
Published in Transactions on Machine Learning Research (04/2025)

Semantic-Syntactic Discrepancy in Images (SSDI):
Learning Meaning and Order of Features
from Natural Images

Chun Tao* tao88@purdue.edu
Department of Electrical and Computer Engineering
Purdue University

Timur Ibrayev* tibrayev@purdue.edu
Department of Electrical and Computer Engineering
Purdue University

Kaushik Roy kaushik@purdue.edu
Department of Electrical and Computer Engineering
Purdue University

Reviewed on OpenReview: https: // openreview. net/ forum? id= 8otbGorZK2

Abstract

Despite considerable progress in image classification tasks, classification models seem unaf-
fected by the images that significantly deviate from those that appear natural to human eyes.
Specifically, while human perception can easily identify abnormal appearances or composi-
tions in images, classification models overlook any alterations in the arrangement of object
parts as long as they are present in any order, even if unnatural. Hence, this work exposes
the vulnerability of having semantic and syntactic discrepancy in images (SSDI) in the form
of corruptions that remove or shuffle image patches or present images in the form of puzzles.
To address this vulnerability, we propose the concept of “image grammar”, comprising “im-
age semantics” and “image syntax”. Image semantics pertains to the interpretation of parts
or patches within an image, whereas image syntax refers to the arrangement of these parts
to form a coherent object. We present a semi-supervised two-stage method for learning the
image grammar of visual elements and environments solely from natural images. While the
first stage learns the semantic meaning of individual object parts, the second stage learns
how their relative arrangement constitutes an entire object. The efficacy of the proposed
approach is then demonstrated by achieving SSDI detection rates ranging from 70% to 90%
on corruptions generated from CelebA and SUN-RGBD datasets. Code is publicly available
at: https://github.com/ChunTao1999/SSDI/.

1 Introduction

The task of image classification has significantly evolved with the advancements in deep neural networks
(DNNs), to the point of achieving performance comparable to humans. For such tasks, the state-of-the-
art (SoTA) models are based on convolutional neural networks (CNNs) (Krizhevsky et al., 2012; Simonyan
& Zisserman, 2015; He et al., 2016) and vision transformers (ViTs) (Dosovitskiy et al., 2021; Liu et al.,
2021). The fundamental idea behind these models was to develop the ability to identify an object in an
image by understanding (and recognizing) its features/attributes (semantics). For example, when an image
is classified as a “dog”, it is because it contains attributes of dogs, such as “fur”, “dog tail”, “dog paws”.
Indeed, such models learn the distribution of images belonging to different object classes by extracting

*These authors contributed equally and share first authorship.

1

https://openreview.net/forum?id=8otbGorZK2
https://github.com/ChunTao1999/SSDI/

Published in Transactions on Machine Learning Research (04/2025)

Figure 1: Examples illustrating susceptibility of various models (ViT-B/16,224 and Google Gemini Ad-
vanced) to images with unnatural appearance. The outputs of both models seem to be completely
unaffected by any of the abnormalities present in the input images when performing the given tasks.

low- and high-level semantic information from images and encoding them in hidden features of stacked
layers (Hua et al., 2018; Ortego et al., 2021). The learning processes are designed to mainly rely on image-
level labels: the global information about the object type depicted in the entire image. Hence, to learn object
classes, the classification models have to implicitly learn class features/attributes present in the images
labeled as the corresponding class. In other words, since there is no explicit information provided for each
feature like “fur”, “paws”, or “dog tail”, the models must implicitly learn these attributes as characteristic
traits of a dog by observing a large variety of “dog” images. However, this learning process has an underlying
assumption that causes a vulnerability in the pipeline of classification models.

The vulnerability arises from assuming that input images always accurately depict the object in its
natural appearance and composition. As a result, classification models do not explicitly learn how the
constituent features of an object class are arranged in natural images. For instance, they do not ensure that
the “dog tail” is at the posterior end of the dog, or that the “paws” are in the lower part of the dog’s body.
In other words, the question being answered is “What constituent class features are present in the image?”,
and not “Does this image contain a meaningful object of any observed class?”. This vulnerability appears as
the discrepancy between a human’s ability to instinctively recognize natural images and a classification
model’s tendency to be easily fooled into making high-confidence predictions for unnatural images. Figure 1
illustrates how a vision transformer model (ViT-B/16,224) (Wu et al., 2020) and a large multimodal model
(Google Gemini Advanced) (Team et al., 2023) are susceptible to this type of vulnerability. It can be
seen that the ViT model consistently predicts various dog breeds as the top-5 predictions, disregarding the
appearance of images that increasingly diverge from the clean natural image. Similarly, the Gemini model
ignores the unnaturalness of the dog displayed in the image when asked to describe the image or identify
the type of the dog. We use the term Semantic-Syntactic Discrepancy in Images (SSDI) to refer to
this vulnerability.

To address this vulnerability to SSDI corruptions in the visual appearance of input samples, we propose
the concept of “image grammar”. The concept is akin to grammar in language (Gunter et al., 1997; von
Stechow, 2019), and comprises both semantic meaning (“image semantics”) and a syntactical structure
(“image syntax”). “Image semantics” pertains to the existence and semantic significance of individual

2

Published in Transactions on Machine Learning Research (04/2025)

features defining an object, while “image syntax” concerns the spatial arrangement and correct placement
of features to depict an object as it would naturally appear in the real world.

Consequently, we propose a semi-supervised two-stage deep learning framework that successively learns
both “image semantics” and “image syntax” mentioned above. This framework combines a deep clustering
method with a bi-directional LSTM. The deep clustering method treats the image as a set of semantic
features, while the bi-directional LSTM ensures that the features are learned in relation to their spatial
neighbors, enforcing the model’s understanding of individual features and their natural arrangement and
composition. This approach aims to train a classification model to not only predict object classes but also
assess the degree of naturalness in the appearance of an image. Furthermore, the framework is specifically
designed to learn the concept of “image grammar” in a strict setting that assumes SSDI corruptions are
neither generated nor used during the training phase. Such a setting is motivated by the idea that, similar
to human capabilities, the meaning and the order of features should be inherently learned together solely
from natural images.

2 Semantic-Syntactic Discrepancy in Images (SSDI)

2.1 Problem Definition and SSDI Types

Semantic-syntactic discrepancy (SSDI) occurs in images that have visually identifiable semantic features but
look unnatural to humans in their appearance and composition due to incorrect arrangement or missing
some of those features. Figure 2 illustrates examples that expose the described vulnerability of classification
models. As humans, we can readily recognize that the shown images aim to represent dogs due to the
presence of recognizable dog features. We can also perceive that the images in the three rightmost columns
((c)–(e)) are more likely to be unnatural or altered in appearance (compared to images in columns (a) and
(b)). We can make such a distinction even, for example, with a “puzzle” image with rearranged patches
that we have not encountered before. In contrast, a classification model trained on large-scale dataset like
ImageNet (Deng et al., 2009) consistently assigns output labels corresponding to various dog breeds for the
images in columns (b)–(e) solely based on the presence of identifying semantic features (the semantics),
disregarding any abnormalities in the overall appearance (the syntax).

In this work, we explore three types of corruptions causing SSDI. The first corruption is patch shuffling,
where a subset of image patches is randomly swapped. The second corruption is patch blackening, where a
subset of image patches is blackened out. The third corruption is puzzle solving, where a subset of image
patches is swapped, similarly to the patch shuffling. However, unlike patch shuffling, in puzzle solving,
all possible permutations are generated for the specified number of image patches allowed for corruption.
Puzzle solving is then assessed based on the capability to determine the original image out of all its variations.
These corruptions set the basic framework for image manipulations inducing semantic-syntactic discrepancy
in images: rearranging object parts but keeping them visible enough to identify the original object. While
they might not define the exhaustive list of all such transformations, they serve as a simple exemplar to
illustrate the strong effects of feature presence on the decision-making of various models regardless of how
natural composition of object parts changes within the image.

2.2 Pervasiveness of SSDI in the Existing Methods

As a part of this work, the initial set of experiments is to evaluate the performance of the various image
processing methods against samples with semantic-syntactic discrepancies. Two types of methods were
considered: relying only on image processing as well as on the combination of images and language (also
known as vision-language models, VLMs). These experiments have three major goals. The first goal is to
validate the presence of the vulnerability by illustrating the cases when patch shuffling and patch blackening
have minimal impact on model performances despite significantly impactful changes to the image syntax.
The second goal is to show when such manipulations become SSDI corruptions. In particular, through
the combination of quantitative results and qualitative assessment of the corresponding samples, we will
illustrate the range of corrupted image patches (in terms of the size and their count) that makes the corrupt
image fall under the definition of SSDI given in Section 2.1. The third goal is to demonstrate that even

3

Published in Transactions on Machine Learning Research (04/2025)

Figure 2: Examples explaining the vulnerability of classification models to semantic-syntactic discrepancies
in images (SSDI). While all images appear to display different dogs, the visual appearance and composition
of the images in columns (c)–(e) deviate from clean and uncorrupted images shown in column (b). This
discrepancy, however, is not caught by the current classification models, which solely focus on the presence of
features. This can be contrasted with adversarial examples (a), which target the decision-making of models
while preserving the natural visual appearance. Note that adversarial examples are not considered in this
study but are used to paint a complete picture.

multimodal models are vulnerable in their own ways to SSDI-type corruptions by not explicitly reflecting on
any abnormalities unless explicitly requested by the user.

2.2.1 Purely Image-based Methods

Table 1 and Table 2 illustrate the classification accuracy of ViT-B-16 model on ImageNet2012 val samples
under patch shuffling and patch blackening, respectively. Various patch sizes and numbers of patches were
used to generate corrupted samples. With the original images being of size 224 × 224 pixels, it is possible
to divide each image into patches of different sizes as represented by column headings. Consequently, there
are different numbers of patches that are available for the corresponding SSDI type as represented by row
headings. The selection of which patches are corrupted happens at random. Hence, in order to account
for randomness, each cell represents the average accuracy of 5 experiments with different random seeding.
For example, as shown in Table 2, the model accuracy drops from 81.07% base accuracy to an average of
69.16% when 2 out of 4 patches of size 112× 112 were removed from every sample in ImageNet2012 val set.
Appendix C contains tables illustrating performance results along with standard deviations for ViT-B-16
and ResNet-50 models, whose behavior matches that of the ViT model.

Based on the quantitative results of classification accuracy alone, the following observations can be made.
First, for patch sizes equal to and smaller than 14×14 pixels (left halves of the tables), the model performance
degrades drastically as a greater number of patches are corrupted. For patch blackening, the degradation

4

Published in Transactions on Machine Learning Research (04/2025)

Table 1: Performance of ViT-B-16 model on ImageNet2012 with “patch shuffling” SSDI corruptions.
Patch Size

12544 patches of
2× 2

3136 patches of
4× 4

1024 patches of
7× 7

784 patches of
8× 8

256 patches of
14× 14

196 patches of
16× 16

64 patches of
28× 28

49 patches of
32× 32

16 patches of
56× 56

4 patches of
112× 112

N
um

be
r

of
C

or
ru

pt
ed

P
at

ch
es

0 81.07 81.07 81.07 81.07 81.07 81.07 81.07 81.07 81.07 81.07
2 80.99 80.94 80.86 80.94 80.80 80.87 80.49 80.50 79.54 77.68*
4 80.98 80.85 80.71 80.83 80.54 80.67 79.93 79.96 78.04 76.41
16 80.63 80.36 79.84 80.19 78.85 79.75 75.52 75.88* 70.39
32 80.40 79.73 78.70 79.32 76.12 78.04* 66.25 67.78
49 80.11 79.11 77.42 78.28 72.23 75.69 55.70 62.27
64 79.81 78.71 76.40 77.31* 67.72 73.00 51.08
128 78.91 76.64 70.97 72.27 35.77 52.59
196 77.99* 74.64 62.94 64.28 8.16 36.98
256 77.19 72.59 53.52 54.29 4.13
512 73.44 61.71 8.11 4.86
784 69.27 45.39 0.59 0.79
1024 65.63 28.38 0.41
2048 49.99 0.65
3136 33.89 0.24
4096 21.45
8192 0.92
12544 0.29

∗ Corresponding examples are shown in Figure 3

Figure 3: Examples of patch manipulations applied to randomly picked ImageNet2012 val set samples.

reaches random guessing (0.10%) since such image manipulations result in a trivial processing of black
images. Second, for bigger patch sizes (above 16 × 16, right halves of the tables), the degradation is much
more graceful. With the exception of random guessing in the case of patch blackening, modifications made
to the samples are disregarded by the model in about half the cases. Finally, it can be observed that
the accuracy remains relatively high compared to the base accuracy of 81.07% for a large portion of the
table (green and yellow colored regions). While this behavior might have been favorable purely in terms of
detecting object features, it also highlights that the model is largely “unbothered” by image manipulations.

Figure 3 demonstrates some random samples with different degrees of patch shuffling and patch blackening
manipulations. Qualitative examination of these examples suggests explanations for the above quantitative
observations. Image manipulations with small patch sizes (2 × 2 and 8 × 8) are much less impactful in
terms of both being perceptible to human eyes and affecting object parts as a whole. Instead, such changes
would probably be perceived as noise both by humans and vision models, with its severity increasing with
the number of corrupted image patches. Such cases would lie outside the definition of semantic-syntactic
discrepancy, as the noise affects semantics more than syntax by “destroying/erasing” the object features,
instead of changing their natural arrangement.

5

Published in Transactions on Machine Learning Research (04/2025)

Table 2: Performance of ViT-B-16 model on ImageNet2012 with “patch blackening” SSDI corruptions.
Patch Size

12544 patches of
2× 2

3136 patches of
4× 4

1024 patches of
7× 7

784 patches of
8× 8

256 patches of
14× 14

196 patches of
16× 16

64 patches of
28× 28

49 patches of
32× 32

16 patches of
56× 56

4 patches of
112× 112

N
um

be
r

of
C

or
ru

pt
ed

P
at

ch
es

0 81.07 81.07 81.07 81.07 81.07 81.07 81.07 81.07 81.07 81.07
1 81.00 80.98 80.95 80.98 80.93 80.95 80.83 80.78 80.41 77.49
2 80.99 80.96 80.86 80.97 80.82 80.84 80.62 80.49 79.55 69.16*
4 80.96 80.85 80.77 80.88 80.67 80.65 80.26 79.75 77.26 0.10
16 80.61 80.41 80.01 80.39 79.44 79.75 76.50 75.19* 0.10
32 80.43 79.94 79.16 79.65 77.41 78.60* 67.09 61.16
49 80.24 79.51 78.20 78.89 74.69 77.27 43.36 0.10
64 79.97 79.13 77.33 78.19* 71.54 75.86 0.10
128 79.30 77.60 73.14 74.50 46.11 61.75
196 78.61* 75.87 67.53 69.02 9.08 0.10
256 77.90 74.24 61.68 62.21 0.10
512 75.12 66.59 22.80 16.21
784 72.40 56.67 0.78 0.10
1024 70.23 46.28 0.10
2048 61.76 4.89
3136 52.98 0.10
4096 45.19
8192 9.88
12544 0.10

∗ Corresponding examples are shown in Figure 3

On the other hand, the manipulations with the large patch sizes (16 × 16 and above) do not necessarily
target the fine-granularity of individual object features. Instead, they affect object features as a whole, such
as obscuring “eyes” and “ears”, or swapping “body parts”. This explains why the accuracy results show
no change even at the level of manipulations affecting up to half of the image. We acknowledge that the
degree of naturalness is a subjective measure, similar to estimating saliency and attention in scenes, as it
varies from person-to-person. However, we also highlight that the amount of changes induced by removing
or swapping 2 out of 4 patches of size 112× 112 is more conspicuous to human eyes than that at 64 out of
784 patches of size 8× 8, both of which result in the same accuracy performance of the model. As a result,
this reflects on the definition of SSDI corruptions. Specifically, for the given ImageNet2012 samples of size
224 × 224 pixels, patch shuffling and blackening at the patch sizes equal to and larger than 16 × 16 pixels
cause images to appear unnatural while the underlying object parts remain visually identifiable.

2.2.2 Image and Language-based Methods

Table 3 illustrates the experimental results conducted on Meta’s LLaMA large-scale vision-language model.
Notably, LLaMA version 3.2 with 11 billion parameters available on HuggingFace hub was utilized. The
experiment was conducted as follows. A subset of 3000 images was randomly selected from ImageNet2012
val set, such that there are 3 samples from each one of the thousand classes. Samples with original size
224× 224 pixels were corrupted based on one of the ten configurations shown in the leftmost column. Then,
these samples were processed by the multimodal model along with one of the three language prompts. These
language prompts are:

Prompt 1: What is the class of the object shown in the given image?

Prompt 2: Describe the given image.

Prompt 3: Does the given image appear natural or unnatural?

Each of these prompts provides a different degree of guidance in terms of revealing the possibility of abnor-
malities being present in the given images. Prompt 1 only requests the class of an object, mimicking the
behavior of the classifier. Prompt 2 requests a general description of an image. Prompt 3 implies that there
are possible deviations present in the image. Please note that in all three cases the model is given complete
freedom in its responses, such that no extra conditions are set (e.g., respond with a single sentence).

6

Published in Transactions on Machine Learning Research (04/2025)

Table 3: Performance of Meta’s LLaMA model on 3k samples of ImageNet2012 with various corruptions
and with different language-based prompts. Each percentage value represents the percentage of LLaMA’s
responses that explicitly reflected that given samples looked “unnatural, corrupted, or tampered with”.
Please refer to the experiment details in Section 2.2.2.

SSDI corruption

(patch size, total # of patches,

of corrupted patches)

Prompt given to Meta’s LLaMA model

What is the class of the object

shown in the given image?
Describe the given image.

Does the given image

appear natural or unnatural?

P
at

ch
Sh

uffl
in

g 112× 112, 4, 2 0.03% 0.67% 93.23%

32× 32, 49, 16 4.60% 46.70% 90.67%

16× 16, 196, 32 4.77% 35.60% 98.60%

8× 8, 784, 64 4.53% 30.93% 74.37%

2× 2, 12544, 196 0.27% 8.03% 97.20%

P
at

ch
B

la
ck

en
in

g 112× 112, 4, 2 1.83% 38.40% 51.53%

32× 32, 49, 16 2.50% 44.03% 85.47%

16× 16, 196, 32 1.43% 31.37% 77.23%

8× 8, 784, 64 0.07% 31.00% 82.60%

2× 2, 12544, 196 0.00% 33.03% 89.03%

After all pairs of corrupt images and prompts are processed by the model and its responses are collected,
we utilized OpenAI’s ChatGPT to evaluate the output responses. Specifically, ChatGPT evaluated Meta’s
LLaMA responses with the following evaluation prompt: “Does the given response mention anything that
indicates that the given image is unnatural, corrupted, or tampered with? Please answer with yes or no”.
Based on such evaluation setup, Table 3 shows the percentage of samples for which the VLM indicated
that the given images were corrupted in some way.

Based on these results of the vision-language model, the following observations can be made. When asked
directly whether there are any abnormalities with the given images (with prompt 3), the detection rate of
the VLM model is steadily high. This means that a prior needs to be set in order for the VLM to actively
search for SSDI corruptions. On the other hand, interestingly, the detection rate is substantially lower in
the other two cases. In case of prompt 1, it is indeed possible to argue that the model was not supposed to
provide any extra observations. However, prompt 2 is the most generic, arguably serving as the go-to option
for general applications. Under all generated corruptions, the VLM mentions their possibility in the images
in fewer than half of the samples. As a result, it can be said that semantic-syntactic discrepancy remains a
relevant issue for vision-language models, which manifests itself when no prior precautions or warnings are
supplied through the correct prompting.

2.2.3 Puzzle Solving as a Proxy Task

Part of the problem with SSDI corruptions is that the current classification models do not have an explicit
way of estimating the degree of naturalness of input images. Hence, we conducted an experiment in which
puzzle solving SSDI corruption serves as a proxy for the corruption detection task. Particularly, as was
described in Section 2.1, for the puzzle solving SSDI type we generate all the possible permutations of an
image given the number of patches into which it is broken down. For ImageNet2012 val samples of original
size 224 × 224 pixels, we only considered puzzle solving when images are divided into equally sized square
patches of 112 × 112 pixels. As a result, for every image we generated 24 variations of the image resulting
from all 4! permutations of image patches (including the original image).

7

Published in Transactions on Machine Learning Research (04/2025)

Table 4: Performance of different models on ImageNet2012 samples with “puzzle solving” SSDI corrup-
tions, illustrating the capabilities of each model at (1) predicting the class of an object shown in the given
image and (2) determining the most natural arrangement of an image (i.e. the original image) out of all
possibilities. Please refer to the experiment details in Section 2.2.3.

Prediction Accuracy
Correct Class of an Object Correct “Puzzle” Arrangement of an Image

ResNet-50 78.04% 0.12% (59/50k)
ViT-B-16 78.98% 12.78% (6390/50k)
Meta’s LLaMA N/A 4.00% (120/3k)

The models are then assessed by their ability to determine the original image with the natural arrangement
of object parts out of all variations. For classification models (ResNet-50 and ViT-B-16), the prediction
of the correct puzzle relied on the output (softmax) confidence scores. Specifically, all puzzles (including
the original image) were processed by these models. For each image, the puzzle with the highest output
confidence was chosen as the model’s prediction for the image with the correct arrangement. Furthermore,
the output class of the predicted puzzle also served as the model’s prediction for the class of an object shown
in the image. For the VLM model (Meta’s LLaMA), all puzzles (including the original image) were given in
a single request along with the following prompt: “which one of these images appears to be the most natural?
Give only the numeric value of the index of the image.”. To account for the cases when the model response
includes anything more than the index, the responses were post-processed to verify and, if necessary, to clean
the outputs to refer to one of the puzzle indices. The class labels were not requested as the language models
would predict classes with open vocabulary.

Table 4 shows the performance of different models at correctly determining the image with the original natural
arrangement of features/object parts. It can be seen that all models lack the capability to distinguish the
original image from all of the possible patch shuffling variations. The highest accuracy at solving the puzzle
was achieved with the vision transformer, which might be due to their inherent training procedures relying on
processing images as a set of patches with positional encoding. The most interesting observation, however,
is that despite the models failing to predict the image with the natural arrangement, there is almost no drop
in the accuracy of object class predictions with respect to the base accuracies. Since detecting the presence
of object features is enough to make the classification prediction, the significant difference between class and
puzzle predictions demonstrates the corresponding gap between their comprehension of image semantics and
image syntax. The main concerning implication is that the high classification accuracy means the models
internally generate and rely on a similar set of features when processing the correct image and the image
with any unnatural appearance.

2.3 Importance and Application

The ability to recognize and classify objects is a foundational task in computer vision. However, current
classification models primarily focus on the presence of features rather than their spatial arrangement,
making them vulnerable to SSDI corruptions. Addressing SSDI is important in safety-critical and real-world
applications where models must not only identify objects but also evaluate their structural validity.

While our study uses controlled SSDI corruptions (e.g., patch shuffling, missing parts), similar issues arise
naturally in many real-world scenarios, such as facial recognition security, medical imaging, and robotics. For
example, face recognition systems often misidentify individuals when their features are partially occluded or
misaligned (e.g., wearing masks, disguises, or under poor lighting). Consequently, if a model solely relies on
feature presence, it may wrongly authenticate or misclassify identities. A similar example can be drawn in
medical scenarios, where diagnostics rely on anatomical structures. Artifacts, occlusions, or unnatural feature
arrangements can lead to false diagnoses if the model lacks awareness of natural structures. Such scenarios
are especially prominent today, as generative models create increasingly realistic images, but sometimes fail
to preserve natural image syntax.

8

Published in Transactions on Machine Learning Research (04/2025)

As DNN models move beyond simple classification tasks toward visual reasoning and multimodal learning,
addressing SSDI is crucial. Our experimental results show that even advanced vision-language models
struggle to detect SSDI inconsistencies, failing to flag unnatural images unless explicitly prompted. This
underscores the broader need to develop a learning approach that captures both semantics and syntactic
structures in the visual domain.

SSDI vulnerability represents a distinct failure mode that is not captured by existing robustness paradigms,
such as common corruptions, adversarial attacks, and out-of-distribution (OoD) shifts. Unlike common
corruptions, SSDI does not degrade images randomly but instead disrupts the spatial integrity of object
features. A shuffled or misarranged object may retain all its semantic components, yet fail to represent a
meaningful whole. Unlike adversarial attacks, SSDI does not involve imperceptible pixel-level perturbations.
Instead, SSDI creates visible, unnatural compositions that models assign high-confidence predictions to,
exposing their reliance on feature presence over structural coherence. Unlike OoD shifts, SSDI does not
involve a semantic shift to a new domain. Instead, SSDI occurs within the same category as the training
data but in an incorrect arrangement that does not appear in natural images.

2.4 Learning Setting

The contrast between human perception and classification models in these examples underscores three
crucial properties needed to address this vulnerability: (1) classification models need to learn to estimate
the degree to which an image depicts a natural occurrence in the real world, (2) based on this degree, they
need to be able to distinguish between natural and unnatural images, and (3) preferably, they should be
capable of learning this based solely on natural images.

This work proposes a way to enable classification models with properties (1) and (2) in a learning setting
motivated by property (3). In particular, the method describes how the architecture of a classification model
and its training can be modified to allow it to distinguish between natural and unnatural images by only
observing natural unaltered images during training. This setting is based on the combination of two reasons.
First, humans can instinctively recognize unnaturalness of different kinds even when they never came across
such examples. Both the meaning and the order of features are learned together without any need to see
images with some parts removed or shuffled. Second, it is challenging to consider and train on all the possible
ways samples with semantic-syntactic discrepancy can be crafted (including, but not limited to corruptions
described in this work). For example, if an image is divided into n × n patches, assuming that only the
original image depicts a meaningful object, the number of unnatural samples becomes (n2! − 1). Not only
does this become intractable for values of n > 3, but also has no direct way of ensuring that all of these
samples do not depict meaningful objects. Hence, it is more intuitive to teach “What the natural arrangement
of features should look like?” rather than “How natural and unnatural images differ?”.

3 Related Works

To the best of the authors’ knowledge, the problem of SSDI vulnerability is not yet well-established. This
makes it difficult to contextualize it as a standalone research direction. Nevertheless, the issue of SSDI can
be considered in the context of two categories of works: from the perspective of learning the compositionality
of visual representations and from the perspective of vulnerabilities in computer vision.

3.1 Compositionality of Image Representations

Learning image representations creates a basis for visual tasks, such as image classification (He et al.,
2016) and object detection (He et al., 2017; Lin et al., 2017). Although various supervised (Krizhevsky
et al., 2012) and unsupervised/self-supervised (He et al., 2022) methods have been proposed to learn the
underlying distribution of image features, reliance purely on the presence of features has recently become more
prominent (Thrush et al., 2022). In the work of Yuksekgonul et al. (2023), the authors discuss and analyze the
effects of naive reliance on contrastive pre-training and accuracy metrics. They conclude that large vision and
language models, which currently serve as the basis for a wide range of applications, disregard composition,
i.e., the underlying structure, of both visual and language inputs. Their findings support the ideas and

9

Published in Transactions on Machine Learning Research (04/2025)

highlight the relevance of SSDI vulnerability discussed in this paper. The work of Qin et al. (2022) proposed
a solution for ViT-based models (Wu et al., 2020) through patch-based negative augmentation. From this
perspective, our work serves as an alternative approach, which proposes a way of learning compositionality
along with the semantics of features without the need for generation and reliance on negative samples (as
described in the Learning Setting subsection of Section 2). Even though our experiments focus on CNN-
based models, it is possible to extend the method to vision transformers by considering them as the feature
extractor model.

3.2 Vulnerability of Computer Vision

The SSDI vulnerability, where differences in the visual appearance of an image are noticeable to humans,
stands in contrast to adversarial examples (Szegedy et al., 2013; Carlini & Wagner, 2017; Madry et al.,
2017; Wang & He, 2021; Gubri et al., 2022; Zhang et al., 2023), where the adversarial image and the clean
image appear visually similar to humans. Adversarial examples have been extensively studied in the works
of Madry et al. (2017); Shah et al. (2023); Mo et al. (2022); Andriushchenko & Flammarion (2020), which
explore methods to prevent detrimental changes in the output predictions of classification models. However,
these approaches do not apply to SSDI, as they do not detect abnormalities in appearance. Moving away
from the broader concept of adversarial examples, Hendrycks & Dietterich (2018) introduced a benchmark,
ImageNet-C, for common corruptions and perturbations. While ImageNet-C addresses changes in the natural
appearance of images through noise or color manipulations, it does not address cases where corruption stems
from the rearrangement of natural feature order without affecting classifier predictions.

4 Methodology

In this section, we outline our proposed classification framework, which detects SSDI using a semi-supervised,
two-stage approach. The first stage, which we refer to as part semantics, focuses on learning “image
semantics”. The idea is to create a pixel-wise segmentation map of the input image that produces a
(limited) set of clusters, each representing meaningful object parts (object semantics). The second stage
then utilizes the part semantics to learn how their relative arrangement constitutes an entire object, i.e.,
the “image syntax”. The idea is for the model to learn the expected arrangement and composition based
on part semantics obtainable from natural images. During inference, the deviation from the expected
arrangement and the composition learned from natural images serves as the metric to detect SSDI.

Stage 1: Learning Part Semantics As mentioned, the first stage focuses on learning the meaningful
attributes of an object - its part semantics. To learn this, the input pixels are segmented (grouped) into
a set of classes that represent individual object parts instead of the objects themselves. Although fully
unsupervised (no labels) or weakly supervised (only object class labels) approaches are more appealing, our
observations showed that these methods did not produce semantic maps with the desired level of detail
and accuracy. These approaches only allow the separation of the entire object from the background (e.g.,
the entire face), but not its parts (e.g., nose, eyes, mouth). This is because there is a greater variation in
color between the object and the background than among the parts within the object itself. Hence, this
stage was implemented in a semi-supervised approach by using only a fraction of the ground-truth semantic
segmentation maps with the deep clustering (Caron et al., 2018; Cho et al., 2021).

The training procedure is shown in Figure 4. Consider a set of input images xi, i = 1, . . . , N . Let a subset of
them have pixel-level annotations mip, i = 1, . . . , M, M ≪ N , where p stands for the p-th pixel. We assume
that we have C semantic classes in the pre-processed ground-truth (GT) annotations and ∀(i, p), mip ∈
[0, 1, . . . , C − 1]. The feature extractor has an embedding function fθ, which produces pixel-level feature
vectors zip = fθ(xi)[p], zip ∈ Rd.

First, we fine-tune the DNN feature extractor under semi-supervision. Pixel-level embedding features are fed
to a linear classifier gω, ω ∈ Rd×C so that the feature dimensions are projected onto the number of semantic
classes C. (Note: once the feature extractor has been fine-tuned, the classifier g can be discarded.) For all
images xi that have GT masks, the resulting pixel-level prediction becomes gω(zip). The fine-tuning is then
realized by minimizing the cross-entropy loss between pixel-level prediction gω(zip) and GT segmentation

10

Published in Transactions on Machine Learning Research (04/2025)

Figure 4: The first stage of training SSDI detection pipeline: learning part semantics of objects.

mask mip, as shown in Equation 1:

minθ,ω LCE(gω(fθ(xi)[p]), mip) where LCE = − log exp(gω(zip)[mip])∑C−1
k=0

exp(gω(zip)[k])
(1)

As a second step, a deep clustering technique is used to expand upon semi-supervised knowledge. We used
PiCIE, a deep clustering technique (Cho et al., 2021) in our approach. The core idea of PiCIE is to perform
K-means clustering while allowing the model to account for inductive biases in the form of photometric
invariance and geometric equivariance. In particular, photometric invariance accounts for the color variation
(e.g., color jitter), whereas geometric equivariance accounts for the size and orientation variations (e.g.,
random crop) of semantic features in the given image. As shown in Figure 4, this is implemented by
sampling each input into two transformation streams. In the first (upper) stream, an image xi is transformed
according to photometric transformation P (1), processed by the model, and the resulting features transformed
according to geometric transformation G(1). Contrary, in the second (bottom) stream, an image xi is
transformed according to photometric transformation P (2), followed by geometric transformation G(2), and
finally processed by the model. Geometric transforms G(1) and G(2) share the properties, such as the crop
size, to ensure the resulting features are of the same dimensions. As a result, pixel-level features before
K-means for two streams can be formulated as defined by Equations 2–3:

z
(1)
ip = G

(1)
i (fθ(P (1)

i (xi))) (2)

z
(2)
ip = fθ(G(2)

i (P (2)
i (xi))) (3)

Given these pixel-level features, PiCIE optimizes the set of losses for K-means clustering as well as for induc-
tive biases. Specifically, the K-means clustering is achieved by minimizing the loss defined by Equation 4:

LKmeans =
∑N

i=1

∑
p

∑K

k=1
∥zipk − µk∥2 (4)

11

Published in Transactions on Machine Learning Research (04/2025)

where zipk indicates that the distance of each pixel-level feature is minimized with respect to their corre-
sponding closest cluster centroid µk.

The loss used to train inductive biases comprises two parts. The first part trains the model to extract pixel-
level features that are consistently assigned to the same cluster centroid when a specific set of transformations
is applied. In other words, if the same set of photometric (P) and geometric (G) transformations is used, this
component of the loss ensures that the resulting features are as close as possible to the corresponding cluster
centroid representing those features. Since this component solely considers the pixel-level features from each
individual stream, it is denoted as Lwithin. However, this loss alone does not guarantee that the model will
ignore variations when a different set of transformations is applied to the same image (i.e., it does not ensure
invariance to photometric transformations or equivariance to geometric transformations). Therefore, the
second part trains the model so that pixel-level features from two streams are assigned to the same cluster
centroid even when different sets of transformations are applied. Because this component compares features
between the two streams, it is denoted as Lcross. The total loss to minimize is Ltotal = Lwithin + Lcross,
described by Equations 5, 6, and 7:

Lwithin =
∑N

i=1

∑
p
LDC(z(1)

ip , y
(1)
ip , µ) + LDC(z(2)

ip , y
(2)
ip , µ) (5)

Lcross =
∑N

i=1

∑
p
LDC(z(1)

ip , y
(2)
ip , µ) + LDC(z(2)

ip , y
(1)
ip , µ) (6)

where LDC(zip, y, µ) = − log exp(−d(zip, µy))∑K
k=1 exp(−d(zip, µk))

(7)

where K is the total (pre-selected) number of clusters, µ is the matrix of cluster centroids, y is the centroid
index in µ that is closest to zip, and d(·, ·) is the cosine distance. As shown in Figure 4, the result of the first
training stage is a DNN that can produce semantic masks for object parts, i.e., part semantics. The key is
the desired granularity, such that the resulting part semantics are consistent for any given portion/patch of
an image.

Stage 2: Learning Image Syntax The second stage is the core of training the pipeline to detect SSDI.
The idea is to utilize the relation between neighboring part semantics. For example, if we know that some
portion of an image contains a human nose, the expectation is to have two eyes and a mouth depicted above
and below it, respectively.

The first step in achieving this is to obtain different patches from within the input image. The works of
FALcon (Ibrayev et al., 2023) and GFNet (Wang et al., 2020) explore processing input in a patch-wise
sequential manner with only the class label given as the supervision. In this work, we consider a simple
and generic approach to dividing images, i.e., the model on its own does not make any special decisions on
how the patches are obtained. For the two datasets considered in this work, CelebA and SUN-RGBD, the
patches are obtained as five crops around the center of the image (Figure 7) and as a zig-zag pattern from
top to bottom, from left to right (Figure 9), respectively.

The second step is to traverse through the set of image patches, extract their corresponding part semantics,
and learn the relation between the part semantics of neighboring patches. Suppose for image x(i), i =
1, . . . , N , we extract a total of G patches and obtain their corresponding part semantics m

(i)
t for t = 1, . . . , G

using the DNN trained in the first stage. The image syntax depends on the presence of the object parts
with respect to each other rather than the exact part semantics m

(i)
t . Hence, each of them is converted into

a part semantics vector s
(i)
t , which is the ratio of pixels belonging to each class in the part semantics.

Figure 5 shows how the image syntax is learned based on part semantics vectors using bidirectional long short-
term memory (bi-LSTM). The bi-LSTM is used because both directions in the traversal of part semantics
are valid relations to be learned. If it is parameterized by weights W and biases b, then based on the inputs
m

(i)
t and s

(i)
t as well as hidden states h

(i)
t at the processing step t, the bi-LSTM makes two predictions:

p
(i,for)
t = LW,b(m(i)

t , s
(i)
t , h

(i,for)
t) for the next semantics s

(i)
t+1 and p

(i,back)
t = LW,b(m(i)

t , s
(i)
t , h

(i,back)
t) for the

previous semantics s
(i)
t−1. Across the set of training images x, the learning goal of bi-LSTM is to capture the

transition patterns between image part semantics. This is achieved by optimizing the mean squared error

12

Published in Transactions on Machine Learning Research (04/2025)

Figure 5: The second stage of training SSDI detection pipeline: learning image syntax.

Figure 6: Three methods of quantifying the semantic-syntactic discrepancy in images, SSDI.

loss formulated by Equation 8:

LMSE(p(i)
t , s

(i)
t) =

∑N

i=1

(∑G

t=2
∥p(i,for)

t − s
(i)
t ∥2 +

∑G−1

t=1
∥p(i,back)

t − s
(i)
t ∥2

)
(8)

Inference: Detecting SSDI The detection of images with semantic-syntactic discrepancy (SSDI) is
achieved by processing images in a similar patch-wise traversing manner and verifying whether the arrange-
ment of object parts matches the expected arrangements learned from natural images. Figure 6 illustrates
three methods of formally quantifying this process. The first method detects SSDI based on the relation of
part semantics present in the image itself. Similar to the training process, for every image patch t, based on
its part semantics, the bi-LSTM predicts the part semantics of its neighboring patches. The error is then
computed as the average difference between the predicted part semantics and the part semantics estimated
by the DNN.

The other two methods detect SSDI based on the memorization of the average part semantics of every pixel.
Specifically, each pixel is assigned the most frequently predicted semantic class over the training set. For a
test image, the error is then computed as the average difference between the predicted part semantics and

13

Published in Transactions on Machine Learning Research (04/2025)

Figure 7: Image patches and the traversal sequences of processing image syntax of CelebA.

Figure 8: From left to right: the forward, the backward, and the total bi-LSTM prediction errors as well as
the histogram of total errors over test samples of CelebA dataset.

the part semantics memorized based on the average semantics of training images. In the third validation
method, the mean intersection over union (mIoU) is used instead of the difference, which is a common
segmentation metric (Garcia-Garcia et al., 2017).

In all three cases, we obtain a quantitative measure of estimating the discrepancy in the semantic-syntactic
relation in the form of computed errors. To use it as the detection during inference, we need to separate
the error values for images with a natural and unnatural appearance. This is achieved by generating images
with semantic-syntactic discrepancy and estimating thresholds for each method based on the validation set
images. Specifically, we plot histograms of corrupted and original images from the validation set based on
their total prediction errors. The threshold is then chosen as the error value that maximizes the separation
between the two distributions. An example of this can be seen in Figure 8, where the green dashed vertical
line marks the selected threshold.

5 Results

Generation of SSDI and Performance Evaluation In this work, we consider three types of corruption
causing semantic-syntactic discrepancy in images, as described in Section 2. For each considered dataset,
SSDI corruptions are generated using half of the test set images chosen at random. All corruptions are
considered separately, i.e., the paper does not consider a simultaneous mixture of different SSDI corruptions.

As described in Section 4, both natural and corrupted images with SSDI are processed by the framework in
a patch-wise traversal manner, and the (residual) errors in predicting forward and backward part semantics
by the bi-LSTM are computed. The threshold determined based on the validation set is used to distinguish
between natural and corrupted images. We evaluate the performance based on two metrics: (1) the detection
accuracy (i.e., binary classification accuracy) and (2) the detection rate (i.e., recall) described by Equation 9.

Det. Acc. = TruePositive (TP) + TrueNegative (TN)
FalseNegative (FN) + TP + FalsePositive (FP) + TN and Det. Rate = TP

FN + TP (9)

CelebA The first dataset is the aligned-and-cropped CelebA (Liu et al., 2015) dataset with 202,599
RGB images resized to 256 × 256. The DNN feature extractor consists of a Feature Pyramid Network

14

Published in Transactions on Machine Learning Research (04/2025)

Table 5: The performance of the proposed approach on detecting SSDI corruptions on CelebA.
Dataset Part

Semantics
Model

Grammar
Validation
Method

Shuffle
2

20x20

Shuffle
2

30x30

Black
1

20x20

Puzzles
4

20x20

Puzzles
4

30x30
CelebA ResNet-18+FPN (ours) Bi-LSTM + next semantics 65.66

(68.67)
76.22

(79.72)
70.91

(67.04)
86.74 92.51

CelebA ResNet-18+FPN (ours) Bi-LSTM + avg. semantics 61.53
(71.72)

68.89
(80.48)

65.84
(72.38)

85.62 91.15

CelebA ResNet-18+FPN (ours) mIoU w./ avg. semantics 60.04
(56.16)

69.59
(59.60)

60.90
(61.87)

99.25 99.58

CelebA SemanticGAN
(Li et al., 2021)

Bi-LSTM + next semantics 61.35
(69.87)

70.20
(73.68)

68.98
(71.04)

82.37 88.09

CelebA SemanticGAN
(Li et al., 2021)

Bi-LSTM + avg. semantics 58.26
(67.91)

63.57
(71.49)

61.28
(65.78)

81.23 86.79

CelebA SemanticGAN
(Li et al., 2021)

mIoU w./ avg. semantics 56.76
(58.34)

62.75
(64.25)

62.13
(61.87)

98.60 99.12

(FPN) (Lin et al., 2017) with an ImageNet pre-trained ResNet-18 (He et al., 2016) as the backbone to ex-
tract 128 × 64 × 64 downsampled pixel-level features. The FPN is fine-tuned with 30,000 CelebAHQ (Lee
et al., 2020) face part segmentation masks (about 15% of CelebA). We perform mini-batch K-means clus-
tering every 20 batches before a single centroid update. The number of clusters is set to 20. Part semantics
masks were restricted to have 7 categories, i.e., every object is limited to being described by 7 object parts
(including background) from selecting the top 7 clusters. For image syntax learning, a 1-layer bi-LSTM
model is trained. Input and hidden vectors are 135-dimensional (128-d encoded mask concatenated with
7-d semantics), and the projected outputs are 7-d. Figure 7 shows the natural and unnatural images during
the test, along with the 5 patches used in the traversal sequence and their corresponding predicted part
semantics.

SSDI Detection Performance on CelebA Figure 8 shows the forward, backward, and the sum of both
residual errors of the bi-LSTM across iterations of processing image patches of both natural and corrupted
images of the CelebA dataset. The solid lines are mean values, whereas the shaded region covers between
the 25% and 75% percentiles. It can be seen that there is a separation between natural (blue) and corrupted
SSDI (red) samples. The histogram shows the distribution of test samples based on the total residual error,
along with the threshold (green dashed line) used to distinguish samples from natural and corrupted.

Table 5 illustrates the performance of the proposed framework on the CelebA dataset for various grammar
validation methods. Different columns represent corruption types, with the number and the size of the
affected image patches. For example, Shuffle 2 30 × 30 means that 2 image patches of size 30 × 30 pixels
are swapped to generate the patch shuffling corruption, whereas Puzzles 4 20× 20 means that the frame-
work processes a batch generated from all possible permutations (including that of the original image) of 4
randomly selected patches of size 20× 20 pixels. Both the detection accuracy and the detection rate results
are reported, with the latter presented in parentheses.

When ResNet-18 and FPN are used as the models for extraction of part semantics, it can be seen that using
the memorized average part semantics performs the best among the three grammar validation methods. This
can be explained by the fact that in the CelebA dataset, the object is the human face with a very well-defined
structure. Hence, it is more effective to learn not only the expected relation between the neighboring object
parts (i.e., the image syntax) but also what those object parts are expected to be (i.e., the memorized average
part semantics). The puzzle variation of SSDI corruption poses an interesting problem, since a large number
of possible rearrangements of object parts observed at the same time significantly reduces the margin at
which they can be distinguished based on the residual error. Interestingly, the framework achieves above
99% performance on puzzles, highlighting that the proposed approach indeed learned the correct composition
of object parts.

15

Published in Transactions on Machine Learning Research (04/2025)

Figure 9: Image patches of size 160 and the sequences of processing image syntax of SUN-RGBD.

Figure 10: From left to right: the forward, the backward, and the total bi-LSTM prediction errors as well
as the histogram of total errors over test samples of SUN-RGBD dataset.

SUN-RGBD The second dataset is the SUN-RGBD (Song et al., 2015) dataset with 10,335 room layout
RGB and depth images. The DNN feature extractor consists of a pre-trained Residual Encoder-Decoder
(RedNet) (Jiang et al., 2018), which is used to retrieve part semantics masks from 640 × 480 sized images.
The object parts were restricted to 13 based on the obtained semantic masks. For syntax learning, we use
the same bi-LSTM model as in CelebA. As shown in Figure 9, we define zig-zag traversal rules on sequences
of patches of sizes 160 × 160 and 80 × 80 pixels. The residual prediction errors and the histogram for test
set images are shown in Figure 10.

Table 6 shows detection accuracy and detection rates on the SUN-RGBD dataset. Unlike the performance
on the object-centric CelebA dataset, it is interesting to notice that the first grammar validation method
is the most optimal for other corruptions on the scene-centric SUN-RGBD dataset. This can be explained
by the more diverse nature of images in SUN-RGBD: different objects can be arranged in multiple different
ways with respect to the entire scene and other objects. Hence, as scenes might change substantially, the
method of using the stored average part semantics might be less useful than relying solely on the relations
between object parts local to individual images.

Effect of Segmentation Granularity On both datasets, we also consider more specialized alternatives
for the segmentation masks, which are expected to produce more accurate and finer part semantics. The
methods of SemanticGAN (Li et al., 2021) and Dformer (Yin et al., 2023) were considered as part semantics
models for the CelebA and SUN-RGBD datasets, respectively. From test results presented in Table 5 and
Table 6, it can be seen that finer semantic masks produced by more specialized segmentation methods do
not always lead to higher SSDI detection rates, especially on an object-centric dataset like CelebA. This can
probably be explained by the fact that it is easier to capture the natural arrangement of object parts if their
part semantics is coarser. The relationship between semantic granularity and corruption detection deserves
further investigation.

6 Limitations

While this work proposes a pioneering approach to tackle SSDI corruptions, there are a few limitations. First,
the semi-supervised approach requires some fraction of semantic segmentation masks to obtain semantic
separation of parts within the object, rather than objects from the background. A possible solution is to
consider fully self-supervised segmentation methods, like DINO (Caron et al., 2021). Second, the current

16

Published in Transactions on Machine Learning Research (04/2025)

Table 6: The performance of the proposed approach on detecting SSDI corruptions on SUN-RGBD.
Dataset Part

Semantics
Model

Grammar
Validation
Method

Shuffle
4

160x160

Shuffle
16

80x80

Black
4

160x160

Puzzles
4

160x160

Puzzles
16

80x80
SUN-RGBD
(13-cls.)

ResNet-50+Encoder-
Decoder (ours)

Bi-LSTM + next se-
mantics

60.57
(72.04)

76.57
(73.37)

66.55
(67.21)

72.89 91.17

SUN-RGBD
(13-cls.)

ResNet-50+Encoder-
Decoder (ours)

Bi-LSTM + avg. se-
mantics

54.97
(65.36)

61.52
(64.09)

58.46
(59.65)

62.47 75.48

SUN-RGBD
(13-cls.)

ResNet-50+Encoder-
Decoder (ours)

mIoU w./ avg. seman-
tics

57.98
(68.04)

58.98
(62.24)

56.32
(57.19)

97.09 98.20

SUN-RGBD
(13-cls.)

Dformer-S
(Yin et al., 2023)

Bi-LSTM + next se-
mantics

62.16
(73.47)

74.23
(72.80)

68.86
(71.23)

76.61 92.84

SUN-RGBD
(13-cls.)

Dformer-S
(Yin et al., 2023)

Bi-LSTM + avg. se-
mantics

53.77
(67.23)

62.45
(69.09)

61.98
(62.45)

61.97 74.78

SUN-RGBD
(13-cls.)

Dformer-S
(Yin et al., 2023)

mIoU w./ avg. seman-
tics

53.24
(63.38)

60.46
(66.21)

59.79
(61.80)

98.13 98.62

image syntax learning relies on the extraction and traversal of patches with a fixed pattern, which might
limit its applicability to a variety of datasets. This shortcoming can be overcome by incorporating modules
that learn “where to look” along with the proposed syntax learning approach, which do not have to rely
on a fixed number and order of patches. Active vision methods, such as Saccader (Elsayed et al., 2019),
GFNet (Wang et al., 2020), or FALcon (Ibrayev et al., 2023), provide appropriate frameworks that enable
computer vision pipelines with the capability to process inputs through a series of glimpses. Since such
active vision approaches rely on learning inherent clues between the sequence of glimpses, they might find
interesting synergy with syntax learning, which naturally assumes the presence of such clues.

7 Conclusion

Motivated to bridge the gap between human and machine perception related to unnatural images, we in-
troduce a novel deep learning framework for addressing semantic-syntactic discrepancy in images (SSDI).
Aligned with the concept of language grammar, the framework learns both the meaning and the natural ar-
rangement of object parts using deep clustering and a bi-directional LSTM. The effectiveness of the approach
is shown through its capability of solving puzzles and achieving detection rates of 70–90% on CelebA and
60–80% on SUN-RGBD. The pioneering aspect of the problem suggests a broader impact in areas requiring
reliable analysis of image content.

Broader Impact Statement

Machine learning systems and, particularly, computer vision techniques are having an increased influence
on everyday tasks that benefit from automation. These tasks range from those with minimal impact on
human life, such as facial recognition systems on mobile phones, to highly significant ones, such as obstacle
detection in autonomous vehicles. A huge amount of trust is being placed in the learning frameworks that are
used for performing these tasks. These frameworks are often trained on large datasets curated by retrieving
images using machine learning recognition techniques. If the images gathered are unnatural (do not follow
the syntax of real-world images), the learning of the downstream learning frameworks is also tainted. Hence,
it is important for these learning frameworks to (a) be trained on data that accurately represents real-
world scenarios and (b) learn the syntax and semantics of the data accurately. This work addresses both
these concerns by highlighting (a) the SSDI vulnerability in datasets and the importance of learning “image
grammar” consisting of “image syntax” and “image semantics” as well as (b) proposing a two-stage weakly
supervised framework that attempts to minimize the possibility of the malicious use of these corruptions
by learning the mentioned “image grammar”. This paves the pathway for future researchers to implement
computer vision techniques that operate holistically - learn both the syntax and semantics.

17

Published in Transactions on Machine Learning Research (04/2025)

However, as in many examples in the history of digital systems, the exposure of vulnerabilities may lead
to a path for malicious entities to exploit those vulnerabilities in existing systems. For example, when the
vulnerability of computer vision techniques to additive imperceptible noise was exposed, many adversarial
techniques were developed to trick existing machine learning frameworks. Consequently, there is a potential
for developing attacks or malicious techniques that exploit the SSDI vulnerability in images for nefarious
purposes. Moreover, the situation is worsened by the fact that such vulnerabilities are currently not de-
tectable purely by machine learning, but would require a human expert in the loop for security. This further
underscores the need for systems to wholly learn the “image syntax” along with the “image grammar”.

Acknowledgments

This work was supported in part by, the Center for the Co-Design of Cognitive Systems (CoCoSys), a
DARPA-sponsored JUMP 2.0 center, the Semiconductor Research Corporation (SRC), and the National
Science Foundation.

References
Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast adversarial training.

In NeurIPS, 2020.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 ieee
symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering for unsupervised
learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV),
September 2018.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers, 2021.

Jang Hyun Cho, Utkarsh Mall, Kavita Bala, and Bharath Hariharan. Picie: Unsupervised semantic seg-
mentation using invariance and equivariance in clustering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 16794–16804, June 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil
Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR, 2021.

Gamaleldin Elsayed, Simon Kornblith, and Quoc V Le. Saccader: Improving accuracy of hard attention
models for vision. Advances in Neural Information Processing Systems, 32, 2019.

Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, and Jose Garcia-
Rodriguez. A review on deep learning techniques applied to semantic segmentation. arXiv preprint
arXiv:1704.06857, 2017.

Martin Gubri, Maxime Cordy, Mike Papadakis, Yves Le Traon, and Koushik Sen. Lgv: Boosting adversarial
example transferability from large geometric vicinity. In ECCV, 2022.

Thomas C. Gunter, Laurie A. Stowe, and Gusbertus Mulder. When syntax meets semantics. Psy-
chophysiology, 34(6):660–676, 1997. doi: https://doi.org/10.1111/j.1469-8986.1997.tb02142.x. URL
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1997.tb02142.x.

Ankur Handa, Viorica Pătrăucean, Simon Stent, and Roberto Cipolla. Scenenet: an annotated model
generator for indoor scene understanding. In ICRA, 2016.

18

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8986.1997.tb02142.x

Published in Transactions on Machine Learning Research (04/2025)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016.
doi: 10.1109/CVPR.2016.90. URL https://ieeexplore.ieee.org/document/7780459/.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pp. 2961–2969, 2017.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 16000–16009, 2022.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions
and perturbations. In International Conference on Learning Representations, 2018.

Yuansheng Hua, Lichao Mou, and Xiao Xiang Zhu. Lahnet: A convolutional neural network fusing low- and
high-level features for aerial scene classification. In IGARSS 2018 - 2018 IEEE International Geoscience
and Remote Sensing Symposium, pp. 4728–4731, 2018. doi: 10.1109/IGARSS.2018.8519576.

Timur Ibrayev, Manish Nagaraj, Amitangshu Mukherjee, and Kaushik Roy. Exploring foveation and saccade
for improved weakly-supervised localization. In NeuRIPS 2023 Workshop on Gaze Meets ML, 2023. URL
https://openreview.net/forum?id=qUfLsi3Vlm.

Jindong Jiang, Lunan Zheng, Fei Luo, and Zhijun Zhang. Rednet: Residual encoder-decoder network for
indoor rgb-d semantic segmentation. arXiv preprint arXiv:1806.01054, 2018.

Alexander Kirillov, Ross B. Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks. In
CVPR, pp. 6399–6408. Computer Vision Foundation / IEEE, 2019. URL http://dblp.uni-trier.de/
db/conf/cvpr/cvpr2019.html#KirillovGHD19.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural informa-
tion processing systems, pp. 1097–1105, 2012. URL http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. Maskgan: Towards diverse and interactive facial
image manipulation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

Daiqing Li, Junlin Yang, Karsten Kreis, Antonio Torralba, and Sanja Fidler. Semantic segmentation with
generative models: Semi-supervised learning and strong out-of-domain generalization. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2021.

Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Belongie. Feature
pyramid networks for object detection. In CVPR, pp. 936–944. IEEE Computer Society, 2017. ISBN 978-
1-5386-0457-1. URL http://dblp.uni-trier.de/db/conf/cvpr/cvpr2017.html#LinDGHHB17.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. 2021 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pp. 9992–10002, 2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards
deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Yichuan Mo, Dongxian Wu, Yifei Wang, Yiwen Guo, and Yisen Wang. When adversarial training meets
vision transformers: Recipes from training to architecture. In Advances in Neural Information Processing
Systems, 2022.

19

https://ieeexplore.ieee.org/document/7780459/
https://openreview.net/forum?id=qUfLsi3Vlm
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2019.html#KirillovGHD19
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2019.html#KirillovGHD19
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2017.html#LinDGHHB17

Published in Transactions on Machine Learning Research (04/2025)

Diego Ortego, Eric Arazo, Paul Albert, Noel E. O’Connor, and Kevin McGuinness. Towards robust learning
with different label noise distributions. In 2020 25th International Conference on Pattern Recognition
(ICPR), pp. 7020–7027, 2021. doi: 10.1109/ICPR48806.2021.9412747.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems
32, pp. 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

Yao Qin, Chiyuan Zhang, Ting Chen, Balaji Lakshminarayanan, Alex Beutel, and Xuezhi Wang. Under-
standing and improving robustness of vision transformers through patch-based negative augmentation.
Advances in Neural Information Processing Systems, 35:16276–16289, 2022.

Muhammad A Shah, Aqsa Kashaf, and Bhiksha Raj. Training on foveated images improves robustness to
adversarial attacks. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
In Yoshua Bengio and Yann LeCun (eds.), ICLR, 2015. URL http://dblp.uni-trier.de/db/conf/iclr/
iclr2015.html#SimonyanZ14a.

Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao. Sun rgb-d: A rgb-d scene understanding bench-
mark suite. In CVPR, pp. 567–576. IEEE Computer Society, 2015. ISBN 978-1-4673-6964-0. URL
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#SongLX15.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Sori-
cut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe Kiela, and Candace
Ross. Winoground: Probing vision and language models for visio-linguistic compositionality. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5238–5248, 2022.

Arnim von Stechow. Syntax and semantics: an overview. Semantics-Interfaces, pp. 169, 2019.

Xiaosen Wang and Kun He. Enhancing the transferability of adversarial attacks through variance tuning.
In CVPR, 2021.

Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang, and Gao Huang. Glance and focus: a dynamic
approach to reducing spatial redundancy in image classification. In Advances in Neural Information
Processing Systems, 2020.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka,
Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation
and processing for computer vision, 2020.

Bowen Yin, Xuying Zhang, Zhongyu Li, Li Liu, Ming-Ming Cheng, and Qibin Hou. Dformer: Rethinking
rgbd representation learning for semantic segmentation. arXiv preprint arXiv:2309.09668, 2023.

Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and why
vision-language models behave like bags-of-words, and what to do about it? In International Conference
on Learning Representations, 2023. URL https://openreview.net/forum?id=KRLUvxh8uaX.

Jianping Zhang, Yizhan Huang, Weibin Wu, and Michael R Lyu. Transferable adversarial attacks on vision
transformers with token gradient regularization. In CVPR, 2023.

20

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a
http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#SimonyanZ14a
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#SongLX15
https://openreview.net/forum?id=KRLUvxh8uaX

Published in Transactions on Machine Learning Research (04/2025)

A Experimental details

The entire framework was implemented using the PyTorch framework (Paszke et al., 2019). The models
were trained and evaluated using 4 NVIDIA GeForce GTX 2080 Ti GPU cards.

A.1 Datasets

CelebA (Liu et al., 2015) contains 202,599 face images. We used the aligned-and-cropped version where
faces are localized. Images are divided into a train set of size 162,770, a validation set of size 19,867, and a
test set of size 19,962. First, the FPN network is finetuned on 30,000 CelebAHQ (Lee et al., 2020) images
selected from CelebA. CelebAHQ images and pixel-wise labels are center-cropped (size=160) and resized to
256×256. After fine-tuning, PiCIE deep clustering technique (Cho et al., 2021) is trained on train set images
resized to 256 × 256 and validated on the validation set. 64 × 64 patches are cropped from segmentation
and are upsampled using bilinear interpolation to 256 × 256. The 7 semantic classes and their names are
illustrated on the left part of Figure 11. During the test, the corruptions are generated around 5 facial part
landmark locations (left eye, right eye, nose, left mouth, right mouth) using a half of the randomly selected
test images.

Figure 11: Segmentation Classes. Left: CelebA; Right: SUN-RGBD

SUN-RGBD (Song et al., 2015) contains 10335 RGB images and corresponding depth images, split into a
train set of size 4785, a validation set of size 1000, and a test set of size 5050. RGB and depth images are
resized to 640 × 480 and normalized. The pre-trained RedNet (Jiang et al., 2018) also produces 640 × 480
part semantic masks. From each segmentation, 160 × 160 and 80 × 80 patch semantic masks are cropped.
The segmentation contains 37 semantic classes, but we merge them into 13 classes with the same mapping
used in the work of Handa et al. (2016). The 13 semantic classes are shown on the right part of Figure 11.
During the test, we add corruptions to image patches using a half of the randomly selected test images.

A.2 Architectures

On CelebA Figure 12 illustrates the feature pyramid network (FPN) (Lin et al., 2017) that was used
for part semantics clustering and segmentation of CelebA (Liu et al., 2015) images. Specifically, Panoptic
FPN proposed in the work of Kirillov et al. (2019) was used in the combination with ResNet-18 (He et al.,
2016) as the backbone feature extractor. While the backbone encodes multi-scale feature representation
in a top-down fashion, FPN model utilizes 1 × 1 convolutional (Conv) layers in the bottom-up manner to
project pixel-wise features to 128-dimensional space. The projected features of different spatial sizes are
upsampled using bilinear interpolation to 1/4 height and width of the original image and then element-wise
summed. The pixel-wise representations thus have shape 128×h×w (128×64×64 for input images of shape
3 × 256 × 256). The extracted pixel-wise features are used for the deep clustering (Cho et al., 2021). We
record the resulting clustering centroids as a final 1×1 Conv layer to project these features to the dimension
of the number of semantic classes to represent part semantics.

21

Published in Transactions on Machine Learning Research (04/2025)

Figure 12: DNN architectures: Feature Pyramid Network (FPN) with ResNet-18 as the backbone

Figure 13 shows the structure of the bi-directional Long Short-Term Memory (bi-LSTM). We use it for image
syntax learning. For each patch in the traversal sequence of length 5, the predicted mask is first flattened
before being fed to a fully-connected (FC) encoder layer. The encoder projects the semantic mask to a 128-d
vector, which is concatenated with the 7-d semantics vector. The resulting 135-d vector contains both spatial
and semantic information about each patch’s part semantics, and it is used as the input to 2 LSTM layers
in forward and backward directions. After projection layers, the outputs include a 7-d forward prediction
of the next part semantics semantics in the sequence and a 7-d backward prediction of the previous part
semantics. For the first and last patches, only forward and backward predictions are made, respectively.

Figure 13: DNN architectures: bi-directional Long Short-Term Memory (bi-LSTM)

22

Published in Transactions on Machine Learning Research (04/2025)

On SUN-RGBD For segmentation of SUN-RGBD (Song et al., 2015) images, we use a Residual Encoder-
Decoder Network (RedNet) (Jiang et al., 2018) with ResNet-50 as the backbone. It is a state-of-the-art room
scene parsing architecture that achieved 47.8% mIoU accuracy on 37-class SUN-RGBD. Similar to FPN, the
RedNet extracts multi-scale feature maps from the input image with its encoder residual layers. However,
each projected feature map is skip-connected with the output of upsampling residual units in a decoder (Jiang
et al., 2018) before being summed with the next level in the feature pyramid. An additional depth branch
is fused with the RGB branch. We performed 13-class (merged from 37-class) semantic segmentation with
a trained RedNet. The RedNet produces the same-resolution (640 × 480) segmentation from the original
image. Patch semantic masks of sizes 160 × 160 and 80 × 80 are cropped and used for preparing patch
semantic vectors. At each stage of patch sequences, part semantics masks are flattened and projected to
128-d vectors before concatenating with a 13-d part semantics vector. The resulting 141-d vectors are passed
to LSTM blocks for forward and backward predictions (both 13-d).

A.3 Hyperparameters

On CelebA During fine-tuning of the FPN network pre-trained on ImageNet (Deng et al., 2009), Cele-
bAHQ (Lee et al., 2020) masks are pre-processed to contain only 7 coarse semantic classes. Adam opti-
mizer is used with start_lr = 1e−4. We trained for num_epochs = 20 with a constant learning rate and
batch_size_train = 128. The fine-tuned model is used for deep clustering PiCIE (Cho et al., 2021) training
with batch_size_train = 256. We adopted over-clustering and set the number of clusters, K_train = 20,
as that results in better clusters compared to KM_num = 10 and KM_num = 30. Mini-batch K-means
clustering is performed. KM_init = 20 is the number of batches we collect before the first K-means clus-
tering. KM_num = 20 is the interval of batches between consecutive clustering. KM_iter = 100 is the
number of K-means clustering iterations before convergence. After each clustering, the total PiCIE loss is
back-propagated to optimize FPN model parameters. We use Adam optimizer with start_lr = 1e−4. De-
spite the complexity of the total PiCIE training loss, the training converges fast in num_epochs = 10 with
a constant learning rate. To get semantic segmentation masks, we initiate a 1× 1 Conv layer, the weights of
which are loaded as the trained centroid matrix, and append it to the trained FPN network. We post-process
pixel-wise class assignments to merge semantically-similar clusters and obtain 7-class face part semantics.
Further, we tune the FPN network on 64× 64 patches, using crops on the saved face part semantics as the
supervision. The part semantics mask detector is trained with batch_size_train = 128, start_lr = 1e−4

for a total of num_epochs = 20. We chose the num_epochs = 20 model over the num_epochs = 40 model
because the smooth boundaries in the semantic masks help with image syntax learning.

After we obtain 7-class part semantics masks for each patch in the traversal sequence, we feed the concatena-
tion of encoded mask (128-d) and semantics vector (7-d) into a bi-LSTM model. The parameters for bi-LSTM
are: input_size = 135, hidden_size = 135, num_layers = 1, bidirectional = True, proj_size = 7. We
use Adam optimizer with start_lr = 1e−4 and num_epochs = 40, with the learning rate changed to 1e−5

after 20 epochs.

On SUN-RGBD On SUN-RGBD, the pre-trained RedNet network (Jiang et al., 2018) produces 37 seg-
mentation classes. We merge these classes into 13-class as shown in Figure 11. When the patches are
shuffled, the pre-trained network is able to produce precise part semantics, so that a part mask detector is
not needed as in CelebA. We start with image syntax training with two configurations, patch_size = 160
and patch_size = 80. In both configurations, the part semantics masks are encoded as 128-d vectors, while
the part semantics vector is 13-d. Thus, the bi-LSTM model has the configuration with input_size = 141,
hidden_size = 141, num_layers = 1, bidirectional = True, proj_size = 13. We use Adam optimizer
with start_lr = 1e−4 for a total of num_epochs = 40. A multi-step learning rate scheduler is used with
gamma = 0.8 and milestones = [5, 10, 15, 20, 25, 30, 35].

23

Published in Transactions on Machine Learning Research (04/2025)

B Generation of SSDI corruptions

One of the main contributions of this work is exposing the vulnerability of classification models to semantic-
syntactic discrepancy in images (SSDI). We define three types of corruptions causing semantic-syntactic
discrepancy in images and provide the algorithmic methodology of generating these SSDI corruptions. Fur-
thermore, the supplementary material contains the code to generate the corresponding SSDI corruptions.

Algorithm 1 illustrates the algorithm used to generate the first type of SSDI corruption called a patch
shuffling. This type of corruption is generated by swapping the positions of the subset of image patches.
The performance of the SSDI detection approach is evaluated based on its capability to detect whether the
given input is a natural image or not. Algorithm 2 illustrates the algorithm used to generate the second
type of SSDI corruption called a patch blackening. This type of corruption is generated by blackening out a
subset of image patches. Similarly to the patch shuffling, the performance is evaluated based on the detection
capability of natural and corrupt images. Algorithm 3 illustrates the algorithm used to generate the third
type of SSDI corruption called a puzzle solving. Similarly to the patch shuffling, this type of corruption
permutes a subset of image patches. However, unlike patch shuffling, in puzzle solving, we generate all
possible permutations for the specified number of image patches allowed for corruption. Then, all possible
patch permutations and the original natural image are fed to the framework, which has to predict the image
with the natural arrangement of image patches/object parts. For each considered dataset, SSDI corruptions
are generated using half of the test set images chosen at random. All corruptions are considered separately,
i.e. the paper does not consider a simultaneous mixture of different SSDI corruptions. Figure 14 illustrates
examples of all SSDI corruptions considered in this work on CelebA and SUN-RGBD test images.

Figure 14: Demo of all types of SSDI corruptions.

24

Published in Transactions on Machine Learning Research (04/2025)

Algorithm 1 Patch shuffling
1: def shuffleSSDI(tensors, num_patch, ps):
2: result← []
3: for it, X in enumerate(tensors) do
4: patches← nn.F.unfold(X, ps, ps, 0)
5: p← patches.shape[-1]
6: if it == 0 then
7: indices← sample(range(p), num_patch)
8: orig← tensor(range(p))
9: perm← tensor(range(p))

10: for j in range(num_patch) do
11: perm[indices[j]] = orig[indices[(j + 1)%num_patch]]
12: end for
13: end if
14: patches← concat(patch[:, perm]for patch in patches)
15: X← nn.F.fold(patches, X.shape[-2:],ps, ps, 0)
16: result.append(X)
17: end for
18: return result

Algorithm 2 Patch blackout
1: def blackoutSSDI(tensors, num_patch, ps):
2: result← []
3: for it, X in enumerate(tensors) do
4: patches← nn.F.unfold(X, ps, ps, 0)
5: p← patches.shape[-1]
6: if it == 0 then
7: indices← sample(range(p), num_patch)
8: end if
9: for idx, X in enumerate(patches) do

10: patches[idx][:, indices]← 0
11: end for
12: X← nn.F.fold(patches, X.shape[-2:],ps, ps, 0)
13: result.append(X)
14: end for
15: return result

25

Published in Transactions on Machine Learning Research (04/2025)

Algorithm 3 Create puzzles
1: def puzzleSSDI(tensors, num_perm, ps):
2: result← []
3: for it, X in enumerate(tensors) do
4: patches← nn.F.unfold(X, ps, ps, 0)
5: p← patches.shape[-1]
6: if it == 0 then
7: perms← []
8: for perm_id in range(num_perm) do
9: perms.append(randperm(p))

10: end for
11: end if
12: res← X.clone()
13: for perm in perms do
14: new_patches← concat(patch[:, perm]for patch in patches)
15: new_X← nn.F.fold(patches, X.shape[-2:],ps, ps, 0)
16: res← concat(res, new_X)
17: end for
18: result.append(res)
19: end for
20: return result

26

Published in Transactions on Machine Learning Research (04/2025)

C Performance results of classification models against patch corruptions

Figures 15, 16, 17, and 18 illustrate classification accuracy results achieved with different classification models
against patch shuffling and patch blackening corruptions generated from ImageNet2012 val set samples of
original size 224× 224 pixels.

Figure 15: Performance results of ViT-B-16 model against patch shuffling of the different degrees. Each
cell represents the mean and standard deviation of classification accuracy for 5 runs with different random
seeding.

Figure 16: Performance results of ViT-B-16 model against patch blackening of the different degrees. Each
cell represents the mean and standard deviation of classification accuracy for 5 runs with different random
seeding.

27

Published in Transactions on Machine Learning Research (04/2025)

Figure 17: Performance results of ResNet-50 model against patch shuffling of the different degrees. Each
cell represents the mean and standard deviation of classification accuracy for 5 runs with different random
seeding.

Figure 18: Performance results of ResNet-50 model against patch blackening of the different degrees. Each
cell represents the mean and standard deviation of classification accuracy for 5 runs with different random
seeding.

28

Published in Transactions on Machine Learning Research (04/2025)

D Extra quantitative results

In Table 7 and Table 10 we add more results for the detection task of SSDI corruptions, on CelebA (7 classes)
and SUN-RGBD (13 classes), respectively.

CelebA The segmentation model is ResNet-18 with FPN. The input images have sizes 256 × 256. All
results are reported using the first grammar validation method, which relies on the combination of using
bi-LSTM and comparing the predicted part semantics to the estimated part semantics within the image itself
(i.e. without the memorized average part semantics). From Table 7, we observe that the proposed approach
exhibits reliable performance when the size of the corrupted patch exceeds 30 × 30: >80% on patch shuffling
SSDI, 92.51% on puzzle solving SSDI with 4 permutations, >80% on patch blackout SSDI.

SUN-RGBD The segmentation model is ResNet-50 with encoder-decoder (RedNet). The input images
have sizes 640 × 480. All results are reported using the first grammar validation method, which relies on the
combination of using bi-LSTM and comparing the predicted part semantics to the estimated part semantics
within the image itself (i.e. without the memorized average part semantics). Two segmentation granularities
are used, 13-class coarse segmentation merged from 37-classes, and the original 37-class fine segmentation.
From Table 10, we observe SSDI detection performance for the two levels of granularity. For patch shuffling
SSDI and puzzle solving SSDI, using coarser 13-class semantic masks boosts syntax sequence reasoning and
improves grammar validation performance. This is due to the better sequential reasoning capability that
the bi-LSTM learns from coarse patch masks. Meanwhile, in the task of patch blackout, using finer 37-class
semantic masks has an edge. The blackened patch semantics is easier to discern when the segmentation is
finer, leading to a longer syntax sequence and higher variations in the predicted semantic values.

Table 7: SSDI detection performance on CelebA with 256x256 sized images.
SSDI Corruption: patch shuffling
Test Accuracy (%) Patch size: 10 Patch size: 20 Patch size: 30 Patch size: 40 Patch size:50
shuffle 2 patches 53.86 (75.58) 65.66 (68.67) 76.22 (79.72) 83.89 (86.33) 88.22 (93.04)
shuffle 3 patches 55.67 (75.16) 73.16 (78.97) 85.68 (91.08) 90.96 (95.22) 93.05 (97.42)
shuffle 4 patches 57.33 (74.73) 78.40 (82.29) 89.79 (94.57) 93.00 (97.34) 94.34 (98.07)
shuffle 5 patches 59.13 (70.93) 82.88 (88.15) 91.72 (96.06) 93.93 (97.25) 94.69 (97.39)

SSDI Corruption: puzzle solving
Test Accuracy (%) Patch size: 10 Patch size: 20 Patch size: 30 Patch size: 40 Patch size:50
1 real, 3 fake 57.84 86.74 92.51 93.97 94.81
1 real, 119 fake (all perm) 8.39 37.43 66.15 80.37 87.23

SSDI Corruption: patch blackening
Test Accuracy (%) Patch size: 10 Patch size: 20 Patch size: 30 Patch size: 40 Patch size:50
blacken 1 patch 54.73 (55.36) 70.91 (67.04) 81.25 (81.08) 87.37 (88.04) 91.25 (95.12)
blacken 2 patches 60.43 (63.78) 83.83 (85.22) 91.77 (93.43) 95.41 (97.41) 95.78 (97.58)
blacken 3 patches 65.79 (68.94) 90.60 (93.83) 96.48 (98.49) 97.83 (98.57) 98.50 (99.14)
blacken 4 patches 71.85 (74.34) 94.56 (97.14) 98.08 (98.88) 98.86 (99.36) 99.05 (99.49)
blacken 5 patches 77.32 (85.28) 97.22 (98.20) 98.87 (99.48) 98.95 (99.29) 99.13 (99.64)

29

Published in Transactions on Machine Learning Research (04/2025)

Table 8: 13 segmentation classes
SSDI Corruption: patch shuffling
Test Accuracy (%) Patch size: 160 Test Accuracy (%) Patch size: 80
shuffle 4 patches 60.57 (72.04) shuffle 16 patches 76.57 (73.37)
shuffle 8 patches 69.31 (72.59) shuffle 32 patches 86.63 (82.38)
shuffle 12 patches 73.47 (77.50) shuffle 48 patches 87.09 (82.97)

SSDI Corruption: puzzle solving
Test Accuracy (%) Patch size: 160 Patch Size: 80
1 real, 3 fake 72.89 91.17
1 real, 99 fake 28.95 69.67

SSDI Corruption: patch blackening
Test Accuracy (%) Patch size: 160 Test Accuracy (%) Patch size: 80
blacken 4 patches 66.55 (67.21) blacken 16 patches 67.43 (65.53)
blacken 8 patches 66.59 (67.17) blacken 32 patches 75.68 (70.22)
blacken 12 patches 66.75 (67.49) blacken 48 patches 73.66 (74.81)

Table 9: 37 segmentation classes
SSDI Corruption: patch shuffling
Test Accuracy (%) Patch size: 160 Test Accuracy (%) Patch size: 80
shuffle 4 patches 62.32 (74.57) shuffle 16 patches 67.74 (74.77)
shuffle 8 patches 71.53 (76.99) shuffle 32 patches 78.04 (76.20)
shuffle 12 patches 74.93 (77.43) shuffle 48 patches 79.84 (78.69)

SSDI Corruption: puzzle solving
Test Accuracy (%) Patch size: 160 Patch Size: 80
1 real, 3 fake 76.10 81.23
1 real, 99 fake 33.85 55.99

SSDI Corruption: patch blackening
Test Accuracy (%) Patch size: 160 Test Accuracy (%) Patch size: 80
blacken 4 patches 61.58 (71.37) blacken 16 patches 61.41 (71.25)
blacken 8 patches 67.53 (72.20) blacken 32 patches 69.07 (71.80)
blacken 12 patches 66.18 (76.00) blacken 48 patches 64.59 (72.24)

Table 10: SSDI detection performance on SUN-RGBD with 640x480 sized images.

30

Published in Transactions on Machine Learning Research (04/2025)

E Extra qualitative results

E.1 Semantic clustering and segmentation

Figure 19 and Figure 20 show selected part semantics obtained on CelebA face images and SUN-RGBD
room scene images, respectively. All samples are from the train set. The displayed part semantics masks are
generated by trained ResNet-18 and trained ResNet-50 encoder-decoder, respectively.

Figure 19: 7-class semantic segmentation on CelebA

Figure 20: 13-class semantic segmentation on SUN-RGBD

E.2 Syntactic sequences of part semantics

Figure 21 shows the pixel-level part semantics masks and the distribution of part semantics in each mask,
averaged over correct samples in the entire CelebA test set. During training, we optimized MSE loss between
bi-LSTM predictions and the actual semantics inside each patch, in order to model the mean of the part
semantics distribution in each patch iteration. Hence, here we show the average traversal patterns learned.
It can be seen that face-part semantics transitions and the face syntax in the CelebA dataset are captured
by the trained bi-LSTM model. For example, in the first 2 patch iterations, the “forehead” semantics is

31

Published in Transactions on Machine Learning Research (04/2025)

dominant. In the third and fourth patches, “mouth” semantics is dominant. While for the last patch, “eyes”
semantics is dominant. These part semantics along with transitions of those semantics is key to identifying
the presence of SSDI.

Figure 21: Left: Averaged patch mask transitions over CelebA test set; Right: Averaged patch semantics
over CelebA test set

Figure 22 shows the pixel-level part semantics masks and the distribution of part semantics in each mask,
averaged over correct samples in the entire SUN-RGBD test set. Here, each of the 13 semantic classes is
either a stuff (e.g., ceiling, floor, wall, etc.) or a thing (e.g., books, char, table, etc.). Within the traversal
sequence, the first few patches at the top of the image have “wall” as the dominant part semantics, while the
last few patches at the bottom have “floor” as the dominant part semantics. Semantic classes belonging to
the thing category reside in the middle patches, such as “chair” and “table”. This reveals that our proposed
framework is capable of learning the syntax of the scene-centric images containing stuff and thing layouts
even from a diverse SUN-RGBD dataset with a wide variety of different room scenes.

Figure 22: Left: Averaged patch mask transitions over SUN-RGBD test set; Right: Averaged patch semantics
over SUN-RGBD test set

32

	Introduction
	Semantic-Syntactic Discrepancy in Images (SSDI)
	Problem Definition and SSDI Types
	Pervasiveness of SSDI in the Existing Methods
	Purely Image-based Methods
	Image and Language-based Methods
	Puzzle Solving as a Proxy Task

	Importance and Application
	Learning Setting

	Related Works
	Compositionality of Image Representations
	Vulnerability of Computer Vision

	Methodology
	Results
	Limitations
	Conclusion
	Experimental details
	Datasets
	Architectures
	Hyperparameters

	Generation of SSDI corruptions
	Performance results of classification models against patch corruptions
	Extra quantitative results
	Extra qualitative results
	Semantic clustering and segmentation
	Syntactic sequences of part semantics

