) = maxi∈[n],p∈[P]\{p∗

i } ρ(i, p), then we have〈
w(TCutMix)

yj
−w

(TCutMix)
−yj

, ξ
(q)
j

〉
=
〈
w(0)

yj
−w

(0)
−yj

, ξ
(q)
j

〉
+ ρ(j, q) + yj

∑
i∈[n],p∈[P]\{p∗

i }
(i,p)̸=(j,q)

yiρ(i, p)

〈
ξ
(p)
i , ξ

(q)
j

〉
∥∥∥ξ(p)i

∥∥∥2 .

72

From the event Einit defined in Lemma B.2, (A8), and (8),∣∣∣〈w(0)
yj

−w
(0)
−yj

, ξ
(q)
j

〉∣∣∣ = o

(
1

polylog(d)

)
≤ 1

2

〈
w(TCutMix)

yj
−w

(TCutMix)
−yj

, ξ
(q)
j

〉
,

where the inequality holds since
〈
w

(TCutMix)
yj −w

(TCutMix)
−yj

, ξ
(q)
j

〉
= Ω(1). In addition, by triangular

inequality, we have∣∣∣∣∣∣∣∣
∑

i∈[n],p∈[P]\{p∗
i }

(i,p)̸=(j,q)

yiρ(i, p)

〈
ξ
(p)
i , ξ

(q)
j

〉
∥∥∥ξ(p)i

∥∥∥2
∣∣∣∣∣∣∣∣ ≤

∑
i∈[n],p∈[P]\{p∗

i }
(i,p)̸=(j,q)

ρ(i, p)

∣∣∣〈ξ(p)i , ξ
(q)
j

〉∣∣∣∥∥∥ξ(p)i

∥∥∥2
≤ ρ(j, q)Õ

(
nPσdσ

−1
b d−

1
2

)
≤ ρ(j, q)

2
,

where the last inequality is due to (9). Hence,

1

3
ρ(j, q) ≤

∣∣∣〈w(TCutMix)
yj

−w
(TCutMix)
−yj

, ξ
(q)
j

〉∣∣∣ ≤ 3ρ(j, q)

and we have ρ(j, q) = Õ(β−1).

Let (X, y) ∼ D be a test data with X =
(
x(1), . . . ,x(P)

)
∈ Rd×P having feature patch p∗,

dominant noise patch p̃, and feature vector vy,k. We have x(p) ∼ N(0, σ2
bΛ) for each p ∈ [P] \

{p∗, p̃} and x(p̃) − αvs,1 ∼ N(0, σ2
dΛ) for some s ∈ {±1}. Therefore, for all p ∈ [P] \ {p∗, p̃}∣∣∣ϕ(〈w(TCutMix)

1 ,x(p)
〉)

− ϕ
(〈

w
(TCutMix)
−1 ,x(p)

〉)∣∣∣
≤
∣∣∣〈w(TCutMix)

1 −w
(TCutMix)
−1 ,x(p)

〉∣∣∣
=
∣∣∣〈w(0)

1 −w
(0)
−1,x

(p)
〉∣∣∣+ ∑

i∈[n],q∈[P]\{p∗
i }

ρ(i, q)

∣∣∣〈ξ(q)i ,x(p)
〉∣∣∣∥∥∥ξ(q)i

∥∥∥2
≤ Õ

(
σ0σbd

1
2

)
+ Õ

(
nPβ−1σdσ

−1
b d−

1
2

)
= o

(
1

polylog(d)

)
, (36)

with probability at least 1− o
(

1
poly(d)

)
due to Lemma B.2. In addition,∣∣∣ϕ(〈w(TCutMix)

1 ,x(p̃)
〉)

− ϕ
(〈

w
(TCutMix)
−1 ,x(p̃)

〉)∣∣∣
≤
∣∣∣〈w(TCutMix)

1 −w
(TCutMix)
−1 ,x(p̃)

〉∣∣∣
≤ α

∣∣∣〈w(TCutMix)
1 −w

(TCutMix)
−1 ,vs,1

〉∣∣∣+ ∣∣∣〈w(TCutMix)
1 −w

(TCutMix)
−1 ,x(p̃) − αvs,1

〉∣∣∣
≤ αβ−1

∣∣∣ϕ(〈w(TCutMix)
1 ,vs,1

〉)
− ϕ

(〈
w

(TCutMix)
−1 ,vs,1

〉)∣∣∣
+
∣∣∣〈w(0)

1 −w
(0)
−1,x

(p̃) − αvs,1

〉∣∣∣+ ∑
i∈[n],q∈[P]\{p∗

i }

ρ(i, q)

∣∣∣〈ξ(q)i ,x(p̃) − αvs,1

〉∣∣∣∥∥∥ξ(q)i

∥∥∥2
≤ Õ

(
αβ−1

)
+ Õ

(
σ0σdd

1
2

)
+ Õ

(
nPβ−1σdσ

−1
b d−

1
2

)
= o

(
1

polylog(d)

)
, (37)

with probability at least 1− o
(

1
poly(d)

)
, where the last equality is due to (8), (9), (10), and (A8).

73

Suppose (36) and (37) holds. Then,

yfW (TCutMix)(X)

=
(
ϕ
(〈

w(TCutMix)
y ,vy,k

〉)
− ϕ

(〈
w

(TCutMix)
−y ,vy,k

〉))
+

∑
p∈[P]\{p∗}

(
ϕ
(〈

w(TCutMix)
y ,x(p)

〉)
− ϕ

(〈
w

(TCutMix)
−y ,x(p)

〉))
= Ω(1)− o

(
1

polylog(d)

)
> 0.

Hence, we have our conclusion. □

74

F Technical Lemmas

In this section, we introduce technical lemmas that are used for proving the main theorems. We
present their proofs here for better readability.

The following lemma is used in Section C.2.4 and Section D.2.4:
Lemma F.1. For any z, δ ∈ R,

|ϕ(z)− (z + δ)ϕ′(z)| ≤ r + |δ|.

Proof of Lemma F.1.

ϕ(z)− zϕ′(z) =


z − 1−β

2 r − z = − 1−β
2 r = − 1−β

2 r if z ≥ r
1−β
2r z2 + βz −

(
1−β
r z + β

)
z = 1−β

2r z2 if 0 ≤ z ≤ r

βz − βz = 0 if z < 0

,

and we obtain

|ϕ(z)− (z + δ)ϕ′(z)| ≤ |ϕ(z)− zϕ′(z)|+ |δ|ϕ′(z) ≤ 1− β

2
r + |δ| ≤ r + |δ|.

The following lemma is used in Section C.2.4.
Lemma F.2. Suppose Einit occurs. Then, for any model parameter W = {w1,w−1}, we have∥∥∥∥∥∥∇W

∑
i∈Vs,k

ℓ (yifW (Xi))

∥∥∥∥∥∥
2

≤ 8P 2σ2
dd|Vs,k|

∑
i∈Vs,k

ℓ(yifW (Xi)),

for each s ∈ {±1} and k ∈ [K].

Proof of Lemma F.2. For each s ∈ {±1} and i ∈ [n], we have

∥∇ws
fW (Xi)∥ =

∥∥∥∥∥∥
∑
p∈[P]

ϕ′
(〈

ws,x
(p)
i

〉)
x
(p)
i

∥∥∥∥∥∥ ≤ P max
p∈[P]

∥∥∥x(p)
i

∥∥∥ ≤ 2Pσdd
1
2 ,

where the inequality is due to the condition from the event Einit defined in Lemma B.2 and (A7)..
Therefore, for each s ∈ {±1}, we have∥∥∥∥∥∥∇ws

∑
i∈Vs,k

ℓ (yifW (Xi))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

i∈Vs,k

ℓ′ (yifW (Xi))∇wsfW (Xi)

∥∥∥∥∥∥
2

≤

 ∑
i∈Vs,k

ℓ′ (yifW (Xi)) ∥∇wsfW (Xi)∥

2

≤ 4P 2σ2
dd

 ∑
i∈Vs,k

ℓ′ (yifW (Xi))

2

≤ 4P 2σ2
dd|Vs,k|

∑
i∈Vs,k

(ℓ′ (yifW (Xi)))
2

≤ 4P 2σ2
dd|Vs,k|

∑
i∈Vs,k

ℓ (yifW (Xi)) .

The first inequality is due to triangular inequality, the third inequality is due to Cauchy-Schwartz
inequality and the last inequality is due to 0 ≤ −ℓ′ ≤ 1, which can be used to show (ℓ′)2 ≤ −ℓ′ ≤ ℓ.
As a result, we have our conclusion:∥∥∥∥∥∥∇W

∑
i∈Vs,k

ℓ (yifW (Xi))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∇w1

∑
i∈Vs,k

ℓ (yifW (Xi))

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∇w−1

∑
i∈Vs,k

ℓ (yifW (Xi))

∥∥∥∥∥∥
2

75

≤ 8P 2σ2
dd|Vs,k|

∑
i∈Vs,k

ℓ(yifW (Xi)).

The following lemma is used in Section D.2.4.

Lemma F.3. Suppose Einit occurs. Then, for any model parameter W = {w1,w−1}, we have∥∥∥∥∥∥∇
∑

i∈Vs,k

EC∼DC [ℓ (yifW (t)(Xi,C))]

∥∥∥∥∥∥
2

≤ 8P 2σ2
dd|Vs,k|

∑
i∈Vs,k

EC∼DC [ℓ(yifW (t)(Xi,C))]

for each s ∈ {±1} and k ∈ [K].

Proof of Lemma F.3. For each s ∈ {±1}, i ∈ [n] and C ⊂ [P] with |C| = C, we have

∥∇ws
fW (Xi,C)∥ =

∥∥∥∥∥∥
∑
p/∈C

ϕ′
(〈

ws,x
(p)
i

〉)
x
(p)
i

∥∥∥∥∥∥ ≤ P max
p∈[P]

∥∥∥x(p)
i

∥∥∥ ≤ 2Pσdd
1
2 ,

where the inequality is due to the condition from the event Einit defined in Lemma B.2 and (A7).
Therefore, for any s ∈ {±1}, we have∥∥∥∥∥∥∇ws

∑
i∈Vs,k

EC∼DC [ℓ (yifW (Xi,C))]

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑

i∈Vs,k

EC∼DC [ℓ
′ (yifW (Xi,C))∇wsfW (Xi,C)]

∥∥∥∥∥∥
2

≤

 ∑
i∈Vs,k

EC∼DC [ℓ
′ (yifW (Xi,C)) ∥∇wsfW (Xi,C)∥]

2

≤ 4P 2σ2
dd

 ∑
i∈Vs,k

EC∼DC [ℓ
′ (yifW (Xi,C))]

2

≤ 4P 2σ2
dd|Vs,k|

∑
i∈Vs,k

EC∼DC

[
(ℓ′ (yifW (Xi,C)))

2
]

≤ 4P 2σ2
dd|Vs,k|

∑
i∈Vs,k

EC∼DC [ℓ (yifW (Xi,C))].

The first inequality is due to triangular inequality, the third inequality is due to Cauchy-Schwartz
inequality and the last inequality is due to 0 ≤ −ℓ′ ≤ 1, which can be used to show (ℓ′)2 ≤ −ℓ′ ≤ ℓ.
As a result, we have our conclusion:∥∥∥∥∥∥∇W

∑
i∈Vs,k

EC∼DC [ℓ (yifW (Xi,C))]

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥∇w1

∑
i∈Vs,k

EC∼DC [ℓ (yifW (Xi,C))]

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∇w−1

∑
i∈Vs,k

EC∼DC [ℓ (yifW (Xi,C))]

∥∥∥∥∥∥
2

≤ 8P 2σ2
dd|Vs,k|

∑
i∈Vs,k

EC∼DC [ℓ(yifW (Xi,C))] .

76

The following lemma guarantees the existence and characterizes the minimum of the CutMix loss in
Section E.2.2.
Lemma F.4. Suppose the event Einit occurs. Let g1, g−1 : R× R → R be defined as

gs(z1, z−1) :=
|Vs|
|V−s|

ℓ′(Pzs) +
2

P
ES∼DS [|S|ℓ′(|S|zs − (P − |S|)z−s)] +

P − 1

3P
,

for each s ∈ {±1}. There exist unique z∗1 , z
∗
−1 > 0 such that g1(z∗1 , z

∗
−1) = g−1(z

∗
1 , z

∗
−1) = 0.

Furthermore, we have z∗1 , z
∗
−1 = Θ(1).

Proof of Lemma F.4. For each z1 > 0,

g−1(z1, 0) =

(
|V−1|
|V1|

+ 1

)
·
(
−1

2

)
+

2

P
ES∼DS [|S|ℓ′(−(P − |S|)z1)] +

P − 1

3P

<

(
|V−1|
|V1|

+ 1

)
·
(
−1

2

)
+

P − 1

3P
< 0,

since ℓ′(z) ≤ − 1
2 for any z ≤ 0 and we use 25

52n ≤ |V1|, |V−1| ≤ 27
52n from the event Einit defined

in Lemma B.2. In addition,

g−1(z1, P z1 + log 9)

=
|V−1|
|V1|

ℓ′(P 2z1 + P log 9) +
2

P
ES∼DS [|S|ℓ′(|S|Pz1 + |S| log 9− (P − |S|)z1)] +

P − 1

3P

≥
(
|V−1|
|V1|

+ 1

)
ℓ′(log 9) +

P − 1

3P

> 0,

where we use 25
52n ≤ |V1|, |V−1| ≤ 27

52n from the event Einit defined in Lemma B.2 and (A1) for the
last inequality.

Since z 7→ g−1(z1, z) is strictly increasing and by intermediate value theorem, there exists S :
(0,∞) → (0,∞) such that z = S(z1) is a unique solution of g−1(z1, z) = 0 and S(z1) <
Pz1 + log 9. Note that S is strictly increasing since g−1(z1, z−1) is strictly decreasing with respect
to z1 and strictly increasing with respect to z−1. Also, if S(z) is bounded above, i.e., there exists
some U > 0 such that S(z) ≤ U for any z > 0,

lim
z→∞

g−1(z, S(z))

= lim
z→∞

(
|V−1|
|V1|

ℓ′ (PS(z)) +
2

P
ES∼DS

[
|S|ℓ′

(
|S|S(z)− (P − |S|)z

)]
+

P − 1

3P

)
≤ lim

z→∞

(
|V−1|
|V1|

ℓ′ (PU) +
2

P
ES∼DS

[
|S|ℓ′

(
|S|U − (P − |S|)z

)]
+

P − 1

3P

)
≤ − 2

P
ES∼DS

[
|S| · 1|S|̸=P

]
+

P − 1

3P
= −P − 1

P + 1
+

P − 1

3P
< 0,

and it is contradictory. Hence, we have limz→∞ S(z) = ∞.

Let us choose z > 0 such that

z =
1

P
log

3P
(
1 + |V1|

|V−1|

)
P − 1

− 1

 ,

and thus
ℓ′(Pz) = − P − 1

3P
(
1 + |V1|

|V−1|

) .
We have

g1(z, S(z)) =
|V1|
|V−1|

ℓ′(Pz) +
2

P
ES∼DS

[
|S|ℓ′

(
|S|z − (P − |S|)S(z)

)]
+

P − 1

3P

77

≤
(

|V1|
|V−1|

+ 1

)
ℓ′(Pz) +

P − 1

3P

= 0.

Next, we will prove the existence of z∗ > 0 such that g1(z∗, S(z∗)) > 0. Let us choose ϵ > 0 such
that

ϵ−1 = max

{
3P (P + 1)|V−1|

(P − 2)(P + 2)|V1|
+

3(P − 1)

P − 2
,
3

2

(
1 +

P (P + 1)|V−1|
(P − 1)(P − 2)|V1|

)
,

12P

P − 7

(
1 +

|V−1|
|V1|

)
,

12P (P + 1)

(P − 2)(P + 2)

(
1 +

|V1|
|V−1|

)}
, (38)

and note that ϵ = Θ(1). Since limz→∞ S(z) = ∞, we can choose z∗ such that
ℓ′
(
1
2 min {z∗, S(z∗)}

)
= − ϵ

2 . Then, for any t ≥ z∗

2 , we have

−ϵ < ℓ′(t) < 0 and − 1 < ℓ′(−t) < −1 + ϵ. (39)

From the definition of S and (39) with t = PS(z∗) > 1
2 min{z∗, S(z∗)}, we have

ES∼DS

[
|S|ℓ′

(
|S|S(z∗)− (P − |S|)z∗

)]
= −P

2

(
|V−1|
|V1|

ℓ′
(
PS(z∗)

)
+

P − 1

3P

)
< −P − 1

6
+

P |V−1|
2|V1|

ϵ. (40)

If S(z∗)− (P − 1)z∗ ≥ 0, then

PS(z∗) > (P − 1)S(z∗)− z∗ > . . . > 2S(z∗)− (P − 2)z∗

= z∗ + S(z∗) + S(z∗)− (P − 1)z∗

≥ z∗ + S(z∗) ≥ 1

2
min{z∗, S(z∗)},

and we have

−P − 1

6
+

P |V−1|
2|V1|

ϵ > ES∼DS

[
|S|ℓ′

(
|S|S(z∗)− (P − |S|)z∗

)]
=

1

P + 1

(
ℓ′
(
S(z∗)− (P − 1)z∗

)
+

P∑
m=2

mℓ′
(
mS(z∗) + (P −m)z∗

))

≥ 1

P + 1

(
−1

2
−
(
P (P + 1)

2
− 1

)
ϵ

)
,

where the last inequality is due to (39). This is contradictory to (38), especially the first term inside
the maximum, and we have S(z∗)− (P − 1)z∗ < 0. In addition, if (P − 1)S(z∗)− z∗ ≤ 0, then

Pz∗ > (P − 1)z∗ − S(z∗) > . . . > 2z∗ − (P − 2)S(z∗)

= z∗ + S(z∗) + z∗ − (P − 1)S(z∗)

≥ z∗ + S(z∗) ≥ 1

2
min{z∗, S(z∗)},

and we have

− P − 1

6
− P |V−1|

2|V1|
ϵ

< ES∼DS

[
|S|ℓ′

(
|S|S(z∗)− (P − |S|)z∗

)]
=

1

P + 1

(
Pℓ′
(
PS(z∗)

)
+ (P − 1)ℓ′

(
(P − 1)S(z∗)− z∗

)
+

P−2∑
m=0

mℓ′
(
mS(z∗)− (P −m)z∗

))

<
1

P + 1

(
− (P − 1)(P − 2)

2
(1− ϵ)− P − 1

2

)
,

78

where the last inequality is due to (39). This is contradictory to (38), especially the second term
inside the maximum, and we have (P − 1)S(z∗)− z∗ > 0. Note that we have

− ϵ

2
= ℓ′

(
1

2
min{z∗, S(z∗)}

)
≥ ℓ′

(
z∗

2P

)
,

and since ϵ = Θ(1) in (38), we have z∗ ≤ 2P log
(
2
ϵ − 1

)
= O(1).

Thus, we have S(z∗)− (P − 1)z∗ < 0 < (P − 1)S(z∗)− z∗ < PS(z∗). One can consider dividing
the interval [S(z∗) − (P − 1)z∗, PS(z∗)] into a grid of length z∗ + S(z∗). Then, the interval is
equally divided into P − 1 sub-intervals and 0 belongs to one of them. In other words, there exists
k ∈ [P − 2] such that

kS(z∗)− (P − k)z∗ ≤ 0 < (k + 1)S(z∗)− (P − k − 1)z∗,

and note that if P = 3, then k = 1. The rest of the proof is divided into two cases: (k + 1)S(z∗)−
(P − k− 1)z∗ ≥ 1

2 (z
∗ +S(z∗)) or (k+1)S(z∗)− (P − k− 1)z∗ < 1

2 (z
∗ +S(z∗)). In both cases,

we show that g1(z∗, S(z∗)) > 0.

Case 1: (k + 1)S(z∗)− (P − k − 1)z∗ ≥ 1
2 (z

∗ + S(z∗))

From (39), we have

−1 < ℓ′(−Pz∗) < · · · < · · · < ℓ′
(
(k − 1)S(z∗)− (P − k + 1)z∗

)
< −1 + ϵ,

and
−ϵ < ℓ′

(
(k + 1)S(z∗)− (P − k − 1)z∗

)
< · · · < ℓ′

(
PS(z∗)

)
< 0.

Thus, we have

ES∼DS

[
|S|ℓ′

(
|S|S(z∗)− (P − |S|)z∗)

)
|
]

>
1

P + 1

(
kℓ′
(
kS(z∗)− (P − k)z∗

)
− k(k − 1)

2

)
− P

2
ϵ.

and we obtain k > P−1
2 since

k(k + 1)

2

=
k(k − 1)

2
+ k

> −P (P + 1)

2
ϵ− (P + 1)ES∼DS [|S|ℓ′(|S|S(z∗)− (P − |S|)z∗)]

+ kℓ′(kS(z∗)− (P − k)z∗) + k

> −P (P + 1)

2

(
1 +

|V−1|
|V1|

)
ϵ+

(P − 1)(P + 1)

6

≥
P−1
2

(
P−1
2 + 1

)
2

,

where the second inequality is due to (40) and the fact that ℓ′ ≥ −1, and the last inequality is due to
(38), especially the third term inside the maximum. Note that since k ∈ N, k ≥ P

2 .

Note that from (39), we have

−1 < ℓ′
(
− PS(z∗)

)
< · · · < ℓ′

(
(P − k − 1)z∗ − (k + 1)S(z∗)

)
< −1 + ϵ,

and
−ϵ < ℓ′

(
(P − k + 1)z∗ − (k − 1)z∗

)
< · · · < ℓ′(Pz∗) < 0.

Hence, we obtain

ES∼DS

[
|S|ℓ′

(
|S|z∗ − (P − |S|)S(z∗)

)]
≥ 1

P + 1

(
− (P − k − 1)(P − k)

2
− 1

2
(P − k)− ((P − k + 1) + · · ·+ P) ϵ

)

79

≥ − (P − k)2

2(P + 1)
− 1

P + 1
· P (P + 1)

2
ϵ

≥ − P 2

8(P + 1)
− P

2
ϵ,

where we use k ≥ P
2 for the last inequality. Therefore, we have

g1(z
∗, S(z∗)) =

|V1|
|V−1|

ℓ′(Pz∗) +
2

P
ES∼DS [|S|ℓ′(|S|z∗ − (P − |S|)S(z∗))] + P − 1

3P

≥ −
(

|V1|
|V−1|

+ 1

)
ϵ− P

4(P + 1)
+

P − 1

3P

> 0,

where the last inequality is due to (38), especially the fourth term inside the maximum.

Case 2: (k + 1)S(z∗)− (P − k − 1)z∗ < 1
2 (z

∗ + S(z∗))

In this case, we have kS(z∗)− (P − k)z∗ ≤ − 1
2 (z

∗ + S(z∗)). From (39), we have

−1 < ℓ′(−Pz∗) < · · · < ℓ′
(
kS(z∗)− (P − k)z∗

)
< −1 + ϵ,

and
−ϵ < ℓ′

(
(k + 2)S(z∗)− (P − k − 2)z∗

)
< · · · < ℓ′

(
PS(z∗)

)
< 0.

Thus, we have

ES∼DS [|S|ℓ′(|S|S(z∗)− (P − |S|)z∗))|]

>
1

P + 1

(
(k + 1)ℓ′

(
(k + 1)S(z∗)− (P − k − 1)z∗

)
− k(k + 1)

2

)
− P

2
ϵ,

and we obtain k > P−1
2 since

(k + 1)2

2

=
k(k + 1)

2
+

k + 1

2

> −P (P + 1)

2
ϵ− (P + 1)ES∼DS [|S|ℓ′(|S|S(z∗)− (P − |S|)z∗)]

+ (k + 1)ℓ′((k + 1)S(z∗)− (P − k − 1)z∗) +
k + 1

2

> −P (P + 1)

2

(
1 +

|V−1|
|V1|

)
ϵ+

(P − 1)(P + 1)

6

>

(
P−1
2 + 1

)2
2

,

where the second inequality is due to (40) and the fact that ℓ′(z) ≥ − 1
2 ∀z ≥ 0, and the last

inequality is due to our (38), especially the third term inside the maximum. Note that since k ∈ N,
we have k ≥ P

2 .

Note that from (39), we have

−1 < ℓ′
(
− PS(z∗)

)
< · · · < ℓ′

(
(P − k − 2)z∗ − (k + 2)S(z∗)

)
< −1 + ϵ,

and
−ϵ < ℓ′

(
(P − k)z∗ − kz∗

)
< · · · < ℓ′(Pz∗) < 0.

Hence, we obtain

ES∼DS [|S|ℓ′(|S|z∗ − (P − |S|)S(z∗)]

≥ 1

P + 1

(
− (P − k − 1)(P − k)

2
− ((P − k) + · · ·+ P) ϵ

)

80

≥ − (P − k)(P − k − 1)

2(P + 1)
− 1

P + 1
· P (P + 1)

2
ϵ

≥ − (P − k)2

2(P + 1)
− 1

P + 1
· P (P + 1)

2
ϵ

≥ − P 2

8(P + 1)
− P

2
ϵ,

where we use k ≥ P
2 for the last inequality. Therefore, we have

g1(z
∗, S(z∗)) =

|V1|
|V−1|

ℓ′(Pz∗) +
2

P
ES∼DS [|S|ℓ′(|S|z∗ − (P − |S|)S(z∗))] + P − 1

3P

≥ −
(

|V1|
|V−1|

+ 1

)
ϵ− P

4(P + 1)
+

P − 1

3P

> 0,

where the last inequality is due to (38), especially the fourth term inside the maximum.

In both cases, we have g1(z
∗, S(z∗)) > 0. By intermediate value theorem, there exist unique

z∗1 , z
∗
−1 > 0 such that g1(z∗1 , z

∗
−1) = g−1(z

∗
1 , z

∗
−1) = 0. In addition, z ≤ z∗1 ≤ z∗ and we have

z1 = Θ(1) since z = Ω(1) and z∗ = O(1). By using a similar argument, we can show that
z∗−1 = Θ(1), and we have our conclusion.

81

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation on our problem setting and theoretical framework in
Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

82

Justification: We provide the full set of assumptions and a complete proof in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions of the experimental setting in Section 5 and
Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

83

Answer: [No]
Justification: We do not provide open access to the data and code since our main focus is
theory.
Guidelines: The main focus of this paper is theory.

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed descriptions of the experimental setting in Section 5 and
Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The main focus of this paper is theory.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

84

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the type of compute workers used (NVIDIA RTX A6000) in
Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research address to the NeurIPS Code of Ethics, ensuring ethical conduct
throughout the study.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper mainly focuses on establishing a theoretical understanding of
existing data augmentation techniques. Thus, there are no direct societal implications arising
from the research.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

85

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of data or models that pose a high risk
for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

86

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

87

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

88

	Introduction
	Our Contributions
	Related Works

	Problem Setting
	Data Distribution
	Neural Network Architecture
	Training Methods
	Vanilla Training
	Cutout Training.
	CutMix Training.

	Assumptions on the Choice of Problem Parameters

	Main Results
	Overview of Analysis
	Vanilla Training and Cutout Training
	CutMix Training

	Experiments
	Conclusion
	Additional Experimental Results
	Experiments on CIFAR-10 Dataset
	Additional Experimental Results on Our Data Distribution

	Proof Preliminaries
	Properties of the Choice of Problem Parameters
	Quantities at the Beginning
	Feature Noise Decomposition

	Proof for ERM
	Proof of Lemma B.3 for ERM
	Proof of Theorem 3.1

	Proof for Cutout
	Proof of Lemma B.3 for Cutout
	Proof of Theorem 3.2

	Proof for CutMix
	Proof of Lemma B.3 for CutMix
	Proof of Theorem 3.3

	Technical Lemmas

