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Abstract

As machine learning (ML) increasingly handles sensitive data, there is growing
need for secure implementations of privacy-preserving techniques like differential
privacy (DP). While random number generation is essential for ML applications,
from basic operations to advanced privacy mechanisms, current solutions face a
critical trade-off: modern pseudo-random number generators (PRNGs) are highly
optimized for ML workloads, but lack the cryptographic guarantees required for
secure real-world DP implementations. Our benchmark of private training shows
a 43-530% increase in single-step runtime after switching to a cryptographically-
secure generator–even with available hardware acceleration. This result highlights
a major gap in integration of secure RNGs into GPU-accelerated ML. In this posi-
tion paper, we argue that dedicated hardware RNG co-processors could bridge this
gap by providing high-throughput true random numbers from physical entropy
sources while dramatically reducing power consumption compared to software
implementations. Such co-processors would be especially valuable for on-device
private learning and other edge AI applications where both security and energy
efficiency are essential.

1 Introduction

Innovation in hardware acceleration and software optimization for machine learning (ML) have en-
abled significant advancement in the scale and efficiency of ML models. With these advancements,
ML applications can be practically deployed in new use cases, from training on large sensitive
datasets (1; 2) to on-device ML training and inference (3; 4).

Differential privacy (DP) (5; 6) has emerged as a leading framework for privacy-preserving compu-
tations on sensitive data, with organizations like Google, Apple, and the US Census Bureau adopting
DP for both standard database calculations and differentially-private ML (DP-ML) (7; 8; 9). Inject-
ing random noise into statistical calculations is the fundamental feature of DP protocols; the added
noise limits the amount of information that can be extracted about individual entries or subsets of
the sensitive dataset. But implementing truly secure DP-ML requires more than just adding noise to
training operations—the noise itself must also be unpredictable. This creates a fundamental tension
between security and performance: while modern ML frameworks achieve excellent performance
using fast pseudo-random number generators (PRNGs)(10; 11), these algorithms lack the crypto-
graphic guarantees needed for secure DP implementations. Now that DP models are deployed to
production by the likes of Apple and Google for processing private data on mobile devices, their
security is of great concern for consumer privacy (12; 13; 14).

In this position paper, we explore how a high-speed secure RNG co-processor could interface
with existing ML frameworks and accelerators to enable privacy-preserving applications with-
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out sacrificing performance. Such a co-processor would support ML workloads by generat-
ing cryptographically-secure random numbers from a physical entropy source, and feeding them
into applications running on CPUs/GPUs through high-speed interconnects. We believe a high-
performance true random number generator (TRNG) implementation is achievable in current CMOS
technology, with significantly lower power consumption than software alternatives. This technology
could have near-term impact on secure ML deployment, especially on power-constrained edge and
mobile devices.

In Section 2 we review the current state of random number generation in ML frameworks and high-
light a significant gap in support for cryptographically-secure RNGs in GPU-accelerated applica-
tions. Section 3 presents benchmark results for performance of differentially-private training with
cryptographically-secure noise generation across different architectures and models. Our results
show dramatic training step time increases when using a cryptographically-secure RNG, even with
hardware acceleration enabled. Finally, Section 4 outlines design requirements and integration ap-
proaches for a high-speed TRNG co-processor that could address these performance challenges.

2 Secure RNG for differential privacy

Differentially-private ML (DP-ML) training (15), or private training, has become the standard for
building ML models from sensitive data. DP provides a mathematical framework for quantifying
and limiting how much information about any individual training example can be extracted from
the trained model, tracked through a cumulative “privacy budget” that measures total information
leakage. Most private training implementations are based on the DP-stochastic gradient descent
(DP-SGD) optimization method (16), in which carefully calibrated random noise is added to gradient
updates during training.

DP-ML practitioners and cryptography experts consistently emphasize the need for
cryptographically-secure PRNGs (CSPRNGs) to generate the random noise (17; 18; 19; 20; 21), as
insecure PRNGs may leave the system vulnerable to attacks which invalidate the privacy budget.

Non-CSPRNGs are vulnerable to state compromise extension attacks, whereby an attacker that has
discovered the PRNG’s internal state can clone the generator and reproduce the past and/or future
sequence of pseudorandom numbers (22). For many insecure PRNG designs, observing a relatively
small number of pseudorandom outputs can allow an attacker to computationally reconstruct or
guess the internal state of the PRNG. Many practical implementations of this attack on the Mersenne
Twister (23), the default PRNG in Python and PyTorch CPU (24; 25), have been documented (18;
26; 27).

In the case of DP-ML, where noise is added to sparse gradient vectors, an attacker could infer
generator outputs even if they do not have direct access to them. The zero elements of the gradient
vectors (typically returned as intermediate variables during training execution and therefore can
be leaked) expose information about the pseudorandom sequence which could be used to discover
the generator state. Garfinkel et al. (18) describe an analogous attack on sparse DP Census data. A
successful state compromise extension attack on the PRNG used for noise addition could then enable
data reconstruction attacks on the DP-model (28; 29; 30). Such attacks render the information-
theoretic limits specified by the privacy budget obsolete.

Floating point attacks have also been extensively studied in DP-ML applications (31; 32; 33), but
effective mitigation strategies are now widely adopted (33; 34; 35; 36).

Despite these weaknesses, PRNGs continue to be used in privacy applications because the perfor-
mance tradeoff for existing hardware sources of randomness are too extreme (18). In most practical
settings, a CSPRNG seeded by a true random source, provided on most modern processors and
accessible via /dev/urandom on UNIX-based systems, is considered an acceptable compromise of
performance and security (17; 18; 19).

Given the strong consensus on the necessity of CSPRNGs for secure DP implementations, we
were surprised to find that none of the 3 most popular DP-ML libraries—TensorFlow Privacy (37),
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PyTorch Opacus1 (38) , JAX Privacy (39)—support noise generation with a CSPRNG. Nor does
NVIDIA’s cuRAND library for random number generation implement a single CSPRNG (10).

There is thus a clear gap for integration of cryptographic-strength RNGs (either pseudo or true)
into production-ready libraries for GPU-accelerated applications, including but certainly not limited
to DP-ML. This gap persists despite the fact that CUDA implementations of stream ciphers like
Advanced Encryption Standard (AES) for cryptographically-secure random number generation have
long been reported in the literature (40; 41; 42; 43; 44). These have demonstrated throughput up to
867 Gbps (44)—over an order of magnitude faster than the ∼10 Gbps throughput typically given by
CSPRNGs on high-performance CPUs (45), but still far behind the blistering speeds up to 1 TBps2

achieved with insecure counter-based PRNGs like Philox (41) on NVIDIA A100 GPUs (10).

To quantify the performance impact of using CSPRNGs in private training, we implemented DP-
SGD with both standard PRNGs and CSPRNGs. Our benchmark reveals significant runtime over-
head that could be mitigated through hardware acceleration.

3 DP-SGD Benchmark

3.1 Implementation

Many references in the DP literature and codebases of private training frameworks mention a steep
performance cost when training DP applications with noise generated by CSPRNGs (19; 38), but the
impact is rarely quantified. To better understand this problem, we designed a DP-SGD benchmark
which measures the contribution of secure noise generation to runtime of a single private training
step.

We evaluated the impact of cryptographically-secure random number generation on two represen-
tative neural network architectures: 1) ResNet-18 (46) as implemented in torchvision (47), and 2)
a small Transformer encoder model consisting of 2 layers with 4 attention heads, input dimension
128, and hidden dimension 256; both implemented as binary classifiers. These architectures were
chosen to represent both traditional computer vision workloads and modern attention-based models
which have become ubiquitous in ML.

Private training was implemented using Opacus’ PrivacyEngine, which provides highly optimized
implementations of DP-SGD on PyTorch. The PrivacyEngine was configured with 1.0 noise multi-
plier and 1.0 L2 gradient clipping norm, and uses the Poisson subsampling scheme (48) with average
batch size of 32.

Due to the lack of built-in CSPRNGs in existing ML libraries, we were forced to implement a custom
PyTorch generator for cryptographically-secure random number generation. We follow a common
implementation (41; 25; 44) of the stream cipher AES to generate cryptographically-secure random
bitstreams. Our Generator leverages the Python cryptography library (49) for hardware-accelerated
AES, utilizing Intel AES-NI instructions on x86 processors (50) and the Secure Enclave on Apple
Silicon (51). To minimize overhead, the generator draws and caches batches of 10M random num-
bers at a time. When the cache is exhausted, a new batch is generated using fresh entropy from the
system RNG. The hardware-accelerated AES Generator showed strong performance in raw random
number generation tests, achieving similar runtime or even modest speedup over the default PyTorch
generator on CPU (up to 1.2× for tensor size > 1M elements). We note that this AES generator is
a demonstration for the purpose of assessing performance of CSPRNGs in private training, and has
not been rigorously tested for its statistical quality and security.

The benchmark compares training step times between two configurations of the PrivacyEngine: one
using our AES-based Generator for noise generation, and one with noise explicitly disabled by
setting the noise multiplier to zero. This allows us to isolate the overhead specifically due to secure
noise generation while accounting for other DP-SGD operations like gradient clipping and per-
sample gradient computation. We also tested the benchmark with the default Opacus PrivacyEngine

1Technically Opacus supports CSPRNG via torchcsprng (25; 21), but we encountered major compatibility
issues between the outdated csprng package (last updated 2021) and modern PyTorch/CUDA versions. Because
of this, we implemented our own secure Generator for the benchmark in Section 3.

2Note the difference in unit convention for performance metrics (bits vs. bytes per second). We opt for
consistency with cited sources rather than converting.
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Table 1: Model runtime comparison with training operation breakdown for DP-SGD training step
with AES CSPRNG noise generation. We use a custom Transformer Encoder model described in
Section 3.1, and torchvision’s ResNet-18 (47) with 1.6M and 11M trainable parameters, respectively.
All runtimes reported in ms with mean and standard deviation calculated over 1000 DP-SGD step
iterations. Note that noise generation is a subset of the DP-SGD update time.

Transformer Encoder

System Apple Silicon M3 CoLab VM T4 CoLab VM A100

Noise setting On Off On Off On Off

Forward/backward
pass 43.± 10. 43.± 10. 17.± 3. 17.± 3. 13.6± 0.6 14.± 1.

DP-SGD
update 57.± 38. 19.± 8. 45.± 37. 6.± 3. 44.± 33. 6.± 2.
(Noise

generation) (39.± 5.) (2.4± 5) (39.± 6.) (0.7± 0.2) (38.± 2.) (0.7± 0.1)

Total step
time 100.± 40. 63.± 15 61.± 37. 22.± 4. 58.± 34. 20.± 3.

Noise
overhead 58% 174% 186%

ResNet-18

System Apple Silicon M3 CoLab VM T4 CoLab VM A100

Noise setting On Off On Off On Off

Forward/backward
pass 478.± 175. 473.± 173. 37.± 6. 38.± 6. 31.± 4. 31.± 2.

DP-SGD
update 326.± 219. 89.± 29. 268.± 235. 15.± 5. 234.± 195. 10.± 4.
(Noise

generation) (239.± 11.) (5.± 2.) (253.± 42.) (1.3± 0.4) (223.± 6.) (1.18± 0.07)

Total step
time 804.± 291. 562.± 184. 306.± 235. 53.± 9. 265.± 195. 42.± 4.

Noise
overhead 42% 475% 528%

and PyTorch Generator, but as expected the PyTorch PRNG was not a bottleneck for private training,
with noise overhead reaching at most 2%.

We evaluated the benchmark on three different systems to understand how noise generation overhead
changes with available compute resources: An Apple Silicon M3 system with 8 CPU cores and
Metal Performance Shaders (MPS) backend for PyTorch (52); and Google Colab VMs with 2 Intel
Xeon CPU cores and 1 NVIDIA GPU (either T4 or A100).

All runtime measurements were averaged over 1000 DP-SGD training step iterations. The code
for our DP-SGD benchmark is available at the git repo https://github.com/sm-egan/rng_ml,
including example Jupyter notebooks suitable for CoLab.

3.2 Results

The benchmark results in Table 1 reveal substantial overhead from our cryptographically-secure
noise generation across all systems tested. Enabling secure noise generation for the Transformer
model increased total step time by 58% on the M3, 174% on the T4, and 186% on the A100. The
noise generation component dominates DP-SGD update time, accounting for 68-89% of the update
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across all systems. Notably, while GPU acceleration reduces runtime of the forward/backward pass
and other DP-SGD overheads significantly, the noise generation remains CPU-bound, limiting the
overall benefit of more powerful accelerators.

The overhead becomes even more pronounced with the larger ResNet-18 model. Absolute noise
generation time scales by ∼6× relative to the Transformer Encoder, roughly proportionate to the
model size increase (11M trainable parameters vs. 1.6M). The CUDA GPUs accelerate runtime
on non-noise operations by more than 10× compared to the M3, yet the runtime contribution of
noise generation is relatively constant, yielding an astounding ∼500% noise overhead. The fact that
noise generation times are similar across systems, even with a significant difference in CPU core
count, suggests either that our AES CSPRNG implementation is not taking advantage of parallel-
processing or multi-threading on CPU; or that GPU-CPU memory transfer is the predominant bottle-
neck regardless of raw noise generation performance. Disentangling these effects and parallelizing
the AES CSPRNG are important directions for future work in order to make relevant performance
comparisons to other parallel RNGs.

These results again highlight the tradeoffs between security and performance that practitioners face
when implementing secure RNGs for DP-ML, and suggest two key directions for future work to
facilitate adoption of privacy-preserving ML:

1. Efficient integration of optimized software CSPRNGs and their hardware entropy sources
into common software frameworks for DP-ML, and

2. Increasing throughput while maintaining randomness quality in hardware entropy sources
and TRNGs, allowing them to play a bigger role in generating truly unpredictable noise for
security-critical applications.

In the following section, we discuss the limitations of current TRNG implementations and propose
guidelines for new technologies to bridge the security-performance gap.

4 The path to RNG co-processors for privacy-preserving ML

Some DP practitioners, including the US Census Bureau, have expressed their preference for a re-
liable hardware implementation of secure RNG (18). Specialized hardware TRNGs can generate
random numbers with superior power efficiency and security, as the internal RNG state is not ini-
tialized in memory, but in an actual physical process that the TRNG circuit implementation merely
samples (53). The entropy source may be thermal or electronic noise, jitter in ring oscillator circuits
(54; 55; 56), or a quantum process such as single photon emission and detection (57). TRNGs are
complex systems which require careful design to ensure their quality and security.

TRNGs are already commercialized for application in cryptography, but operate at only moderate
speeds (up to 200-500 Mbps) (58; 59) and produce random bit or integer outputs. Most commercial
TRNG solutions consist of IP Cores that can be implemented on FPGAs, but the difficulties of FPGA
programming and integration often hamper their adoption.

These existing TRNGs are unlikely to meet the performance and integration demands of DP-ML
applications. New designs for commercially-viable RNG co-processors are needed, integrating a
significantly higher-speed entropy source with additional logic units to convert bitstream outputs to
continuous distributions useful for DP-ML: uniform, Gaussian, Laplacian, and Poisson in particular.
To facilitate integration with this logic, the TRNG should be implemented in CMOS-compatible
hardware with existing high-yield manufacturing processes. This would enable chip designs that
serve as efficient co-processors for secure noise generation in DP workloads, analogous to Apple’s
Secure Enclave cryptography co-processor for keygen and encryption tasks. Unlike general purpose
hardware, such co-processors can be designed with specific memory and logic architectures that
mitigate the DP noise attacks described in Section 2.

We believe the most promising hardware platform for high-speed TRNG cores are emerging non-
volatile memory (NVM) technologies (60). These devices are low power, often CMOS-compatible,
and randomness can be harvested from the stochastic behaviour observed when switching the mem-
ory state. Because of these properties, NVMs have been studied extensively for application in neu-
romorphic computing and stochastic computing (61; 62). With respect to designing a high-speed
TRNG, the key advantage of NVMs is that individual memory cells can be assembled into large
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arrays with multiple cells accessible in parallel. The array size and degree of parallelism can be
optimized during design in order to produce a device with higher random bit throughput, even if
access time is fixed.

To facilitate integration with other parts of the ML workflow one could deliver the RNG co-processor
as an add-on card with PCI Express (PCIe) interface, the same standard interface used by GPUs, or
integrate it as a chiplet in a Sytem on Chip. The latter approach is in keeping with industry trends
towards chiplet architectures for more flexible adaptation to changing AI workloads (63).

Based on performance benchmarks for PRNG and our survey of existing TRNG technologies, we
propose the following design guidelines for an RNG co-processor:

1. Random bit generation at >100Gbps

2. Energy efficiency on the order 1-10 picojoules-per-bit (pJ/bit)

3. Modular component or chiplet connecting to system through standard interfaces (PCIe,
UCIe, etc.)

4. Compliant with NIST guidelines for random number generation SP 800-90A/B/C (64; 65;
66), and able to pass standard statistical tests for binary sequences such as NIST 800-22
(67) and TestU01 (68).

This aspirational target of 100 Gbps is set with the goal of approaching data rates achieved in high-
performance PRNGs, and matching data transfer rates of standard interfaces like PCIe Gen 6.0,
which sits at 121 GBps in the maximum 16-lane configuration. The planned PCIe Gen 7.0 is ex-
pected to double the maximum data transfer rate to 242 GBps by 2025.

Energy efficiency of 1-10 pJ/bit is routinely achieved in TRNGs (69; 70), but would be unimagin-
able for even for the most efficient CUDA implementations of CSPRNGs. Efficiency values reported
in the literature range from 0.43-4Gbps/W (42; 44), equivalent to 245-2326 pJ/bit.

5 Discussion

The benchmark presented in Section 3 is an early attempt to quantify the oft-cited security
vs. performance tradeoff in current DP-ML infrastructure. Hardware accelerators and software
optimization have dramatically improved the performance of private training computations, but
cryptographically-secure RNGs remain a bottleneck for applications with stricter security require-
ments, thus limiting the adoption of truly secure DP.

Our findings show that even hardware-accelerated AES on CPU is not sufficient to achieve rea-
sonable performance for secure noise generation. CPU-GPU transfers are a well-known bane to
ML performance, and we believe these effects contribute to the 43-530% overheads for CSPRNG
noise generation observed in our benchmark. Implementing GPU-accelerated CSPRNGs in com-
mon DP-ML libraries is an important next step for the field to ensure that applications built on
these frameworks can maintain their privacy guarantees. This solution should suffice in the data
centre setting, but the high power cost of CSPRNG implementations on GPUs may be impractical
in resource-constrained environments like edge devices and mobile applications, where DP-ML is
often deployed.

Looking ahead, we see the development of secure RNG co-processors as a critical enabler for
privacy-preserving ML. As models continue to scale and privacy regulations become more stringent,
the ability to efficiently generate high-quality random numbers for DP-ML and related technologies
such as federated learning and secure aggregation (71; 72; 35; 73) will become even more impor-
tant. New hardware solutions could help bridge the gap between the theoretical guarantees of DP
and practical, deployable implementations that preserve both privacy and performance.
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Z. Xu, Q. Yang, F. X. Yu, H. Yu, and S. Zhao, “Advances and Open Problems in Federated
Learning,” 2021. [Online]. Available: https://arxiv.org/abs/1912.04977

[73] A. McMillan, O. Javidbakht, K. Talwar, E. Briggs, M. Chatzidakis, J. Chen, J. Duchi,
V. Feldman, Y. Goren, M. Hesse, V. Jina, A. Katti, A. Liu, C. Lyford, J. Meyer,
A. Palmer, D. Park, W. Park, G. Parsa, P. Pelzl, R. Rishi, C. Song, S. Wang, and
S. Zhou, “Private Federated Statistics in an Interactive Setting,” 2022. [Online]. Available:
https://arxiv.org/abs/2211.10082

11

https://doi.org/10.6028/NIST.SP.800-22r1a
https://doi.org/10.1145/1268776.1268777
https://doi.org/10.1109/TVLSI.2023.3298327
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1145/3133956.3133982
https://arxiv.org/abs/1912.04977
https://arxiv.org/abs/2211.10082

	Introduction
	Secure RNG for differential privacy
	DP-SGD Benchmark
	Implementation
	Results

	The path to RNG co-processors for privacy-preserving ML
	Discussion

