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Abstract

Scientists frequently prioritize learning from data rather than training the best1

possible model; however, research in machine learning often prioritizes the lat-2

ter. Marginal contribution feature importance (MCI) was developed to break this3

trend by providing a useful framework for quantifying the relationships in data4

in an interpretable fashion. In this work, we aim to improve upon the theoretical5

properties, performance, and runtime of MCI by introducing ultra-marginal fea-6

ture importance (UMFI), which uses preprocessing methods from the AI fairness7

literature to remove dependencies in the feature set prior to measuring predictive8

power. We show on real and simulated data that UMFI performs better than MCI,9

especially in the presence of correlated interactions and unrelated features, while10

partially learning the structure of the causal graph and reducing the exponential11

runtime of MCI to super-linear.12

1 Introduction13

Scientists often seek to determine the true relationships between a set of characteristics and some14

outcome of interest. These relationships are ideally determined by performing carefully controlled15

experiments so that causality can be established. However, experiments can be difficult and costly16

to pursue, unethical to perform, or impossible to control [51, 44], leaving only observational data17

available. The relationships that are hidden within vast quantities of observational data are often18

difficult to determine, so statistical tools, such as feature importance, have been explored.19

Recently, feature importance methods such as Shapely-values [40, 13, 33], SAGE [14], accumulated20

local effects (ALE) [3], permutation importance (PI) [8], and conditional permutation importance21

(CPI) [16] have been used in high-impact journal papers by scientists who want to explain the22

mechanisms within data [2, 5, 42, 29, 38, 19, 26]. However, these methods may not adequately23

explain data in certain circumstances [12, 11]. ALE can only easily show first order effects [36], and24

although CPI improves upon some limitations of PI, CPI has the property that two perfectly correlated25

features with significant predictive power would both be deemed unimportant [14]. Further, only one26

model is trained in ALE, CPI, and PI. Thus, correlated features, which can alter the model assembly27

process, could be given artificially low importance if the goal is to explain the data [24]. Instead28

of exploring a single model, the developers of SAGE, SPVIM, and marginal contribution feature29

importance (MCI) evaluate the difference in accuracy between a model trained with the feature of30

interest and a model trained without it, across all feature subsets [11, 14, 49], though these methods31

are prevented from being accepted by a wider scientific audience because of their high computational32

cost. In particular, we note that MCI is the current state-of-the-art method for explaining data as33

it was shown in extensive experiments to have better quality and robustness when compared to34

Shapely-values, SAGE, ablation, and bivariate methods [11].35

Though MCI can be seen as the current state-of-the-art method for explaining the data, it has three36

key shortcomings. First, the exact computation of MCI requires an exponential number of model37

trainings, which makes MCI ineffective at interpreting large datasets (e.g., gene expression studies).38
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Second, although it can handle complex feature interactions and data with correlated features, MCI39

underestimates the importance of correlated features that form interaction effects because MCI40

usually ignores features that share information with the feature of interest xi. Even if xi and xj form41

an interaction effect, the additional predictive power offered by xi on top of a subset S would be42

diminished by the presence of xj ∈ S, provided that the correlation between xj and xi is strong43

enough. Third, MCI can give non-zero importance to features that are completely unrelated to44

the response variable, as experimentally shown in Catav et al. [11, Figure S3] and theoretically45

shown in Harel et al. [23]. We hypothesize that constructing independent and information-preserving46

representations of the data could resolve these three issues. With this in mind, we introduce ultra-47

marginal feature importance (UMFI), a new variable importance method that can better explain the48

data while drastically reducing runtime.49

The rest of this paper is organized as follows. Axioms for explaining the data are proposed in50

Section 2. The framework for UMFI is then formally presented in Section 3 along with its theoretical51

properties and its simple algorithm. In Section 4, we conduct experiments on simulated and real52

data to assess the quality, robustness, and time complexity of UMFI compared to MCI. Finally, an53

overview of the work, its limitations, and ideas for future work are discussed in Section 5.54

Related work55

This paper is greatly inspired by the development of marginal contribution feature importance (MCI)56

by Catav et al. [11]. Although other methods, such as SAGE [14], have been retooled to better57

explain data [12], up until this point, MCI had been the only feature importance method developed58

specifically to explain data. Let F = {x1, ..., xp} be the set of features used to predict the response59

variable, Y . Recall that the universal predictive power of a set of features S ⊆ F is given by60

ν(S) = min
f∈G(∅)

E[l(f(∅), Y )]− min
f∈G(S)

E[l(f(S), Y )], (1)

where l is a specified loss function and G(S) is the set of all predictive models restricted to using61

features in S ⊆ F . ν is closely related to mutual information, with equality under ideal conditions62

[14], and in practice, ν is often approximated by machine learning evaluation functions. Using this,63

Catav et al. [11] defined the marginal contribution feature importance (MCI) of a feature xi ∈ F by64

Iν(xi) = max
S⊆F

ν(S ∪ {xi})− ν(S). (2)

To achieve our goal of improving upon the shortcomings of MCI, we evaluate the importance of a65

feature of interest xi after preprocessing the data to remove dependencies on xi. Finding independent66

representations of predictors for creating improved feature importance methods is a novel objective,67

though similar ideas have been suggested as future work in König et al. [30] and Chen et al. [12].68

The weaker concept of finding orthogonal representations of data has been discussed previously69

[18], though the discussion has been limited to relative importances measures for multiple linear70

regression, mostly in the domain of psychology [6, 52]. While orthogonalizing predictors can be done71

easily with simple techniques, methods which can not only remove correlations between features,72

but also remove more general dependencies, have seen great progress within the domains of AI73

fairness and privacy. Some examples of these techniques include regression [7], optimal transport74

[28], neural networks [10, 41], convex optimization [10], and principal inertial components [45].75

Linear regression and optimal transport were implemented for UMFI in this paper.76

2 Axioms for explaining data77

Any attempt to build a method that explains the data should begin by rigorously defining what78

explaining the data truly means. Different definitions and goals have been formulated by Chen et al.79

[12] and Catav et al. [11]. Inspired by these definitions, we provide three intuitive, justified, and80

rigorous axioms for true-to-data feature importance methods. Given a feature set F , a response Y ,81

and a feature of interest xi ∈ F , the feature importance of xi is defined as ImpF,Y (xi) ∈ R≥0. We82

define the following three axioms as vital for any method that claims to explain the data:83

1. Elimination axiom: Eliminating a feature xj from the feature set F can only decrease the
importance of the feature of interest:

∀xi ∈ F \ {xj}, ImpF\{xj},Y (xi) ≤ ImpF,Y (xi).
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2. Duplication invariance and symmetry axiom: Adding a duplicate copy of a feature
x̂ = xj already in the feature set F will not change the importance of the other features in
F , and the duplicated feature will have importance equal to the original feature:

∀xi ∈ F, ImpF,Y (xi) = ImpF∪{x̂},Y (xi) and ImpF∪{x̂},Y (x̂) = ImpF∪{x̂},Y (xj).

3. Blood relation axiom: If data is generated from a causal graph, feature xi will be given
non-zero and positive importance if and only if it is blood related to the response Y in the
causal graph. Two vertices in a causal graph are said to be blood related if there is a directed
path between them or if there is a backdoor path between them via a common ancestor.

ImpF,Y (xi) > 0 ⇐⇒ xi ∈ BR(Y ).

The elimination axiom comes directly from Catav et al. [11]. Once a feature is observed to be84

significantly related to the response, the relationship strength between the feature and response should85

not drop, regardless of the additional features added. In fact, often times the importance should86

increase since adding features could reveal further synergistic information about the response Y .87

The duplication invariance and symmetry axiom separates feature importance methods that are for88

data explanation from methods intended for model optimization [11]. A model may use the two89

identical features equally often and therefore spread the importance equally between them (random90

forests), or only one of the features may be given importance (lasso) [12]. However, from the data’s91

perspective, both features should be equally related to the response and the original importance found92

before duplication should still be true. Further, after duplication, no additional interaction capability93

is available [22], so the importance of all other features should remain the same.94

The blood relation axiom asserts that feature importance scores intended for data explanation should95

extract reliable knowledge about the underlying causal graph and data generating process. A statistical96

association between a feature and the response, which is a quality of interest for many applications97

(e.g., genome-wide association studies), exists precisely when the two features are blood related, or98

equivalently, when there is an open path between them (see Greenland et al. [20] and Williams et al.99

[48] for a more in-depth explanation of this definition as well as other relevant concepts about causal100

graphs). Thus, a feature importance metric satisfying this axiom would give non-zero importance101

to a feature if and only if there is a statistical association between that feature and the response.102

Additionally, if the goal is to construct a causal graph to represent the relationships in the data, then103

a feature importance metric satisfying this axiom can partition the feature set into features that are104

blood related to the response and features that are not blood related to the response. Although it105

does not enable us to immediately recover the full causal graph, this partitioning may be a helpful106

supplemental tool for other causal discovery methods. See Supplement B for further discussion.107

3 Ultra-marginal feature importance108

Let F = {x1, ..., xp} be a set of p features of arbitrary type used to predict the response Y . We note109

that features may be viewed as random variables, or as realizations of random variables according to110

their joint distribution, in the form of a dataset.111

In order to define ultra-marginal feature importance, we require that the evaluation function112

ν, which measures the predictive power of a group of features [11], and which approximates113

Equation (1), is also defined for transformations of the feature set following the removal of114

dependencies. We therefore define the space of information subsets of a feature set F as115

I(F ) = {g(F ) : g is any function defined on F}. We call these information subsets of F because116

I(Y ; g(F )) ≤ I(Y ;F ) holds for any function g by Theorem A.3.117

Definition 1. We denote SF
xi

as a preprocessed feature set after dependencies on the feature of118

interest xi have been removed from F . An optimally preprocessed feature set is denoted by ŜF
xi

, and119

we say that a preprocessing SF
xi

is optimal if it obeys the following properties:120

1. SF
xi

= g(F ) for some function g121

2. SF
xi

⊥⊥ xi122

3. I(Y ;SF
xi
, xi) = I(Y ;F )123
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The first property ensures that SF
xi

∈ I(F ), and hence, no information from outside of F is gained124

during the transformation. The second property upholds that the random vector SF
xi

is independent125

of xi, and the last property affirms the optimality of SF
xi

in the sense that there is no unnecessary126

information loss incurred during preprocessing. Given that it exists, an optimal preprocessing ŜF
xi

127

is not unique, since scaling g(F ) by a constant does not affect the last two properties. In practice,128

the last two properties can be difficult to guarantee, but we see later in Section 4 that non-optimal129

preprocessings are good enough in many circumstances.130

Definition 2. Given an evaluation function ν : I(F ) → R≥0 and a feature set F , we define the131

ultra-marginal feature importance (UMFI) of a feature xi ∈ F as132

UF,Y
ν (xi) = ν(SF

xi
∪ {xi})− ν(SF

xi
). (3)

UMFI obeys the three axioms given in Section 2 under certain assumptions as proven in Appendix133

C. Mainly, we assume that ν(·) ≈ I(Y ; ·). Under ideal conditions, this relationship holds when ν134

satisfies Equation (1) [14], but in practice, the accuracy of the approximation depends on the quality135

of the method, the specified loss function, and the response variable’s distribution [15]. See Covert136

et al. [15] and Appendix A.3 for a more thorough overview.137

Since UMFI is model-agnostic, we provide a general algorithm for computing the ultra-marginal138

feature importance of a feature xi ∈ F , which can be applied using any pair of preprocessing and139

modeling techniques. We note that νf is not restricted to the domain of machine learning models or140

even models in general. For example, one could also implement UMFI with measures of dependence141

such as the Hilbert–Schmidt independence criterion [21] or non-ML estimates of mutual information142

[31]. Furthermore, if machine learning modeling techniques are used for UMFI, we advise that the143

median score over multiple iterations of the algorithm is used to account for the variance of νf .144

Algorithm 1: Algorithm for computing UMFI
1: Let Y be the response variable of the set of predictors F . Choose a feature xi ∈ F .
2: Obtain SF

xi
by using a technique that optimally removes dependencies on xi from F .

3: Specify a method f and a corresponding evaluation function νf .
4: Estimate the predictive power, νf (SF

xi
), that SF

xi
has about Y .

5: Estimate the predictive power, νf (SF
xi

∪ {xi}), that SF
xi

∪ {xi} has about Y .
6: return UF,Y

νf
(xi) = νf (S

F
xi

∪ {xi})− νf (S
F
xi
)

4 Experiments145

We perform experiments to compare UMFI and MCI with respect to quality, robustness, and time146

complexity. To implement UMFI, we consider optimal transport [28] (UMFI_OT) and linear regres-147

sion [7] (UMFI_LR) as methods to remove dependencies from the data. A detailed overview of148

these implementations is shown in Appendix E and experiments comparing these methods appear in149

Appendix F. For all experiments, we use random forests’ out-of-bag accuracy (R2 OOB-accuracy for150

regression tasks and OOB classification accuracy for classification tasks) as the evaluation metric151

νf [8]. We use the ranger R package to implement random forests with default hyperparameters152

and 100 for the number of trees [50]. All experiments were run in Microsoft R Open Version 4.0.2153

[35]. Appendix G contains additional experiments comparing UMFI and MCI with other feature154

importance metrics including ablation, permutation importance, and conditional permutation impor-155

tance. In the same section, we rerun the experiments comparing MCI and UMFI using extremely156

randomized trees instead of random forests and do an additional comparison on a real dataset from157

hydrology [1]. Code for all experiments can be found in the Supplement.158

4.1 Experiments on simulated data159

We run UMFI on simulated data to verify that it performs well compared to MCI. The data in all160

simulation studies contains one response variable Y , four explanatory features x1, x2, x3, x4, and161

1000 randomly generated observations. Each study is repeated 100 times to test stability.162
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4.1.1 Nonlinear interactions163

Interaction effects are common in many scientific disciplines where assessing feature importance164

is prevalent, including hydrology [27, 2, 32], genomics [11, 47, 37], and glaciology [17, 4, 9, 39].165

So, as was done in Catav et al. [11], we assess the ability of MCI and UMFI to detect nonlinear166

interaction effects in the data [34]. We consider:167

x1, x2, x3, x4 ∼ N (0, 1)

Y = x1 + x2 + sign(x1 ∗ x2) + x3 + x4.

Feature importance metrics should ideally conclude that x1 and x2 have higher importance compared168

to x3 and x4 because of the extra interaction term, sign(x1 ∗ x2). Figure 1a shows consistently good169

performance across all methods. Each method gave high relative importance scores to x1 and x2,170

while x3 and x4 received less, but still substantial importance. All methods show similar variability.171

4.1.2 Correlated interactions172

Interacting features are often correlated [25, 27]. So, this simulation study aims to repeat the nonlinear173

interactions study, except now x1 and x2 are highly correlated with eachother. In the same way, x3174

and x4 are highly correlated with eachother. Let A,B,C,D,E,G ∼ N (0, 1). We consider:175

x1 = A+B, x2 = B + C, x3 = D + E, x4 = E +G

Y = x1 + x2 + sign(x1 ∗ x2) + x3 + x4.

Just as with the interaction experiment with independent features, we would expect x1 and x2 to be176

more important than x3 and x4 because of the extra interaction term, sign(x1 ∗ x2). The results in177

Figure 1b clearly show that UMFI provides better estimations of feature importance compared to MCI178

when correlated interactions are present. MCI estimates that all features have approximately the same179

feature importance scores, while both UMFI methods show significantly greater importance for x1180

and x2 compared to x3 and x4. MCI fails in this experiment because it penalizes feature subsets that181

share information with the feature of interest xi when evaluating the importance of xi via Equation182

(2). For example, if we are assessing the MCI score for x1, since x2 is strongly correlated with x1,183

then the predictive power offered by x1 on top of a subset S would be diminished by the presence184

of x2 ∈ S. Therefore, x2 is not utilized in the MCI score for x1, which prevents the detection of185

the interaction term sign(x1 ∗ x2). UMFI is able to detect this interaction because it can extract the186

information from x2 that interacts with x1 while keeping this extracted feature independent of x1.187

Although not yet tested, we suspect that similar results would be demonstrated in the presence of188

dependent, but uncorrelated interactions.189

4.1.3 Correlation190

Feature importance methods that seek to explain data, such as MCI and UMFI, should not change191

the measured importance of features in the presence of highly correlated or duplicated variables192

according to the duplication invariance and symmetry axiom. To test this, we implement a simulation193

study similar to the ones found in Catav et al. [11]. Let ϵ ∼ N (0, 0.01). We consider:194

x1, x2, x4 ∼ N (0, 1), x3 = x1 + ϵ

Y = x1 + x2.

The addition of x3, which is approximately a duplicate of x1, should not alter the importance of x1,195

and x1 should remain equally as important as x2, since they have the same influence on the response196

Y . The results shown in Figure 1c show that both MCI and UMFI work reasonably well. As with the197

previous simulation experiment, the variability is consistent across methods. As was desired, UMFI198

with linear regression shows equal relative importance scores for x1 and x2. The importance given to199

x2 was slightly greater than x1 according to MCI and UMFI with optimal transport. Interestingly,200

MCI assigns some importance to x4, which was independent of the response, while both UMFI201

methods assign importance scores close to zero. Because of this, we conclude that UMFI with linear202

regression performs the best in this simulated scenario.203

4.1.4 Blood relation204

To ensure that UMFI is true to the data and could be used to learn part of the structure of the causal205

graph in theory as well as in practice, we implement the blood relation simulation experiment. In this206
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(a) Nonlinear interactions (b) Correlated interactions

(c) Correlation (d) Blood relation

Figure 1: Results for the experiments on simulated data from Subsection 4.1. Feature importance
scores are shown as a percentage of the total for each of x1 to x4 from 100 replications. Results are
shown for marginal contribution feature importance (MCI), ultra-marginal feature importance with
linear regression (UMFI_LR), and ultra-marginal feature importance with pairwise optimal transport
(UMFI_OT).

study, data is generated from the causal graph in Figure 7 from the Supplement, which was inspired207

by the collider causal graph found in Harel et al. [23]. The feature S is unobserved, thus only x3 and208

x4 are blood related to the response Y . Because of this, according to the blood relation axiom, x3209

and x4 should be given high and positive importance while x1 and x2 should receive zero importance.210

In Section 3, we proved that in ideal scenarios, UMFI will only give non-zero importance to blood211

related features. We hypothesize that we can extend this to real-world scenarios where non-Gaussian212

features and interaction information appear. To test this, we consider:213

x1, S ∼ N (0, 1), δ ∼ U(−1, 1), ϵ ∼ U(−0.5, 0.5), γ ∼ Exp(1)

x2 = 3 ∗ x1 + δ, x3 = x2 + S

Y = S + ϵ

x4 = Y + γ.

The results shown in Figure 1d indicate that MCI fails to distinguish the blood related features, since214

most of the importance is given to x1, x2 ̸∈ BR(Y ). In contrast, UMFI_LR and UMFI_OT detect215

that x1 and x2 should have zero importance while giving most of the importance to x4 and the rest of216

the relative importance to x3.217

4.2 BRCA experiments218

We use the same breast cancer (BRCA) classification dataset [43] used in previous feature importance219

studies including Catav et al. [11] and Covert et al. [14] to test the quality and robustness of UMFI220
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on real data. The original data contains over 17, 000 genes and 571 anonymous patients that have221

been diagnosed with one of 4 breast cancer sub-types. We consider the same subset of 50 genes222

as in Catav et al. [11] and Covert et al. [14] for easier computation and result visualization. Of223

the 50 selected genes, 10 are known to be associated with breast cancer, while the other 40 genes224

are randomly sampled. This data was downloaded from https://github.com/TAU-MLwell/225

Marginal-Contribution-Feature-Importance/tree/main/BRCA_dataset (MIT License).226

In Catav et al. [11] and Covert et al. [14], these 40 randomly sampled genes are assumed to be227

unassociated with breast cancer. However, to ensure a more definitive ground truth, we also randomly228

permute the values of these 40 genes across their respective 571 observations to further reduce the229

chance that these genes have any association with breast cancer. Quality is then measured with the230

true positive and true negative rates: the 10 BRCA associated genes should have some non-zero231

importance (positive), and the other 40 genes should have exactly zero importance (negative). These232

experiments were run 200 times on different seeds and with a different random sample of 500 patients233

for each iteration. Robustness is measured using the standardized interquartile range (SIQR) from the234

repeated experiments, which is calculated by dividing the average IQR across the 50 features by the235

average median. This experiment is too computationally intensive for MCI to be calculated exactly,236

so we implement MCI assuming soft 2-size submodularity.237

Figure 2: Median feature importance scores provided by (a) MCI, (b) UMFI with linear regression,
and (c) UMFI with pairwise optimal transport, for each gene in the BRCA dataset after 200 iterations.
Genes colored in blue are known to be associated with breast cancer while genes colored in grey are
random permutations of randomly selected genes, which we assume to be unassociated with breast
cancer. The first and third quantiles of the scores are visualized for each gene.

We found that MCI and UMFI (UMFI_LR and UMFI_OT) correctly gave significant importance238

to the 10 genes that are known to be associated with breast cancer (Figure 2). Interestingly, the239

ordering of important features was similar across methods, with BCL11A and SLC22A5 always240
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being the most important and TEX14 always being the least important of the 10 BRCA-associated241

genes. However, MCI consistently gives non-zero importance to all features, while UMFI correctly242

gives zero importance to the majority of the randomized genes. Furthermore, UMFI’s performance in243

this experiment improves with increased iterations. After running the experiment 5000 times, both244

UMFI methods have a perfect overall accuracy when distinguishing between important and permuted245

features (Appendix G.2.1). Although UMFI scores have higher variability than MCI (Table 1), it is246

clear from Figure 2 that UMFI separates the 10 associated genes from the 40 unassociated genes247

better than MCI does.248

Table 1: The standardized interquartile range (SIQR), true positive rate (TPR), true negative rate
(TNR), overall accuracy (OA), and the number of features for which feature importance can be
calculated within 1, 15, and 60 minute(s) are displayed after running the methods on the BRCA data.

Method SIQR TPR TNR OA @1min @15min @1hr

MCI (k=2) 6.6 % 1 0 0.20 35 80 130
UMFI (LR) 41.9% 1 0.975 0.98 500 2000 4010
UMFI (OT) 28.5% 1 0.775 0.82 300 1500 3000

4.3 Computational complexity249

MCI must train and evaluate a model for each element of the power set of the feature set, which250

implies O(2p) model trainings if there are p features. If the evaluation function ν obeys soft k-size251

submodularity, then the maximizing subset has no more than k elements, which reduces the number252

of model trainings to O(pk+1) [11]. UMFI circumvents the exponential training time since it can253

be evaluated immediately after removing the dependencies of xi from the feature set F . To confirm254

the above statements, and to show that the extra model trainings required for MCI dominate the255

computation time for removing dependencies in UMFI, we ran a simple experiment. For a range256

of dataset sizes from the BRCA data, we evaluate the computation time for calculating the feature257

importance scores of all features using MCI and UMFI. We ran this experiment for a dataset with 5258

features, and then slowly added features until our given time budget of 1 hour ran out. Once all 50259

BRCA features were used, more features were randomly generated. All datasets had 571 observations.260

These experiments were run using an Intel Core i9-9980HK CPU 2.40GHz with 32GB of RAM.261

Code was parallelized in R, and 12 of the 16 available threads were used.

Figure 3: Computation time for a single iteration of each method including: MCI (dark red), MCI
with the soft 2-size-submodularity assumption (pink), UMFI_OT (light blue), and UMFI_LR (dark
blue), plotted against the number of processed features from the BRCA data.

262

From Figure 3, we can observe that UMFI is approximately superlinear, with UMFI_OT incuring263

more computational cost compared to UMFI_LR. Giving each method 1 hour to run, MCI processed264
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19 features, MCI with the soft 2-size submodularity assumption processed 130 features, UMFI_OT265

processed about 3000 features, and UMFI_LR processed about 4000 features (Table 1).266

5 Conclusion267

In this study, we introduced ultra-marginal feature importance (UMFI), a new method that uses268

preprocessing techniques, originally developed in the domain of AI fairness, to provide fast and269

accurate feature importance scores for the purposes of explaining data. We introduced three ideal270

axioms that feature importance measures should satisfy if they claim to explain the data, which are271

all satisfied by UMFI under some basic assumptions (Appendix C). Optimal transport and linear272

regression were explored as preprocessing techniques to remove dependencies from data. When273

compared with MCI, the previous state-of-the-art method for explaining data, experimental results274

showed that UMFI was able to provide faster and more accurate estimates of feature importance on275

real and simulated data, particularly in the presence of correlated interactions and unrelated features.276

UMFI’s superior time complexity could be leveraged to run feature importance on larger datasets or277

to achieve more accurate results by utilizing its median scores after many iterations.278

Throughout the work on this paper, several shortcomings appeared. First, we only considered two279

simple methods for removing dependencies, linear regression and pairwise optimal transport. Other280

methods certainly exist in the literature, including optimal transport with chaining [28], neural281

networks [10, 41], or principal inertial components [46]. Though our two methods performed fairly282

well on the real and simulated datasets in Section 4, optimal transport and linear regression failed to283

find representations of the data that were independent of the protected attribute when we tested the284

methods on a hydrology dataset with more shared information compared to BRCA [1] (Appendix285

G.4). However, neural nets or principal inertial components certainly could have given better results.286

Also, despite requiring significantly more computational cost, better methods for estimating the287

conditional CDF, or using optimal transport with chaining, should give better estimates for SF
xi

when288

implementing UMFI_OT. Even though dependencies were not removed optimally for the hydrology289

dataset, the estimates of feature importance were still reasonably accurate. Second, UMFI scores are290

less robust than MCI since they have higher variability, however, because of the significantly lower291

computational cost, UMFI can be run multiple times and averaged to increase robustness. Third, it is292

not clear how closely νf approximates mutual information in practice. Finally, though UMFI can293

work for any arbitrary feature type, in this paper, we have only considered datasets with continuous294

explanatory variables.295

In future work, we would like to test how well other methods, such as neural networks, pair with296

UMFI while further testing on a wider variety of random variable types such as binary, categorical,297

and ordinal features. Further, we would like to explore how well dependence can be removed and298

UMFI can be estimated on real data as the number of features increases to sizes much larger than 50.299

To reiterate, UMFI is a powerful tool for detecting and explaining the relationships hidden within data.300

We emphasise that UMFI is just a framework. A variety of other methods can be used to estimate the301

universal predictive power ν including, but not limited to, XGBoost, neural networks, or Gaussian302

processes. Even non-model-based methods such as Hilbert-Schmidt independence criterion could be303

explored in future applications. Furthermore, new preprocessing techniques for dependence removal304

are still being developed in the AI fairness community, so these, in addition to other existing methods,305

can be used in future applications of UMFI for additional improvements.306

Broader Impact307

We hope that UMFI will be a useful tool in a variety of disciplines including bioinfomatics, ecology,308

earth sciences, and health science for discovering scientific processes and relationships hidden within309

data. Though we think that our contributions can only lead to positive social and environmental310

impacts by aiding scientific discoveries in domains like earth science and bioinformatics, statistical311

methods, especially those that are aimed at genetics research, have historically been used to justify312

harmful and misleading claims. If such claims arise using our methods, then they should be dismissed313

since direct causal effects cannot be concluded after using our methods alone.314
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