
Non-Linear H∞ Robustness Guarantees for Neural
Network Policies

Abstract

Robust control methods ensure system stability under disturbances but often fall
short in performance when applied to non-linear systems. Neural-network based
control methods trained using deep reinforcement learning (RL) have achieved
state-of-the-art performance on many challenging non-linear tasks but often lack
robustness guarantees. Prior work proposed a method to enforce robust control
guarantees within neural network policies, improving average-case performance
over existing robust control methods and worst-case stability over deep RL methods.
However, this method assumed linear time-invariant dynamics, which restricts
the allowable actions and reduces the flexibility of neural network policies in
handling non-linear dynamics. This paper presents a novel approach to enforce
non-linear H∞ robustness guarantees for neural network policies, as well as a
tunable robustness parameter that allows for a trading off robustness and average
performance, which is an essential feature for real-world deployments. Although
the experimental validation of our approach is ongoing, the theoretical foundations
presented here aim to facilitate the application of robust control principles to a
wider range of non-linear systems, potentially improving both the flexibility and
performance of neural network policies in safety-critical applications.

1 Introduction

Robust control methods are essential for ensuring system stability under disturbances but often exhibit
limitations in handling non-linear systems effectively. Nonlinear control methods that use deep
neural networks, particularly those leveraging deep reinforcement learning (RL), have demonstrated
impressive performance on complex, non-linear tasks. However, these methods generally lack
robust stability guarantees, which are critical for practical, safety-critical applications. Previous
work, notably by Donti et al. (2021), proposed a method that integrates robust control guarantees
within neural network policies by projecting the output of a neural network policy onto a set of
certifiably stabilizing actions. This set of actions was constructed using robust control techniques
for linear time-invariant dynamics with potentially non-linear disturbances. This method achieved a
notable balance between improving average-case performance over traditional robust controllers and
enhancing worst-case stability over non-robust neural-network policies. However, the assumption of
linear time-invariant dynamics considerably restricts the allowable actions and reduces the flexibility
of neural network policies in handling non-linear systems. Additionally, the reliance on a predefined
dynamics model is less compatible with the data-driven nature of RL. In this paper, we address these
limitations by presenting a novel approach that generalizes that of Donti et al. (2021) to achieve
non-linear H∞ robustness guarantees for neural network policies. Our contributions are threefold:

1. Nonlinear Robustness Projection: We develop a projection method that accommodates non-linear
dynamics and controllers, thereby expanding the set of allowable actions without compromising
robustness. This generalization allows our approach to handle a broader class of systems beyond the
linear approximations used in previous methods.

Preprint. Under review.

2. Data-Driven Robustness Framework: We introduce a robustness framework that learns the
dynamics model from data, which aligns more closely with the principles of RL. This eliminates
the need for a predefined system model, making our approach more adaptable to various practical
scenarios.

3. Tunable Robustness/performance trade-off: Our methodology includes a tunable parameter that
trades-off robustness and average performance, by determining the rate of energy dissipation of the
controlled system. Such a parameter can serve as a control knob, allowing practitioners to balance
robustness and average performance according to specific real-world application requirements, where
trade-offs between performance and stability must be carefully managed.

Although the experimental validation of our approach is ongoing, the theoretical foundations presented
here aim to facilitate the application of robust control principles to a wider range of non-linear systems,
potentially improving both the flexibility and performance of neural network policies in safety-critical
applications.

2 Background

Control theory deals with the design and analysis of controllers for dynamical systems. A dynamical
system is characterized by its state, typically a vector of real values that describe the system at a
given moment in time. The goal of a controller is to map each system state x to a control action
u to optimize some performance metric over the system’s lifetime, often represented as a cost that
accumulates over time.

Linear control focuses on developing linear controllers for systems with linear dynamics. In control
theory, particularly in robust control contexts, the dynamics of a linear system are often described by
the following representation:

ẋ(t) = Ax(t) +Bu(t) +Gw(t), w ∈ L2

z(t) = Cx(t) +Du(t)
(1)

where t denotes time, x(t) ∈ Rn denotes the state vector, u(t) ∈ Rm represents the control input,
and w(t) ∈ Rp encapsulates external disturbances or modeling uncertainties. The matrices A, B,
and G are of appropriate dimensions, and w is assumed to belong to the space of signals with finite
L2 norm, ensuring bounded energy. The output z is typically related to the performance or the cost
accumulated at each step, where C and D are matrices of appropriate dimensions.

Non-linear control focuses on developing non-linear controllers for systems with non-linear dynamics.
One way to define a non-linear dynamic system is the following:

ẋ(t) = f(x(t)) + g2(x(t))u(t) + g1(x(t))w(t)

z(t) = h1(x(t)) + k12(x(t))u(t), w ∈ L2
(2)

where x ∈ X is a state vector, t, u, w are as in Equation 1, and the functions f : X → C∞(X),
g1 : X → Mn×p(X), g2 : X → Mn×m(X), h1 : X → Rs, and k12 : X → Mn×m(X) are
assumed to be real C∞-functions of x.

A special case of non-linear systems is given by the following polynomial dynamics representation
(omitting dependency on t for brevity):

ẋ = A(x)x{d} +B2(x)u+B1(x)w

z = C1(x)x
{d} +D12(x)u

(3)

where x{d} is a vector of monomials of degree ≤ d in x, and A(x), B1(x), B2(x), C1(x), and
D12(x) are matrices whose entries are (potentially constant) functions of x. Note that while A(x) in
Equation 1 is an n× n matrix, A(x) in Equation 3 is a {d} × {d} matrix where {d} is the number of
monomials in x{d},

2

2.1 Robust H∞ Control for Non-Linear Systems

Robust control addresses uncertainties arising from external disturbances and incomplete knowledge
of system parameters. The goal is to design a controller that maintains performance despite these
uncertainties. This paper focuses on uncertainties arising from external disturbances. The H∞ control
problem is a robust control approach that aims to minimize the worst-case effect of disturbances on
the system. This is formalized using the H∞ norm, which quantifies the maximum gain from the
disturbance input w to the controlled output z. The H∞ control problem can be stated as follows:
find a controller K(x) such that for some γ > 0 the controlled system satisfies

∫ ∞

0

∥z(t)∥2dt ≤ γ2

(
∥x(0)∥2 +

∫ ∞

0

∥w(t)∥2dt
)
, ∀w ∈ L2 (4)

where ∥x(0)∥ is the initial energy state. A system satisfying this condition is said to have an L2-gain
from w to z that is less than or equal to γ.

In control theory, particularly in the context of H∞ control, the concept of dissipation is used to
analyze the stability and performance of a system. The dissipation inequality is given by:

S(x(t1)) ≤ S(x(t0)) +

∫ t1

t0

s(w(t), z(t)) dt (5)

where S : X → R+ is storage function representing the system’s stored energy, t0 and t1 are the
initial and final times, respectively, and s(w(t), z(t)) is a supply rate quantifying the energy exchange
with the environment. A system represented by Equation 1 or 2, is said to be dissipative with respect
to a supply rate s(w(t), z(t)) if it satisfies Equation 5 for all t1 ≥ t0, x(t0), x(t1) ∈ X , and all
disturbances w ∈ L2. Equation 5 provides a way to ensure that the system dissipates more energy
than it absorbs from external sources, which include the contributions of the system state, control
input, and external disturbances.

Choosing the supply rate as:

s(w, z) =
γ2

2
∥w∥2 − 1

2
∥z∥2, γ ≥ 0 (6)

a system is dissipative with respect to this supply rate if there exists a storage function S(x) such that:

S(x(t1)) ≤ S(x(t0)) +

∫ t1

t0

(
γ2

2
∥w(t)∥2 − 1

2
∥z(t)∥2

)
dt (7)

and if so, it can be seen that it has an L2-gain of γ. We therefore would like to develop systems that
are dissipative with respect to this supply rate. To ensure the system is robust to external influences
and remains stable, the dissipation inequality must hold for all times, states, and disturbances. By
subtracting S(x(t0)) from both sides of Equation 7 and letting t1 → t0, we get:

dS

dt
= Sx(x)ẋ(t) ≤

γ2

2
∥w(t)∥2 − 1

2
∥z(t)∥2 (8)

where Sx(x) denotes the gradient of S with respect to x.

Next, using S(x), a non-negative function V (x) = S(x) − S(x∗) is defined around a strict local
minimum x∗ of S(x). Defining V (x) is beneficial because it allows us to use V (x) as a Lyapunov
function, which provides a measure of the system’s stability. A Lyapunov function is a non-negative
scalar function that decreases over time for a stable system, indicating that the system’s state is
approaching an equilibrium point. For the dynamical systems specified in Equations 1 and 3, and
quadratic positive-definite Lyapunov functions V (x) = x⊤Px and V (x) = x{d}TPx{d} respectively,
it is possible to use semidefinite programming to construct linear controllers u(t) = Kx(t),K ∈
Mm×n and u(t) = K(x)x{d}(t),K(x) ∈ Mm×{d}, ensuring dissipativity and L2-gain, as we
describe in Section 3.

3

By (i) using the fact that Vx(t) = (S(x)− S(x∗))x (t) = Sx(t), (ii) substituting into Equation 8 the
general non-linear system dynamics of Equation 2 ẋ = f(x) + g2(x)u+ g1(x)w, (iii) omitting t for
brevity, and (iv) rearranging terms, we get:

Vx(f(x) + g2(x)u+ g1(x)w)−
γ2

2
∥w∥2 + 1

2
∥z(x, u)∥2 ≤ 0 (9)

To ensure that the system is robust to disturbances and optimally controlled, the left-hand side is
maximized with respect to w to account for the worst-case disturbance, and minimized with respect
to u to find the optimal control input. Maximizing with respect to w results in w∗ = 1

γ2 g1(x)
⊤V ⊤

x ,
and minimizing with respect to u results in u∗ = −g2(x)

⊤V ⊤
x . Substituting these into the above

inequality and assuming that h1(x)
⊤k12(x) = 0 yields the Hamilton-Jacobi inequality (HJI):

HJI: Vxf(x)+
1

2
Vx

(
1

γ2
g1(x)g1(x)

⊤ − g2(x)k12(x)
⊤k12(x)g2(x)

⊤
)
V ⊤
x +

1

2
h1(x)

⊤h1(x) ≤ 0

(10)
This inequality must be satisfied for all x ∈ X . Solving it amounts to finding a Lyapunov function
V , and therefore a robust controller u∗ for which the inequality holds for all system states. Such a
controller renders a dissipative controlled system, which therefore has an L2 gain ≤ γ. In this general
form, solving the HJI inequality is NP-hard. However, for systems in Equation 3 (and 1 as a special
case of 3), the HJI inequality can be reduced to a semidefinite program, for which there are efficient
solution methods, as described in Section 3.

2.2 Robust Control Guarantees for Neural Network Policies

Reinforcement Learning (RL) Sutton and Barto (2018) is an approach for learning a mapping from
states to actions, known as policies, without requiring a model of the system dynamics. Unlike
traditional control methods, which rely on explicit models, RL focuses on optimizing actions through
trial and error to maximize cumulative rewards, which is typically equivalent to minimizing cumulative
cost.

While robust control methods offer rigorous guarantees on system stability under disturbances, they
often focus on linear dynamics and controllers, and therefore result in simple controllers with poor
average-case performance. In contrast, nonlinear control methods trained using deep RL (RL that
uses deep neural networks) have achieved state-of-the-art average-case performance on a variety of
challenging domains, however they lack robustness guarantees.

Donti et al. (2021) proposed to apply techniques from robust linear control to enforce robustness
on deep RL policies. Their paper addresses the challenging tradeoff between robustness and per-
formance in safety-critical systems. Their technique combines the strengths of both approaches by
constructing a generic nonlinear control policy class parameterized by neural networks, that enforces
the same provable robustness criteria as robust control. The resulting policies improved average-case
performance over existing robust control methods and worst-case stability over non-robust deep RL
methods.

More specifically, the approach of Donti et al. (2021) leverages the framework of linear robust control,
focusing on systems that are variations of the system described by Equation 1, specifically:

• Norm-bounded Linear Differential Inclusions (NLDIs):
ẋ = Ax(t) +Bu(t) +Gw(t), ∥w(t)∥2 ≤ ∥Cx(t) +Du(t)∥2

• Polytopic Linear Differential Inclusions (PLDIs):
ẋ(t) = A(t)x(t) +B(t)u(t), (A(t), B(t)) ∈ Conv{(A1, B1), . . . , (AL, BL)}.

• H∞ control setting with linear time-invariant dynamics, given by Equation 1:
ẋ(t) = Ax(t) +Bu(t) +Gw(t), w ∈ L2

All of these systems are linear in their state and control variables, with potentially non-linear
disturbances, meaning that the matrices A and B are constant or time-varying but linear, while the
disturbance w and the uncertainty in PLDIs can be arbitrary but are bounded Boyd et al. (1994). The
key steps of their approach are as follows:

4

1. Define the Performance Objective: The performance objective is specified, typically as
minimizing a cost function over time.

2. Define the Stability Requirement: The stability requirement ensures that the system
remains stable under disturbances, often represented by a Lyapunov function.

3. Define a Policy Optimizer: A policy optimizer is used to adjust the neural network
parameters to meet the defined objectives.

4. Solve the Linear Matrix Inequality (LMI): For systems of the three types mentioned above
(namely NLDI, PLDI, and those given by Equation 1), the Hamilton-Jacobi Inequality (HJI)
reduces to a Linear Matrix Inequality (LMI), the solution of which are constant matrices P
and K that satisfy the robustness constraints for systems with linear dynamics.

5. Construct a Set of Allowable Robust Actions C(x) Using P : The solution P,K from the
LMI is used to construct the set C(x) of actions satisfying the robustness constraint.

6. Construct a Robust Policy Class using C(x): The set C(x) is used to construct a robust
nonlinear policy class that projects the output of some neural network onto this set. Formally,
given an arbitrary nonlinear (neural network-based) policy class π̂θ : Rs → Ra parameter-
ized by θ, and a projection operator P(·) for some set (·), the robust policy class is defined
as as πθ : Rn → Rm, where

πθ(x) = PC(x)(π̂θ(x)).

7. Train the Neural Network Policy: The policy optimizer trains the neural network policy
πθ(x) to optimize the performance objective. The projection operator PC(x) which is part of
the policy πθ(x) ensures that the policy satisfies the robust control constraints.

This approach is summarized in Algorithm 1:

Algorithm 1 Learning Provably Robust Controllers with Deep RL Donti et al. (2021)
1: Input: Performance objective l, stability requirement, policy optimizer A
2: Solve the Linear Matrix Inequality (LMI) for matrices P,K
3: Construct a set of allowable robust actions C(x) using P,K
4: Construct a robust policy class by projecting π̂θ(x) onto C(x): πθ(x) = PC(x)(π̂θ(x))
5: Train πθ via A to optimize l
6: Return: Optimized policy πθ

3 Framework for Non-Linear H∞ Robustness in Neural Network Policies

Despite the significant advancements provided by Donti et al. (2021), their approach has a few notable
limitations. By leveraging linear time-invariant dynamics, the method restricts the class of systems to
those that can be approximated linearly, which may not be realistic for many practical applications
involving inherently nonlinear dynamics. This assumption of linearity leads to a constrained set of
allowable actions, potentially limiting the performance of the control system in setups with non-linear
dynamics. Additionally, the requirement for a predefined dynamics model makes this approach less
adaptable to reinforcement learning (RL), which inherently thrives on learning from data without
explicit system models. This section addresses these shortcomings by proposing a methodology that
eliminates the need for a priori system models, accommodates nonlinear dynamics, and introduces
tunable robustness parameters, thereby expanding the potential for robust, high-performance neural
network policies deployed in the real-world.

3.1 System Dynamics Specification

To model nonlinear dynamics, we use the polynomial dynamics defined by Equation 3:

ẋ = A(x)x{d} +B2(x)u+B1(x)w,

z = C1(x)x
{d} +D12(x)u,

5

where x{d} is a vector of monomials of degree ≤ d in x. This form has the advantages of (i) being
highly expressive, capable of representing a wide range of complex dynamics, (ii) being learnable
from data using, e.g., self-supervised learning, and (iii) making the solution of the Hamilton-Jacobi
inequality (HJI) tractable, as described in Section 3.2.

If the polynomial dynamics are known, we directly use the matrices A(x), B2(x), and B1(x) to
define the system. If the dynamics are unknown, we follow these steps:
1. Data Collection: Gather data from system execution via simulations or real-world experiments.
2. Model Fitting: Fit a polynomial dynamics model from the collected data using an appropriate
machine learning approach, e.g., self-supervised learning, obtaining matrices A(x), B1(x), and
B2(x). Note that C1(x) and D12(x) define the system’s cost function which is typically known in
control applications, but could similarly be learned if needed.

Once we have a given or learned system model in the form of Equation 3, we proceed to execute an
algorithm similar to Algorithm 1, with a few key modifications to accommodate nonlinear dynamics
and controllers. The main modification uses a method to make the solution of Hamilton-Jacobi
inequality (HJI) tractable, described next.

3.2 Hamilton-Jacobi Inequality (HJI) for Systems with Polynomial Dynamics

In Section 2.1, we have seen that solving the HJI (Equation 10) results in a Lyapunov function V
that defines a robust controller u∗ with an L2 gain of γ. While solving the general form of the HJI is
NP-hard, there is an efficient method for solving it for systems with polynomial dynamics. Theorem
1, as presented here, is a well-established result that is fundamental to our approach. Its proof can be
found, for example, in the work of Capua et al. (2013).

Theorem 1. Let F be a system with polynomial dynamics specified in Equation 3, x{d} be a {d} × 1
vector of all monomials of degree ≤ d in x, and M(x) be a {d}×n polynomial matrix whose (i, j)-th
entry is given by

Mij =
∂x

{d}
i

∂xj
, i = 1, . . . , {d}, j = 1, . . . , n (11)

Assume the system’s cost components are orthogonal, i.e. C1(x)
⊤D12(x) = 0, and that R2(x) =

D12(x)
⊤D12(x) > 0. Then the following two claims hold:

1. For the system F , the HJI inequality becomes the following State-Dependent Linear Matrix
Inequality (SDLMI):
Y (x)⊤B2(x)

⊤M(x)⊤ + M(x)B2(x)Y (x) + SA(x)⊤M(x)⊤ + M(x)A(x)S M(x)B1(x) Y (x)⊤ SC1(x)
⊤

∗ −γ2I 0 0
∗ ∗ −R2(x) 0

∗ ∗ −I

 ⪯ 0

(12)

where ∗ indicates symmetric entries in a symmetric matrix and ⪯ indicates negative semi-
definiteness. Solving it amounts to finding matrices S = S⊤ > 0 and Y (x) such that the
matrix on the left hand side is negative semi-definite.

2. If there exist matrices S = S⊤ > 0 and Y (x) that solve this version of HJI while minimizing
γ, then for P = S−1 and K(x) = Y (x)P , the controller u = K(x)x{d} renders a
dissipative, stable system with an L2-gain ≤ γ. In that case, the Lyapunov function is
V (x) = x{d}⊤Px{d}.

This formulation provides a robust framework for analyzing and designing controllers for non-linear
systems that ensure system stability and performance, making it a powerful tool in control theory.
For linear systems as described by Equation 1, the matrix M(x) becomes the identity matrix, and
Equation 12 simplifies to a Linear Matrix Inequality (LMI), which is a convex semidefinite program
for which there are many open-source and commercial solvers available.

For systems described by Equation 3, the entries of M(x) are polynomial functions. Equation 12 is a
non-convex SDLMI, and solving it involves polynomial non-negativity conditions, which are NP-hard
to test and construct. However, if we replace the non-negativity conditions with Sum-of-Squares
(SOS) conditions – meaning that a polynomial can be expressed as a sum of squared polynomials
– both testing and constructing a Lyapunov function V (x) = x{d}TPx{d}, and therefore a robust
controller u = K(x)x{d}, can be done efficiently using a type of semidefinite programming known

6

as Sum-of-Squares Programming (SOSP) Papachristodoulou and Prajna (2005); Capua et al. (2013),
for which there are available solvers such as SOSTools Papachristodoulou et al. (2013) and its Python
version, SOSPy.

3.3 Constructing a Set of Actions Satisfying Non-Linear H∞ Robustness

Next, we use the solution of SDLMI 12, namely P and K(x) = Y (x)P , to construct the set of
actions CNL-H∞(x) satisfying non-linear H∞ robustness to which the outputs of the neural network
are projected. This projection ensures that the neural network policy adheres to the robustness criteria
dictated by the nonlinear H∞ framework. Our approach generalizes the methodology proposed
by Donti et al. (2021) in Algorithm 1 from linear time-invariant dynamics to systems with polynomial
dynamics by adapting it to accommodate the state-dependent linear matrix inequality (SDLMI)
described in Equation 12.

The robust action set CNL-H∞(x) is defined as the set of control actions u that satisfy Equation 9 with
the worst disturbance w∗, which was also used in the HJI Equation 10. Substituting the polynomial
dynamics from Equation 3 along with w∗ = 1

γ2 g1(x)
⊤V ⊤

x = 1
γ2B1(x)

⊤V ⊤
x into Equation 9, we get:

Vx

(
A(x)x{d}+B2(x)u+B1(x)

1

γ2
B1(x)

⊤V ⊤
x

)
− 1

2γ2
∥B1(x)

⊤V ⊤
x ∥2+ 1

2
∥C1(x)x

{d}+D12(x)u∥2 ≤ 0

(13)

The gradient with respect to x of the Lyapunov function V (x) = x{d}⊤Px{d} resulting from solving
the SDLMI is Vx = 2x{d}⊤PM(x). Substituting this into the above equation and using the common
assumptions C1(x)

⊤D12(x) = 0, Q(x) = C1(x)
⊤C1(x) ≻ 0, and R2(x) = D12(x)

⊤D12(x) ≻ 0,
we get:

2x{d}⊤PM(x)

(
A(x)x{d} +B2(x)u+

1

γ2
B1(x)B1(x)

⊤2M(x)⊤Px{d}

)

− 2

γ2
x{d}⊤PM(x)B1(x)B1(x)

⊤M(x)⊤Px{d}

+
1

2
x{d}⊤Qx{d} +

1

2
u⊤R2(x)u ≤ 0

Simplifying and rearranging terms, we get:

x{d}⊤

(
2PM(x)A(x) +

2

γ2
PM(x)B1(x)B1(x)

⊤M(x)⊤P +
1

2
Q

)
x{d}

+ 2x{d}⊤PM(x)B2(x)u+
1

2
u⊤R2(x)u ≤ 0

This can be rewritten as:

x{d}⊤

(
PM(x)A(x) +A(x)⊤M(x)⊤P +

2

γ2
PM(x)B1(x)B1(x)

⊤M(x)⊤P +
1

2
Q

)
x{d}

+
(
2B2(x)

⊤M(x)⊤Px{d}
)⊤

u+
1

2
u⊤R2(x)u ≤ 0

Denoting:

7

P̃ :=
1

2
R2(x),

q̃ := 2B2(x)
⊤M(x)⊤Px{d},

r̃ := x{d}⊤
(
PM(x)A(x) +A(x)⊤M(x)⊤P +

2

γ2
PM(x)B1(x)B1(x)

⊤M(x)⊤P +
1

2
Q

)
x{d},

we define the set of actions satisfying non-linear H∞ robustness as:

CNL-H∞(x) = {u ∈ Rm | u⊤P̃ u+ 2q̃⊤u+ r̃ ≤ 0} (14)

which generalizes equations B.3 and B.4 from Donti et al. (2021) from the case of linear time-
invariant dynamics to the case of polynomial dynamics. The set CNL-H∞(x) is non-empty, as the
controller u = K(x)x{d} = Y (x)Px{d} derived from the solution Y (x), P of the SDLMI 12
satisfies Equation 13 by construction. Additionally, the set CNL-H∞(x) is an ellipsoid in u , and
therefore the projection PCNL-H∞ (x) can be viewed as a second-order cone projection and implemented
using the fast custom differentiable optimization solver described in Appendices B.2 and C in Donti
et al. (2021). Given an arbitrary neural network-based policy class π̂θ and the above implementation
of the projection operator PCNL-H∞ (x) a robust policy class is constructed, which adheres to the
robustness criteria dictated by the nonlinear H∞ framework:

πθ(x) = PCNL-H∞(x)(π̂θ(x)).

Our overall approach is summarized in Algorithm 2.

Algorithm 2 Learning Neural Network Controllers with Non-Linear H∞ Robustness Guarantees
1: Fixed: Set the robustness requirement to be Non-linear H∞
2: Input: Performance objective l, tunable robustness parameter γ, policy optimizer A
3: Specify or learn polynomial system dynamics ▷ Section 3.1
4: Solve the SDLMI (12) using γ, for P , Y (x), K(x) satisfying SOS constraints ▷ Section 3.2
5: Construct a set of allowable robust actions CNL-H∞(x) using P , Y (x) and K(x) ▷ Section 3.3
6: Construct a robust policy class by projecting π̂θ(x) onto CNL-H∞(x): πθ(x) = PCNL-H∞

(π̂θ(x))
7: Train πθ via A to optimize l
8: Return: Optimized policy πθ

3.4 Tuning Gamma for Trade-off Between Robustness and Performance

The parameter γ in Algorithm 2 offers a tunable trade-off between robustness and average perfor-
mance. By adjusting γ, which controls the system’s energy dissipation, or L2-gain, one can effectively
balance the robustness of the control policy against disturbances and the average performance of
the neural network policy. Lower values of γ increase robustness by limiting the L2-gain, thereby
reducing the system’s sensitivity to disturbances, but may limit the overall performance. Conversely,
higher values of γ can enhance performance but reduce robustness. This tunability is critical for
practical applications where both robustness and performance are important. Hence, γ serves as a
knob to fine-tune the desired balance between robustness and performance in the control system.

4 Conclusions

In this paper, we have introduced a novel approach for ensuring non-linear H∞ robustness in
neural network policies, addressing key limitations of previous methods, particularly the reliance
on linear time-invariant dynamics and predefined system models. Our contributions include a non-
linear robustness projection method, a data-driven robustness framework, and a tunable robustness
parameter that trades-off robustness and average performance by controlling the energy dissipation
of the controlled system. These advancements facilitate the application of robust control principles
to a wider range of non-linear systems, improving both the flexibility and performance of neural

8

network policies in safety-critical applications. Although the experimental validation is ongoing,
the theoretical foundations laid out in this work suggest potential applicability for future real-world
applications.

Future work will focus on an empirical analysis that will assess the performance of our framework and
its potential real-world applicability, specifically in complex high-dimensional systems. Integrating
this approach with a variety of advanced RL techniques seems like a promising avenue for developing
robust and adaptive control strategies. By continuing to expand and improve upon the foundation
laid in this paper, we aim to provide robust, high-performance control framework that supports the
demands of modern autonomous systems.

References
Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. 1994. Linear

matrix inequalities in system and control theory. SIAM.

Alon Capua, Nadav Berman, Amir Shapiro, and Daniel Choukroun. 2013. Nonlinear Output-Feedback
H∞ Control for Spacecraft Attitude Control. In Advances in Aerospace Guidance, Navigation and
Control: Selected Papers of the Second CEAS Specialist Conference on Guidance, Navigation and
Control. Springer, 139–158.

Priya L. Donti, Melrose Roderick, Mahyar Fazlyab, and J. Zico Kolter. 2021. Enforcing robust
control guarantees within neural network policies. arXiv:2011.08105 [cs.LG]

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler,
and P. A. Parrilo. 2013. SOSTOOLS: Sum of squares optimiza-
tion toolbox for MATLAB. http://arxiv.org/abs/1310.4716.
Available from http://www.eng.ox.ac.uk/control/sostools,
http://www.cds.caltech.edu/sostools and http://www.mit.edu/˜parrilo/sostools.

Antonis Papachristodoulou and Stephen Prajna. 2005. A tutorial on sum of squares techniques
for systems analysis. In Proceedings of the 2005, American Control Conference, 2005. IEEE,
2686–2700.

Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An introduction. MIT press.

9

	Introduction
	Background
	Robust H Control for Non-Linear Systems
	Robust Control Guarantees for Neural Network Policies

	Framework for Non-Linear H Robustness in Neural Network Policies
	System Dynamics Specification
	Hamilton-Jacobi Inequality (HJI) for Systems with Polynomial Dynamics
	Constructing a Set of Actions Satisfying Non-Linear H Robustness
	Tuning Gamma for Trade-off Between Robustness and Performance

	Conclusions

