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Abstract

We characterize the measurement complexity of compressed sensing of signals
drawn from a known prior distribution, even when the support of the prior is the
entire space (rather than, say, sparse vectors). We show for Gaussian measurements
and any prior distribution on the signal, that the conditional resampling estimator
achieves near-optimal recovery guarantees. Moreover, this result is robust to model
mismatch, as long as the distribution estimate (e.g., from an invertible generative
model) is close to the true distribution in Wasserstein distance. We implement
the conditional resampling estimator for deep generative priors using Langevin
dynamics, and empirically find that it produces accurate estimates with more
diversity than MAP.

1 Introduction

The goal of compressed sensing is to recover a structured signal from a relatively small number of
linear measurements. The setting of such linear inverse problems has numerous and diverse applica-
tions ranging from Magnetic Resonance Imaging [55, 54], neuronal spike trains [37] and efficient
sensing cameras [25]. Estimating a signal in Rn would in general require n linear measurements, but
because real-world signals are structured—i.e., compressible—one is often able to estimate them
with m� n measurements.

Formally, we would like to estimate a “signal” x∗ ∈ Rn from noisy linear measurements,

y = Ax∗ + ξ

for a measurement matrix A ∈ Rm×n and noise vector ξ ∈ Rm. We will focus on the i.i.d. Gaussian
setting, where Aij ∼ N (0, 1

m ) and ξi ∼ N (0, σ
2

m ), and one would like to recover x̂ from (A, y) such
that

‖x∗ − x̂‖ ≤ Cσ (1)

with high probability for some constant C. When x∗ is k-sparse, this was shown by Candés, Romberg,
and Tao [17] to be possible for m at least O(k log n

k ).

Over the past 15 years, compressed sensing has been extended in a wide variety of remarkable
ways, including by generalizing from sparsity to other signal structures, such as those given by
trees [19], graphs [78], manifolds [20, 77], or deep generative models [13, 5]. These are all essentially
frequentist approaches to the problem: they define a small set of “structured” signals x, and ask for
recovery of every such signal.

Such set-based approaches have limitations. For example, [13] uses the structure given by a deep
generative model G : Rk → Rn; with O(kd log n) measurements for d-layer networks, accurate
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recovery is guaranteed for every signal x∗ near the range of G. But this completely ignores the
distribution over the range. Generative models like Glow [48] and pixelRNN [60] have seed length
k = n and range equal to the entire Rn. Yet because these models are designed to approximate
reality, and real images can be compressed, we know that compressed sensing is possible in principle.

This leads to the question: Given signals drawn from some distribution R, can we characterize the
number of linear measurements necessary for recovery, with both upper and lower bounds? Such a
Bayesian approach has previously been considered for sparsity-inducing product distributions [2, 81]
but not general distributions.

Second, suppose that we don’t know the real distribution R, but instead have an approximation P
of R (e.g., from a GAN or invertible generative model). In what sense should P approximate R for
compressed sensing with good guarantees to be possible?

Contributions. We show that an approximate covering number characterizes the measurement com-
plexity of compressed sensing a general distribution R, and that recovery by conditional resampling
achieves this bound.
Definition 1.1. Let R be a distribution on Rn. For some parameters η > 0, δ ∈ [0, 1] , we define the
(η, δ)-approximate covering number of R as

Covη,δ(R) := min
{
k : R

[
∪ki=1B(xi, η)

]
≥ 1− δ, xi ∈ Rn

}
,

where B(x, η) is the `2 ball of radius η centered at x.

Definition 1.2. Given an observation y = Ax∗ + ξ with ξ ∼ N(0, σ
2

m I), the conditional resampling
recovery algorithm with respect to P outputs x̂ according to the conditional distribution P (· | y).

Our main positive result is that conditional resampling achieves the guarantees of equation (1) for
general distributions R, with O(log Covσ,δ(R)) measurements. Not only this, but the algorithm is
robust to model mismatch: conditional resampling with respect to P 6= R still works, as long as P
and R are close in Wasserstein distance:
Theorem 1.3 (Upper bound). Let R, P be distributions withW1(P,R) ≤ σ. Let x∗ ∼ R and x̂ be
conditionally resampled from y with respect to P . For any η ≥ σ, with

m ≥ O(log Covη,0.01(R))

measurements, the guarantee
‖x̂− x∗‖ ≤ Cη

is satisfied for some universal constant C with 97% probability over the signal x, measurement
matrix A, noise ξ, and recovery algorithm x̂.

Our second main result shows that conditional resampling is a nearly optimal algorithm. This is, to
our knowledge, the first lower bound for compressed sensing that applies to arbitrary distributions
R. Most lower bounds in the area are minimax, and only apply to specific “hard” distributions
R [65, 16, 41]; the closest result we are aware of is [2], which characterizes product distributions.
Theorem 1.4 (Lower bound). Let R be any distribution over the unit ball, and consider any method
to achieve ‖x̂− x∗‖ ≤ η with 99% probability. This must have

m ≥ C ′

log(1 + 1/σ2)
log CovC′η,0.04(R).

for some constant C ′ > 0.

For more precisely stated and general versions of these results, including dependence on the failure
probability δ, see Theorems 5.4 and 5.5.

1.1 Related Work

Generative priors have shown great promise in compressed sensing and other inverse problems,
starting with [13], who generalized the theoretical framework of compressive sensing and restricted
eigenvalue conditions [72, 24, 12, 15, 38, 10, 9, 26] for signals lying on the range of a deep generative

2



(a) Original (b) Input

M
ap

La
ng

ev
in

(c) Reconstructions by MAP and Langevin

Figure 1: We compare MAP and Langevin dynamics for the inverse problem of inpainting missing pixels.
The hair and background of the original image in Figure 1a is removed to get the observations in Figure 1b. In
Figure 1c we show reconstructions by MAP and Langevin given the observations in Figure 1b, and each column
corresponds to a random initialization for MAP and Langevin. Langevin dynamics produces diverse images that
satisfy the observations, while MAP consistently produces essentially the same, somewhat washed-out, image.

model [30, 47]. Similar ideas like projections on smooth manifolds and additional structure beyond
sparsity in inverse problems have been studied in earlier signal processing work, e.g. [38, 10, 9, 26].

Results in [45, 52, 43] established that the sample complexities in [13] are order optimal. The
approach in [13] has been generalized to tackle different inverse problems [32, 8, 6, 58, 7, 66, 8, 51,
42, 31, 3]. Alternate algorithms for reconstruction include [14, 22, 44, 28, 27, 70, 56, 22, 61, 34, 35].
The complexity of optimization algorithms using generative models have been analyzed in [29, 36,
49, 33]. Experimental results in [5, 74, 50] show that invertible models have superior performance
in comparison to low dimensional models. See [59] for a more detailed survey on deep learning
techniques for compressed sensing. A related line of work has explored learning-based approaches to
tackle classical problems in algorithms and signal processing [1, 40, 57, 39].

Lower bounds for `2/`2 recovery of sparse vectors can be found in [68, 65, 2, 41, 16], and these are
related to the lower bound in (1.4). The closest result is that of [2], which characterizes the probability
of error and `2 error of the reconstruction via covering numbers of the probability distribution. Their
approach uses the rate distortion function of a scalar random variable x, and provides guarantees
for the product measure generated via an i.i.d. sequence of x. A Shannon theory for compressed
sensing was pioneered by [76, 75]. The δ−Minkowski dimension of a probability measure used
in [76, 75, 62] can be derived from our (ε, δ)−covering number by taking the limit ε → 0. [67]
contains a related theory of rate distortion for compressed sensing. There is also related work in the
statistical physics community under different assumptions on the signal structure [79, 11].

2 Experiments

In this section we discuss our algorithm for conditional resampling, and briefly discuss why existing
algorithms can fail.

We consider distributions P induced by generative models G, such that the distribution P = G(z) for
z a standard Gaussian. Conditionally resampling from p(z|y) is easier than sampling from p(x|y),
since it is easier to compute, and we observe that sampling mixes quicker. Note that sampling
ẑ ∼ p(z|y) and setting x̂ = G(ẑ) is equivalent to sampling x̂ ∼ p(x|y).

In order to sample from p(z|y), we use Langevin dynamics, which samples from a given distribution
by moving a random initial sample along a vector field given by the distribution. Langevin dynamics
tells us that if we sample z0 ∼ N (0, 1), and run the following iterative procedure:

zt+1 ← zt +
αt
2
∇z log p (zt|y) +

√
αtζt, ζt ∼ N (0, I),

then p(z|y) is the stationary distribution of zt as t→∞ and αt → 0. Unfortunately, this algorithm
is slow to mix, as observed in [71]. We instead use an annealed version of the algorithm to sample
from the conditional distribution.

Given the measurements y, measurement matrix A, generative model G, and noise scale σi, we define
pi(z|y) as

log pi(z|y) :=

(
−‖y −AG(z)‖2

2σ2
i /m

− ‖z‖
2

2

)
+ log c(y), (2)
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(b) LPIPS scores vs. m

Figure 2: We compare the performance of our algorithm with baselines for compressed sensing using Gaussian
matrices on the CelebA dataset with a RealNVP model in a low PSNR setting. Figure 2a shows per pixel
reconstruction error while figure 2b shows LPIPS scores as m varies. We find no statistically significant
difference in MSE of the reconstructions, but our reconstructions are perceptually closer to the ground truth.
Error bars indicate 95% confidence intervals.

where c(y) is a constant that depends only on y. Since we only care about the gradient of log p(z|y),
we can ignore this constant c(y). By taking a decreasing sequence of σi that approach the true
value of σ, we can anneal Langevin dynamics and sample from p(z|y). Please refer to the algorithm
proposed in [71] for details on how σi and the learning rates αt are varied.

2.1 Experimental Results

We perform our experiments on the CelebA dataset [53, 46], using a RealNVP [23, 74] generative
model whose output size is 64× 64× 3 and a Glow model [48] whose output size is 256× 256× 3.
Details about our experiments are in Appendix C. In Figure 2, we show the performance of our
proposed algorithm with respect to the MAP baseline for compressed sensing on CelebA with
RealNVP in a low PSNR setting. MAP directly maximizes log pi(z|y) defined in Eqn (2).

MAP estimation does not work on general distribution: as an extreme example, if R is a mixture
of some continuous distribution 99% of the time, and the all-zero image 1% of the time, it will
always output the all-zero image, which is wrong 99% of the time. More generally, looking for
high-likelihood points rather than regions means it prefers sharp but very narrow maxima to wide,
but slightly shorter, maxima. Conditional resampling prefers the opposite.

However, in our experiments on RealNVP and Glow we did not find any statistically significant
differences in their reconstruction accuracy in compressed sensing. What we did observe is significant
differences in the perceptual quality and diversity of the resulting images. The LPIPS score[80] is a
measure of perceptual distance between images, and Figure 2b shows that our algorithm produces
images that are perceptually closer to the ground truth. In order to highlight the difference in diversity,
we evaluate MAP and conditional resampling on the inverse problem of inpainting missing pixels.
As shown in Figure 1, when the hair and background of a ground truth image is removed, MAP
produces a single “most likely” reconstruction, while Langevin produces diverse images that satisfy
the measurements. (Each column in Figure 1 corresponds to a run of MAP and conditional resampling
starting from a random initial point.)

We believe that the MAP reconstruction, while in some sense a highly likely reconstruction, is abnor-
mally “washed out” and indistinct; analogous to how zero is the most likely sample from N(0, Id),
yet is extremely atypical of the distribution. We see this quantitatively in that the corresponding
‖z‖2/n for MAP is 0.007, even though samples from R almost surely have ‖z‖2/n ≈ 1, as do those
of Langevin.

3 Conclusion

This paper studies the problem of compressed sensing a signal from a distribution R. We have shown
that the measurement complexity is closely characterized by the log approximate covering number of
R. Moreover, this recovery guarantee can be achieved by conditional resampling, even with respect to
a distribution P 6= R that is close in Wasserstein distance. Finally, this insight suggested a heuristic
algorithm with improved performance in practice.
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This measurement complexity is inherent to the true distribution of images in the domain, and can’t
be improved. But perhaps it can be estimated: one open question is whether log Covη,δ(P ) can be
estimated or bounded when P is given by a neural network generative model.
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Figure 3: Illustrative example for the upper bound. The signal is x is drawn from a mixture of two well-
separated balls. The observations y = Ax are then drawn from a mixture of two distributions H0, H1

that may overlap. The probability that conditional resampling outputs something from the wrong ball
is proportional to the (shaded) overlap between these distributions, which is 1− TV (H0, H1).

4 Background and Notation

In this section, we introduce a few concepts that we will use throughout the paper. ‖ · ‖ refers to the
`2 norm unless specified otherwise. We wish to handle cases where the distribution of reality R is not
the same as the distribution P of our model. The metric we use to quantify the similarity between
distributions is the Wassertein distance, which is defined for any p ≥ 1 as

Wp(µ, ν) := inf
γ∈Π(µ,ν)

(
E

(u,v)∼γ
[‖u− v‖p]

)1/p

,

where µ, ν are probability distributions on some metric space Ω, and Π(µ, ν) denotes the set of joint
distributions whose marginals are µ, ν.

We will also need the limiting case of p =∞. Following the definition in [18], the infinite Wasserstein
distance is defined as

W∞(µ, ν) := inf
γ∈Π(µ,ν)

(
γ − ess sup

(u,v)∈Ω2

‖u− v‖

)
.

Informally, the above definition says that ifW∞(µ, ν) ≤ ε, and (u, v) ∼ γ, then ‖u− v‖ ≤ ε almost
surely. Note that the definition uses the essential supremum, and hence whenever we useW∞, all
statements are made almost surely over γ.

See [73, 63] for more details, and [4] for applications of Wasserstein distances to generative mod-
elling.

5 Theoretical Results

In this section we state the formal versions of Theorem 1.3, 1.4 and give proof sketches for them.

5.1 Upper Bound

For simplicity, we will first demonstrate our proof techniques in the simple setting where R = P ,
the measurements are noiseless, and the ground truth distribution P is supported on two disjoint
balls (illustrated in Figure 3). In this example, two ε radius balls can cover the whole space, so the
parameters in Theorem (1.3) will be σ = 0, η = ε, and Covε,0(P ) = 2. Applying Theorem (1.3) on
P tells us that a constant number of measurements is enough to get O(ε) close to the ground truth.
We will now prove this claim.

Let B0, Bx̃ denote ε−radius balls centered at 0, x̃ ∈ Rn respectively. Suppose P = 0.5P0 + 0.5P1,
where P0, P1, are uniform distributions onB0, Bx̃. The centers of the balls are separated by a distance
d� ε.
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The ground truth x∗ will be sampled from P . For a fixed matrix A ∈ Rm×n with m � n, let the
noiseless measurements be y = Ax∗ and let H0, H1, denote the distributions over Rm induced by
the projection of P0, P1, by A.

Given A, y, we sample the reconstruction (x̂) according to the conditional density

p(x̂|y) = cyp0(x̂|y) + (1− cy)px̃(x̂|y),

where cy is the posterior probability that y is a projection of x∗ drawn from the P0 component of P .
Note that cy depends on y.

Note that the ground truth and the reconstruction are far apart if and only if they are drawn from
different components of P . It turns out that the probability of the event {x∗ ∈ B0, x̂ ∈ Bx̃} is
bounded by how similar the distributions H0, H1 are:
Lemma 5.1. For c ∈ [0, 1], let P := (1 − c)P0 + cP1 be a mixture of two absolutely continuous
distributions P0, P1 admitting densities p0, p1. Let y be a sample from the distribution P , such that
y|z∗ ∼ Pz∗ where z∗ ∼ Bernoulli(c).

Define ĉy = cp1(y)
(1−c)p0(y)+cp1(y) , and let ẑ|y ∼ Bernoulli(ĉy) be the Bayes optimal estimate of z∗

given y. Then we have
Pr

z∗,y,ẑ
[z∗ = 0, ẑ = 1] ≤ 1− TV (P0, P1).

The proof of this, as well as all parts of the upper bound, can be found in Appendix A.

In our current example, this gives us

Pr[x∗ ∈ B0, x̂ ∈ Bx̃] ≤ 1− TV (H0, H1) and Pr[x∗ ∈ Bx̃, x̂ ∈ B0] ≤ 1− TV (H0, H1).

Since B0 and Bx̃ are balls of radius ε, a union bound of the above two probabilities gives:

Pr [‖x∗ − x̂‖ > 2ε] ≤ Pr [x∗ ∈ B0, x̂ ∈ Bx̃] + Pr [x∗ ∈ Bx̃, x̂ ∈ B0] , (3)
≤ 2 (1− TV (H0, H1)) . (4)

If A is a Gaussian random matrix, the Johnson-Lindenstrauss (JL) Lemma tell us that it will with high
probability preserve distances between vectors. This does not necessarily mean that every point in the
distribution P will be preserved in norm. Still, we show that, since P0 and P1 have well-separated
supports, their projected distributions H0, H1 have very high TV distance:
Lemma 5.2. Let A ∈ Rm×n be a random Gaussian matrix with i.i.d. entries Aij ∼ N (0, 1/m),
and let ξ ∼ N (0, σ

2

m Im) . Consider observations of the form y = Ax∗ + ξ. For a fixed x̃ ∈ Rn, and
parameters η > 0, c ≥ 4e2, let Pout be a distribution supported on the set

Sx̃,out := {x ∈ Rn : ‖x− x̃‖ ≥ c(η + σ)}.
Let Px̃ be a distribution which is supported within an η−radius ball centered at x̃.

When x∗ ∼ Px̃, and A is fixed, let Hx̃ denote the corresponding distribution of y. Similarly, let Hout

denote the distribution of y when x∗ ∼ Pout and A is fixed.

Then we have,

E
A

[TV (Hx̃, Hout)] ≥ 1− 4e−
m
2 log( c

4e2
).

By Markov’s inequality, the expectation bound also gives a high probability bound over A.

For our current example, the above result implies that with probability 1− e−Ω(m) over A, we have

TV (H0, H1) ≥ 1− e−Ω(m). (5)

Substituting equation (5) in equation (4), we have

Pr [‖x∗ − x̂‖ > 2ε] ≤ 2e−Ω(m).

This shows that conditional sampling will produce a reconstruction which is close to the ground truth
with overwhelmingly high probability for our current example.

This example provides intuition, but leaves three main questions unanswered:
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1. How do we handle distributions over larger collections of balls?
2. How do we handle mismatch between the distribution of reality (R) and the model (P )?
3. How do we handle having a δ probability of lying outside any ball?

The first question is relatively easy to answer: if Covη,0(R) ≤ eo(m), you can cover R with a small
number of balls, and essentially apply Lemma 5.2 with a union bound. There are a few details (e.g.,
Lemma 5.2 shows you will not confuse any ball with faraway balls, but you might confuse it with
nearby balls) but solving it is straightforward. This shows that, if P = R and log Covη,0(R) is
bounded, then conditional resampling works well with 1− e−Ω(m) probability.

Now, what if P 6= R? We would like to show that observing samples from R and resampling
according to P gives good results. We first show that the results of this process are similar to those of
sampling from R′ and resampling according to P , where R′ is any distributionW∞-close to R:
Lemma 5.3. Let R,R′, denote arbitrary distributions over Rn such thatW∞(R,R′) ≤ ε.
Let A ∈ Rm×n be a random Gaussian matrix whose entries are i.i.d. and scaled so that Aij ∼
N (0, 1/m). For x∗ ∼ R, let y = Ax∗ + ξ, where ξ ∼ N (0, σ

2

m Im). For z∗ ∼ R′, let u = Az∗ + ξ
denote the corresponding measurements.

Let x̂ be a random variable whose distribution conditioned on y,A is P (·|y,A). Similarly, let ẑ be a
random variable whose distribution conditioned on u,A is P (·|u,A). For any d > 0, we have

Pr
x∗,A,ξ,x̂

[‖x∗ − x̂‖ ≥ d+ ε] ≤ e−Ω(m) + e(
4ε(ε+2σ)m

2σ2
) Pr
z∗,A,ξ,ẑ

[‖z∗ − ẑ‖ ≥ d] .

Now, ifW∞(R,P )� σ, we would be done: we could set R′ = P , and find that the error probability
of our problem is within eo(m) of that of sampling x∗ ∼ P and resampling according to P , which (if
P has a small cover) is e−Ω(m).

Finally, we need to confront the third problem: we want to allow our distributions to have a small
constant probability of behaving badly. R can have a δ mass outside the covering, and P is only close
to R inW1 notW∞. To address this, we note the existence of two distributions R′ and P ′, which are
only δ-far in TV from R and P respectively, such that R′ and P ′ do have a small cover & are close in
W∞. We show that, because compressed sensing would work with R′ and P ′, it also works with R
and P :
Theorem 5.4. Let δ ∈ [0, 1/4), p ≥ 1, and ε, η > 0 be parameters. Let R,P be arbitrary
distributions over Rn satisfyingWp(R,P ) ≤ ε.
Let A ∈ Rm×n be a random Gaussian matrix with i.i.d. entries Aij ∼ N (0, 1/m) for m ≥
O(min(log Covη,δ(R), log Covη,δ(P ))), and let ξ ∼ N (0, σ

2

m Im) for some σ & ε/δ1/p.

For x∗ ∼ R, consider observations of the form y = Ax∗ + ξ. Given y and the fixed matrix A, let x̂
be the reconstruction of x∗, sampled according to the conditional P (x̂|y).

Then there exists a universal constant c > 0 such that with probability at least 1− e−Ω(m) over A, ξ,

Pr
x∗∼R,x̂∼P (·|y)

[‖x∗ − x̂‖ ≥ cη + cσ] ≤ 2δ + 2e−Ω(m).

Note that we can get a high-probability result by setting p = ∞: if m ≥ O(log Covη,0(R)) and
W∞(R,P ) ≤ σ, the error is O(σ + η) with 1− e−Ω(m) probability.

5.2 Lower Bound

In the previous section, we showed, for any distribution R of signals, that O(log Cov(R)) measure-
ments suffice for conditional resampling to recover most signals well. Now we show the converse:
for any distribution of signals R, any algorithm for recovery must use Ω(log Cov(R)) measurements.
Theorem 5.5. LetR be a distribution supported on the unit ball in Rn, and x∗ ∼ R. Let y = Ax∗+ξ,
where each element of A is drawn iid fromN (0, 1

m ), and ξ ∼ N (0, σ
2

m Im). If there exists a recovery
scheme that uses y and A as inputs and guarantees

‖x̂− x∗‖ ≤ O(η),
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with probability ≥ 1− δ, then for any η > 0, we have

m ≥ 1.98δ

log
(
1 + 1

σ2

) log Cov5η,4δ(R).

This is proven using information theory, as a direct consequence of the following three lemmas. First,
the measurement process reveals a limited amount of information:
Lemma 5.6. Consider the setting of Theorem (5.5). We have

I(y;x∗|A) ≤ m

2
log

(
1 +

1

σ2

)
.

Second, a variant of the Data Processing Inequality is true for our measurement process, where A, x∗,
are independent.
Lemma 5.7. Consider the setting of Theorem (5.5). We have

I(x∗; x̂) ≤ I(y;x∗|A).

Finally, successful recovery must yield a large amount of information:
Lemma 5.8 (Fano variant). Let (x, x̂) be jointly distributed over Rn × Rn, where x ∼ R and x̂
satisfies

Pr[‖x− x̂‖ ≤ η] ≥ 1− δ.
Then for any τ > 0, we have

I(x; x̂) ≥ 0.99τ log Cov5η,τ+3δ(R).

The proofs can be found in Appendix B.

A Upper Bound Proofs

A.1 Proof of Lemma 5.1

Lemma 5.1. For c ∈ [0, 1], let P := (1 − c)P0 + cP1 be a mixture of two absolutely continuous
distributions P0, P1 admitting densities p0, p1. Let y be a sample from the distribution P , such that
y|z∗ ∼ Pz∗ where z∗ ∼ Bernoulli(c).

Define ĉy = cp1(y)
(1−c)p0(y)+cp1(y) , and let ẑ|y ∼ Bernoulli(ĉy) be the Bayes optimal estimate of z∗

given y. Then we have
Pr

z∗,y,ẑ
[z∗ = 0, ẑ = 1] ≤ 1− TV (P0, P1).

Proof. We have

Pr
z∗,y,ẑ

[z∗ = 0, ẑ = 1] = Pr[z∗ = 0] E
y∼p0,ẑ|y

[1{ẑ = 1}], (6)

= (1− c)
∫
p0(y) Pr[ẑ = 1|y]dy. (7)

By definition, we have

Pr[ẑ = 1|y] =
cp1(y)

(1− c)p0(y) + cp1(y)
.

Substituting, we have

Pr
z∗,y,ẑ

[z∗ = 0, ẑ = 1] =

∫
(1− c)p0(y)cp1(y)

(1− c)p0(y) + cp1(y)
dy

≤
∫

(1− c)p0(y) · cp1(y)

max{(1− c)p0(y), cp1(y)}
dy
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=

∫
min{(1− c)p0(y), cp1(y)}dy

≤
∫

min{p0(y), p1(y)}dy

= (1− TV (P0, P1)).

A.2 Proof of Lemma 5.2

Lemma 5.2. Let A ∈ Rm×n be a random Gaussian matrix with i.i.d. entries Aij ∼ N (0, 1/m),
and let ξ ∼ N (0, σ

2

m Im) . Consider observations of the form y = Ax∗ + ξ. For a fixed x̃ ∈ Rn, and
parameters η > 0, c ≥ 4e2, let Pout be a distribution supported on the set

Sx̃,out := {x ∈ Rn : ‖x− x̃‖ ≥ c(η + σ)}.

Let Px̃ be a distribution which is supported within an η−radius ball centered at x̃.

When x∗ ∼ Px̃, and A is fixed, let Hx̃ denote the corresponding distribution of y. Similarly, let Hout

denote the distribution of y when x∗ ∼ Pout and A is fixed.

Then we have,

E
A

[TV (Hx̃, Hout)] ≥ 1− 4e−
m
2 log( c

4e2
).

Proof. In order to prove the lemma, it suffices to show that on the set

B := {y ∈ Rm : ‖y −Ax̃‖ ≤
√
c (η + σ)},

we have

E
A

[Hout(B)] ≤ 2e−
m
2 log( c

4e2
), (8)

E
A

[Hx̃(B)] ≥ 1− 2e−
m
2 log( c

4e2
). (9)

Using the above bounds, we can conclude that

E
A

[TV (Hout, Hx̃)] ≥ E
A

[Hx̃(B)]− E
A

[Hout(B)] ≥ 1− 4e−
m
2 log( c

4e2
).

First we prove Equation (8).

Consider the joint distribution of y,A. We have

E
A

[Hout(B)] = E
A

[
E

x∼Pout

[
N
(
Ax,

σ2

m
Im

)
(B)

]]
, (10)

= E
x∼Pout

[
E
A

[
N (Ax, σ2/m)(B)

]]
, (11)

where the first line follows from the definition of Hout and the fact that x,A are independent. The
last line follows by switching the order of integrating A, x. Here N (Ax, σ2/m)(B) refers to the
mass N (Ax, σ2/m) places on B.

Consider a fixed x ∈ Sx̃,out, that is, x lies in the support of Pout and satisfies ‖x− x̃‖ ≥ c(η+σ
√
m).

We split the above expectation into two conditions over the matrix A.

• Case 1: ‖Ax − Ax̃‖ ≤ 2
√
c (η + σ). Since A is i.i.d. Gaussian, A (x− x̃) is distributed as

N
(

0, ‖x−x̃‖
2

m Im

)
. This gives

Pr
A

[
‖Ax−Ax̃‖ < 2

√
c (η + σ)

]
≤ Pr

A

[
‖Ax−Ax̃‖ ≤ 2√

c
‖x− x̃‖

]
,
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≤ 2√
mπ

(
2e√
c

)m
,

=
2√
mπ

e−
m
2 log( c

4e2
),

≤ e−
m
2 log( c

4e2
) if m > 1.

This implies

E
x∼Pout

[
E
A

[
N (Ax, σ2/m)(B)1‖Ax−Ax̃‖<2

√
c(η+σ)

]]
≤ E
x∼Pout

[
E
A

[
1‖Ax−Ax̃‖<2

√
c(η+σ)

]]
,

= E
x∼Pout

[
Pr
A

[
‖Ax−Ax̃‖ ≤ 2

√
c (η + σ)

]]
,

≤ e−
m
2 log( c

4e2
).

• Case 2: ‖Ax−Ax̃‖ > 2
√
c (η + σ).

Recall the definition of B := {y ∈ Rm : ‖y −Ax̃‖ ≤
√
c (η + σ)}. For any y ∈ B, x in the

support of Pout and for A such that ‖Ax−Ax̃‖ > 2
√
c (η + σ), we have

‖y −Ax‖ ≥ ‖Ax−Ax̃‖ − ‖y −Ax̃‖ ≥ 2
√
c (η + σ)−

√
c (η + σ) =

√
c (η + σ) .

For each x in the support of Pout, define the set Bx := {y ∈ Rm : ‖y −Ax‖ ≥
√
c (η + σ)} . The

above inequality gives B ⊆ Bx for each x in the support of Pout. This gives

N (Ax, σ2)(B) ≤ N (Ax, σ2)(Bx) ≤ e−2(
√
c−1)

2
m ≤ e−mc2 .

where the last inequality follows by the definition of Bx and Gaussian concentration of N (Ax, σ2)

on the set Bx, and since 2 (
√
c− 1)

2
> c

2 if c ≥ 4.

Substituting the inequalities from Case 1 and Case 2 in Eqn (11), we have

E
A

[Hout(B)] = E
x∼Pout

[
E
A

[
N (Ax, σ2/m)(B)

]]
,

≤ e−
m
2 log( c

4e2
) + e−

cm
2 ,

≤ 2e−
m
2 log( c

4e2
) if c ≥ 4e2.

This proves Eqn (8).

A similar proof can be used to show that

E
A

[Hx̃(Bc)] ≤ 2e−
m
2 log( c

4e2
).

This proves Eqn (9).

Putting the two above inequalities together, we have

E
A
TV (Hout, Hx̃) ≥ E

A
[Hx̃(B)]− E

A
[Hout(B)] ≥ 1− 4e−

m
2 log( c

4e2
).

This concludes the proof.

A.3 Proof of Lemma A.1

Lemma A.1. Let R,P be arbitrary distributions on Rn. Let p ≥ 1 and η, ρ, δ > 0, be parameters.

If Wp(R,P ) ≤ ρ and min{log Covη,δ(P ), log Covη,δ(R)} ≤ k, then there exist distributions
R′, R′′, P ′, P ′′, and a finite discrete distirbution Q with | supp(Q)| ≤ ek satisfying:

1. min {W∞(P ′, Q),W∞(R′, Q)} ≤ η,
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2. W∞(R′, P ′) ≤ ρ
δ1/p

,

3. P = (1− 2δ)P ′ + (2δ)P ′′ and R = (1− 2δ)R′ + (2δ)R′′

Proof. Since the statement of the lemma is symmetric with respect to P and R, WLOG let
log Covη,δ(P ) ≤ k. Then there is an S ⊂ Rn such that |S| ≤ ek and

Pr
x∼P

[x ∈ ∪u∈SB(u, η)] = 1− cP ≥ 1− δ,

We define the function f : Rn → R+ as

f(x) =

{
1

|{u∈S|x∈B(u,η)}| if ∃u ∈ S s.t. x ∈ B(u, η),

0 otherwise.

By construction, f is a piecewise constant function that is inversely proportional to the number of
η−radius balls centered around points in S cover a point x.

For each u ∈ S, we define the measure Q′′ as

Q′′(u) :=

∫
B(u,η)

f dP.

Observe that ∑
u∈S

Q′′(u) =
∑
u∈S

∫
B(u,η)

fdP,

=

∫
∪u∈SB(u,η)

dP = 1− cP

Notice that Q′′ is not a probability distribution, since it only has mass 1− cP . However we can create
a distribution Q′ from Q′′ by putting an additional cP mass on some arbitrary point in Rn (say, 0).
By construction, there exists a coupling Π of P and Q′ where the coupling distributes the mass at
each point in Rn to points η close to it in S, such that

cP = Pr
(x1,x2)∼Π

[‖x1 − x2‖ ≥ η] ≤ δ. (12)

Additionally, since Wp(R,P ) ≤ ρ, there exists a coupling Γ such that.

cR = Pr
(x1,x2)∼Γ

[
‖x1 − x2‖ ≥

ρ

δ1/p

]
≤ E [‖x1 − x2‖p]

ρp

δ

≤ δ. (13)

where cP is defined by the first equality. We can hence define a couple between P,Q′, R
whose distribution is given by the following – for any borel measurable sets B1, B2, B3 we have
Ω(B1, B2, B3) = P (B1)Π(B2 | B1)Γ(B3 | B1). To verify that this is indeed a coupling of the kind
we want, we observe that the marginals of Ω are P,Q and R respectively.

1. Ω(B1,Rn,Rn) = P (B1)Π(Rn | B1)Γ(Rn | B1) = P (B1).

2. Ω(Rn, B2,Rn) = P (Rn)Π(B2 | Rn)Γ(Rn | Rn) = 1 · Π(B2,Rn)
P (Rn) · 1 = Q′(B2).

3. Ω(Rn,Rn, B3) = P (Rn)Π(Rn | Rn)Γ(B3 | Rn) = R(B3).

To define P ′, Q,R′, we look at Ω conditioned on the event E := {(x, y, z) | ‖x − z‖ ≤
ρ/δ1/p and ‖x − y‖ ≤ η}. To estimate the probability of E, we define E1 := {(x, y, z) | z ∈
Rn and ‖x− y‖ > η} and E2 := {(x, y, z) | ‖x− z‖ > ρ/δ1/p and y ∈ Rn}. Then, E = E1 ∨E2.

We now show that Ω(E1) ≤ δ. Let (E1)I denote E1 restricted to the coordinates in I .

Ω(E1) := P ((E1)1)Π((E1)1,2 | (E1)1)Γ((E1)1,3 | (E1)1) ≤ Π((E1)1,2) ≤ δ,
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where the first inequality is because Γ((E1)1,3 | (E1)1) ≤ 1 and Π((E1)1,2 | (E1)1) =
Π((E1)1,2)/P ((E1)1) and the final inequaity follows from equation (12). The bound for E2 follows
similarly. A union bound shows that Ω(E) ≥ 1 − 2δ. We can restrict the event E further to have
mass 1− 2δ.

We look at the marginals of the conditional couple Ω(· | E) to get distributions P ′, Q,R′ as follows.
We define P ′(·) := Ω(·,Rn,Rn | E), Q(·) := Ω(Rn, ·,Rn | E) and R′(·) := Ω(Rn,Rn, · |
E). P ′′ and R′′ are defined similarly via conditioning on E. Hence, P (·) = Ω(·,Rn,Rn) =
Ω(E)Ω(·,Rn,Rn | E) + Ω(E)Ω(·,Rn,Rn | E) = (1− 2δ)P ′(·) + (2δ)P ′′(·). The statement for
R follows similarly.

This finally gives distributions P ′, R′, Q, such that:

1. W∞(P ′, Q) ≤ η

2. W∞(R′, P ′) ≤ ρ/δ1/p

3. P = (1− 2δ)P ′ + (2δ)P ′′ and R = (1− 2δ)R′ + (2δ)R′′.

The first two statements follow because of the event we condition over.

Note that this restriction does not change the fact that supp(Q) < ek, and hence we have our result.

A.4 Proof of Lemma 5.3

Lemma 5.3. Let R,R′, denote arbitrary distributions over Rn such thatW∞(R,R′) ≤ ε.
Let A ∈ Rm×n be a random Gaussian matrix whose entries are i.i.d. and scaled so that Aij ∼
N (0, 1/m). For x∗ ∼ R, let y = Ax∗ + ξ, where ξ ∼ N (0, σ

2

m Im). For z∗ ∼ R′, let u = Az∗ + ξ
denote the corresponding measurements.

Let x̂ be a random variable whose distribution conditioned on y,A is P (·|y,A). Similarly, let ẑ be a
random variable whose distribution conditioned on u,A is P (·|u,A). For any d > 0, we have

Pr
x∗,A,ξ,x̂

[‖x∗ − x̂‖ ≥ d+ ε] ≤ e−Ω(m) + e(
4ε(ε+2σ)m

2σ2
) Pr
z∗,A,ξ,ẑ

[‖z∗ − ẑ‖ ≥ d] .

Proof. Let B1 denote the event

B1 = {‖x∗ − x̂‖ ≥ d+ ε} .

Similarly, let B2 denote the event

B2 = {‖z∗ − x̂‖ ≥ d} .

We have

Pr
x∗∼R,A,ξ,x̂∼P (·|A,y)

[B1] = E
x∗∼R

E
A

[
E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B1 ]

]]
.

We can write the integral over R as an integral over the coupling Π between R,R′. This gives

Pr
x∗,A,ξ,x̂∼P (·|A,y)

[B1] = E
x∗,z∗

E
A

[
E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B1

]

]]
.

Since x∗, z∗ are coupled and W∞(R,R′) ≤ ε, we have ‖x∗ − z∗‖ ≤ ε almost surely. This gives
B1 ⊆ B2 if x∗, z∗ are distributed according to Π. Hence,

Pr
x∗,A,ξ,x̂∼P (·|A,y)

[B1] ≤ E
x∗,z∗

E
A

[
E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B2

]

]]
.
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We can split the above integral into two parts: one where the matrix A satsifies ‖Ax∗ −Az∗‖ ≤ 2ε,
and another case where ‖Ax∗ −Az∗‖ > 2ε. This gives

Pr
x∗,A,ξ,x̂∼P (·|A,y)

[B1] ≤ E
x∗,z∗

E
A

[
1‖Ax∗−Az∗‖>2ε E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B2

]

]]
(∗) (14)

+ E
x∗,z∗

E
A

[
1‖Ax∗−Az∗‖≤2ε E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B2 ]

]]
.(∗∗) (15)

Consider the term(∗) in line (14). We have

E
x∗,z∗

E
A

[
1‖Ax∗−Az∗‖>2ε E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B2

]

]]
≤ E
x∗,z∗

E
A

[
1‖Ax∗−Az∗‖>2ε

]
, (16)

≤ E
x∗,z∗

[
e−Ω(m)

]
≤ e−Ω(m), (17)

where the last inequality follows from the Johnson-Lindenstrauss lemma for a fixed x∗, z∗, and hence
is true on average over x∗, z∗ drawn independent of A.

Now consider the term (∗∗) in line (15). Notice that since the noise in the measurements is Gaussian,
we have

y|x∗, A ∼ N (0, σ2/m).

We break the integral over y in (∗∗) into two cases:

1. Case 1: ‖y − Ax∗‖ > 2σ. Since p(y|A, x∗) is distributed as N
(

0, σ
2

m Im

)
, by standard

Gaussian concentration, we have∫
y:‖y−Ax∗‖>2σ

p(y|A, x∗)dy ≤ e−Ω(m).

2. Case 2: ‖y −Ax∗‖ ≤ 2σ. This gives

‖Ax∗ − y‖2 = ‖Ax∗ − y‖2 − ‖y −Az∗‖2 + ‖y −Az∗‖2,
= ‖Ax∗ − y‖2 − ‖y −Ax∗ +Ax∗ −Az∗‖2 + ‖y −Az∗‖2,
= −‖Ax∗ −Az∗‖2 − 2〈y −Ax∗, Ax∗ −Az∗〉+ ‖y −Az∗‖2.

Observe that in (∗∗), we have

‖Ax∗ −Az∗‖ ≤ 2ε⇒ ‖Ax∗ −Az∗‖2 ≤ 4ε2.

By the Cauchy-Schwartz inequality and the assumption that ‖y −Ax∗‖ ≤ 2σ, we have

2〈y −Ax∗, Ax∗ −Az∗〉 ≤ 8σε.

Substituting the above two inequalities, we have

‖Ax∗ − y‖2 ≥ −4ε2 − 8σε+ ‖y −Az∗‖2, (18)

⇒ exp

(
−‖Ax

∗ − y‖2

2σ2/m

)
≤ exp

(
4ε (ε+ 2σ)m

2σ2

)
exp

(
−‖Az

∗ − y‖2

2σ2/m

)
, (19)

(20)

Observe that the LHS has the density of measurements from x∗, while the RHS has the
density of measurements from z∗ with an exponential scaling. From the above inequality,
we can replace the expectation over y|A, x∗ in (∗∗) with u|A, z∗ with an exponential factor.

Similarly, since the conditional sampling now uses u in place of y, we can replace x̂ in (∗∗)
with ẑ.
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Combining Case 1 and 2 gives

(∗∗) ≤ e−Ω(m) + e(
4ε(ε+2σ)m

2σ2
) E
x∗,z∗

E
A

[
E

u|A,z∗

[
E

ẑ∼P (·|u,A)
[1B2 ]

]]
,

= e−Ω(m) + e(
4ε(ε+2σ)m

2σ2
) E
z∗∼R′

E
A

[
E

u|A,z∗

[
E

ẑ∼P (·|u,A)
[1B2

]

]]
.

From the above inequality and eqn. (17), we have

Pr
x∗∼R,ξ,A,x̂∼P (·|A,y)

[‖x∗ − x̂‖ ≥ d+ ε] ≤ e−Ω(m) + e(
4ε(ε+2σ)m

2σ2
) Pr
z∗∼R′,ξ,A,ẑ∼P (·|u,A)

[‖z∗ − ẑ‖ ≥ d] .

A.5 Proof of Theorem 5.4

Theorem 5.4. Let δ ∈ [0, 1/4), p ≥ 1, and ε, η > 0 be parameters. Let R,P be arbitrary
distributions over Rn satisfyingWp(R,P ) ≤ ε.
Let A ∈ Rm×n be a random Gaussian matrix with i.i.d. entries Aij ∼ N (0, 1/m) for m ≥
O(min(log Covη,δ(R), log Covη,δ(P ))), and let ξ ∼ N (0, σ

2

m Im) for some σ & ε/δ1/p.

For x∗ ∼ R, consider observations of the form y = Ax∗ + ξ. Given y and the fixed matrix A, let x̂
be the reconstruction of x∗, sampled according to the conditional P (x̂|y).

Then there exists a universal constant c > 0 such that with probability at least 1− e−Ω(m) over A, ξ,

Pr
x∗∼R,x̂∼P (·|y)

[‖x∗ − x̂‖ ≥ cη + cσ] ≤ 2δ + 2e−Ω(m).

Proof. We know from Lemma A.1 that there existR′, P ′, R′′, P ′′ and a finite distributionQ supported
on the set S such that

1. W∞(R′, P ′) ≤ ε
δ1/p

,

2. min{W∞(P ′, Q),W∞(R′, Q)} ≤ η,

3. R = (1− 2δ)R′ + 2δR′′ and P = (1− 2δ)P ′ + 2δP ′′,

4. |S| ≤ ek.

Suppose W∞(P ′, Q) ≤ η. If not, then W∞(R′, Q) ≤ η, and by (1), we see that W∞(P ′, Q) ≤
η + ε

δ1/p
, and we will use this in the proof instead. This gives us

Pr
x∗∼R,x̂∼P (·|y)

[‖x∗ − x̂‖ ≥ (c+ 1)η + (c+ 1)σ] (21)

≤ Pr
x∗∼R,x̂∼P (·|y)

[
‖x∗ − x̂‖ ≥ (c+ 1)η + cσ + (ε/δ1/p)

]
(22)

≤ 2δ + (1− 2δ) Pr
x∗∼R′,x̂∼P (·|y)

[
‖x∗ − x̂‖ ≥ (c+ 1)η + cσ + (ε/δ1/p)

]
(23)

We now bound the second term on the right hand side of the above equation. For this term, consider
the joint distribution over x∗, A, ξ, x̂. By Lemma 5.3, we can replace x∗ ∼ R′ with z∗ ∼ P ′, replace
y = Ax∗ + ξ with u = Az∗ + ξ, and replace x̂ ∼ P (·|A, y) with ẑ ∼ P (·|A, u) to get the following
bound

Pr
x∗∼R′,A,ξ,x̂∼P (·|A,y)

[
‖x∗ − x̂‖ ≥ (c+ 1) η + cσ + (ε/δ1/p)

]
≤

e−Ω(m) + e

(
2(ε/δ1/p)((ε/δ1/p)+2σ)m

σ2

)
Pr

z∗∼P ′,A,ξ,ẑ∼P (·|u,A)
[‖z∗ − ẑ‖ ≥ (c+ 1)η + cσ] . (24)
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We now bound the second term in the right hand side of the above inequality. Let Γ denote an optimal
W∞−coupling between P ′ and Q.

For each z̃ ∈ S, the conditional coupling can be defined as

Γ(·|z̃) =
Γ(·, z̃)
Q(z̃)

.

By theW∞ condition, each Γ(·|z̃) is supported on a ball of radius η around z̃.

Let E = {z∗, ẑ ∈ Rn : ‖z∗ − ẑ‖ ≥ (c+ 1) η + cσ} denote the event that z∗, ẑ are far apart. By the
coupling, we can express P ′ as

P ′ =
∑
z̃∈S

Q(z̃)Γ(·|z̃).

This gives

Pr
z∗∼P ′,A,ξ,ẑ∼P (·|A,u)

[E] =
∑
z̃∗∈S

Q(z̃∗) E
z∗∼Γ(·|z̃∗),A,ξ,ẑ∼P (·|A,u)

[1E ] .

For each z̃∗ ∈ S, we now bound Q(z̃∗)Ez∗∼Γ(·|z̃∗),A,ξ,ẑ∼P (·|A,u) [1E ] .

For each z̃∗ ∈ S, we can write P as P = (1− 2δ)Qz̃∗Pz̃∗,0 + cz̃∗,1Pz̃∗,1 + cz̃∗,2Pz̃∗,2, where the
components of the mixture are defined in the following way. The first component Pz̃∗,0 is Γ(·|z̃∗), the
second component is supported within a c(η + σ) radius of z̃∗, and the third component is supported
outside a c (η + σ) radius of z̃∗.

Formally, let Bz̃∗ denote the ball of radius c(η + σ) centered at z̃∗, and let Bcz̃∗ be its complement.
The constants are defined via the following Lebsque integrals, and the mixture components for any
Borel measurable B are defined as

cz̃∗,1 :=

∫
Bz̃∗

dP − (1− 2δ)Qz̃∗

∫
Bz̃∗

dΓ(·|z̃∗),

cz̃∗,2 :=

∫
Bc
z̃∗

dP − (1− 2δ)Qz̃∗

∫
Bc
z̃∗

dΓ(·|z̃∗),

Pz̃∗,0(B) := Γ(B ∩Bz̃∗ |z̃∗) = Γ(B|z̃∗) since supp(Γ(·|z̃∗)) ⊂ Bz̃∗ ,

Pz̃∗,1(B) :=

{
1

cz̃∗,1
P (B ∩Bz̃∗)− 1−2δ

cz̃∗,1
Qz̃∗Γ(B ∩Bz̃∗ |z̃∗) if cz̃∗,1 > 0,

do not care otherwise.
,

Pz̃∗,2(B) :=

{
1

cz̃∗,2
P (B ∩Bcz̃∗)− 1−2δ

cz̃∗,2
Qz̃∗Γ(B ∩Bcz̃∗ |z̃∗) if cz̃∗,2 > 0, dx∗

do not care otherwise.
.

Notice that if z∗ is sampled from Γ(·|z̃∗), then by the W∞ condition, we have ‖z∗ − z̃∗‖ ≤ η.
Furthermore, if ẑ is (c+ 1) η + cσ far from z∗, an application of the triangle inequality implies that
it must be distributed according to Pz̃∗,2. That is,

Q(z̃∗) E
z∗∼Γ(·|z̃∗),A,ξ,ẑ∼P (·|A,u)

[1E ] ≤ E
A,ξ,z∗

Pr [z∗ ∼ Pz̃∗,0, ẑ ∼ Pz̃∗,2(·|u)]

≤ 1

1− 2δ
E
A

[1− TV (Hz̃∗,0, Hz̃∗,2)] ,

where Hz̃∗,0, Hz̃∗,2 are the push-forwards of Pz̃∗,0, Pz̃∗,2 for A fixed and the last inequality follows
from Claim A.2.

This gives

Pr
z∗∼P ′,A,ξ,ẑ∼P (·|u,A)

[E] ≤ 1

1− 2δ

∑
z̃∗∈S

E
A

[1− TV (Hz̃∗,0, Hz̃∗,2)] .
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Notice that Pz̃∗,0 is supported within an η−ball around z̃∗, and Pz̃∗,2 is supported outside a c(η +
σ)−ball of z̃∗. By Lemma 5.2 we have

E
A

[TV (Hz̃∗,0, Hz̃∗,2)] ≥1− 4e−
m
2 log( c

4e2
).

This implies

Pr
z∗∼P ′,A,ξ,ẑ∼P (·|u,A)

[‖z∗ − ẑ‖ ≥ (c+ 1)η + cσ] ≤ 1

1− 2δ

∑
z̃∗∈S

E
A

[(1− TV (Hz̃∗,0, Hz̃∗,2))] ,

≤ 1

1− 2δ
4|S|e−

m
2 log( c

4e2
),

≤ 1

1− 2δ
4e−

m
4 log( c

4e2
),

where the last inequality is satisfied if m ≥ 4 log (|S|) .

Substituting in Eqn (24), if c > 4 exp

(
2 +

8(ε/δ1/p)((ε/δ1/p)+2σ)
σ2

)
, we have

Pr
x∗∼R′,A,ξ,x̂∼P (·|A,y)

[
‖x∗ − x̂‖ ≥ (c+ 1) η + cσ + (ε/δ1/p)

]
≤e−Ω(m) +

1

1− 2δ
e−Ω(m log c).

This implies that there exists a set SA,ξ over A, ξ satisfying PrA,ξ[SA,ξ] ≥ 1− e−Ω(m), such that for
all A, ξ ∈ SA,ξ, we have

Pr
x∗∼R′,x̂∼P (·|y)

[
‖x∗ − x̂‖ ≥ (c+ 1)η + cσ + (ε/δ1/p)

]
≤ 1

1− 2δ
e−Ω(m).

Substituting in Eqn (21), we have

Pr
x∗∼R,x̂∼P (·|y)

[
‖x∗ − x̂‖ ≥ (c+ 1)η + cσ + (ε/δ1/p)

]
≤ 2δ +

1

1− 2δ
e−Ω(m) ≤ 2δ + 2e−Ω(m).

Rescaling c gives us our result.

At the beginning of the proof, we had assumed thatW∞(P ′, Q) ≤ η. If insteadW∞(R′, Q) ≤ η,
then we need to replace η in the above bound by η + ε

δ1/p
. Rescaling c in the above bound gives us

the Theorem statement.

Claim A.2. Consider the setting of the previous theorem. We have

E
A,ξ,z∗

Pr [z∗ ∼ Pz̃∗,0, ẑ ∼ Pz̃∗,2(·|u)] ≤ 1

1− δ2
E
A

[1− TV (Hz̃∗,0, Hz̃∗,2)] , (25)

Proof. For a fixedA, let h0, h2 denote the corresponding densities of the push forward of Pz̃∗,0, Pz̃∗,2.
Then we have

E
A,ξ,z∗

Pr [z∗ ∼ Pz̃∗,0, ẑ ∼ Pz̃∗,2(·|u)] = E
A

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

(1− δ2)Qz̃∗,0hz̃∗,0(u) + cz̃∗,1hz̃∗,1(u) + cz̃∗,2hz̃∗,2(u)
du,

(26)

≤ E
A

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

(1− δ2)Qz̃∗,0hz̃∗,0(u) + cz̃∗,2hz̃∗,2(u)
du, (27)

≤ E
A

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

(1− δ2)Qz̃∗,0hz̃∗,0(u) + (1− δ2)cz̃∗,2hz̃∗,2(u)
du,

(28)

≤ E
A

1

1− δ2

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

Qz̃∗,0hz̃∗,0(u) + cz̃∗,2hz̃∗,2(u)
du, (29)
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≤ E
A

1

1− δ2

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

max{Qz̃∗,0hz̃∗,0(u) , cz̃∗,2hz̃∗,2(u)}
du,

(30)

= E
A

1

1− δ2

∫
min{Qz̃∗hz̃∗,0(u), cz̃∗,2hz̃∗,2(u)}du, (31)

≤ E
A

1

1− δ2

∫
min{hz̃∗,0(u), hz̃∗,2(u)}du, (32)

=
1

1− δ2
E
A

[1− TV (Hz̃∗,0, Hz̃∗,2)] . (33)

B Lower Bound Proofs

B.1 Proof of Lemma 5.6

Lemma 5.6. Consider the setting of Theorem (5.5). We have

I(y;x∗|A) ≤ m

2
log

(
1 +

1

σ2

)
.

Proof. We have y = Ax∗ + ξ. Let z = Ax∗, which gives y = z + ξ.

We have zi = aTi x
∗ where ai is the ith row of A, and yi = zi + ξi. Since x∗ is supported within

the unit sphere and the elements of A are drawn from N (0, 1
m ), we have E[y2

i ] = E[〈ai, x〉2] ≤ 1
m .

Since the Gaussian noise ξ has variance σ2/m in each coordinate, every coordinate of yi is a
Gaussian channel with power constaint 1/m and noise variance σ2/m. Using Shannon’s AWGN
theorem [21, 64, 69], the mutual information between yi, zi, is bounded by

I(yi; zi) ≤
1

2
log

(
1 +

1

σ2

)
.

The chain rule of entropy and sub-addditivity of entropy implies,

I(y; z) = h(y)− h(y|z) = h(y)− h(y − z|z), (34)

= h(y)− h(ξ|z) = h(y)−
∑

h(ξi|z, ξ1, · · · , ξi−1), (35)

= h(y)−
∑

h(ξi), (36)

≤
∑

h(yi)−
∑

h(ξi), (37)

=
∑

h(yi)−
∑

h(yi|zi), (38)

=
∑

I(yi; zi), (39)

≤ m

2
log

(
1 +

1

σ2

)
. (40)

Now we prove that I(x∗; y|A) ≤ I(y; z).

Consider the mutual information I(x∗, A, z; y). By the chain rule of mutual information, we have

I(x∗, A, z; y) = I(A; y) + I(x∗; y|A) + I(z; y|x∗, A),

= I(A; y) + I(z; y|A) + I(x∗; y|z,A),

⇔ I(x∗; y|A) + I(z; y|x∗, A) = I(z; y|A) + I(x∗; y|z,A).

From Figure 4, note that x∗, y, are conditionally independent given z,A. This gives I(x∗; y|z,A) = 0.

This gives

I(x∗; y|A) + I(z; y|x∗, A) = I(z; y|A), (41)
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x∗

A

z y x̂

Figure 4: DAG relating x∗, A, z, y, x̂. The conditional independencies we use are x∗ ⊥⊥ y|z,A and
A ⊥⊥ y|z.

⇒ I(x∗; y|A) ≤ I(z; y|A). (42)

We can bound I(z; y|A) in the following way.
I(A, z; y) = I(A; y) + I(z; y|A), (43)

= I(z; y) + I(A; y|z), (44)
⇔ I(A; y) + I(z; y|A) = I(z; y) + I(A; y|z), (45)
⇔ I(A; y) + I(z; y|A) = I(z; y), (46)

⇒ I(z; y|A) ≤ I(z; y), . (47)
where the second last line follows from I(A; y|z) = 0, and the last line follows from I(A; y) ≥ 0.

From Eqn (40), (42), (47), we have

I(x∗; y|A) ≤ m

2

(
1 +

1

σ2

)
.

B.2 Proof of Lemma 5.7

Lemma 5.7. Consider the setting of Theorem (5.5). We have
I(x∗; x̂) ≤ I(y;x∗|A).

Proof. Consider the mutual information I(x∗; y,A, x̂). By the chain rule of mutual information, we
can express it in two ways:

I(x∗; y,A, x̂) = I(x∗; y,A) + I(x∗; x̂|y,A), (48)
= I(x∗; x̂) + I(x∗; y,A|x̂). (49)

As x̂ is a function of y,A, we have I(x∗; x̂|y,A) = 0. Also, I(x∗; y,A|x̂) ≥ 0. Substituting in
Eqn (48), (49), we have

I(x∗; x̂) ≤ I(x∗; y,A),

= I(x∗;A) + I(x∗; y|A),

= I(x∗; y|A),

where the second line follows from the chain rule of mutual information, and the last line follows
because x∗, A, are independent.

B.3 Proof of Fano variant Lemma 5.8

We will build up Lemma 5.8 in sequence. Before showing it in its full generality, we will show
when x, x̂, are discrete random variables and x is uniform (Lemma B.1. We then lift the uniformity
restriction on x (Lemma B.2) before extending to continuous distributions (Lemma 5.8).
Lemma B.1. Let Q be the uniform distribution over an arbitrary discrete finite set S. Let (x, x̂) be
jointly distributed, where x ∼ Q and x̂ is distributed over an arbitrary countable set, satisfying

Pr [‖x− x̂‖ ≤ ε] ≥ 1− δ.

Then we have
I(x; x̂) ≥ τ log Cov4ε,τ+δ(Q)
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Proof. Recall,

H(x) = log(|S|)
H(x | x̂) = H(x)− I(x, x̂)

For any v ∈ supp(x̂), since x is supported on a finite set of cardinality |S|, we have

H(x | x̂ = v) ≤ log(|S|),
⇒ log(|S|)−H(x | x̂ = v) ≥ 0.

By the law of total probability, we have

I(x; x̂) =
∑
v

P (x̂ = v) (log(|S|)−H(x|x̂ = v)) .

Since the above summation has only non-negative terms that average to I(x; x̂), there exists G1 ⊆
supp(x, x̂) with Pr[G1] ≥ 1− τ, such that for all (u, v) ∈ G1,

log(|S|)−H(x|x̂ = v) ≤ I(x; x̂)

τ
,

⇒ H(x|x̂ = v) ≥ log(|S|)− I(x; x̂)

τ
,

⇒ |supp(x|x̂ = v)| ≥ |S|
2I(x;x̂)/τ

.

Let B(v, ε) denote the ε-radius ball around v. By the hypothesis of the Lemma, we have ‖x− x̂‖ ≤ ε
with probability ≥ 1− δ. By a union bound of the above two inequalities, there exists a set G2 ⊆
supp(x, x̂) satisfying Pr[G2] ≥ 1− τ − δ, such that for all (u, v) ∈ G2, we have

|supp(x|x̂ = v)| ≥ |S|
2I(x;x̂)/τ

,

supp(x|x̂ = v) ⊆ B(v, ε).

The above two inequalities imply that for all (u, v) ∈ G2, we have

|S ∩B(v, ε)| ≥ |S|
2I(x;x̂)/τ

.

By the definition of G2, (u, v) ∈ G2 satisfy ‖u− v‖ ≤ ε. This gives

|S ∩B(u, 2ε)| ≥ |S|
2I(x;x̂)/τ

.

Therefore any 4ε-packing of this 1− (δ + τ) fraction of x must have size at most 2I(x;x̂)/τ by the
pigeon-hole principle. Hence there exists a size 2I(x;x̂)/τ cover of radius 4ε containing 1− (δ + τ)
of Q.

The previous lemma handled the uniform distribution on x. Now we show that a similar result applies
if x’s distribution has quantized probability values.

Lemma B.2. Let Q be a finite discrete distribution over N ∈ N points such that for each u in its
support, Q(u) = jα, where j ∈ N and α := 1

N2
is a discretization level for N2 ∈ N large enough.

Let (x, x̂) be jointly distributed, where x ∼ Q and x̂ is distributed over a countable set, satisfying

Pr [‖x− x̂‖ ≤ ε] ≥ 1− δ.

Then we have

I(x; x̂) ≥ τ log Cov4ε,τ+δ(Q)
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Proof. For each x in the support of Q, we know that its probability is an integral multiple of 1
N2

.
Hence we can define a new random variable x′ = (x, j), x ∈ supp(Q), j ∈ [N2] and a distribution
Q′ over x′ in the following way:

Q′((x, j)) =

{
α if jα ≤ Q(x),

0 otherwise .

By definition, Q′ is a uniform distribution, and its support is a discrete subset of Rn × N.

Define the following norm for x′. For x′1 = (x1, j1), x′2 = (x2, j2), define

‖(x1, j1)− (x2, j2)‖ := ‖x1 − x2‖.

In order to apply Lemma B.1 on Q′, it suffices to show that I(x; x̂) = I(x′; x̂).

By the chain rule of mutual information, we have

I(x′; x̂) = I((x, j); x̂)

= I(x; x̂) + I(j; x̂|x).

Since x̂ is purely a function of x, we have I(j; x̂|x) = 0. This gives

I(x′; x̂) = I(x; x̂).

Similarly construct a version x̂′ = (x̂, 0) of x̂, whose second coordinate is identically zero. Hence
for x′ = (x, j) ∼ Q′, we have

‖x′ − x̂′‖ ≤ ε w.p. 1− δ,
I(x′; x̂′) = I(x; x̂)

Applying Lemma B.1 on Q′, we have

τ log Cov4ε,τ+δ(Q
′) ≤ I(x; x̂).

Since the support of the first coordinate of Q′ is the same as the support of Q, we have

τ log Cov4ε,τ+δ(Q) ≤ I(x; x̂).

We now prove Lemma 5.8, which allows (x, x̂) to follow an arbitrary distribution.
Lemma 5.8 (Fano variant). Let (x, x̂) be jointly distributed over Rn × Rn, where x ∼ R and x̂
satisfies

Pr[‖x− x̂‖ ≤ η] ≥ 1− δ.
Then for any τ > 0, we have

I(x; x̂) ≥ 0.99τ log Cov5η,τ+3δ(R).

Proof. Let ε = η, which is the error in the statement of the lemma. Let γ > 0 be a small enough
discretization level to be specified later. For every x, x̂ ∈ Rn, let x̄, ̂̄x denoted the rounding of x, x̂ to
the nearest multiple of γ in each coordinate.

Let R̄ be the discrete distribution induced by this discretization of x. We can create such a distribution
by assigning the probability of each cell in the grid to its corresponding coordinate-wise floor. This
discretization of the support changes the error between x, x̂ in the following way. If ‖x − x̂‖ ≤ ε
with probability 1− δ, an application of the triangle inequality gives

‖x̄− ̂̄x‖ ≤ ε+ 2γ
√
n with probability ≥ 1− δ. (50)

We also need to take into account the effect discretizing x, x̂ has on their mutual information. Note
that since x̄ is a function of x alone, and ̂̄x is a function of x̂ alone, by the Data Processing Inequality,
we have

I(x̄; ̂̄x) ≤ I(x; x̂). (51)
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Note that R̄ is a distribution on a discrete but infinite set. However, for any β ∈ (0, 1], we can find a
discrete and finite distribution Q such that R̄ = (1− c1)Q+ c1D, with c1 ≤ β and D is some other
probability distribution. This is feasible because the probabilites of the infinite support of R̄ must
sum to 1, and hence we can find a finite subset that sums to atleast 1− β for any β ∈ (0, 1]. Note that
in this process, we only change the marginal of x̄ without changing the conditional distribution of ̂̄x|x̄.
Let I(x̄; ̂̄x), IQ(x̄; ̂̄x), ID(x̄; ̂̄x) denote the mutual information between x̄, ̂̄x when the marginal of x̄
is R̄,Q,D, respectively. From Theorem 2.7.4 in [21], mutual information is a concave function of
the marginal distribution of x̄ for a fixed conditional distribution of ̂̄x|x̄. An application of Eqn (51)
gives us,

I(x; x̂) ≥ I(x̄; ̂̄x) ≥ (1− c1)IQ(x̄; ̂̄x) + c1ID(x̄; ̂̄x), (52)

≥ (1− c1)IQ(x̄; ̂̄x), (53)

≥ (1− β)IQ(x̄; ̂̄x). (54)

Now since the finite distribution Q has a TV distance of at most β to the countable distribution R,
using Eqn (50), we have

‖x̄− ̂̄x‖ ≤ ε+ 2γ
√
n with probability ≥ 1− β − δ if x̄ ∼ Q. (55)

In order to apply Lemma B.2 on the distribution Q, we need its probability values to be multiples of
some discretization level α. Let α be a small enough quantization level for the probability values.
We will specify the value of α later. We can now express the distribution Q as a mixture of two
distributions Q′, Q′′. The distribution Q′ is obtained by flooring the probability values under Q
and renormalizing to make them sum to 1. The distribution Q′′ is the mass not contained in Q′,
normalized to sum to 1. Since each element in the support of Q loses at most α mass, the total mass
in Q′′ prior to normalization is at most αNβ , where Nβ is the cardinaltiy of the support of Q. This
gives

Q = (1− c2)Q′ + c2Q
′′, c2 ≤ αNβ .

From Eqn (55), we have ‖x̄− ̂̄x‖ ≤ ε+ 2γ
√
n with probability ≥ 1− β − δ when x̄ ∼ Q. Since Q′

has a TV distance of at most αNβ to Q, if x̄ ∼ Q′, we have

‖x̄− ̂̄x‖ ≤ ε+ 2γ
√
n with probability ≥ 1− β − δ − αNβ if x̄ ∼ Q′. (56)

Let IQ(x̄; ̂̄x), IQ′(x̄; ̂̄x), IQ′′(x̄; ̂̄x) denote the mutual information between x̄, ̂̄x when the marginal of
x̄ is Q,Q′, Q′′ respectively. Mutual information is a concave function of the marginal distribution of
x̄ for a fixed conditional distribution of ̂̄x|x̄. Hence using Eqn (54), we have

I(x; x̂)

1− β
≥ IQ(x̄; ̂̄x) ≥ (1− c2)IQ′(x̄; ̂̄x) + c2IQ′′(x̄; ̂̄x), (57)

≥ (1− c2)IQ′(x̄; ̂̄x), (58)

≥ (1− αNβ)IQ′(x̄; ̂̄x). (59)

Hence if x̄ ∼ Q′, we have I(x̄; ̂̄x) ≤ I(x;x̂)
(1−αNβ)(1−β) . Applying Lemma B.2 on the distribution Q′,

for any τ > 0, we have

τ log Cov4ε+8γ
√
n,τ+β+δ+αNβ

(Q′) ≤ I(x; x̂)

(1− αNβ)(1− β)
.

Now since Q′ has at least 1− αNβ of the mass under Q and Q has at least 1− δ of the mass under
R̄, the mass τ + β + δ+ αNβ not covered under Q′ can be replaced with τ + β + 2δ+ 2αNβ under
R̄. This gives

τ log Cov4ε+8γ
√
n,τ+β+2δ+2αNβ

(R̄) ≤ I(x; x̂)

(1− αNβ)(1− β)
.
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Now since we can cover the whole distribution of R by extending each element in the support of R̄ by
γ in each coordinate, we can replace the radius 4ε+ 8γ

√
n for R̄ by 4ε+ 10γ

√
n for R. This gives

τ log Cov4ε+10γ
√
n,τ+β+2δ+2αNβ

(R) ≤ I(x; x̂)

(1− αNβ)(1− β)
.

For γ = ε
10
√
n
, β = min

{
δ
3 , 1−

√
0.99

}
, αNβ = min

{
δ
3 , 1−

√
0.99

}
, this becomes

0.99τ log Cov5ε,τ+3δ(R) ≤ I(x; x̂).

B.4 Proof of Theorem 5.5

Theorem 5.5. LetR be a distribution supported on the unit ball in Rn, and x∗ ∼ R. Let y = Ax∗+ξ,
where each element of A is drawn iid fromN (0, 1

m ), and ξ ∼ N (0, σ
2

m Im). If there exists a recovery
scheme that uses y and A as inputs and guarantees

‖x̂− x∗‖ ≤ O(η),

with probability ≥ 1− δ, then for any η > 0, we have

m ≥ 1.98δ

log
(
1 + 1

σ2

) log Cov5η,4δ(R).

Proof. By Lemma 5.7 and Lemma 5.6, we have
I(x∗; x̂) ≤ I(x∗; y|A),

≤ m

2
log

(
1 +

1

σ2

)
.

Applying Lemma 5.8 on the pair (x∗, x̂), with τ = δ, we have

0.99δ log Cov5η,4δ(R) ≤ I(x; x̂) ≤ m

2
log

(
1 +

1

σ2

)
.

or

m ≥ 1.98δ

log
(
1 + 1

σ2

) log Cov5η,4δ(R)

as desired.

C Experimental Setup

C.1 Datasets and Architecture

We borrowed the RealNVP model trained by [74], which was trained on the first 27,000 images in
the CelebA-HQ dataset [46]. Please see Appendix C in [74] for detailed hyperparameters used in the
training of the model. We evaluate our experiments on the first 30 images in the evaluation dataset
of [5].

In our experiments, the Gaussian noise in the measurements (ξ) satisfies
√

E [‖ξ‖2] = 20.

For the inpainting experiment in Figure 1c we borrowed used the 256×256 GLOW model from the
official repository.

C.2 Hyperparameter Selection

In order to pick the best hyperparameter, we use 500 fresh noisy measurements y′ = A′x∗ + ξ′,
which were not used in optimization. The hyperparameters that give the lowest validation error on
these measurements were picked.

For MAP, we tried an Adam and Gradient Descent optimizer. Langevin dynamics
only uses Gradient Descent. Each algorithm was run with learning rates varying over[
0.1, 0.01, 0.001, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6

]
. We also performed 2 random

restarts for the initialization z0. for all algorithms.
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C.3 Computing Infrastructure

Experiments were run on an NVIDA Quadro P5000.
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