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Abstract

Despite considerable progress in image classification tasks, classification models seem unaf-
fected by the images that significantly deviate from those that appear natural to human eyes.
Specifically, while human perception can easily identify abnormal appearances or composi-
tions in images, classification models overlook any alterations in the arrangement of object
parts as long as they are present in any order, even if unnatural. Hence, this work exposes
the vulnerability of having semantic and syntactic discrepancy in images (SSDI) in the form
of corruptions that remove or shuffle image patches or present images in the form of puzzles.
To address this vulnerability, we propose the concept of “image grammar”, comprising “im-
age semantics” and “image syntax”. Image semantics pertains to the interpretation of parts
or patches within an image, whereas image syntax refers to the arrangement of these parts
to form a coherent object. We present a semi-supervised two-stage method for learning the
image grammar of visual elements and environments solely from natural images. While the
first stage learns the semantic meaning of individual object parts, the second stage learns
how their relative arrangement constitutes an entire object. The efficacy of the proposed
approach is then demonstrated by achieving SSDI detection rates ranging from 70% to 90%
on corruptions generated from CelebA and SUN-RGBD datasets.

1 Introduction

The task of image classification has significantly evolved with the advancements in deep neural networks
(DNNs), to the point of achieving performance comparable with humans. For such tasks, the state-of-the-
art (SoTA) models are based on convolution neural networks (CNNs) (Krizhevsky et al., 2012; Simonyan
& Zisserman, 2015; He et al., 2016) and vision transformers (ViTs) (Dosovitskiy et al., 2021; Liu et al.,
2021). The fundamental idea behind these models was to develop the ability to identify an object in an
image by understanding (and recognizing) its features/attributes (semantics). For example, when an image
is classified as a “dog”, it is because it contains attributes of dogs, such as “fur”, “dog tail”, “dog paws”.
Indeed, such models learn the distribution of images belonging to different object classes by extracting low-
and high-level semantic information from images and encoding them in hidden features of stacked layers (Hua
et al., 2018; Ortego et al., 2021). The learning processes are designed to mainly rely on image-level labels:
the global information about the object type depicted in the entire image. Hence, to learn object classes,
the classification models have to implicitly learn class features/attributes present in the images labeled
as the corresponding class. In other words, since there is no explicit information provided for each feature
like “fur”, “paws”, or “dog tail”, the models must implicitly learn these attributes as characteristic traits
of a dog by observing a large variety of “dog” images. However, this learning process has an underlying
assumption that causes a vulnerability in the pipeline of classification models.

The vulnerability arises from assuming that input images always accurately depict the object in its
natural appearance and composition. As a result, classification models don’t explicitly learn how the
constituent features of an object class are arranged in natural images. For instance, they do not ensure that
the “dog tail” is at the posterior of the dog, or that the “paws” are in the lower part of the dog’s body.
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Figure 1: Examples illustrating susceptibility of various models (ViT-B/16,224 and Google Gemini Ad-
vanced) to images with unnatural appearance. The output of both models seem to be completely unaf-
fected by any of abnormalities present in the input images when performing the given tasks.

In other words, the question being answered is “What constituent class features are present in the image?”,
and not “Does this image contain a meaningful object of any observed class?”. This vulnerability appears as
the discrepancy between a human’s ability to instinctively recognize natural images and a classification
model’s tendency to be easily fooled into making high-confidence predictions for unnatural images. Figure 1
illustrates how a vision transformer model (ViT-B/16,224) (Wu et al., 2020) and a large multimodal model
(Google Gemini Advanced) (Team et al., 2023) are susceptible to this type of vulnerability. It can be
seen that the ViT model consistently predicts various dog breeds as the top-5 predictions, disregarding the
appearance of images that increasingly diverge from the clean natural image. Similarly, the Gemini model
ignores the unnaturalness of a dog displayed in the image when asked to describe the image or identify the
type of the dog. We use the term Semantic-Syntactic Discrepancy in Images (SSDI) to refer to this
vulnerability.

To address this vulnerability to SSDI corruptions in the visual appearance of input samples, we propose
the concept of “image grammar”. The concept is akin to grammar in language (Gunter et al., 1997; von
Stechow, 2019), and comprises both semantic meaning (“image semantics”) and a syntactical structure
(“image syntax”). “Image semantics” pertains to the existence and semantic significance of individual
features defining an object, while “image syntax” concerns the spatial arrangement and correct placement
of features to depict an object as it would naturally appear in the real world.

Consequently, we propose a semi-supervised two-stage deep learning framework that successively learns
both “image semantics” and “image syntax” mentioned above. This framework combines a deep cluster-
ing method with a bi-directional LSTM. The deep clustering method treats the image as a set of semantic
features, while the bi-directional LSTM ensures that the features are learned in relation to their spatial neigh-
bors, enforcing the model to understand individual features and their natural arrangement and composition.
This approach aims to train a classification model to not only predict object classes but also assess the degree
of naturalness in the appearance of an image. Furthermore, the framework is specifically designed to learn
the concept of “image grammar” in a strict setting that assumes SSDI corruptions are neither generated nor
used during the training phase. Such setting is motivated by the idea that, similar to human capabilities,
the meaning and the order of features should be inherently learnt together solely from natural images.
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Figure 2: Examples explaining the vulnerability of classification models to semantic-syntactic discrepancies
in images, SSDI. While all images appear to display different dogs, the visual appearance and composition of
images in columns (c)-(e) deviate from clean and uncorrupted images shown in column (b). This discrepancy,
however, is not caught by the current classification models, which solely focus on the presence of features.
This can be contrasted with adversarial examples (a), which target the decision-making of models while
preserving the natural visual appearance. Note: adversarial examples are not considered in this study but
are used to paint a complete picture.

2 Semantic-Syntactic Discrepancy in Images (SSDI)

Problem Definition Semantic-syntactic discrepancy (SSDI) is evident in images that have many iden-
tifiable semantic features but look unnatural to humans in their appearance and composition. Figure 2
illustrates examples that expose the described vulnerability of classification models. As humans, we can
readily recognize that the shown images aim to represent dogs due to the presence of recognizable dog fea-
tures. We can also perceive that the images in the three rightmost columns ((c)-(e)) are more likely to be
unnatural or altered in appearance (compared to images in columns (a) and (b)). We can make such a dis-
tinction even, for example, a “puzzle” image with rearranged patches that we haven’t encountered before. In
contrast, a classification model trained on large-scale dataset like ImageNet (Deng et al., 2009) consistently
assigns output labels corresponding to various dog breeds for the images in columns (b)-(e) solely based on
the presence of identifying semantic features, disregarding any abnormalities in the overall appearance (the
syntax). The contrast between human perception and classification models in these examples underscores
three crucial properties needed to address this vulnerability: (1) classification models need to learn to
estimate the degree to which an image depicts natural occurrence existing in the real world, (2) based on
this degree, they need to be able to distinguish between natural and unnatural images, and (3) preferably,
they need to be capable of learning this based solely on natural images.

Learning Setting This work proposes a way that enables classification models with properties (1) and
(2) in a learning setting motivated by the property (3) mentioned above. In particular, the method describes
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how the architecture of a classification model and its training can be modified to allow it to distinguish
between natural and unnatural images by only observing natural unaltered images during training. This
setting is based on the combination of two reasons. First, humans can instinctively recognize unnaturalness
of different kinds even when they never came across of such examples. Both the meaning and the order of
features are learnt together without any need to see images with some parts removed or shuffled. Second, it
is challenging to consider and to train on all the possible ways samples with semantic-syntactic discrepancy
can be crafted (including, but not limited to corruptions described in this work). For example, if an image
is divided into n× n patches, assuming that only the original image depicts meaningful object, the number
of unnatural samples becomes (n2! − 1). Not only this becomes intractable for values of n > 3, but also
has no direct way of ensuring that all of these samples do not depict meaningful objects. Hence, it is more
intuitive to teach “What the natural arrangement of features should look like?” rather than “How natural
and unnatural images differ?”.

Importance and Application The importance of addressing SSDI becomes prominent when considering
the classification models used for the downstream tasks. On one hand, there’s the assumption that input
images are curated or verified, and the model’s primary task is to determine the object’s class within the
image. In this case, it’s been demonstrated that DNN models are vulnerable to notorious adversarial images,
which undermines their ability to accurately infer learned features while looking visually indistinguishable
from natural images (as seen in column (a) of Figure 2). (Note: adversarial attacks are not considered
within the scope of this paper, but are mentioned to paint a complete picture.) On the other hand, some
applications use object class prediction as a means to determine if an image meets certain criteria. For
instance, in image retrieval applications, the goal might be to compile a set of images belonging to specific
classes. Here, correctly inferring features is crucial, but the image itself is the primary interest. In such cases,
the SSDI vulnerability discussed in this paper could have a significantly detrimental effect, leading to the
final collection of images to include unnatural, corrupted images. This is especially prominent today when
the availability of generative models enables simple ways of handcrafting unnatural examples.

3 Related Works

To the best of the authors’ knowledge, the problem of SSDI vulnerability is not well-established yet. This
makes it hard to contextualize it as a standalone research direction. Nevertheless, the issue of SSDI can be
considered in the context of two categories of works: from the perspective of learning compositionality of
visual representations and from the perspective of vulnerabilities in computer vision.

3.1 Compositionality of Image Representations

Learning image representations creates a basis for visual tasks, such as image classification (He et al., 2016)
and object detection (He et al., 2017; Lin et al., 2017). Despite various supervised (Krizhevsky et al., 2012)
and unsupervised/self-supervised (He et al., 2022) methods were proposed to learn the underlying distribution
of image features, the issue of relying purely on the presence of features is recently starting to become more
prominent (Thrush et al., 2022). In the work of Yuksekgonul et al. (2023), authors discuss and analyze the
effects of naive reliance on contrastive pre-training and accuracy metrics. They conclude that large vision and
language models, which currently serve as the basis for a wide range of applications, disregard composition,
i.e. underlying structure, of both visual and language inputs. Their findings support the ideas and highlight
the relevance of SSDI vulnerability discussed in this paper. The work of Qin et al. (2022) proposed a solution
for ViT-based models (Wu et al., 2020) through patch-based negative augmentation. From this perspective,
our work serves as an alternative approach, which proposes a way of learning compositionality along with
the semantic of features without the need for generation and reliance on negative samples (as described in
Learning Setting of Section 2). Even though our experiments focus on CNN-based models, it is possible to
extend the method to vision transformers by considering them as the feature extractor model.
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Figure 3: The first stage of training SSDI detection pipeline: learning part semantics of objects.

3.2 Vulnerability of Computer Vision

The SSDI vulnerability, where differences in the visual appearance of an image are noticeable to humans,
stands in contrast to adversarial examples (Szegedy et al., 2013; Carlini & Wagner, 2017; Madry et al., 2017;
Wang & He, 2021; Gubri et al., 2022; Zhang et al., 2023) where the adversarial image and the clean image
appear visually similar to humans. Adversarial examples have been extensively studied in works of Madry
et al. (2017); Shah et al. (2023); Mo et al. (2022); Andriushchenko & Flammarion (2020) which explore
methods to prevent detrimental changes in the output predictions of classification models. However, these
approaches would not apply to SSDI as they do not detect abnormalities in appearance. Moving away
from the broader concept of adversarial examples, Hendrycks & Dietterich (2018) introduced a benchmark,
ImageNet-C, for common corruptions and perturbations. While this research delves into changes in the
natural appearance of images through noise, or color manipulations, it doesn’t address cases where corruption
stems from the rearrangement of natural feature order without affecting classifier predictions.

4 Methodology

In this section, we outline our proposed classification framework, which detects SSDI using a semi-supervised,
two-stage approach. The first stage which we refer to as part semantics, focuses on learning “image
semantics”. The idea is to create a pixel-wise segmentation map of the input image that creates a (limited)
set of clusters, each representing meaningful object parts (object semantics). The second stage then
utilizes the part semantics to learn how their relative arrangement constitutes an entire object, i.e., the
“image syntax”. The idea is for the model to learn the expected arrangement and composition based
on part semantics obtainable from natural images. During inference, the deviation from the expected
arrangements and the compositions learned from natural images serve as the metric to detect SSDI.

5



Under review as submission to TMLR

Stage 1: Learning Part Semantics As mentioned, the first stage focuses on learning the part meaningful
attributes of an object - its semantics. To learn this, the input pixels are segmented (grouped) into the set of
classes that represent individual object parts instead of the objects themselves. Although fully unsupervised
(no labels) or weakly supervised (only object class labels) approaches are more appealing, our observations
showed that these methods did not produce semantic maps with the desired level of detail and accuracy.
These approaches only allow the separation of the entire object from the background (e.g. the entire face),
but not its parts (e.g. nose, eyes, mouth). This is because there is a greater variation in color between the
object and the background than among the parts within the object itself. Hence, this stage was implemented
in a semi-supervised approach by using only a fraction of the ground truth semantic segmentation maps with
the deep clustering (Caron et al., 2018; Cho et al., 2021).

The training procedure is shown in Figure 3. Consider a set of input images xi, i = 1, ..., N . Let a subset of
them have pixel-level annotations mip, i = 1, ..., M, M ≪ N , where p stands for the p-th pixel. We assume
that we have C semantic classes in the pre-processed ground-truth (GT) annotations and ∀(i, p), mip ∈
[0, 1, ...C − 1]. The feature extractor has an embedding function fθ, which produces pixel-level feature
vectors zip = fθ(xi)[p], zip ∈ Rd.

First, we fine-tune the DNN feature extractor under semi-supervision. Pixel-level embedding features are fed
to a linear classifier gω, ω ∈ Rd×C so that the feature dimensions are projected onto the number of semantic
classes C. (Note, once the feature extractor has been fine-tuned, the classifier g can be discarded.) For all
images xi that have GT masks, the resulting pixel-level prediction becomes gω(zip). The fine-tuning is then
realized by minimizing the cross entropy loss between pixel-level prediction gω(zip) and GT segmentation
mask mip as shown in Equation 1:

minθ,ω LCE(gω(fθ(xi)[p]), mip) where LCE = − log exp(gω(zip)[mip])∑C−1
k=0

exp(gω(zip)[k])
(1)

As a second step, deep clustering technique is used to expand upon semi-supervised knowledge. We used
PiCIE, a deep clustering technique (Cho et al., 2021) in our approach. The core idea of PiCIE is to
process every training image using different combinations of color and geometric transformations. The
resulting features are then used to (a) determine the cluster centroids in K-means clustering and (b) keep
the consistency of these clusters, such that features of the same image should map to the same set of clusters
(“within”) and features of different images should map to the different clusters (“cross”). These are achieved
by iteratively optimizing the loss defined by Equation 2 for K-means clustering and the sum of losses defined
by Equations 3-5 for PiCIE method:

LKmeans =
∑N

i=1
∑

p

∑K
k=1 ∥zipk − µk∥2 (2)

Lwithin =
∑N

i=1

∑
p
LDC(z(1)

ip , y
(1)
ip , µ) + LDC(z(2)

ip , y
(2)
ip , µ) (3)

Lcross =
∑N

i=1

∑
p
LDC(z(1)

ip , y
(2)
ip , µ) + LDC(z(2)

ip , y
(1)
ip , µ) (4)

where LDC(zip, y, µ) = − log exp(−d(zip, µy))∑K
k=1 exp(−d(zip, µk))

(5)

where K is the total (pre-selected) number of clusters, µ is the matrix of cluster centroids, y is the centroid
index in µ that is closest to zip, and d(·, ·) is the cosine distance. As shown in Figure 3, the result of the
first training stage is a DNN that can produce semantic masks for object parts, i.e. part semantics. The key
is the desired granularity, such that the resulting part semantics are consistent for any given portion/patch
of an image.

Stage 2: Learning Image Syntax The second stage is the core of training the pipeline to detect SSDI.
The idea is to utilize the relation between neighboring part semantics. For example, if we know that some
portion of an image contains a human nose, the expectation is to have two eyes and a mouth to be depicted
above and below it, respectively.
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Figure 4: The second stage of training SSDI detection pipeline: learning image syntax.

The first step in achieving this is to obtain different patches from within the input image. The works of
FALcon (Ibrayev et al., 2023) and GFNet (Wang et al., 2020) explore processing input in a patch-wise
sequential manner with only the class label given as the supervision. In this work, we consider a simple and
generic approach of dividing images, i.e. the model on its own does not make any special decisions on how
the patches are obtained. For two datasets that are considered in this work, CelebA and SUN-RGBD, the
patches are obtained as five crops around the center of the image (Figure 6) and as a zig-zag pattern from
top to bottom, from left to right (Figure 8), respectively.

The second step is to traverse through the set of image patches, extract their corresponding part semantics,
and learn the relation between the part semantics of neighboring patches. Suppose for image x(i), i = 1, ..., N ,
we extract a total of G patches and obtain their corresponding part semantics m

(i)
t for t = 1, ..., G using the

DNN trained in the first stage. The image syntax depends on the presence of the object parts with respect to
each other rather than the exact part semantics m

(i)
t . Hence, each of them is converted into part semantics

vector s
(i)
t , which is the ratio of pixels belonging to each class in the part semantics.

Figure 4 shows how the image syntax is learned based on part semantics vectors using bidirectional long short-
term memory (bi-LSTM). The bi-LSTM is used because both directions in the traversal of part semantics
are valid relations to be learned. If it is parameterized by weights W and biases b, then based on the inputs
m

(i)
t and s

(i)
t as well as hidden states h

(i)
t at the processing step t the bi-LSTM makes two predictions:

p
(i,for)
t = LW,b(m(i)

t , s
(i)
t , h

(i,for)
t ) for the next semantics s

(i)
t+1 and p

(i,back)
t = LW,b(m(i)

t , s
(i)
t , h

(i,back)
t ) for

the previous semantics s
(i)
t−1. Across the set of training images x, the learning goal of bi-LSTM is to capture

the transition patterns between image part semantics. This is achieved by optimizing the mean squared
error loss formulated by Equation 6:

LMSE(p(i)
t , s

(i)
t ) =

∑N
i=1

(∑G
t=2 ∥p

(i,for)
t − s

(i)
t ∥2 +

∑G−1
t=1 ∥p

(i,back)
t − s

(i)
t ∥2)

(6)

Inference: Detecting SSDI The detection of images with semantic-syntactic discrepancy (SSDI) is
achieved by processing images in a similar patch-wise traversing manner and verifying whether the arrange-
ment of object parts matches the expected arrangements learned from natural images. Figure 5 illustrates
three methods of formally quantifying this process. The first method detects SSDI based on the relation of
part semantics present in the image itself. Similar to the training process, for every image patch t, based
on its part semantics bi-LSTM predicts the part semantics of its neighboring patches. The error is then
computed as the average difference between predicted part semantics and part semantics estimated by the
DNN.

The other two methods detect SSDI based on the memorization of the average part semantics of every pixel.
Specifically, each pixel is assigned the most frequently predicted semantic class over the training set. For a
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Figure 5: Three methods of quantifying the semantic-syntactic discrepancy in images, SSDI.

test image, the error is then computed as the average difference between predicted part semantics and part
semantics memorized based on the average semantics of training images. In the third validation method,
the mean intersection over union (mIoU) is used instead of the difference, which is a common segmentation
metric (Garcia-Garcia et al., 2017).

In all three cases, we obtain a quantitative measure of estimating the discrepancy in semantic-syntactic
relation in the form of computed errors. To use it as the detection during inference, we need to separate
the error values for images with a natural and unnatural appearance. This is achieved by generating images
with semantic-syntactic discrepancy and estimating thresholds for each method based on the validation set
images.

5 Results

Generation of SSDI and Performance Evaluation In this work, we consider three types of corruption
causing semantic-syntactic discrepancy in images. The first corruption is a patch shuffling, where a subset of
image patches is swapped. The second corruption is a patch blackening, where a subset of image patches is
blackened out. In both of these cases, the resulting image is processed by the framework to decide whether
it is a natural image or not. The third corruption is a puzzle solving, where a subset of image patches is
swapped, similarly to the patch shuffling. However, unlike patch shuffling, in puzzle solving, we generate all
possible permutations for the specified number of image patches allowed for corruption. Then, all possible
patch permutations and the original natural image are fed to the framework, which has to predict the image
with the natural arrangement of image patches/object parts. For each considered dataset, SSDI corruptions
are generated using half of the test set images chosen at random. All corruptions are considered separately,
i.e. the paper does not consider a simultaneous mixture of different SSDI corruptions.

As described in Section 4, both natural and corrupted images with SSDI are processed by the framework in a
patch-wise traversal manner and the (residual) errors in predicting forward and backward part semantics by
bi-LSTM are computed. The threshold determined based on the validation set is used to distinguish between
natural and corrupted images. We evaluate the performance based on two metrics: (1) the detection accuracy
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Figure 6: Image patches and the traversal sequences of processing image syntax of CelebA.

Figure 7: From left to right: the forward, the backward, and the total bi-LSTM prediction errors as well as
the histogram of total errors over test samples of CelebA dataset.

(i.e. binary classification accuracy) and (2) the detection rate (i.e. recall) described by Equation 7.

Det. Acc. = TruePositive(TP ) + TrueNegative(TN)
FalseNegative(FN) + TP + FalsePositive(FP ) + TN

and Det. Rate = TP

FN + TP
(7)

CelebA The first dataset is the aligned-and-cropped CelebA (Liu et al., 2015) dataset with 202599 RGB
images resized to 256 × 256. The DNN feature extractor consists of Feature Pyramid Network (FPN) (Lin
et al., 2017) with ImageNet pre-trained ResNet-18 (He et al., 2016) as the backbone to extract 128× 64× 64
downsampled pixel-level features. The FPN is finetuned with 30,000 CelebAHQ (Lee et al., 2020) face part
segmentation masks (about 15% of CelebA). We perform mini-batch K-means clustering every 20 batches
before a single centroid update. The number of clusters is set to 20. Part semantics masks were restricted
to have 7 categories, i.e. every object is limited to be described by 7 object parts (including background)
from selecting the top 7 clusters. For image syntax learning, a 1-layer bi-LSTM model is trained. Input
and hidden vectors are 135-dimensional (128-d encoded mask concatenated with 7-d semantics), and the
projected outputs are 7-d. Figure 6 shows the natural and unnatural images during the test along with the
5 patches used in the traversal sequence and their corresponding predicted part semantics.

SSDI Detection Performance on CelebA Figure 7 shows the forward, backward, and the sum of
both residual errors of bi-LSTM across iterations of processing image patches of both natural and corrupted
images of the CelebA dataset. The solid lines are mean values, whereas the shaded region covers between
25% and 75% percentile. It can be seen that there is a separation between natural (blue) and corrupted
SSDI (red) samples. The histogram shows the distribution of test samples based on the total residual error
along with the threshold (green dashed line) used to distinguish samples from natural and corrupted.

Table 1 illustrates the performance of the proposed framework on the CelebA dataset for various grammar
validation methods. Different columns represent corruption types, with the number and the size of the
affected image patches. For example, Shuffle 2 30 × 30 means that 2 image patches of size 30 × 30 pixels
are swapped to generate the patch shuffling corruption, whereas Puzzles 4 20× 20 means that the frame-
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Table 1: The performance of the proposed approach on detecting SSDI corruptions on CelebA.
Dataset Part

Semantics
Model

Grammar
Validation
Method

Shuffle
2

20x20

Shuffle
2

30x30

Black
1

20x20

Puzzles
4

20x20

Puzzles
4

30x30
CelebA ResNet18+FPN (ours) Bi-LSTM + next semantics 65.66

(68.67)
76.22

(79.72)
70.91

(67.04)
86.74 92.51

CelebA ResNet18+FPN (ours) Bi-LSTM + avg. semantics 61.53
(71.72)

68.89
(80.48)

65.84
(72.38)

85.62 91.15

CelebA ResNet18+FPN (ours) mIoU w./ avg. semantics 60.04
(56.16)

69.59
(59.60)

60.90
(61.87)

99.25 99.58

CelebA SemanticGAN (Li et al.,
2021) (2021)

Bi-LSTM + next semantics 61.35
(69.87)

70.20
(73.68)

68.98
(71.04)

82.37 88.09

CelebA SemanticGAN (Li et al.,
2021) (2021)

Bi-LSTM + avg. semantics 58.26
(67.91)

63.57
(71.49)

61.28
(65.78)

81.23 86.79

CelebA SemanticGAN (Li et al.,
2021) (2021)

mIoU w./ avg. semantics 56.76
(58.34)

62.75
(64.25)

62.13
(61.87)

98.60 99.12

Figure 8: Image patches of size 160 and the sequences of processing image syntax of SUN-RGBD.

work processes a batch generated from all possible permutations (including that of the original image) of 4
randomly selected patches of size 20× 20 pixels. Both the detection accuracy and the detection rate results
are reported, with the latter presented in parentheses.

When ResNet18 and FPN are used as the models for extraction of part semantics, it can be seen that using
the memorized average part semantics performs the best among the three grammar validation methods. This
can be explained by the fact that in the CelebA dataset, the object is the human face with a very well-defined
structure. Hence, it is more effective to learn not only the expected relation between the neighboring object
parts (i.e. the image syntax) but also what those object parts are expected to be (i.e. the memorized average
part semantics). The puzzle variation of SSDI corruption poses an interesting problem since a large number
of possible rearrangements of object parts observed at the same time significantly reduces the margin at
which they can be distinguished based on the residual error. Interestingly, the framework achieves above
99% performance on puzzles, highlighting that the proposed approach indeed learned the correct composition
of object parts.

SUN-RGBD The second dataset is the SUN-RGBD (Song et al., 2015) dataset with 10,335 room layout
RGB and depth images. The DNN feature extractor consists of a pretrained Residual Encoder-Decoder
(RedNet) (Jiang et al., 2018), which is used to retrieve part semantics masks from 640 × 480 sized images.
The object parts were restricted to 13 based on the obtained semantic masks. For syntax learning, we use
the same bi-LSTM model as in CelebA. As shown in Figure 8, we define zig-zag traversal rules on sequences
of patches of sizes 160 × 160 and 80 × 80 pixels. The residual prediction errors and the histogram for test
set images are shown in Figure 9.

Table 2 shows detection accuracy and detection rates on SUN-RGBD dataset. Unlike the performance on
the object-centric CelebA dataset, it is interesting to notice that the first grammar validation method is the
most optimal for other corruptions on the scene-centric SUN-RGBD dataset. This can be explained by a
more diverse nature of images in SUN-RGBD: different objects can be arranged in multiple different ways
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Figure 9: From left to right: the forward, the backward, and the total bi-LSTM prediction errors as well as
the histogram of total errors over test samples of SUN-RGBD dataset.

Table 2: The performance of the proposed approach on detecting SSDI corruptions on SUN-RGBD.
Dataset Part Se-

mantics
Model

Grammar
Validation
Method

Shuffle
4

160x160

Shuffle
16

80x80

Black
4

160x160

Puzzles
4

160x160

Puzzles
16

80x80
SUN-RGBD
(13-cls.)

ResNet50+Encoder-
Decoder (ours)

Bi-LSTM + next se-
mantics

60.57
(72.04)

76.57
(73.37)

66.55
(67.21)

72.89 91.17

SUN-RGBD
(13-cls.)

ResNet50+Encoder-
Decoder (ours)

Bi-LSTM + avg. se-
mantics

54.97
(65.36)

61.52
(64.09)

58.46
(59.65)

62.47 75.48

SUN-RGBD
(13-cls.)

ResNet50+Encoder-
Decoder (ours)

mIoU w./ avg. seman-
tics

57.98
(68.04)

58.98
(62.24)

56.32
(57.19)

97.09 98.20

SUN-RGBD
(13-cls.)

Dformer-S (Yin et al.,
2023) (2023)

Bi-LSTM + next se-
mantics

62.16
(73.47)

74.23
(72.80)

68.86
(71.23)

76.61 92.84

SUN-RGBD
(13-cls.)

Dformer-S (Yin et al.,
2023) (2023)

Bi-LSTM + avg. se-
mantics

53.77
(67.23)

62.45
(69.09)

61.98
(62.45)

61.97 74.78

SUN-RGBD
(13-cls.)

Dformer-S (Yin et al.,
2023) (2023)

mIoU w./ avg. seman-
tics

53.24
(63.38)

60.46
(66.21)

59.79
(61.80)

98.13 98.62

with respect to the entire scene and other objects. Hence, as scenes might change substantially, the method
of using the stored average part semantics might be less useful than relying solely on the relations between
object parts local to individual images.

Effect of Segmentation Granularity On both datasets, we also consider more specialized alternatives
for the segmentation masks, which are expected to produce more accurate and finer part semantics. The
methods of SemanticGAN (Li et al., 2021) and Dformer (Yin et al., 2023) were considered as part semantics
models for CelebA and SUN-RGBD datasets, respectively. From test results presented in Table 1 and Table 2,
it can be seen that finer semantic masks do not always lead to higher SSDI detection rates, especially on
object-centric dataset like CelebA. This can probably be explained by the fact that it is easier to capture the
natural arrangement of object parts if their part semantics is coarser. The relationship between semantic
granularity and corruption detection deserves further investigation.

6 Limitations

While this work proposes a pioneering approach to tackle SSDI corruptions, there are a few limitations. First,
the semi-supervised approach requires some fraction of semantic segmentation masks to obtain semantic
separation of parts within the object, rather than objects from the background. A possible solution is to
consider fully self-supervised segmentation methods, like DINO (Caron et al., 2021). Second, the current
image syntax learning relies on predetermined fixed traversal across patches. It might be beneficial to consider
either active vision methods (Elsayed et al., 2019; Wang et al., 2020; Ibrayev et al., 2023) or attention-driven
models (Dosovitskiy et al., 2021; Jiang et al., 2024).
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7 Conclusion

Motivated to bridge the gap between human and machines perception related to unnatural images, we
introduce a novel deep learning framework for addressing semantic-syntactic discrepancy in images (SSDI).
Aligned with the concept of language grammar, the framework learns both the meaning and the natural
arrangement of object parts using deep clustering and a bidirectional LSTM. The effectiveness of the approach
is shown through its capability of solving puzzles and achieving detection rates of 70− 90% on CelebA and
60−80% on SUN-RGBD. The pioneering aspect of the problem suggests a broader impact in areas requiring
reliable analysis of image content.

Broader Impact Statement

Machine learning systems and, specifically, computer vision techniques are having an increased influence on
everyday tasks that benefit from automation. These tasks range from those with minimal impact on human
life, such as facial recognition systems on mobile phones, to highly significant ones, such as obstacle detection
in autonomous vehicles. A huge amount of trust is being placed in the learning frameworks that are used for
performing these tasks. These frameworks are often trained on large datasets curated by retrieving images
using machine learning recognition techniques. If the images gathered are unnatural (do not follow the
syntax of real-world images), the learning of the downstream learning frameworks is also tainted. Hence,
it is important for these learning frameworks to (a) be trained on data that accurately represents real-
world scenarios and (b) learn the syntax and semantics of the data accurately. This work addresses both
these concerns by highlighting (a) the SSDI vulnerability in datasets and the importance of learning “image
grammar” consisting of “image syntax” and “image semantics” as well as (b) proposing a two-stage weakly
supervised framework that attempts to minimize the possibility of the malicious use of these corruptions
by learning the mentioned “image grammar”. This paves the pathway for future researchers to implement
computer vision techniques that operate holistically - learn both the syntax and semantics.

However, as in the many examples in the history of digital systems, the exposure of vulnerabilities may
lead to a path for malicious entities to exploit those vulnerabilities on existing systems. For example, when
the vulnerability of computer vision techniques to added additive noise was exposed, many adversarial tech-
niques were developed to trick existing machine learning frameworks. Consequently, there is a potential for
developing attacks or malicious techniques that exploit the SSDI vulnerability in images for nefarious pur-
poses. Moreover, the situation is worsened by the fact that such vulnerabilities are currently not detectable
purely by the machine learning, but would require the human-expert in the loop for security. This further
underscores the need for systems to wholly learn the “image syntax” along with the “image grammar”.
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A Experiment details

The entire framework was implemented using the PyTorch framework (Paszke et al., 2019). The models
were trained and evaluated using 4 NVIDIA GeForce GTX 2080 Ti GPU cards.

A.1 Datasets

CelebA (Liu et al., 2015) contains 202,599 face images. We used the aligned-and-cropped version where
faces are localized. Images are divided into a train set of size 162,770, a validation set of size 19,867, and a
test set of size 19,962. First, the FPN network is finetuned on 30,000 CelebAHQ (Lee et al., 2020) images
selected from CelebA. CelebAHQ images and pixel-wise labels are center-cropped (size=160) and resized to
256×256. After fine-tuning, PiCIE deep clustering technique (Cho et al., 2021) is trained on train set images
resized to 256 × 256 and validated on the validation set. 64 × 64 patches are cropped from segmentation
and are upsampled using bilinear interpolation to 256 × 256. The 7 semantic classes and their names are
illustrated on the left part of Figure 10. During the test, the corruptions are generated around 5 facial part
landmark locations (left eye, right eye, nose, left mouth, right mouth) using a half of the randomly selected
test images.

Figure 10: Segmentation Classes. Left: CelebA; Right: SUN-RGBD

SUN-RGBD (Song et al., 2015) contains 10335 RGB images and corresponding depth images, split into a
train set of size 4785, a validation set of size 1000, and a test set of size 5050. RGB and depth images are
resized to 640 × 480 and normalized. The pre-trained RedNet (Jiang et al., 2018) also produces 640 × 480
part semantic masks. From each segmentation, 160 × 160 and 80 × 80 patch semantic masks are cropped.
The segmentation contains 37 semantic classes, but we merge them into 13 classes with the same mapping
used in the work of Handa et al. (2016). The 13 semantic classes are shown on the right part of Figure 10.
During the test, we add corruptions to image patches using a half of the randomly selected test images.

A.2 Architectures

On CelebA Figure 11 illustrates the feature pyramid network (FPN) (Lin et al., 2017) that was used
for part semantics clustering and segmentation of CelebA (Liu et al., 2015) images. Specifically, Panoptic
FPN proposed in the work of Kirillov et al. (2019) was used in the combination with ResNet-18 (He et al.,
2016) as the backbone feature extractor. While the backbone encodes multi-scale feature representation
in a top-down fashion, FPN model utilizes 1 × 1 convolutional (Conv) layers in the bottom-up manner to
project pixel-wise features to 128-dimensional space. The projected features of different spatial sizes are
upsampled using bilinear interpolation to 1/4 height and width of the original image and then element-wise
summed. The pixel-wise representations thus have shape 128×h×w (128×64×64 for input images of shape
3 × 256 × 256). The extracted pixel-wise features are used for the deep clustering (Cho et al., 2021). We
record the resulting clustering centroids as a final 1×1 Conv layer to project these features to the dimension
of the number of semantic classes to represent part semantics.

16



Under review as submission to TMLR

Figure 11: DNN architectures: Feature Pyramid Network (FPN) with ResNet-18 as the backbone

Figure 12 shows the structure of the bi-directional Long Short-Term Memory (bi-LSTM). We use it for image
syntax learning. For each patch in the traversal sequence of length 5, the predicted mask is first flattened
before being fed to a fully-connected (FC) encoder layer. The encoder projects the semantic mask to a 128-d
vector, which is concatenated with the 7-d semantics vector. The resulting 135-d vector contains both spatial
and semantic information about each patch’s part semantics, and it is used as the input to 2 LSTM layers
in forward and backward directions. After projection layers, the outputs include a 7-d forward prediction
of the next part semantics semantics in the sequence and a 7-d backward prediction of the previous part
semantics. For the first and last patches, only forward and backward predictions are made, respectively.

On SUN-RGBD For segmentation of SUN-RGBD (Song et al., 2015) images, we use a Residual Encoder-
Decoder Network (RedNet) (Jiang et al., 2018) with ResNet-50 as the backbone. It is a state-of-the-art room
scene parsing architecture that achieved 47.8% mIoU accuracy on 37-class SUN-RGBD. Similar to FPN, the
RedNet extracts multi-scale feature maps from the input image with its encoder residual layers. However,
each projected feature map is skip-connected with the output of upsampling residual units in a decoder (Jiang
et al., 2018) before being summed with the next level in the feature pyramid. An additional depth branch
is fused with the RGB branch. We performed 13-class (merged from 37-class) semantic segmentation with
a trained RedNet. The RedNet produces the same-resolution (640 × 480) segmentation from the original
image. Patch semantic masks of sizes 160 × 160 and 80 × 80 are cropped and used for preparing patch
semantic vectors. At each stage of patch sequences, part semantics masks are flattened and projected to
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Figure 12: DNN architectures: bi-directional Long Short-Term Memory (bi-LSTM)

128-d vectors before concatenating with a 13-d part semantics vector. The resulting 141-d vectors are passed
to LSTM blocks for forward and backward predictions (both 13-d).

A.3 Hyperparameters

On CelebA During fine-tuning of the FPN network pre-trained on ImageNet (Deng et al., 2009), Cele-
bAHQ (Lee et al., 2020) masks are pre-processed to contain only 7 coarse semantic classes. Adam opti-
mizer is used with start_lr = 1e−4. We trained for num_epochs = 20 with a constant learning rate and
batch_size_train = 128. The fine-tuned model is used for deep clustering PiCIE (Cho et al., 2021) training
with batch_size_train = 256. We adopted over-clustering and set the number of clusters, K_train = 20,
as that results in better clusters compared to KM_num = 10 and KM_num = 30. Mini-batch K-means
clustering is performed. KM_init = 20 is the number of batches we collect before the first K-means clus-
tering. KM_num = 20 is the interval of batches between consecutive clustering. KM_iter = 100 is the
number of K-means clustering iterations before convergence. After each clustering, the total PiCIE loss is
back-propagated to optimize FPN model parameters. We use Adam optimizer with start_lr = 1e−4. De-
spite the complexity of the total PiCIE training loss, the training converges fast in num_epochs = 10 with
a constant learning rate. To get semantic segmentation masks, we initiate a 1× 1 Conv layer, the weights of
which are loaded as the trained centroid matrix, and append it to the trained FPN network. We post-process
pixel-wise class assignments to merge semantically-similar clusters and obtain 7-class face part semantics.
Further, we tune the FPN network on 64× 64 patches, using crops on the saved face part semantics as the
supervision. The part semantics mask detector is trained with batch_size_train = 128, start_lr = 1e−4

for a total of num_epochs = 20. We chose the num_epochs = 20 model over the num_epochs = 40 model
because the smooth boundaries in the semantic masks help with image syntax learning.

After we obtain 7-class part semantics masks for each patch in the traversal sequence, we feed the concatena-
tion of encoded mask (128-d) and semantics vector (7-d) into a bi-LSTM model. The parameters for bi-LSTM
are: input_size = 135, hidden_size = 135, num_layers = 1, bidirectional = True, proj_size = 7. We
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use Adam optimizer with start_lr = 1e−4 and num_epochs = 40, with the learning rate changed to 1e−5

after 20 epochs.

On SUN-RGBD On SUN-RGBD, the pre-trained RedNet network (Jiang et al., 2018) produces 37 seg-
mentation classes. We merge these classes into 13-class as shown in Figure 10. When the patches are
shuffled, the pre-trained network is able to produce precise part semantics, so that a part mask detector is
not needed as in CelebA. We start with image syntax training with two configurations, patch_size = 160
and patch_size = 80. In both configurations, the part semantics masks are encoded as 128-d vectors, while
the part semantics vector is 13-d. Thus, the bi-LSTM model has the configuration with input_size = 141,
hidden_size = 141, num_layers = 1, bidirectional = True, proj_size = 13. We use Adam optimizer
with start_lr = 1e−4 for a total of num_epochs = 40. A multi-step learning rate scheduler is used with
gamma = 0.8 and milestones = [5, 10, 15, 20, 25, 30, 35].

B Generation of SSDI corruptions

One of the main contributions of this work is exposing the vulnerability of classification models to semantic-
syntactic discrepancy in images (SSDI). We define three types of corruptions causing semantic-syntactic
discrepancy in images and provide the algorithmic methodology of generating these SSDI corruptions. Fur-
thermore, the supplementary material contains the code to generate the corresponding SSDI corruptions.

Figure 1 illustrates the algorithm used to generate the first type of SSDI corruption called a patch shuffling.
This type of corruption is generated by swapping the positions of the subset of image patches. The per-
formance of the SSDI detection approach is evaluated based on its capability to detect whether the given
input is a natural image or not. Figure 2 illustrates the algorithm used to generate the second type of SSDI
corruption called a patch blackening. This type of corruption is generated by blackening out a subset of im-
age patches. Similarly to the patch shuffling, the performance is evaluated based on the detection capability
of natural and corrupt images. Figure 3 illustrates the algorithm used to generate the third type of SSDI
corruption called a puzzle solving. Similarly to the patch shuffling, this type of corruption permutes a subset
of image patches. However, unlike patch shuffling, in puzzle solving, we generate all possible permutations
for the specified number of image patches allowed for corruption. Then, all possible patch permutations
and the original natural image are fed to the framework, which has to predict the image with the natural
arrangement of image patches/object parts. For each considered dataset, SSDI corruptions are generated
using half of the test set images chosen at random. All corruptions are considered separately, i.e. the pa-
per does not consider a simultaneous mixture of different SSDI corruptions. Figure 13 illustrates all SSDI
corruptions considered in this work on CelebA and SUN-RGBD test images.
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Figure 13: Demo of all types of SSDI corruptions.

Algorithm 1 Patch shuffling
1: def shuffleSSDI(tensors, num_patch, ps):
2: result← []
3: for it, X in enumerate(tensors) do
4: patches← nn.F.unfold(X, ps, ps, 0)
5: p← patches.shape[-1]
6: if it == 0 then
7: indices← sample(range(p), num_patch)
8: orig← tensor(range(p))
9: perm← tensor(range(p))

10: for j in range(num_patch) do
11: perm[indices[j]] = orig[indices[(j + 1)%num_patch]]
12: end for
13: end if
14: patches← concat(patch[:, perm]for patch in patches)
15: X← nn.F.fold(patches, X.shape[-2:],ps, ps, 0)
16: result.append(X)
17: end for
18: return result
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Algorithm 2 Patch blackout
1: def blackoutSSDI(tensors, num_patch, ps):
2: result← []
3: for it, X in enumerate(tensors) do
4: patches← nn.F.unfold(X, ps, ps, 0)
5: p← patches.shape[-1]
6: if it == 0 then
7: indices← sample(range(p), num_patch)
8: end if
9: for idx, X in enumerate(patches) do

10: patches[idx][:, indices]← 0
11: end for
12: X← nn.F.fold(patches, X.shape[-2:],ps, ps, 0)
13: result.append(X)
14: end for
15: return result

Algorithm 3 Create puzzles
1: def puzzleSSDI(tensors, num_perm, ps):
2: result← []
3: for it, X in enumerate(tensors) do
4: patches← nn.F.unfold(X, ps, ps, 0)
5: p← patches.shape[-1]
6: if it == 0 then
7: perms← []
8: for perm_id in range(num_perm) do
9: perms.append(randperm(p))

10: end for
11: end if
12: res← X.clone()
13: for perm in perms do
14: new_patches← concat(patch[:, perm]for patch in patches)
15: new_X← nn.F.fold(patches, X.shape[-2:],ps, ps, 0)
16: res← concat(res, new_X)
17: end for
18: result.append(res)
19: end for
20: return result

C Extra quantitative results

In Table 3 and Table 6 we add more results for the detection task of SSDI corruptions, on CelebA (7 classes)
and SUN-RGBD (13 classes), respectively.

CelebA The segmentation model is ResNet18+FPN. The input images have sizes 256 × 256. All results
are reported using the first grammar validation method, which relies on the combination of using bi-LSTM
and comparing the predicted part semantics to the estimated part semantics within the image itself (i.e.
without the memorized average part semantics). From Table 3, we observe that the proposed approach
exhibits reliable performance when the size of the corrupted patch exceeds 30 × 30: >80% on patch shuffling
SSDI, 92.51% on puzzle solving SSDI with 4 permutations, >80% on patch blackout SSDI.
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Table 3: SSDI detection performance on CelebA with 256x256 sized images.
SSDI Corruption: patch shuffling
Test Accuracy (%) Patch size: 10 Patch size: 20 Patch size: 30 Patch size: 40 Patch size:50
shuffle 2 patches 53.86 (75.58) 65.66 (68.67) 76.22 (79.72) 83.89 (86.33) 88.22 (93.04)
shuffle 3 patches 55.67 (75.16) 73.16 (78.97) 85.68 (91.08) 90.96 (95.22) 93.05 (97.42)
shuffle 4 patches 57.33 (74.73) 78.40 (82.29) 89.79 (94.57) 93.00 (97.34) 94.34 (98.07)
shuffle 5 patches 59.13 (70.93) 82.88 (88.15) 91.72 (96.06) 93.93 (97.25) 94.69 (97.39)

SSDI Corruption: patch puzzle
Test Accuracy (%) Patch size: 10 Patch size: 20 Patch size: 30 Patch size: 40 Patch size:50
1 real, 3 fake 57.84 86.74 92.51 93.97 94.81
1 real, 119 fake (all perm) 8.39 37.43 66.15 80.37 87.23

SSDI Corruption: patch blackout
Test Accuracy (%) Patch size: 10 Patch size: 20 Patch size: 30 Patch size: 40 Patch size:50
blacken 1 patch 54.73 (55.36) 70.91 (67.04) 81.25 (81.08) 87.37 (88.04) 91.25 (95.12)
blacken 2 patches 60.43 (63.78) 83.83 (85.22) 91.77 (93.43) 95.41 (97.41) 95.78 (97.58)
blacken 3 patches 65.79 (68.94) 90.60 (93.83) 96.48 (98.49) 97.83 (98.57) 98.50 (99.14)
blacken 4 patches 71.85 (74.34) 94.56 (97.14) 98.08 (98.88) 98.86 (99.36) 99.05 (99.49)
blacken 5 patches 77.32 (85.28) 97.22 (98.20) 98.87 (99.48) 98.95 (99.29) 99.13 (99.64)

SUN-RGBD The segmentation model is ResNet50 encoder-decoder (RedNet). The input images have
sizes 640 × 480. All results are reported using the first grammar validation method, which relies on the
combination of using bi-LSTM and comparing the predicted part semantics to the estimated part semantics
within the image itself (i.e. without the memorized average part semantics). Two segmentation granularities
are used, 13-class coarse segmentation merged from 37-classes, and the original 37-class fine segmentation.
From Table 6, we observe SSDI detection performance for the two levels of granularity. For patch shuffling
SSDI and puzzle solving SSDI, using coarser 13-class semantic masks boosts syntax sequence reasoning and
improves grammar validation performance. This is due to the better sequential reasoning capability that
the bi-LSTM learns from coarse patch masks. Meanwhile, in the task of patch blackout, using finer 37-class
semantic masks has an edge. The blackened patch semantics is easier to discern when the segmentation is
finer, leading to a longer syntax sequence and higher variations in the predicted semantic values.

D Extra qualitative results

D.1 Semantic clustering and segmentation

Figure 14 and Figure 15 show selected part semantics obtained on CelebA face images and SUN-RGBD
room scene images, respectively. All samples are from the train set. The displayed part semantics masks are
generated by trained ResNet18 and trained ResNet50 encoder-decoder, respectively.

D.2 Syntactic sequences of part semantics

Figure 16 shows the pixel-level part semantics masks and the distribution of part semantics in each mask,
averaged over correct samples in the entire CelebA test set. During training, we optimized MSE loss between
bi-LSTM predictions and the actual semantics inside each patch, in order to model the mean of the part
semantics distribution in each patch iteration. Hence, here we show the average traversal patterns learned.
It can be seen that face-part semantics transitions and the face syntax in the CelebA dataset are captured
by the trained bi-LSTM model. For example, in the first 2 patch iterations, the “forehead” semantics is
dominant. In the third and fourth patches, “mouth” semantics is dominant. While for the last patch, “eyes”
semantics is dominant. These part semantics along with transitions of those semantics is key to identifying
the presence of SSDI.
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Table 4: 13 segmentation classes
SSDI Corruption: patch shuffling
Test Accuracy (%) Patch size: 160 Test Accuracy (%) Patch size: 80
shuffle 4 patches 60.57 (72.04) shuffle 16 patches 76.57 (73.37)
shuffle 8 patches 69.31 (72.59) shuffle 32 patches 86.63 (82.38)
shuffle 12 patches 73.47 (77.50) shuffle 48 patches 87.09 (82.97)

SSDI Corruption: patch puzzle
Test Accuracy (%) Patch size: 160 Patch Size: 80
1 real, 3 fake 72.89 91.17
1 real, 99 fake 28.95 69.67

SSDI Corruption: patch blackout
Test Accuracy (%) Patch size: 160 Test Accuracy (%) Patch size: 80
blacken 4 patches 66.55 (67.21) blacken 16 patches 67.43 (65.53)
blacken 8 patches 66.59 (67.17) blacken 32 patches 75.68 (70.22)
blacken 12 patches 66.75 (67.49) blacken 48 patches 73.66 (74.81)

Table 5: 37 segmentation classes
SSDI Corruption: patch shuffling
Test Accuracy (%) Patch size: 160 Test Accuracy (%) Patch size: 80
shuffle 4 patches 62.32 (74.57) shuffle 16 patches 67.74 (74.77)
shuffle 8 patches 71.53 (76.99) shuffle 32 patches 78.04 (76.20)
shuffle 12 patches 74.93 (77.43) shuffle 48 patches 79.84 (78.69)

SSDI Corruption: patch puzzle
Test Accuracy (%) Patch size: 160 Patch Size: 80
1 real, 3 fake 76.10 81.23
1 real, 99 fake 33.85 55.99

SSDI Corruption: patch blackout
Test Accuracy (%) Patch size: 160 Test Accuracy (%) Patch size: 80
blacken 4 patches 61.58 (71.37) blacken 16 patches 61.41 (71.25)
blacken 8 patches 67.53 (72.20) blacken 32 patches 69.07 (71.80)
blacken 12 patches 66.18 (76.00) blacken 48 patches 64.59 (72.24)

Table 6: SSDI detection performance on SUN-RGBD with 640x480 sized images.

Figure 17 shows the pixel-level part semantics masks and the distribution of part semantics in each mask,
averaged over corect samples in the entire SUN-RGBD test set. Here, each of the 13 semantic classes is
either a stuff (e.g., ceiling, floor, wall, etc.) or a thing (e.g., books, char, table, etc.). Within the traversal
sequence, the first few patches at the top of the image have “wall” as the dominant part semantics, while the
last few patches at the bottom have “floor” as the dominant part semantics. Semantic classes belonging to
the thing category reside in the middle patches, such as “chair” and “table”. This reveals that our proposed

23



Under review as submission to TMLR

Figure 14: 7-class semantic segmentation on CelebA

Figure 15: 13-class semantic segmentation on SUN-RGBD

framework is capable of learning the syntax of the scene-centric images containing stuff and thing layouts
even from a diverse SUN-RGBD dataset with a wide variety of different room scenes.
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Figure 16: Left: Averaged patch mask transitions over CelebA test set; Right: Averaged patch semantics
over CelebA test set

Figure 17: Left: Averaged patch mask transitions over SUN-RGBD test set; Right: Averaged patch semantics
over SUN-RGBD test set
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