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Abstract

Recent foundation models have demonstrated strong performance in medical image1

representation learning, yet their comparative behaviour across datasets remains2

underexplored. This work benchmarks two large-scale chest X-ray (CXR) embed-3

ding models (CXR-Foundation (ELIXR v2.0) and MedImageInsight) on public4

MIMIC-CXR and NIH ChestX-ray14 datasets. Each model was evaluated using5

a unified preprocessing pipeline and fixed downstream classifiers to ensure repro-6

ducible comparison. We extracted embeddings directly from pre-trained encoders,7

trained lightweight LightGBM classifiers on multiple disease labels, and reported8

mean AUROC, and F1-score with 95% confidence intervals. MedImageInsight9

achieved slightly higher performance across most tasks, while CXR-Foundation10

exhibited strong cross-dataset stability. Unsupervised clustering of MedImageIn-11

sight embeddings further revealed a coherent disease-specific structure consistent12

with quantitative results. The results highlight the need for standardised evalua-13

tion of medical foundation models and establish reproducible baselines for future14

multimodal and clinical integration studies.15

1 Introduction16

Recent advances in large-scale chest X-ray (CXR) representation learning have led to the development17

of foundation and embedding models that map high-dimensional radiological data into compact18

feature spaces with strong generalisation capabilities. Studies such as CheXzero [Tiu et al., 2022],19

BioViL [Boecking et al., 2022], and CXR-CLIP [Nguyen et al., 2022] demonstrated that self-20

supervised and vision–language pretraining can achieve radiologist-level performance on multi-label21

classification and zero-shot transfer tasks. Such embeddings can facilitate large-scale cohort analysis22

and support patient subtyping when combined with structured clinical data.23

The MIMIC-CXR database [Johnson et al., 2019] and the NIH ChestX-ray14 dataset [Wang et al.,24

2017] are the most widely used public datasets for benchmarking medical image models. Despite25

rapid progress in vision-language pretraining, few systematic comparisons have been performed26

between recent foundation encoders on these datasets. In particular, the performance gap between27

Google’s CXR-Foundation model [Google-Research, 2023] and Microsoft’s MedImageInsight28

model [Microsoft-Research, 2024] remains underexplored.29

This study provides a reproducible benchmark of these two embedding models across the MIMIC-30

CXR and NIH ChestX-ray14 datasets. Using identical preprocessing and downstream classifiers, we31

evaluate their ability to represent clinically meaningful image variations across common thoracic32

disease labels. The results establish reference points for researchers aiming to integrate CXR33

embeddings into multimodal or clinical decision-support pipelines.34
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2 Methods35

2.1 Datasets36

We used two public chest radiography datasets: MIMIC-CXR (377k images from 227k studies) and37

NIH ChestX-ray14 (112k frontal images from 30k patients) [Johnson et al., 2019, Wang et al., 2017].38

Only frontal (PA/AP) projections were retained; lateral views and corrupted files were excluded. For39

each disease label (Atelectasis, Edema, Effusion, Opacity), we sampled 1,000 positive and 1,00040

negative images from each dataset (MIMIC-CXR and NIH-CXR14). All splits were made by unique41

patient-ids: 80% training and 20% test for classification tasks.42

2.2 Preprocessing43

Images were read using pydicom, rescaled using manufacturer metadata, converted to44

MONOCHROME2, and normalised to [0, 1]. They were resized to 1024× 1024 for CXR-Foundation45

inference and standardised by z-score normalisation. To probe representational stability, five aug-46

mented views per training image were generated: two small rotations (±5–10◦), two brightness shifts47

(±10–15%), and one contrast scaling (±10%).48

2.3 Embedding Models49

Two pretrained vision–language encoders were evaluated: CXR-Foundation (ELIXR v2.0) and50

MedImageInsight. Each CXR produced token features ti that were mean-pooled into a single51

embedding. All embeddings were stored as 32x768 (CXR-Foundation) or 1024 (MedImageInsight)52

vectors.53

2.4 Dimensionality Reduction and Clustering54

We used Uniform Manifold Approximation and Projection (UMAP) for visualisation [McInnes55

et al., 2018] and applied k-means clustering (cosine distance, ninit=50) implemented in scikit-learn56

[Pedregosa et al., 2011]. The optimal cluster number k maximised the mean Silhouette coefficient57

S =
1

N

N∑
i=1

bi − ai
max(ai, bi)

, (1)

where ai and bi are intra- and inter-cluster distances.58

2.5 Evaluation59

To gauge representational quality, frozen embeddings were used to train lightweight LightGBM60

classifiers [Ke et al., 2017] on selected pathology labels using 5-fold patient-wise cross-validation.61

Performance was summarised by mean AUROC, and F1 with 95 % confidence intervals.62

2.6 Reproducibility63

Experiments were run in Python 3.10 on a single NVIDIA A100 (40 GB) GPU using open-source64

packages (pydicom, scikit-learn, umap-learn, lightgbm). All datasets are publicly available65

and fully de-identified [Goldberger et al., 2000].66

3 Results67

Table 1 summarises the performance of MedImageInsight and CXR-Foundation across four thoracic68

disease labels from MIMICand NIH. Both models achieved strong performance, with mean AUROC69

values above 0.90 for most tasks. MedImageInsight generally outperformed CXR-Foundation,70

showing higher AUROC and F1-scores across most labels. Performance trends were consistent across71

datasets, indicating that both embedding spaces generalise well between domains.72

UMAP projections of MedImageInsight embeddings (Figure 1) reflect this pattern: Effusion shows73

distinct separation between positive and negative samples, while Opacity exhibits more overlap,74
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Table 1: Benchmark of MedImageInsight vs. CXR-Foundation on MIMIC-CXR and NIH ChestX-
ray14. Values are mean ± 95% CI.

Task AUROC F1
Disease Dataset MedImageInsight CXR-Foundation MedImageInsight CXR-Foundation

Atelectasis MIMIC 0.833± 0.007 0.823± 0.013 0.755± 0.007 0.751± 0.008
NIH 0.863± 0.008 0.822± 0.012 0.782± 0.015 0.744± 0.014

Edema MIMIC 0.918± 0.011 0.924± 0.014 0.841± 0.014 0.847± 0.014
NIH 0.921± 0.012 0.911± 0.006 0.853± 0.016 0.831± 0.013

Effusion MIMIC 0.958± 0.011 0.941± 0.014 0.906± 0.013 0.877± 0.010
NIH 0.901± 0.012 0.901± 0.006 0.828± 0.014 0.826± 0.008

Opacity MIMIC 0.782± 0.019 0.775± 0.017 0.702± 0.016 0.704± 0.023
NIH 0.922± 0.012 0.955± 0.006 0.851± 0.019 0.889± 0.013

Figure 1: UMAP visualisation of MedImageInsight embeddings for the highest- and lowest-
performing disease labels on MIMIC dataset: (a) Effusion shows distinct separation between positive
and negative samples, consistent with its high AUROC, while (b) Opacity displays mixed clustering,
reflecting lower discriminative power. 0 indicates absence and 1 indicates presence of disease label.

consistent with the quantitative results. These findings demonstrate the robustness of MedImageIn-75

sight representations and establish reproducible baselines for future multimodal fusion or clinical76

stratification studies.77

4 Discussion and Limitations78

MedImageInsight generally outperformed CXR-Foundation across thoracic disease labels, sug-79

gesting that compact, well-aligned representations enhance model stability and generalisation. Its80

1024-dimensional embedding strikes a balance between expressiveness and efficiency, beneficial81

in multimodal or large-scale settings where computation and memory are limited. Prior studies82

show that reducing embedding dimensionality can improve regularisation and cross-modal alignment83

[Baltrusaitis et al., 2019, Tsai et al., 2019, Chen et al., 2023].84

Clustering analysis of MedImageInsight embeddings revealed coherent latent structures across85

pathologies, indicating that its representations capture meaningful visual distinctions. This organised86

embedding space aligns with prior work on self-supervised radiograph learning [Boecking et al.,87

2022, Nguyen et al., 2022, Tiu et al., 2022] and suggests strong potential for future multimodal fusion,88

patient subtyping, and interpretable feature analysis.89

Limitations. This study examined two foundation models using frontal chest X-rays and unsuper-90

vised clustering. Results may differ with alternative architectures, fine-tuning, or lateral views.91
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5 Potential Negative Societal Impact.92

Although MIMIC-CXR and NIH ChestX-ray14 are de-identified, they reflect limited demographic93

and institutional diversity. Models trained or benchmarked on such datasets may inherit hidden94

biases or perform inconsistently across underrepresented groups. This work is intended purely95

for methodological benchmarking and not for clinical application. Openly sharing such analyses96

encourages transparency and critical evaluation of foundation models in medical imaging.97
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