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ABSTRACT

Videos contain far more information than still images and hold the potential for
learning rich representations of the visual world. Yet pretraining on image datasets
has remained the dominant paradigm for learning representations that capture spa-
tial information. Prior attempts at video pretraining made progress towards solv-
ing video-based tasks, but did so at the cost of their image understanding capa-
bilities. In this work we revisit self-supervised learning of image representations
from the dynamic evolution of video frames. To that end, we propose a procedure
for data curation that addresses the domain mismatch between video and image
datasets, and develop a contrastive learning framework which handles the com-
plex transformations present in natural videos. This simple paradigm for distilling
knowledge from videos to image representations, called VITO, far outperforms
all prior video pretraining methods on object detection and semantic segmenta-
tion tasks, and for the first time, closes the gap with ImageNet pretraining. Fur-
thermore, VITO remains effective when transferring to video understanding tasks
such as DAVIS segmentation and UCF-101 action recognition. Together, these
results suggest that video-pretraining is now strictly more general than image-
pretraining and could become the new default for learning visual representations.

1 INTRODUCTION
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Figure 1: Closing the gap between video- and
image-pretraining. Prior work learning image rep-
resentations from video have lagged behind Ima-
geNet pretraining. We propose a method for data
curation, VideoNet, and a self-supervised learning
objective, VITO, which together close this gap.

Pretraining on large image datasets has been the
dominant paradigm for learning representations
that understand the visual world (Krizhevsky
et al., 2012; He et al., 2016). In particular,
self-supervised methods which learn represen-
tations that are invariant to specific image trans-
formations have proven very powerful, surpass-
ing supervised pretraining on a variety of down-
stream tasks (He et al., 2020; Hénaff et al.,
2019; Chen et al., 2020; Caron et al., 2021).
Although the synthetic augmentations used in
these transformations capture important image
priors such as scale-, color-, and translation-
invariance, they pale in comparison to the com-
plex changes in pose and viewpoint that arise in
natural videos.

Therefore, one would expect that learning from
videos, as opposed to images, should pro-
duce strictly more general visual representa-
tions. However, while self-supervised video
representation learning has seen a variety of re-
cent successful applications when evaluating on
video-based tasks (Qian et al., 2021; Feichten-
hofer et al., 2021; Toering et al., 2022; Dave et al., 2022; Feichtenhofer et al., 2022; Ni et al., 2022),
it has typically done so by sacrificing performance on image classification (Gordon et al., 2020; Wu
& Wang, 2021) relative to image pretraining. Furthermore, the specifics of video-representation ar-
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chitectures make their comparison with image-based architectures difficult, obfuscating the role of
the underlying data and learning paradigm in the quality of the resulting representations.

In this work we perform a systematic comparison of image- and video-based learning of image
representations. Starting from a strong, self-supervised contrastive baseline, we find the spatial
content of standard video datasets to have a detrimental effect on the quality of the resulting repre-
sentations, as measured by their performance on canonical scene understanding tasks. We therefore
introduce a straightforward video curation procedure—VideoNet—which aligns their class distribu-
tion with that of ImageNet, and which partially redresses the imbalance between image and video
learning. Additionally, we propose three simple modifications to the standard contrastive paradigm
to account for the particularities of video data: less aggressive crop augmentation, multi-scale at-
tention pooling, and enriching view generation with natural temporal deformations. Together, these
improvements yield large gains over prior video pretraining efforts on semantic segmentation on
PASCAL and ADE20K and object detection on COCO and LVIS, closing the gap between image-
and video-based representation learning for the first time. Notably, we maintain the expected ben-
efits of transfer to video-based tasks (DAVIS segmentation and UCF-101 action recognition). This
gives a new life to the promise of video pretraining serving as a general purpose means of learning
visual representations.

2 RELATED WORK

Video-based pretraining. Many prior works have considered the problem of self-supervised repre-
sentation learning for capturing spatio-temporal invariances. These span a wide range of approaches,
beginning with traditional methods that leveraged temporal coherence, optical flow, and object track-
ing (Wiskott & Sejnowski, 2002; Hurri & Hyvärinen, 2003; Agrawal et al., 2015; Wang & Gupta,
2015; Pathak et al., 2017; Goroshin et al., 2015; Misra et al., 2016; Srivastava et al., 2015; Kulkarni
et al., 2019). More recently, there have been many successful examples of approaches that leverage
contrastive learning, masked autoencoding, and other self-supervised pretext tasks to learn strong
video representations (Sermanet et al., 2018; Recasens et al., 2021; Qian et al., 2021; Dave et al.,
2022; Dorkenwald et al., 2022; Feichtenhofer et al., 2021; 2022). However, most of these methods
employ specialized video architectures and transfer to video-based tasks (action recognition, motion
segmentation, object tracking, etc.) to measure the quality of the learned representations.

Natural motion-induced deformations are powerful learning signals that should allow for learning
better image representations as well, and recent works (Gordon et al., 2020; Alayrac et al., 2020;
Wu & Wang, 2021; Tschannen et al., 2020; Xu & Wang, 2021; Jabri et al., 2020; Bian et al., 2022;
Xiong et al., 2021) have made attempts in this direction. One family of successful, recent methods,
use cycle-consistency-based objectives that encourage learning correspondences between tempo-
rally ordered image patches via graph random walks (Jabri et al., 2020; Bian et al., 2022). However,
this is generally computationally expensive to train, and has had noted issues scaling to larger model
architectures Xu & Wang (2021). Alternate approaches have used optical flow to supervise cor-
respondence learning Sharma et al. (2022); Xiong et al. (2021), which can be quite powerful, but
also limited to capturing dynamics over short time-scales. The most similar works to ours are Gor-
don et al. (2020), Xu & Wang (2021), and Wu & Wang (2021), which utilize simple variants of
contrastive learning to learn global frame-level representations from videos. Our approach differs
in its curation of video datasets and its ability to handle temporal deformations in the contrastive
learning framework via learned attention. Although these works report gains on video-centric tasks
such as object tracking and video segmentation, in the context of canonical scene understanding
tasks used to evaluate image representations, we find these methods to underperform state-of-the-art
ImageNet-pretrained models.

Contrastive learning for fine-grained scene understanding. In this work, we specifically focus
on evaluations that assess real-world scene understanding, namely semantic segmentation and ob-
ject detection (Van Gansbeke et al., 2021; Hénaff et al., 2021; Xie et al., 2021a). Self-supervised
learning has greatly benefited fine-grained scene understanding tasks, and there has been significant
progress using dense contrastive losses that chose positive pairs for local features by spatial prox-
imity and/or feature affinity across two views (Xie et al., 2021b; Bai et al., 2022; O Pinheiro et al.,
2020; Wang et al., 2021b). However, as described in Sharma et al. (2022), dense contrastive losses
fail when ground truth correspondences cannot be easily obtained across views, as is the case when
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including natural temporal augmentations. Sharma et al. (2022) propose to resolve this by tracking
local features via optical flow, but these computations can be brittle and we therefore ask whether
correspondences can be established using semantic similarity instead. In this work, we revert to the
standard, global contrastive loss formulation, and find that it discovers semantic correspondences
when equipped with a lightweight attentional module.

3 METHODS

In our experiments we pretrain image representations using image or video datasets, then transfer
them to a range of downstream image tasks that test their spatial understanding. We adopt the
ResNet-50 architecture used throughout the self-supervised learning literature.

3.1 PRETRAINING VISUAL REPRESENTATIONS

We start by describing our self-supervised baseline for learning representations from images or
individual video frames, MoCLR, before adding the simple modifications which together make our
method for distilling videos into image representations, which we call VITO.

A strong contrastive baseline. MoCLR (Tian et al., 2021) is a simple but powerful way of learning
image representations from image data. Given an image x (or a frame from a video), we generate
a small number of “views” via random cropping, resizing, and color jittering. Each view vl is
encoded with a feature extractor fθ into a spatial map of hidden vectors hl

θ = fθ(v
l) where θ

are the parameters of the online network being optimized. Following Chen et al. (2020), these
hidden vectors are average pooled into a single vector ĥl

θ then transformed with a two-layer MLP
gθ, yielding non-linear projections zl

θ = gθ(ĥ
l
θ) which we rescale such that their Euclidean norm is

equal to 1/
√
τ , where τ = 0.1.

We wish to enforce invariance of these features across views. In theory, one could regress one
projection zi

θ onto its target zj
θ , however it is helpful to stabilize these targets by encoding them

instead with specific target networks fξ and gξ, whose parameters ξ vary more slowly, as shown by
Grill et al. (2020). We enforce this invariance using the standard contrastive loss of van den Oord
et al. (2018)

Lij(θ; ξ) = − log
exp(zi

θ · z
j
ξ)

exp(zi
θ · z

j
ξ) +

∑
n exp(z

i
θ · zn

ξ )
, (1)

where {zn
ξ }n are negative features from other images in the batch. We generalize this loss to mul-

tiple views by evaluating it for all pairs L(θ; ξ) =
∑

i̸=j Lij(θ; ξ). We update the online network
with gradients from the contrastive loss, and the target network as an exponential moving average
of the online network

θ ← optimizer(θ,∇θL(θ; ξ), λθ) (2)
ξ ← (1− λξ)ξ + λξθ, (3)

where λθ and λξ are learning rates for the online and target networks respectively. By combining
the contrastive formulation of SimCLR (Chen et al., 2020) and the momentum architecture of MoCo
(He et al., 2020) and BYOL (Grill et al., 2020), MoCLR (similarly to MoCo v3 (Chen et al., 2021),
which it is akin to) benefits from the best of each approach and has been shown to yield state-of-the-
art performance on a variety of downstream tasks (Tian et al., 2021).

Adapting synthetic augmentations to video frames. The synthetic augmentation pipeline that
has become ubiquitous in the self-supervised learning literature is tailored to pretraining models
on ImageNet (Chen et al., 2020; Grill et al., 2020). However, video frames (or even uncurated
image data) typically differ from the statistics of ImageNet images. In particular, uncurated video
frames generally have more variable viewpoints, and a larger field-of-view that can cover multiple
(not necessarily centered) objects in complex scenes. The standard random resized crop (RRC)
operation, which has been found to be essential in self-supervised methods like SimCLR and BYOL
(Chen et al., 2020; Grill et al., 2020), is an aggressive scale transformation where the smallest crops
can cover only 8% of the original image. While this enables learning strong invariances across
views when the image is relatively homogeneous in content (e.g. featuring a single object), for

3



Under review as a conference paper at ICLR 2023

video frames this can result in views that have very different semantic content (e.g. entirely different
objects), dampening the selectivity of the representation for different object classes. As a result, we
suggest and will empirically validate that larger crop sizes (e.g. increasing the minimum crop size
to 40%) are beneficial when applying contrastive learning to video frames.

Learning from natural temporal transformations. When learning from still images, we apply the
random pre-processing pipeline of BYOL (Grill et al., 2020), which includes random cropping, flip-
ping, blurring, and point-wise color transformations vl ∼ Al(x), see appendix A.1 for the the detail
of their distributions. When learning from videos, we sample frames according to a distribution T
and transform each frame using the same pipeline as above:

v1 ∼ A1(x1) v2 ∼ A2(x2) x1,x2 ∼ T ({xt}t=1,...,T ) (4)
Recent works have suggested similar methodologies for learning from natural augmentations. In
Gordon et al. (2020), T samples pairs with a fixed time delay. Xu & Wang (2021) choose a distri-
bution that involves uniform sampling over independent chunks of a given video clip. In this work,
we propose a simpler approach where we sample from a uniform distribution over the entire video
segment of length T = 2.56s. In Figure A.2, we show that these sampling schemes induce very
different distributions of absolute time differences between pairs of frames. Our marginal sampling
scheme is arguably the most natural as the mode of the distribution is at 0, meaning that it is not
biased to over-represent any specific time difference (similarly to the random-resized crop operation
in space). While not a huge effect, we find that when evaluated on multiple downstream tasks, this
temporal sampling method outperforms other methods (Figure A.2).

          view 1
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attention mask

mask pooling

Contrastive loss

augment

augment

          frame 1

          frame 2 EMA
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Figure 2: Learning to attend to related video content. Each augmented frame is encoded by the
network f as a spatial array of hidden vectors. The attention module a takes as input features
from one view and produces a mask that isolates features that are likely to be predictive of the
other, temporally-displaced view. The attention-gated features are pooled accordingly, and both the
feature extractor and attention module are trained to satisfy the contrastive objective. Subscripts θ
and ξ refer to online and target (EMA) networks respectively.

Multi-scale contrastive attention pooling. Typical contrastive frameworks use a simple global
average pooling of hidden vectors to obtain a single feature for each input that can then be passed
through the projector network gθ. This global average pooling (GAP) aggregates content across
the whole image, which can enable higher-level semantic tasks like image classification. However,
global pooling makes it hard to localize features in space. As a result, for fine-grained tasks like
semantic segmentation, it has been shown that using dense contrastive losses can lead to significant
improvements (Wang et al., 2021b; Xie et al., 2021b; Bai et al., 2022; Hénaff et al., 2021).

Most local contrastive methods require establishing local correspondences across the two views of
the input image such that the contrastive loss can be applied to features that represent the same image
content. While these correspondences easily obtained when learning from static images, when tem-
poral deformations are introduced they require some form of object or point tracking (Sharma et al.,
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2022). Yet these methods can be quite cumbersome and involve tuning many dataset-dependent hy-
perparameters, so in this work, we propose a more general, adaptive method for learning (at multiple
scales) what features should be attended to in order to solve the contrastive learning problem across
temporally displaced views.

As shown in Figure 2, given a view vl the feature extractor outputs a spatial map of feature vectors
hl,s
θ ∈ Rh×w×c at a given scale s, where different scales correspond to the outputs of different

blocks of a ResNet for example. At each scale, we introduce a 2-layer attention MLP asθ which
outputs a mask ml,s = softmax(aθ(h

l,s
θ )) that we use to spatially weight and pool hidden vectors:

ĥl,s
θ =

1∑
i,j m

l,s[i, j]

∑
i,j

ml,s[i, j] hl,s
θ [i, j]. (5)

Given the attention-pooled features from multiple scales, we concatenate them before transforming
them with the two-layer MLP projector: zl

θ = gθ(ĥ
l
θ) where ĥl

θ = [ĥl,s
θ , s ∈ 1...S].

This framework allows the projector to utilize a multi-scale, adaptively localized representation to
solve the contrastive learning problem. This is especially important given the much larger dynamic
range of scales at which objects can appear in videos as opposed to single-object ImageNet images.
This method is related to that of Jetley et al. (2018), which applied a variant of spatial attention pool-
ing in the context of supervised image classification, and more loosely to attention-based backbones
which have shown great success in self-supervised learning (Caron et al., 2021). Note however that,
rather than requiring specialized network operations, our multi-scale attention pooling module can
be a lightweight addition to standard convolutional architectures. In our experiments, we find that
for the canonical ResNet-50 architecture, attending over the outputs of the last two ResNet blocks
(i.e. S = 2) is optimal given our evaluations.

3.2 EVALUATING VISUAL REPRESENTATIONS

Classification has traditionally been the default means of evaluating image representations. Clas-
sifying single objects however does not require many of the defining features of real-world scene
understanding. Semantic segmentation and object detection provide more relevant tests as they
require that a representation understand fine and coarse object boundaries, shapes, sizes, and view-
points. We therefore evaluate on two semantic segmentation datasets, PASCAL VOC (Everingham
et al., 2015) and ADE20K (Zhou et al., 2017), which respectively test object-level understanding and
complex scene understanding. We also evaluate on the well-known COCO object detection dataset
(Lin et al., 2014) and the more challenging long-tailed LVIS dataset (Gupta et al., 2019). To test
generalization beyond image benchmarks, we also evaluate on two video-based tasks, DAVIS 2017
Segmentation and UCF-101 action recognition. For details on the specific training and evaluation
protocols see Sec A.2.

3.3 ADDRESSING DATASET DOMAIN MISMATCH

We begin investigating the potential for video learning with standard datasets including Kinetics,
AudioSet, and YouTube-8M. Yet prior work has shown that even self-supervised methods are sen-
sitive to the pretraining distribution. We therefore hypothesized that video pretraining might benefit
from a data distribution that is more aligned with the statistics of standard image datasets.

As a test of this hypothesis, we developed a simple data curation pipeline (which we refer to as
VideoNet) to filter online videos such that our training data more closely matches the distribution
of ImageNet categories. For each of the 1,000 ImageNet categories, we retrieved 5,000 video clips
whose title included the category’s name or a synonym. We then filtered these videos by applying
an image classifier to verify that the videos contained the intended object category. For this we ran a
pretrained ResNet-50 ImageNet classifier on the first 100 frames of each video and discarded videos
for which the query category was not equal to the ResNet’s top-1 prediction for any of the frames.
We additionally discarded videos of less than 10s in length. This procedure resulted in a dataset of
1,180,042 videos in total.

We note that while the VideoNet procedure is close in conceptualization to the method used to create
the R2V2 dataset proposed by Gordon et al. (2020), it differs in a few ways. First, we utilize full
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Figure 3: Impact of pretraining data’s spatial content on representation quality. Left: transfer perfor-
mance of models pretrained on single frames from image datasets (grey bars) or individual videos
(blue bars). All models use a ResNet-50 backbone and 2-view MoCLR pretraining for 300 epochs.
Right: example frames from different video and image dataests.

video clips that allow us to uniformly sample frames at any time point rather than the fixed sampling
of frames that are 5s apart in R2V2. This coarse temporal sampling reduces the total number of
frames a model can learn from, but also limits the resolution of temporal deformations used in the
contrastive framework: displacements of 5s are more likely to have changes in semantic content
than continuously sampled frames from a small interval. Second, by using the ImageNet classifier
to filter videos, we can reduce mismatch with the ImageNet distribution that can arise from incorrect
tagging and noisy labeling of online videos. This is somewhat verified by the fact that only 24% of
the retrieved videos met our filtering criteria.

4 RESULTS

4.1 EFFECT OF PRETRAINING DATA

To demonstrate the effect of the pretraining data distribution on transfer performance, we first pre-
train the baseline MoCLR model (using 2 views) on a variety of image and video datasets, where
we initially treat video datasets as collections of individual frames. We train each model for 300
ImageNet-equivalent epochs, referred to hereafter as “epochs” (i.e. 1 epoch = learning from 1.28M
examples, irrespective of the dataset), such that each model benefits from the same amount of com-
putation. Figure 3 (left) shows their transfer performance on PASCAL semantic segmentation.

Training on standard datasets. As expected, ImageNet pretraining works very well, but pretraining
on standard video datasets results in a substantial drop in performance (e.g. −6.8% or −5% mIoU
from pretraining on Kinetics700 or AudioSet). This performance gap between video and image
pretraining can be attributed to a combination of increased complexity and field-of-view of video
frames and domain mismatch between the dataset categories (Figure 3, right). Consistent with this,
training on JFT (Sun et al., 2017), an uncurated dataset with a heavy-tailed class distribution, also
results in a loss in performance. Notably, this is despite the much larger size of JFT (300M images),
which indicates that having more training data does not necessarily lead to increased performance.

Training with VideoNet curation. We find that applying the same baseline pretraining to frames
from our curated video dataset performs better than existing large-scale video datasets like Audioset
(+1.6% mIoU), but still underperforms image pretraining on JFT and ImageNet (Figure 3).

This result demonstrates the importance of aligning the image frame distributions between video and
image datasets. As a result, we choose this filtered video dataset as our primary pretraining dataset
for the rest of this work, with the goal of closing the gap with ImageNet pretraining performance.
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4.2 LEVERAGING VIDEO DATA WITH VITO
We now turn to our proposed method for distilling videos into image representations, VITO. We
investigate the choices in our pretraining paradigm by varying each of the three main components in
isolation: adaptation of spatial crop size, natural augmentations, and multi-scale attention pooling.
For the following ablations, we train VITO and its variants for 300 epochs on VideoNet, using 3
views, then transfer to PASCAL semantic segmentation. Similarly, we pretrain MoCLR baselines
on ImageNet and VideoNet for 300 epochs using 3 views.

Adapting spatial augmentations. We validate in Figure 4 (left) our hypothesis that increasing the
minimum crop-scale in the random-resized crop operation during training leads to models that gen-
eralize better to fine-grained tasks like semantic segmentation. Specifically, we find that a minimum
crop scale of 0.4 (as opposed to the traditional 0.08) results in the best transfer performance (+1.7%
mIoU). Note that this conclusion differs slightly from that of Feichtenhofer et al. (2021) who find
more aggressive cropping to be beneficial for action recognition.

Natural augmentations. As described in section 3.1, for each training example, we sample 3 views
using marginal sampling of each frame from the video clip of length T = 2.56 seconds. This
length determines the distribution (and accordingly the mean) time difference between any pair of
frames. As a result, the total length impacts the time-scale over which the contrastive model learns
invariances. We verify our choice by varying the total length of clips. While going to longer time-
scales T = 3.2s does not hurt performance much, we find a significant improvement over using
shorter clips (e.g. T = 1.28s, +1.0% mIoU; Figure 4, center). This suggests that invariance to the
rich temporal deformations present in video clips is indeed a beneficial criterion for learning fine-
grained spatial representations. Note however that the optimal temporal displacement is relatively
short (median = 0.76s when T = 2.56s, Figure A.2) and that sampling video datasets too coarsely
(e.g. every 5s as in Gordon et al. (2020)) may therefore limit their utility.

Multi-scale attention pooling. We decompose the proposed multi-scale contrastive attention pool-
ing to isolate the effects of multi-scale learning from those of attention pooling. While we find only
modest gains from adding attention pooling to a single-scale version of the model (+0.2% mIoU),
we find that the 2-scale model (without attention pooling) improves over the single scale model more
robustly (+0.6% mIoU). Interestingly, we find that the combination of the 2-scale model with atten-
tion pooling has a synergistic effect (+1% mIoU over the single-scale attention model), highlighting
the importance of handling the variability in scales present in natural videos. Furthermore, through
visualization of the attention masks, we also discover an interesting property of semantic-binding
that we believe underlies these perfomrance gains (see Sec A.3 for more discussion).

Combined, the three modifications VITO makes to the contrastive framework result in a 2.8% mIoU
improvement over MoCLR pretrained on VideoNet, closing the gap with ImageNet pretraining when
transferring to PASCAL semantic segmentation. In the next sections, we seek to understand the
mechanism underlying this improvement, and validate it on other downstream tasks.

4.3 EVALUATION: IMAGE UNDERSTANDING TASKS

Having shown that VITO is potentially learning novel visual representations that transfer well to
PASCAL segmentation, we present in Table 1 the transfer performance of VITO against recent
image and video pretraining methods on all of the semantic segmentation and object detection tasks.

Comparison to video-pretraining. Given a similar computational budget as prior works (200
epochs and 3 views) VITO delivers large gains over all prior methods. For example, VITO im-
proves over VIVI (Tschannen et al., 2020) by 10%/5%/2%/2%, highlighting the importance of data
curation and our contrastive formulation. VITO improves over VINCE (Gordon et al., 2020) by
7%/4/1%/1%, highlighting the importance of fine-grained temporal deformations. Finally, VITO
improves even over MMV (Alayrac et al., 2020) by 5%/7%/2%/2%, despite their use of large-
scale text supervision, highlighting the relevance of video-only learning. Finally, we disentangle
the power of our method and dataset by confirming that each independently have strong effects:
MoCLR trained on VideoNet still outperforms all prior work. Similarly VITO trained on standard
datasets (Audioset or YT8M) also outperform all prior work.
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Figure 4: Effects of crop scale, natural augmentations, and multi-scale attention on representation
quality. All ablations are performed relative to VITO’s configuration (denoted by a green asterisk)
which uses 2-scale attention pooling, a less aggressive crop scale of 40%, and natural augmentations
uniformly sampled in a window of length T = 2.56s. We also compare to our baseline MoCLR model
trained on single frames, either from ImageNet (dotted gray line) or VideoNet (dashed blue line).
All models are evaluated by transferring to PASCAL semantic segmentation.

Semantic segmentation Object detection

Pretraining Dataset Epochs PASCAL ADE20K COCO LVIS

Random Init 53.0 27.9 39.0 21.1

Comparison to video pretraining
VFS (Xu & Wang, 2021) K400 100 63.9 31.4 41.6 23.2
VIVI (Tschannen et al., 2020) YouTube8M 192 65.8 34.2 41.3 23.2
VINCE (Gordon et al., 2020) R2V2 200 69.0 35.7 42.4 24.4
CycleContrast (Wu & Wang, 2021) R2V2 200 69.2 35.6 42.8 24.5
MMV (Alayrac et al., 2020) AS + HT 1600 70.6 32.5 41.3 24.2
MoCLR VideoNet 200 72.8 37.5 42.6 24.6
VITO YT8M 200 71.8 37.8 42.7 24.6
VITO AudioSet 200 73.6 38.5 43.2 25.0
VITO VideoNet 200 75.5 39.2 43.6 25.6

Comparison to ImageNet pretraining
Supervised ImageNet 200 71.3 33.5 44.2 25.2
BYOL (Grill et al., 2020) ImageNet 300 76.1 38.8 43.7 25.5
MoCLR (Tian et al., 2021) ImageNet 300 76.4 39.2 43.9 25.8
DINO (Caron et al., 2021) ImageNet 300 76.1 39.0 44.3 26.4
VITO VideoNet 300 76.3 39.4 44.0 25.7

Table 1: VITO outperforms prior video pretraining and closes the gap with ImageNet-pretraining of
ResNet-50 models. For external models, we finetune publicly available checkpoints.

Comparison to ImageNet pretraining. Finally, we compare our VITO-pretrained VideoNet model
to a host of state-of-the-art ImageNet-pretrained methods. Surprisingly, we find VITO to be compet-
itive with the best of such methods, outperforming BYOL and DINO on PASCAL, matching BYOL
and MoCLR on COCO and LVIS, and surpassing all methods on ADE20K. VITO largely surpasses
supervised ImageNet pretraining on 3 downstream evaluations. This is, to the best of our knowledge,
the first example of video pretraining achievingImageNet-level performance on such tasks. We also
demonstrate that our results are not specific to the ResNet-50 architecture and scale well when using
Swin transformers (see Sec. A.4).

4.4 EVALUATION: VIDEO UNDERSTANDING TASKS

To further emphasize the value of video pretraining, we evaluated VITO on tasks that have been
proven difficult when using image pretraining, specifically video segmentation and action recogni-
tion. We find these tasks to be a good combination as they test both 1-shot fine-grained capabilities
(DAVIS segmentation) and coarser temporal understanding (UCF101 full video classification).

8
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Pretraining Dataset Jm Fm

DetConB (Hénaff et al., 2021) ImageNet 63.1 66.4
MoCLR (Tian et al., 2021) ImageNet 63.1 67.8
BYOL (Grill et al., 2020) ImageNet 63.8 69.4
VITO VideoNet 65.5 70.8

Table 2: VITO outperforms all image-pretraining baselines on DAVIS 2017 video segmentation

Pretraining Dataset Backbone Top-1

Video architectures
Supervised (Wang et al., 2021a) ImageNet I3D 67.1
VideoMoCo (Pan et al., 2021) K400 R(2+1)D 78.7
Temporal-ssl (Jenni et al., 2020) K400 R(2+1)D 81.6
VTHCL (Yang et al., 2020) K400 3D-R50 82.1
CVRL (Qian et al., 2021) K400 3D-R50 92.9
ρ-BYOL (Feichtenhofer et al., 2021) K400 3D-R50 95.5

Image architectures
Shuffle and Learn (Misra et al., 2016) UCF101/HMDB51 AlexNet 50.6
OPN (Lee et al., 2017) UCF101 VGG-M 59.8
TCE (Knights et al., 2021) K400 R50 71.2
CycleContrast (Wu & Wang, 2021) R2V2 R18 76.8
CycleContrast (Wu & Wang, 2021) R2V2 R50 82.1
VITO VideoNet R50 85.3

Table 3: VITO outperforms all 2d pretained backbones in finetuning on UCF101 w/ just pooling of
frame representations. Performance is even above all video architectures except gray numbers.

DAVIS segmentation. Here we demonstrate the value of video pretraining compared directly with
ImageNet pretraining. In addition to displaying competitive scene understanding capabilities, we see
that VITO specifically learns features relevant to temporal dynamics, and conclusively outperforms
strong ImageNet pretraining methods, on both the region jaccard (J ) and boundary F measure (F)
(Table 2).

UCF101 action recognition. In Table 3, we present finetuned top-1 accuracy of many methods that
are either pretrained on video data using video-specific architectures (3D convolutions and variants)
or standard image architectures that produce frame-based representations which are simply averaged
over clips. Traditionally, the latter have not been able to come close to the performance of the former,
but we find that VITO has the best performance of all image backbones and even outperforms many
recent video-specific SSL methods.

5 DISCUSSION

We propose VITO, a simple method for distilling videos into image representations. The key fea-
tures of our method include improved dataset curation, adapting standard synthetic augmentations
to video frames, and using attention-guided contrastive learning. With these components, VITO out-
performs all prior video pretraining methods on object detection and semantic segmentation tasks,
and for the first time, closes the gap with ImageNet pretraining. Furthermore, unlike image pretrain-
ing, VITO-pretraining generalizes to tasks that require temporal understanding, achieving surpris-
ingly strong performance on video segmentation and action recognition.

We believe this work can be a foundation for future video pretraining efforts, as our approach is
powerful, yet simple and extensible in almost every aspect. For example, because we base our
learning paradigm on standard architectures and contrastive learning methods, it is easy to extend
or adapt our approach to leverage continuing advancements in image-based contrastive, and more
generally, self-supervised learning objectives. Additionally, while we have shown the benefits of
a simple attention module for learning from video data, there are great opportunities to extend our
approach to take advantage of more powerful attentional architectures. In sum, despite the many
successes in video representation learning, our results suggest that there is a great untapped potential
in video pretraining as a paradigm for learning general visual representations.

9
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6 REPRODUCIBILITY STATEMENT

We will release our pretrained models along with the code needed to implement the VITO model
architecture. Pretraining and evaluation details about architectures, optimization, and hyperparame-
ters have all been detailed in the appendix. The VideoNet procedure for curating video datasets can
be reproduced with standard ImageNet classifiers and publicly available online videos.

REFERENCES

Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by moving. In ICCV, 2015.

Jean-Baptiste Alayrac, Adria Recasens, Rosalia Schneider, Relja Arandjelović, Jason Ramapuram,
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Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, SM Eslami, and
Aaron van den Oord. Data-efficient image recognition with contrastive predictive coding. arXiv
preprint arXiv:1905.09272, 2019.
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A APPENDIX

A.1 IMPLEMENTATION: DATA PRE-PROCESSING

Self-supervised pretraining. Each frame is randomly augmented by composing the following op-
erations, each applied with a given probability:

1. random cropping: a random patch of the image is selected, whose area is uniformly sam-
pled in [s · A,A], where A is the area of the original image, and whose aspect ratio is
logarithmically sampled in [3/4, 4/3]. s is a scale hyper-parameter set to 0.08 when learn-
ing from ImageNet, and 0.4 when learning from videos. Regardless, the patch is then
resized to 224 ×224 pixels using bicubic interpolation;

2. horizontal flipping;

3. color jittering: the brightness, contrast, saturation and hue are shifted by a uniformly dis-
tributed offset;

4. color dropping: the RGB image is replaced by its grey-scale values;

5. gaussian blurring with a 23×23 square kernel and a standard deviation uniformly sampled
from [0.1, 2.0];

6. solarization: a point-wise color transformation x 7→ x · 1x<0.5 + (1 − x) · 1x≥0.5 with
pixels x in [0, 1].

The augmented frames v1 and v2 result from augmentations sampled from distributionsA1 andA2

respectively. These distributions apply the primitives described above with different probabilities,
and different magnitudes. The following table specifies these parameters for the BYOL framework
(Grill et al., 2020), which we adopt without modification. When learning from three views, we use
the distribution A1 to generate the third view.

Parameter A1 A2

Random crop probability 1.0
Flip probability 0.5
Color jittering probability 0.8
Color dropping probability 0.2
Brightness adjustment max 0.4
Contrast adjustment max 0.4
Saturation adjustment max 0.2
Hue adjustment max 0.1
Gaussian blurring probability 1.0 0.1
Solarization probability 0.0 0.2

Transfer to PASCAL and ADE20K. During training, images are randomly flipped and scaled by a
factor in [0.5, 2.0]. Training and testing are performed with 512×512-resolution images. When fine-
tuning on ADE20K, we aditionally use photometric transformations from the mmseg1 codebase.

Transfer to COCO and LVIS. The target resolution is 800×1024. During testing, an image is
resized by a factor s while preserving the aspect ratio, such that it is tightly contained inside the
target resolution, and then padded. When fine-tuning, the image is rescaled by a factor of u ·s where
u is uniformly sampled in [0.8, 1.25], and is then cropped or padded to the target resolution.

A.2 IMPLEMENTATION: OPTIMIZATION

Self-supervised pretraining. We pretrain ResNet-50 using the LARS optimizer (You et al., 2017)
with a batch size of 4096 split across 128 Cloud TPU v3 workers. We adopt the optimization details
of BYOL, scaling the learning rate linearly with the batch size and decaying it according to a cosine
schedule. The base learning rate is 0.3 and the weight decay is 10−6.

1https://github.com/open-mmlab/mmsegmentation
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Semantic segmentation on PASCAL and ADE20K. We evaluate ResNet models by attaching a
fully-convolutional network (FCN, Long et al. (2015)) and fine-tuning end-to-end, following He
et al. (2020). We fine-tune for 45 and 60 epochs on PASCAL and ADE20K respectively, and report
the mean intersection over union (mIoU) averaged across 5 runs.

We fine-tune for 45 epochs on the PASCAL train aug2012 set or 60 epochs on the ADE20K
train set. We use stochastic gradient descent with a batch size of 16 and weight decay of 0.005.
The learning rate is initially set to 0.04 and decayed exponentially with a factor of 0.9n where n is
the iteration number. When fine-tuning external models, we sweep over the base learning rate and
weight decay and report their performance given the optimal configuration. In all cases we report
mIoU on the val set averaged across 5 runs.

Transfer to COCO and LVIS with FCOS⋆. The network is fine-tuned for 30 epochs on the COCO
train2017 set or the LVIS v1 train set. We use AdamW (Loshchilov & Hutter, 2019) with
weight decay 10−4, base learning rate of 10−3, and batch size 128 split across 16 workers. The
learning rate rises linearly for 1

4 of an epoch, and is dropped twice by a factor of 10, after 2
3 and 8

9
of the total training time. We report mAP on the COCO val2017 set and the LVIS v1 val set,
averaged across 5 runs.

We evaluate pretrained ResNet’s using the FCOS⋆ architecture, following Hénaff et al. (2022).
FCOS⋆ is the implementation of a single-stage detector based on FCOS (Tian et al., 2019), and
improved with the collection of techniques from Wu et al. (2020), Zhang et al. (2020), and Feng
et al. (2021), full details can be found in Hénaff et al. (2022). The pretrained network is used to
initialize the backbone of the FCOS⋆ model, which is then fine-tuned for 30 epochs. We report
bounding-box mean average precision (mAP) averaged across 5 runs.

Video segmentation on DAVIS

As a further test of scene understanding, we assess whether learned representations can continue
to recognize parts of an object as they evolve over time. Video object segmentation, specifically in
its semi-supervised setting, captures this ability, which we evaluate on the DAVIS’17 benchmark.
Having evaluated a learned representation on a video independently across frames, we segment
these features with nearest neighbor matching from frame to frame, given a segmentation of the first
frame. In this way, the segmentation is propagated according to the similarity of the representation
across space and time. We reuse the segmentation procedure from Xu & Wang (2021) without
modification.

Action recognition on UCF101 We evaluate action recognition classification on the UCF101
dataset (Soomro et al., 2012). We follow the procedure for finetuning used in Wu & Wang (2021)
which is based on Morgado et al. (2021). Clip representations are obtained by averaging the frame
representations for the video, and one fully connected layer is used for predicting the action class. 10
clips are sampled from each video and the predictions of the clips are averaged for the final results.

A.3 SEMANTIC BINDING WITH CONTRASTIVE ATTENTION POOLING

The ablation study demonstrated that multi-scale attention improves the performance of VITO in
semantic segmentation. To probe why this may be, we visualize and interpret the learned attention
masks (Figure A.1). For simplicity, we only visualize the masks from the coarsest scale (output
feature map), but the interpretation naturally extends to the multi-scale version as these masks are
learned with independent attention modules.

Because the attention masks are not computed jointly across each view, for a given video frame,
the attention module must marginalize over the training data to make a statistical prediction—what
should be attended to in the first view in order to minimize the contrastive loss across possible second
views? Specifically, the attention must focus on content that is most likely to be stable across time
while still being discriminative (or unique) relative to other frames from other videos. Different
examples appear to trade-off these criteria differently, yet systematically. For example, in the third
column of Figure A.1 even though the animated characters on the right side of both frames may be
discriminative content, the attention module has learned to focus on the static picture on the left as
it is the content that is most likely to be stable across time. For this pair of frames the prediction is
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Figure A.1: Example augmented frames with overlaid (resized) learned attention masks. Attention is
computed from the output of the final block of the VITO trained ResNet-50. Crucially, the attention
masks are computed independently, such that the attention module can only use spatial cues.
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Figure A.2: Ablating different temporal sampling schemes. Delta refers to fixed time sampling
beteween frames as in Gordon et al. (2020). Uniform refers to chunking time into non-overlapping
blocks and uniformly sampling within each chunk as in Xu & Wang (2021). Marginal sampling
(ours) refers to simple uniform sampling from the full video clip of length T = 2.56s. First two
panels show that marginal sampling is best overall across transfer to PASCAL and ADE20K. Third
panel shows the distribution of absolute time-differences between any two pairs of frames under
each sampling scheme (assuming 3 views are sampled per clip).

correct—the attention disregards content that is changing too abruptly—despite not having access
to motion cues. On the other hand, the example in the fourth column demonstrates a scenario where
the model has attended to stable, but primarily discriminative content (the bird) rather than the
background, which is also very stable but most likely less unique relative to other videos.

Even beyond the ability to localize stable, yet discriminative content, it seems that our method also
enables “semantic binding” of visually different, but semantically related features. This can be seen
in the first pair of frames, as the model has learned to associate an arm or elbow (in the first frame)
with the dumbbell (in the second frame), demonstrating an understanding that these two semantically
related concepts co-occur and thus are predictive of one another given the right embedding.

Binding co-occuring features appears as an intuitive explanation for why these representations would
perform well on semantic segmentation. It is particularly interesting that training end-to-end with a
standard contrastive loss can produce complex behavior reminiscent of the DINO approach (Caron
et al., 2021) even though we use a single, two-layer MLP attention module as opposed to large-scale
transformer architectures which use attention throughout the network.
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A.4 MODEL SCALING RESULTS

Semantic segmentation Object detection

Pretraining Dataset Backbone PASCAL ADE20K COCO LVIS

VITO ImageNet R50 76.3 39.4 44.0 25.7
MoCLR (Tian et al., 2021) ImageNet Swin-S 78.6 43.7 48.4 32.7
VITO VideoNet Swin-S 81.3 46.1 49.8 33.5
DetconB (Hénaff et al., 2021) ImageNet Swin-S 81.4 46.1 50.4 33.1

Table A.1: VITO scales to larger model architectures (Swin-S), improving performance compared
to the ResNet-50 baseline and remaining competitive with ImageNet pretraining.
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