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ABSTRACT

We conduct a comprehensive investigation into the dynamics of gradient descent
using large-order constant step-sizes in the context of quadratic regression models.
Within this framework, we reveal that the dynamics can be encapsulated by a spe-
cific cubic map, naturally parameterized by the step-size. Through a fine-grained
bifurcation analysis concerning the step-size parameter, we delineate five distinct
training phases: (1) monotonic, (2) catapult, (3) periodic, (4) chaotic, and (5)
divergent, precisely demarcating the boundaries of each phase. As illustrations,
we provide examples involving phase retrieval and two-layer neural networks em-
ploying quadratic activation functions and constant outer-layers, utilizing orthog-
onal training data. Our simulations indicate that these five phases also manifest
with generic non-orthogonal data. We also empirically investigate the generaliza-
tion performance when training in the various non-monotonic (and non-divergent)
phases. In particular, we observe that performing an ergodic trajectory averaging
stabilizes the test error in non-monotonic (and non-divergent) phases.

1 INTRODUCTION

Iterative algorithms like the gradient descent and its stochastic variants are widely used to train deep
neural networks. For a given step-size parameter η > 0, the gradient descent algorithm is of the form
w(t+1) = w(t) − η∇ℓ(w(t)) where ℓ is the training objective function being minimized, which de-
pends on the loss function and the neural network architecture and the dataset. Classical optimization
theory operates under small-order step-sizes. In this regime, one can think of the gradient descent
algorithm as a discretization of so-called gradient flow equation given by ẇ(t) = −∇ℓ(w(t)), which
could be obtained from the gradient descent algorithm by letting η → 0. Additionally, assuming that
the objective function ℓ has gradients that are L-Lipschitz, selecting a step-size η < 1/L guarantees
convergence to stationarity.

In stark contrast to traditional optimization, recent empirical studies in deep learning have revealed
that training deep neural networks with large-order step-sizes yields superior generalization per-
formance. Unlike the scenario with small step-sizes, where gradient descent dynamics follow a
monotonic pattern, larger step-sizes introduce a more intricate behavior. Various patterns like cata-
pult (also related to edge of stability), periodicity and chaotic dynamics in neural network training
with large step-sizes have been observed empirically, for example, by Lewkowycz et al. (2020), Jas-
trzebski et al. (2020), Cohen et al. (2021), Lobacheva et al. (2021), Gilmer et al. (2022), Zhang et al.
(2022), Kodryan et al. (2022), Herrmann et al. (2022). In fact, the necessity for larger step-sizes to
expedite convergence and the ensuing chaotic behavior has also been observed empirically outside
the deep learning community by Van Den Doel and Ascher (2012), much earlier.

Faster convergence of gradient descent with iteration-dependent step-size schedules that have spe-
cific patterns (including cyclic and fractal patterns) has been examined empirically by Lebedev and
Finogenov (1971); Smith (2017); Oymak (2021); Agarwal et al. (2021); Goujaud et al. (2022); Grim-
mer (2023), with Altschuler and Parrilo (2023) and Grimmer et al. (2023) proving the state-of-the
art remarkable results; see also Altschuler and Parrilo (2023, Section 1.2) for a historical overview.
Notable, the stated faster convergence behavior of gradient descent requires large order step-sizes,
very much violating the classical case. More importantly, the corresponding optimization trajectory,
while being non-monotonic, exhibits intriguing patterns (Van Den Doel and Ascher, 2012).
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Figure 1: Phases of cubic-map based dynamical system in (2.1) parameterized by a. Sub-figure 1(a)
corresponds to the monotonic phases, where the dynamics monotonically decays to zero. Sub-
figure 1(b) corresponds to the catapult phase where the dynamics decays to zero but is non-
monotonic. Sub-figure 1(c) corresponds to the periodic phase, where the dynamics decays and set-
tles in a period-2 orbit (i.e., shuttles between two points) but never decays to zero. Sub-figures 1(d)
and 1(e) correspond to the chaotic phase (see Definition 1) and divergent phases, respectively. Note
that the order of x-axis and y-axis in Sub-figures 1(d) and 1(e) are different from the rest.
Considering the aforementioned factors, gaining insight into the dynamics of gradient descent with
large-order step-sizes emerges as a pivotal endeavor. A precise theoretical characterizing of the gra-
dient descent dynamics in the large step-size regime for deep neural network, and other such non-
convex models, is a formidably challenging problem. Existing findings (as detailed in Section 1.1)
often rely on strong assumptions, even when attempting to delineate a subset of the aforementioned
patterns, and do not provide a comprehensive account of the entire narrative underlying the training
dynamics. Recent research, such as Agarwala et al. (2023), Zhu et al. (2022), and Zhu et al. (2023b),
has pivoted towards comprehending the dynamics of quadratic regression models based on a local
analysis. These models offer a valuable testing ground due to their ability to provide tractable ap-
proximations for various machine learning models, including phase retrieval, matrix factorization,
and two-layer neural networks, all of which exhibit unstable training dynamics. Despite their seem-
ing simplicity, a fine-grained understanding of their training dynamics is far from trivial. Building
in this direction, the primary aim of our work is to attain a precise characterization of the training
dynamics of gradient descent in quadratic models, thereby fostering a deeper comprehension of the
diverse phases involved in the training process.

Contribution 1. We perform a fine-grained, global theoretical analysis of a cubic-map-
based dynamical system (see Equation 2.1), and identify the precise boundaries of the fol-
lowing five phases: (i) monotonic, (ii) catapult, (iii) periodic, (iv) Li-Yorke chaotic, and
(v) divergent. See Figure 1 for an illustration, and Definition 2 and Theorem 2.1 for for-
mal results. We show in Theorem 3.2 and 3.3, that the dynamics of gradient descent for
two non-convex statistical problems, namely phase retrieval and two-layer neural networks
with constant outer layers and quadratic activation functions, with orthogonal training data
is captured by the cubic-map-based dynamical system. We provide empirical evidence of
the presence of similar phases in training with non-orthogonal data.

We also empirically examine the effect of training models in the above-mentioned phases, in partic-
ular the non-monotonic ones, on the generalization error. Indeed, provable model-specific statistical
benefits for training in catapult phase are studied in Lyu et al. (2022); Ahn et al. (2022b). Lim et al.
(2022) proposed to induce controlled chaos in the training trajectory to obtain better generaliza-
tion. Approaches to explain generalization with chaotic behavior are examined in Chandramoorthy
et al. (2022) based on a relaxed notion of statistical algorithmic stability. Although our focus is
on gradient descent, related notions of generalization of stochastic gradient algorithms, based on
characterizing the fractal-like properties of the invariant measure they converge to (with larger-order
constant step-size choices) have been explored, for example, in Birdal et al. (2021); Camuto et al.
(2021); Dupuis et al. (2023); Hodgkinson et al. (2022). Hence, we also conduct empirical investiga-
tions into the performance of generalization when training within the different non-monotonic (and
non-divergent) phases and make the following contribution.

Contribution 2. We propose a natural ergodic trajectory averaging based prediction mech-
anism (see Section 4.2) to stabilize the predictions when operating in any non-monotonic
(and non-divergent) phase.
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1.1 RELATED WORKS

Specific Models. Zhu et al. (2023b) and Chen and Bruna (2023) studied gradient descent dynamics
for minimizing the functions ℓ(u, v) = (u2v2 − 1)2 and ℓ = (u2 − 1)2, respectively. Both works
primarily focused on characterizing period-2 orbits and hint at the possibility of chaos without rig-
orous theoretical justifications. Furthermore, their proofs are relatively tedious and very different
from ours. Song and Yun (2023) provided empirical evidence of chaos for minimizing ℓ(u, v) = us-
ing gradient descent. However, their results are not applicable to quadratic regression models. Ahn
et al. (2022a) examined the Edge of Stability (EoS) between the monotonic and catapult phase for
minimizing ℓ(u, v) = l(uv), where l is convex, even, and Lipschitz. Their analysis is not directly ex-
tendable to the quadratic regression models we consider in this work. See also the discussion below
Theorem 2.1 for important technical comparisons. Wang et al. (2022) analyzed additional benefits
(e.g., taming homogeneity) of gradient descent with large step-sizes for matrix factorization.

Agarwala et al. (2023) explored gradient descent dynamics for a class of quadratic regression models
and identified the EoS. Zhu et al. (2023a;b) also studied the catapult phase and EoS for a class of
quadratic regression models. Agarwala and Dauphin (2023) examined the EoS in the context of
Sharpness Aware Minimization for quadratic regression models. The above works are related to our
work in terms of the model that they study. However, none of the above works characterize the five
distinct phases (with precise boundaries) like we do, along with precise boundaries. Furthermore,
our analysis is distinct (and is also global1) from the above works and is firmly grounded in the rich
literature on dynamical systems.

General results. Lewkowycz et al. (2020) empirically examine the catapult phase, particularly
in neural networks with one hidden layer and linear activations. Cohen et al. (2021) and Ahn
et al. (2022b) provide insights into the EoS. Damian et al. (2023) propose self-stabilization as a
phenomenological reason for the occurrence of catapults and EoS in gradient descent dynamics.
Kreisler et al. (2023) investigate how gradient descent monotonically decreases the sharpness of
Gradient Flow solutions, specifically in one-dimensional deep neural networks. Although they do
not formally prove the existence of chaos in the dynamics, they conjecture its possibility. Arora et al.
(2022) and Lyu et al. (2022) explore sharpness reduction flows, related to the above findings. An-
driushchenko et al. (2023) prove that large step-sizes in gradient descent can lead to the learning of
sparse features. Wu et al. (2023) investigate the EoS phenomenon for logistic regression. Kong and
Tao (2020) theoretically explore the chaotic dynamics (and related stochasticity) in gradient descent
for minimizing multi-scale functions under additional assumptions. While being extremely insight-
ful, their results are fairly qualitative and are not directly applicable to the cubic maps analyzed in
our work. As we focus on specific models, our results are more precise and quantitative.

Dynamical systems. Our results draw upon the rich literature available in the field of dynamical sys-
tems. We refer the interested reader to Alligood et al. (1997), Lasota and Mackey (1998), Devaney
(1989), Ott (2002), De Melo and Van Strien (2012) for a book-level introduction. Birfurcation anal-
ysis of some classes of cubic maps has been studied, for example, by Skjolding et al. (1983), Rogers
and Whitley (1983), Branner and Hubbard (1988) and Milnor (1992). Some of the above works are
rather empirical, and the exact maps considered in the above works differ significantly from our
case.

2 ANALYZING A DISCRETE DYNAMICAL SYSTEM WITH CUBIC MAP

Notations and definitions. We say a sequence {xk}∞k=0 is increasing (decreasing), if xt+1 ≥ xt

(xt+1 ≤ xt) for any t. Moreover, it is strictly increasing (decreasing) if the equalities never hold. For
a real-valued function f and a set S, define f(S) = {f(x) : x ∈ S}, and f (k)(x) := f(f (k−1)(x))
for any k ∈ N+ with f (0)(x) = x. The preimage of x under f on S is the set f−1(x) := {y ∈ S :
f(y) = x}. We say a property P holds for almost every x ∈ S or almost surely in S, if the subset
{x ∈ S : property P does not hold for x} is Lebesgue measure zero. A critical point of f is a point
x satisfying f ′(x) = 0. We call x0 a period-k point of f , when f (k)(x0) = x0 and f (i)(x0) ̸= x0 for
any 0 ≤ i ≤ k− 1. The orbit of a point x0 denotes the sequence {f (t)(x0)}∞t=0. A point x0 is called
asymptotically periodic if there exists a periodic point y0 such that limt→∞ |f (t)(x0)− f (t)(y0)| =
0. The stable set of a period-k point x0 is defined as W s(x0) :=

{
x : limn→∞ f (kn)(x) = x0.

}
.

1Analysis in Wang et al. (2022) and Chen and Bruna (2023) is also global, but not applicable to our model.
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The stable set of the orbit of a periodic point x0 is the union of the stable sets of all points in the orbit
of x0. A point x0 is an aperiodic point if it is not an asymptotically periodic point and the orbit of
x0 is bounded. We say a fixed point x0 of f is stable if, for any ϵ > 0, there is a δ > 0 such that for
any x satisfiying |x− x0| < δ, we have |f (n)(x)− x0| < ϵ for all n ≥ 0. The fixed point x0 is said
to be unstable if it is not stable. The fixed point x0 is asymptotically stable if it is stable and there is
an δ > 0 such that limn→∞ f (n)(x) = x0 for all x satisfying |x− x0| < δ. A period-p point x0 and
its associated periodic orbit are asymptotically stable if x0 is an asymptotically stable fixed point
of f (p). A point x0 ∈ R

⋃
{+∞,−∞}\S is called an absorbing boundary point of S for f with

period p, for some p ∈ {1, 2}, if there exists an open set U ⊆ S such that limk→∞ f (pk)(y) → x
for all y ∈ U . The Schwarzian derivative2 of a three-times continuously differentiable function f is
defined (at non-critical points) as

Sf(x) := (f ′′′(x)/f ′(x))− 1.5 (f ′′(x)/f ′(x))
2
, where f ′(x) ̸= 0.

The Lyapunov exponent3 of a given orbit with initialization x0 is defined as Lf(x0) =

limn→∞
1
n

∑n−1
i=1 log |f ′(xi)|. The sharpness of a loss function is defined as the maximum eigen-

value of the Hessian matrix of the loss.

Bifurcation analysis. Our main goal in this section is to undertake a bifurcation analysis of the
following discrete dynamics system defined by a cubic map. For a > 0, first define the functions g
and f , parameterized by a, as

ga(z) = z2 + (a− 2)z + 1− 2a = (z + a)(z − 2) + 1 and fa(z) = zga(z). (2.1)

Next, consider the discrete dynamical system given by

zt+1 = fa(zt) = ztga(zt). (2.2)

Note that for any a, ϵ > 0 and z0 ≥ 2 + ϵ or z0 ≤ −a − ϵ, we will have limt→∞ |zt| = +∞.
Hence, we only study the case when z0 ∈ [−a, 2]. We will show in Section 3 that the dynamics of
the training loss for several quadratic regression models could be captured by (2.2). The parameter
a in (2.1) for the models will naturally correspond to the step-size of the gradient descent algorithm.

We next introduce the precise definitions of the five phase that arise in the bifurcation analysis
of (2.1). To do so, we need the following definition of chaos in the Li-Yorke sense (Li and
Yorke, 1975). Li-Yorke chaos is widely used in the study of dynamical systems and is also di-
rectly related to important measures of the complexity of dynamical systems, like the topological
entropy (Adler et al., 1965; Franzová and Smı́tal, 1991). We also refer to Aulbach and Kieninger
(2001) and Kolyada (2004) for its relationship to other notions of chaos and related history.
Definition 1 (Li-Yorke Chaos (Li and Yorke, 1975)). Suppose we are given a function f(x). If there
exists a compact interval I such that f : I → I , then it is called Li-Yorke chaotic (Li and Yorke,
1975; Aulbach and Kieninger, 2001) when it satisfies

• For every k = 1, 2, ... there is a periodic point in I having period-k.
• There is an uncountable set S ⊆ I (containing no periodic points), which satisfies for any p, q ∈ S

with p ̸= q, lim supt→∞ |f (t)(p) − f (t)(q)| > 0, lim inft→∞ |f (t)(p) − f (t)(q)| = 0, and for
any p ∈ S and periodic point q ∈ I , lim supn→∞ |f (t)(p)− f (t)(q)| > 0.

To define the 5 phases in particular, we consider the orbit {f (k)(x)}+∞
k=0 generated by a given func-

tion f defined over a set I , in which the initial point x belongs to.
Definition 2. Given a function f(x) defined on a set I , we say the discrete dynamics is in the

• Monotonic phase, when {|f (k)(x)|}∞k=0 is decreasing and limn→∞ |f (n)(x)| = 0 for almost
every x ∈ I .

• Catapult phase, when {|f (k)(x)|}∞k=m is not decreasing for any m and limn→∞ |f (n)(x)| = 0
for almost every x ∈ I . We say such sequences have catapults.

2It is widely used in the study of dynamical systems for its sign-preservation property under compositions;
see, for example, De Melo and Van Strien (2012).

3It is associated with the stability properties and commonly used in dynamical systems to measure the
sensitive dependence on initial conditions (Strogatz, 2018).
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• Periodic phase, when f is not Li-Yorke chaotic, {|f (k)(x)|}∞k=0 is bounded and does not have a
limit for almost every x ∈ I , and there exists period-2 points in I .

• Chaotic phase, when the function f is Li-Yorke chaotic and {|f (k)(x)|}∞k=0 is bounded for al-
most every x ∈ I .

• Divergent phase4, when limn→∞ |f (n)(x)| = +∞ for almost every x ∈ I .

As an illustration, in Figure 1, we plot the five phases for the parameterized function and its discrete
dynamical system defined in (2.1) with initialization 1.9, i.e., xk = f

(k)
a (x0), x0 = 1.9. We have

the following main result for different phases of dynamics.
Theorem 2.1. Suppose fa(z) is defined in (2.1). Define zt+1 = fa(zt) with z0 sampled uniformly
at random in (−a, 2). Then there exists a∗ ∈ (1, 2) such that the following holds.

• If a ∈ (0, 2
√
2 − 2], then almost surely limt→∞ |zt| = 0 and |zt| is decreasing, and hence the

dynamics is in the monotonic phase.
• If a ∈ (2

√
2 − 2, 1], then almost surely limt→∞ |zt| = 0 and |zt| have catapults, and hence the

dynamics is in the catapult phase.
• If a ∈ (1, a∗), then there exists a period-2 point in (0, 1). zt ∈ (−a, 2) for all t. If there exists an

asymptotically stable periodic orbit, then the orbit of z0 is asymptotically periodic almost surely,
and hence the dynamics is in the periodic phase.

• If a ∈ (a∗, 2], fa is Li-Yorke chaotic. zt ∈ (−a, 2) for all t. If there exists an asymptotically
stable periodic orbit, then the orbit of z0 is asymptotically periodic almost surely, and hence the
dynamics is in the chaotic phase.

• If a ∈ (2,+∞), then limt→∞ |zt| = +∞ almost surely, and hence the dynamics is in the diver-
gent phase.

Figure 2: Bifurcation diagram and Lya-
punov exponent. Initialization z0 = 0.1.

In Figure 2 we numerically plot a bifurcation diagram
for a ∈ (0, 2) and Lyapunov exponent scatter plot with
initialization z0 = 0.1. The main ingredients in prov-
ing Theorem 2.1 are the following Lemmas 1, 2, and
3. Note that by straightforward computations, we have

f ′
a(0) = 1− 2a ∈ (−1, 1) ⇔ a ∈ (0, 1).

This implies 0 is a asymptotically stable fixed point
when a ∈ (0, 1). This type of local stability analy-
sis is standard in dynamical systems literature (Hale
and Koçak, 2012; Strogatz, 2018), and has been used
in analyzing the training dynamics of gradient descent
recently (Zhu et al., 2022; Song and Yun, 2023). How-
ever, such results are limited to only local regions. In
contrast, the following results provide a global conver-
gence analysis.
Lemma 1. Suppose 0 < a ≤ 1 and −a ≤ z0 ≤ 2.
Then we have

• (i) −a ≤ zt ≤ 2 for any t, and fa does not have a
period-2 point on [−a, 2].

• (ii) If z0 is chosen from [−a, 2] uniformly at random,
then limt→∞ zt = 0 almost surely. Moreover, if 0 < a ≤ 2

√
2 − 2, then almost surely |zt+1| ≤

|zt| for all t. If 2
√
2− 2 < a ≤ 2, then almost surely {|zt|}∞t=0 has catpults.

Lemma 2. Suppose 1 < a ≤ 2 and −a ≤ z0 ≤ 2. Then we have

• (i) −a ≤ zt ≤ 2 for any t, and fa(z) has a period-2 point on [0, 1].
• (ii) There exists a∗ ∈ (1, 2) such that for any a ∈ (a∗, 2), fa is Li-Yorke chaotic, and for any
a ∈ (1, a∗), fa is not Li-Yorke chaotic.

• (iii) If there exists an asymptotically stable orbit and z0 is chosen from [−a, 2] uniformly at
random, then the orbit of z0 is asymptotically periodic almost surely.
4We do not further sub-characterize the divergent phase as it is uninteresting.
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Lemma 3. Suppose a > 2. z0 is chosen from [−a, 2] uniformly at random. Then limt→∞ |zt| =
+∞ almost surely.

In Lemma 2, part (iii), we assume the existence of an asymptotically stable periodic point. Note
that such a point must have negative Lyapunov exponent (Strogatz, 2018). It is possible to obtain
particular values for a under which fa(z) has an asymptotically stable orbit. For example, a can be
chosen such that |f ′

a(p)f
′
a(q)| < 1, where p ∈ (0, 1) is a period-2 point with fa(p) = q. In Figure 2

we plot the Lyapunov exponent of fa at the orbit starting from z0 = 0.1. It is interesting to explicitly
characterize the set of a values in (1, 2) such that fa(z) has an asymptotically stable periodic orbit.
Furthermore, we conjecture that a∗ defined in Lemma 2 is the smallest number a ∈ (1, 2) such that
(1− 2a)/3 is a period-3 point. The above two problems are challenging and left as future work.

3 APPLICATIONS TO QUADRATIC REGRESSION MODELS

We now provide illustrative examples based on quadratic or second-order regression models, mo-
tivated by the works of Zhu et al. (2022); Agarwala et al. (2023). Specifically, we consider a gen-
eralized phase retrieval model and training hidden-layers of 2-layer neural networks with quadratic
activation function as examples.

3.1 EXAMPLE 1: GENERALIZED PHASE RETRIEVAL

Single Data Point. Following Zhu et al. (2022), it is instructive to study the dynamics with a single
training sample. Consider the following optimization problem on a single data point (X, y):

min
w

{
ℓ(w) =

1

2
(g(w;X)− y)2

}
, where g(w;X) =

γ(X⊤w)2

2
+ cX⊤w, (3.1)

where γ, c are arbitrary constants. The above model, with γ = 2 and, c = 0 corresponds to the
classical phase retrieval model (also called as a single-index model with quadratic link function). We
refer to Jaganathan et al. (2016) and Fannjiang and Strohmer (2020) for an overview, importance and
applications of the phase retrieval model. We have the following Lemma for the training dynamics
of gradient descent on solving (3.1).
Theorem 3.1. Suppose we run gradient descent on (3.1) with step-size to be η. Define

e(t) := g(w(t);X)− y, zt := ηγ ∥X∥2 e(t), a =
(
γy +

c2

2

)
η ∥X∥2 . (3.2)

Then we have (i) zt+1 = fa(zt) and thus Theorem 2.1 holds for fa and zt; (ii) The sharpness is
given by λmax(∇2ℓ(w(t))) = 3zt+2a

η .

Note that Zhu et al. (2022) studied a related neural quadratic model (see their Eq. (3)).
Here, we highlight that their results which does not cover our case. Indeed, defining ηcrit =
2/λmax(∇2ℓ(w(0))), according to their claim, catapults happen when ηcrit < η < 2ηcrit. In our
notation, this condition is equivalent to 2 < 3z0 + 2a < 4. However this cannot happen because
if the initialization z0 is sufficiently small, say z0 = O(ϵ), then we know the previous condition
become 1 − O(ϵ) < a < 2 − O(ϵ). However, according to Lemmas 1 and 2, we have that for
1 < a < 2 the training dynamics is in the periodic or the chaotic phase and zt (and thus the loss
function) will not converge to 0. Our theory (Lemma 1) suggests that catapults for quadratic regres-
sion model happens for almost every z0 ∈ (−a, 2) provided that 2

√
2 − 2 < a ≤ 1. This intricate

observation reveals that extending the current results on the catapult phenomenon from the model in
Zhu et al. (2022) to our setting is not immediate and is actually highly non-trivial. We also notice
that, interestingly, in the monotonic and catapult phases (i.e., 0 < a ≤ 1), we have the limiting
sharpness satisfy limt→∞ λmax(∇2ℓ(w(t))) = 2a/η = (2γy + c2) ∥X∥2 .
Multiple Orthogonal Data Points. We now consider gradient descent on quadratic regression on
multiple data points that are mutually orthogonal. Suppose we are given a dataset {(Xi, yi)}ni=1

with X = (X1, ..., Xn)
⊤ satisfying XX⊤ = diag(∥X1∥2 , ..., ∥Xn∥2). Consider the optimization

problem defined by

min
w

ℓ(w) :=
1

n

n∑
i=1

ℓi(w) =
1

2n

n∑
i=1

(g(w;Xi)− yi)
2
. (3.3)

where ℓi(w) and g(w;Xi) are as defined in (3.1).
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Theorem 3.2. Define the following:

α(t)(Xi) := c(Xi) + γX⊤
i w(t), β(Xi) := yi +

(c(Xi))
2

2γ
, κn(Xi) :=

ηγ ∥Xi∥2

n
,

e(t)(Xi) := g(w(t);Xi)− yi, z
(t)
i = κn(Xi)e

(t)(Xi), ai = β(Xi)κn(Xi).

If we run gradient descent on solving (3.3) with step-size η, then we have (i) z(t+1)
i = fai

(z
(t)
i ) and

thus Theorem 2.1 hols for fai
and z

(t)
i . (ii) The sharpness λmax(∇2ℓ(w(t))) = max1≤i≤n

3z
(t)
i +2ai

η .

For this setup, the above theorem shows that the loss function is a summation of the loss on each
individual data point. Recall that the training loss takes the form

ℓ(w(t)) =
1

2n

n∑
i=1

(
g(w(t);Xi)− yi

)2
=

1

2n

n∑
i=1

(z
(t)
i )2

κ2
n(Xi)

=

n∑
i=1

n(z
(t)
i )2

2η2γ2 ∥Xi∥4
.

We can hence deduce that the dynamics is governed by max1≤i≤n ai. In other words, for almost
every z(0) in {z : −ai ≤ zi ≤ 2}, we have, by Lemma 1, that as long as 0 < ai ≤ 1 for all
i, the training loss will converge to 0, and if max1≤i≤n ai > 1, then by Lemma 2 we know that
limt→∞ |zt| ̸= 0. We summarize this in the following corollary, which is a direct application of
Theorems 2.1 and 3.2
Corollary 1. Under the setup in Theorem 3.2, for almost all z(0) ∈ {z : −ai ≤ zi ≤ 2} we have

• If 0 < max1≤i≤n ai ≤ 1, then limt→∞ ℓ(w(t)) = 0 . Moreover, if 0 < max1≤i≤n ai ≤ 2
√
2− 2,

the sequence {ℓ(w(t))}∞t=0 is decreasing.
• If 1 < max1≤i≤n ai ≤ 2, then {ℓ(w(t))}∞t=0 is bounded and does not converge to 0.
• If max1≤i≤n ai > 2, then limt→∞ ℓ(w(t)) = +∞.

3.2 EXAMPLE 2: NEURAL NETWORK WITH QUADRATIC ACTIVATION

In this section, we consider the following two layer neural networks with its loss function on data
point (Xi, yi) defined as:

g(u, v;Xi) =
1√
m

m∑
j=1

vjσ
( 1√

d
u⊤
j Xi

)
, ℓi =

1

2
(g(u, v;Xi)− yi)

2

where the hidden-layer weights ui ∈ Rd are to be trained and outer-layer weights vi ∈ R are held
constant, which corresponds to the feature-learning setting for neural networks. Also m is the width
of the hidden layer and σ is the activation function. Define U := (u1, ..., um). When the activation
function is quadratic and vi = 1 for all i, the loss function becomes

min
U

ℓ(U) :=
1

n

n∑
j=1

ℓj(U) =
1

2n

n∑
j=1

( 1√
md

m∑
i=1

(X⊤
j ui)

2 − yj

)2
. (3.4)

As in the previous example, we assume XX⊤ = diag(∥X1∥2 , ..., ∥Xn∥2). We then have the fol-
lowing result on the gradient descent dynamics of the above problem.
Theorem 3.3. Define the following:

e
(t)
i =

1√
md

m∑
j=1

(X⊤
i u

(t)
j )2 − yi, z

(t)
i =

2η ∥Xi∥2 e(t)i√
mdn

, ai =
2η ∥Xi∥2 yi√

mdn

If we run gradient descent on solving problem (3.4) with step-size η, we have z(t+1)
i = fai(z

(t)
i ) and

thus Theorem 2.1 and Corollary 1 hold for ℓ(U(t)).

The orthogonal assumption that XX⊤ = diag(∥X1∥2 , ..., ∥Xn∥2), helps decouple the loss function
across the samples and makes the evolution of the overall loss non-interacting (across the training
samples). In order to relax this assumption, it is required to analyze bifurcation analysis of inter-
acting dynamical systems, which is extremely challenging and not well-explored (Xu et al., 2021).
In Section C.2, we present empirical results showing that similar phases exists in the general non-
orthogonal setting as well. Theoretically characterizing this is left as an open problem.
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4 EXPERIMENTAL INVESTIGATIONS

4.1 GRADIENT DESCENT DYNAMICS WITH ORTHOGONAL DATA FOR MODEL (3.4)

Experimental setup. We now conduct experiments to evaluate the developed theory. We consider
gradient descent for training the hidden layers of a two-layer neural network with orthogonal training
data, described in Section 3.2. Recall that d,m, and n represents the dimension, hidden-layer width,
and number of data points respectively. We set d = 100,m ∈ {5, 10, 25}, n = 80. We generate the
ground-truth matrix U∗ ∈ Rd×m where each entry is sampled from the standard normal distribution.
The training data points collected in the data matrix, denoted as X ∈ Rn×d, are the first n rows of
a randomly generated orthogonal matrix. The labels are generated via the model in Section 3.2,
i.e., yi = 1√

md

∑m
j=1

(
X⊤

i uj

)2
+ εi where εi is scalar noise sampled from a zero-mean normal

distribution, with variances equal to 0, 0.25, 1 in different experiments.

We set the step-size η such that max1≤i≤n ai defined in Theorem 3.2 belongs to the intervals of the
first four phases. In particular, we choose 0.3, 0.9, 1, 1.2, 1.8 for m = 5, 10 and 0.3, 0.9, 1, 1.2, 1.6
for m = 25 (for each m, 0.9 and 1 are both in the catapult phase, and we pick 1 since it is the
largest step-size choice allowed in the catapult phase). The numbers 0, 1, 2, 3, 4 of the plot labels
correspond to these step-size choices respectively. In Figure 4 we present the training loss curves in
log scale and the sharpness curves for m = 25. The horizontal axes denote the number of steps of
gradient descent. In Section C.1, we also provide additional simulation results for different hidden-
layer widths. From the training loss curves (left column) and the sharpness curves (middle column)
we can clearly observe the four phases5 thereby confirming our theoretical results.

4.2 PREDICTION BASED ON ERGODIC TRAJECTORY AVERAGING

A main take-away from our analysis and experiments so far is that gradient descent with
large step-size behaves like stochastic gradient descent, except the randomness here is with re-
spect to the orbit it converges to (in the non-monotonic phases). Recall that this viewpoint is
also put-forward is several works, in particular Kong and Tao (2020). Hence, a natural ap-
proach is to do perform ergodic trajectory averaging to reduce the fluctuations (see right col-
umn in Figure 4). For any give point X ∈ Rd, and any training iteration count t, the
prediction ŷ for the point X is given by ŷ := 1

t

∑t
i=1 g(w

(i);X), where w(i) corresponds
to the training trajectory of the gradient descent algorithm trained with step-size η. Another
way to think about the above prediction strategy is that the ergodic average approximates,
in the limit, expectation with respect to the invariant distribution (supported on the orbit to
which the trajectory converges to). A disadvantage of the ergodic averaging based prediction
strategy described above is the test-time computational cost increases by O(t), per test point.
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Figure 3: Test loss with and without averaging.

Figure 3 plots the testing loss for the model in (3.4),
when trained with two values of large step-sizes
(η = 48, 60). We observe from the figure that the
ergodic trajectory averaging prediction smoothens
the more chaotic testing loss. However, we also
remark that from the plots in Figure 106, operat-
ing with slightly smaller step-size choice (η = 36)
achieves the best testing error curves. See Sec-
tion C.2 for additional observations. In the litera-
ture, ways of artificially inducing controlled chaos
in the gradient descent trajectory has been pro-
posed to obtain improved testing accuracy; see, for
example, Lim et al. (2022). We believe the ergodic
trajectory averaging based prediction methodology
discussed above may prove to be fruitful to stabi-
lize the testing loss in such cases as well. A de-

tailed investigation of provable benefits of the ergodic trajector averaging predictor, is beyond the
scope of the current work, and we leave it as intriguing future work.

5Here, we do not plot the divergent phase here for simplicity.
6Figure 10 provides a detailed comparison across various step-sizes, for different noise variances.
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Figure 4: Hidden layer width = 25, with orthogonal data points. Rows from top to bottom represent
different levels of noise – mean-zero normal distribution with variance 0, 0.25, 1 respectively. The
vertical axes are in log scale for the training loss curves. The second column is about the sharpness
of the training loss functions.

4.3 ADDITIONAL EXPERIMENTS

Due to space limitation, we provide the following additional simulation results in the appendix:
• Section C.2 corresponds to non-orthogonal training data. We also include testing loss plots.
• Section C.3 corresponds to training the hidden-layer weights of a two-layer neural network with

ReLU activation functions and non-orthogonal inputs.

5 CONCLUSION

Unstable and chaotic behavior is frequently observed when training deep neural networks with large-
order step-sizes. Motivated by this, we presented a fine-grained theoretical analysis of a cubic-map
based dynamical system. We show that the gradient descent dynamics is fully captured by this
dynamical system, when training the hidden layers of a two-layer neural networks with quadratic
activation functions with orthogonal training data. Our analysis shows that for this class of models,
as the step-size of the gradient descent increases, the gradient descent trajectory has five distinct
phases (from being monotonic to chaotic and eventually divergent). We also provide empirical evi-
dence that show similar behavior occurs for generic non-orthogonal data. We empirically examine
the impact of training in the different phases, on the generalization error, and observe that training
in the phases of periodicity and chaos provides the highest test accuracy.

Immediate future works include: (i) developing a theoretical characterization of the training dynam-
ics with generic non-orthogonal training data, which involves undertaking non-trivial bifurcation
analysis of interacting dynamical systems, (ii) moving beyond quadratic activation functions and
two-layer neural networks, and (iii) developing tight generalization bounds when training with large-
order step-sizes. Overall, our contributions make concrete steps towards developing a fine-grained
understanding of the gradient descent dynamics when training neural networks with iterative first-
order optimization algorithms with large step-sizes.
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N. Franzová and J. Smı́tal. Positive sequence topological entropy characterizes chaotic maps. Pro-
ceedings of the American Mathematical Society, pages 1083–1086, 1991.

J. Gilmer, B. Ghorbani, A. Garg, S. Kudugunta, B. Neyshabur, D. Cardoze, G. E. Dahl, Z. Nado,
and O. Firat. A loss curvature perspective on training instabilities of deep learning models. In
The 12th International Conference on Learning Representations, 2022.

B. Goujaud, D. Scieur, A. Dieuleveut, A. B. Taylor, and F. Pedregosa. Super-acceleration with
cyclical step-sizes. In International Conference on Artificial Intelligence and Statistics, pages
3028–3065. PMLR, 2022.

B. Grimmer. Provably faster gradient descent via long steps. preprint arXiv:2307.06324, 2023.

B. Grimmer, K. Shu, and A. L. Wang. Accelerated Gradient Descent via Long Steps . preprint
arXiv:2309.09961, 2023.
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A PROOFS OF MAIN RESULTS

A.1 PROOFS OF RESULTS IN SECTION 2

We first present several technical results required to prove our main results.
Lemma 4. Let f(x) be a polynomial. If all the roots of f ′(x) are real and distinct, then we have

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

< 0 for all x ∈ I with f ′(x) ̸= 0.

Proof. See, e.g., the proof of Proposition 11.2 in Devaney (1989). ■

Lemma 5. Suppose we are given a real-valued continuous function f(x) : R → R and a bounded
closed interval I ⊆ R with x0 ∈ I . Define xk := f (k)(x0). If the sequence {xk}∞k=0 is monotonic,
then one of the following holds.

• (i) {xk}∞k=0 ⊊ I , i.e., there exists xt /∈ I for some t.

• (ii) {xk}∞k=0 ⊆ I , and limt→∞ f (t)(x0) exists and is a fixed point of f(x) in I .

Proof. If (i) holds, then the conclusion is true. When (i) does not hold, then {xk}∞k=0 ⊆ I . Since
this sequence is monotonic and included in a bounded closed interval, we know its limit exists and
is in I . Moreover, we have

lim
t→∞

xt = lim
t→∞

xt+1 = lim
t→∞

f(xt) = f( lim
t→∞

xt),

where the last equality holds since f is continuous. Clearly limt→∞ xt is a fixed point of f . ■

The following lemma characterizes the basic properties of the cubic function fa defined in (2.1).
Lemma 6. Suppose a > 0. Then fa(z) has the following properties.

• (i) The local minimum and maximum of fa(z) are at z = 1 and z = 1−2a
3 respectively, and

fa(1) = −a, fa

(
1− 2a

3

)
=

(2a− 1)(2a2 + 7a− 4)

27
=

4a3 + 12a2 − 15a+ 4

27
.

• (ii) fa(z) is monotonically increasing on [−a, 1−2a
3 ], monotonically decreasing on

[ 1−2a
3 , 1], and monotonically increasing on [1, 2].

• (iii) For any −a ≤ z ≤ 2, we have −a ≤ fa(z) ≤ max
{
fa
(
1−2a

3

)
, 2
}

. Moreover,
fa
(
1−2a

3

)
≤ 2 if and only if a ≤ 2.

Proof. Note that we have

f ′
a(z) = 3z2 + 2(a− 2)z + (1− 2a) = (z − 1)(3z + 2a− 1). (A.1)

which implies 1 and 1−2a
3 are critical points of fa(z). Moreover, by f ′′

a (z) = 6z + 2a− 4 we know
f ′′
a (1) > 0 and f ′′

a (
1−2a

3 ) < 0. Hence, they are local minimum and maximum respectively. The rest
of (i) is true by calculation. (ii) is true by noticing the expression of f ′

a(z) in (A.1). (iii) is a direct
conclusion of (i) and (ii) since for −a ≤ z ≤ 2 we have

−a = min {fa(1), fa(−a)} ≤ fa(z) ≤ max

{
fa

(
1− 2a

3

)
, fa(2)

}
.

By (i) and some calculation we know

fa

(
1− 2a

3

)
− 2 =

4a3 + 12a2 − 15a− 50

27
=

(2a+ 5)2(a− 2)

27
.

This proves the rest of (iii). ■
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Lemma 7. Suppose 2
√
2− 2 < a ≤ 1. Define five subintervals of [−a, 2] as follows.

I1 =

[
−a,

2− a−
√
a2 + 4a

2

]
, I2 =

[
2− a−

√
a2 + 4a

2
, 0

]
,

I3 = [0, 0.25] , I4 =

[
0.25,

2− a+
√
a2 + 4a

2

]
, I5 =

[
2− a+

√
a2 + 4a

2
, 2

]
.

Then we have

• (i) fa(I1) ⊆ I1 = I2, fa(I4) = I1 ∪ I2, fa(I5) = I3 ∪ I4 ∪ I5.

• (ii) fa(I2) ⊆ I3, fa(I3) ⊆ I2.

Proof. We first prove (i). By Lemma 6 we know fa(z) is increasing on I1, achieving its local
minimum at z = 1 on I4, increasing on I5, then we know

fa(I1) =

[
fa(−a), fa

(
2− a−

√
a2 + 4a

2

)]
= [−a, 0] = I1 ∪ I2.

fa(I4) =

[
fa(1),max

{
fa(0.25), fa

(
2− a+

√
a2 + 4a

2

)}]
= [−a, 0] = I1 ∪ I2.

fa(I5) =

[
fa

(
2− a+

√
a2 + 4a

2

)
, fa(2)

]
= [0, 2] = I3 ∪ I4 ∪ I5.

This completes the proof of (i).

To prove (ii), observe that when a ∈ (2
√
2 − 2, 1] we have 2−a−

√
a2+4a

2 < 1−2a
3 < 0. By Lemma

6 we know the local maximum of fa over I2 =
[
2−a−

√
a2+4a

2 , 0
]

is achieved at 1−2a
3 , this together

with the fact that fa(0) = fa

(
2−a−

√
a2+4a

2

)
= 0 implies

fa (I2) =

[
fa(0), fa

(
1− 2a

3

)]
=

[
0,

4a3 + 12a2 − 15a+ 4

27

]
⊆ [0, 0.25],

where the last subset inclusion is true since

(4a3 + 12a2 − 15a+ 4)′ = 12a2 + 24a− 15 > 0, ∀a ∈ (2
√
2− 2, 1].

This implies when a ∈ (2
√
2− 2, 1],

4a3 + 12a2 − 15a+ 4

27
≤ (4a3 + 12a2 − 15a+ 4)|a=1

27
=

5

27
< 0.25.

On the other hand, we know from Lemma 6 that on I3 = [0, 0.25](⊆
[
1−2a

3 , 1
]
) fa is decreasing.

Hence,

fa(I3) = [fa(0.25), fa(0)] =

[
− 7

16
a+

9

16
, 0

]
⊆

[
2− a−

√
a2 + 4a

2
, 0

]
= I2.

where the last subset inclusion is true since

fa(0.25) = − 7

16
a+

9

16
>

2− a−
√
a2 + 4a

2
, ∀a ∈ (2

√
2− 2, 1].

This completes the proof of (ii). ■

See Figure 5(a) for a visualization of the subintervals I1, ..., I5 for a = 1 and an example of the orbit
on it.
Lemma 8. Suppose 0 < a ≤ 1 and −a ≤ z0 ≤ 2. Then we have

14



Under review as a conference paper at ICLR 2024

1.0 0.5 0.0 0.5 1.0 1.5 2.0
z

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f a
(z

)

(a)

1.0 0.5 0.0 0.5 1.0 1.5 2.0
z

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f a
(z

)

(b)

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
z

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

f a
(z

)

(c)

2 1 0 1 2 3
z

2

1

0

1

2

3

4

f a
(z

)

(d)

Figure 5: From left to right: cubic function f1(z) with different regions diveded by subintervals
and a trajectory of {zi}5i=0, cubic function f1.2(z) with two period-2 point, cubic function f1.6(z)
with a period-3 point, and cubic function f2.1(z) with a diverging orbit. We have the cubic curve
and the identical mapping line as the solid curves. We use four colored dashed lines in Figure 5(a)
to represent the boundaries that are orthogonal to the endpoints of I2 and I4 defined in Lemma 7
respectively. The triangle markers represent some terms of a certain orbit, in which horizontal and
vertical dotted lines visualize the transitioning trajectory between consecutive terms in an orbit.

• (i) −a ≤ zt ≤ 2 for any t, and fa does not have a period-2 point on [−a, 2].

• (ii) If z0 is chosen from [−a, 2] uniformly at random, then limt→∞ zt = 0 almost surely.
Moreover, if 0 < a ≤ 2

√
2 − 2, then almost surely |zt+1| ≤ |zt| for all t. If 2

√
2 − 2 <

a ≤ 2, then almost surely {|zt|}∞t=0 has catpults.

Proof. The boundedness of each iterate (i.e., zt ∈ [−a, 2]) can be proved by using simple induction
and Lemma 6, 0 < a ≤ 1, and −a ≤ z0 ≤ 2. To prove the rest of (i), by (2.1) we know a period-2
point is a solution of

f (2)
a (z) = z, fa(z) ̸= z

which are equivalent to

ga(z)ga(zga(z)) = 1, z /∈ {−a, 0, 2}. (A.2)

Hence it suffices to prove (A.2) do not have a solution. Define

ha(z) = ga(z)− 1 = (z + a)(z − 2) < 0, ∀z ∈ (−a, 2).

We have

ga(z)ga(zga(z))− 1

=ha(z) + ha(z)ha(zga(z)) + ha(zga(z))

=ha(z)(1 + ha(zga(z))) + (z + a+ zha(z))(z − 2 + zha(z))

=ha(z)(1 + ha(zga(z))) + ha(z) + (z(z − 2) + z(z + a))ha(z) + z2h2
a(z)

=ha(z)(ha(zga(z)) + z2ha(z) + 2z2 + (a− 2)z + 2). (A.3)

We have

ha(zga(z)) + z2ha(z) + 2z2 + (a− 2)z + 2

=(zga(z) + a)(zga(z)− 2) + z2(z + a)(z − 2) + 2z2 + (a− 2)z + 2

=z2(z2 + (a− 2)z + 1− 2a)2 + (a− 2)z(z2 + (a− 2)z + 1− 2a)− 2a

+ z2(z + a)(z − 2) + 2z2 + (a− 2)z + 2

=z6 + (2a− 4)z5 + (a2 − 8a+ 7)z4 − (4a2 − 12a+ 8)z3 + (5a2 − 10a+ 7)z2

− (2a2 − 6a+ 4)z + 2− 2a

=(z2 + (a− 1)z + 1− a)(z4 + (a− 3)z3 + (3− 3a)z2 + (2a− 2)z + 2). (A.4)

15
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Observe that

z2 + (a− 1)z + (1− a) ≥ (1− a)− (a− 1)2

4
=

(3 + a)(1− a)

4
≥ 0, ∀a ∈ (0, 1]. (A.5)

The equalities hold if and only if z = 0, a = 1. We also have

z4 + (a− 3)z3 + (3− 3a)z2 + (2a− 2)z + 2 > 0, ∀z ∈ {0, 1, 2}
z4 + (a− 3)z3 + (3− 3a)z2 + (2a− 2)z + 2

=z(z − 1)(z − 2)

(
a+ z +

1

z
+

1

z2 − 3z + 2

)
,∀z /∈ {0, 1, 2}.

For different z we can verify the following inequalities via basic algebra or Young’s inequality:

z(z − 1)(z − 2) < 0,

(
a+ z +

1

z
+

1

z2 − 3z + 2

)
< 1 + 2 +

1

2
+

1

−0.25
< 0, ∀z ∈ (1, 2).

z(z − 1)(z − 2) > 0,

(
a+ z +

1

z
+

1

z2 − 3z + 2

)
> 0 + 1 + 1 + 0 > 0, ∀z ∈ (0, 1).

z(z − 1)(z − 2) < 0,

(
a+ z +

1

z
+

1

z2 − 3z + 2

)
< 1− 1− 1 +

1

2
< 0, ∀z ∈ (−a, 0).

Thus we may conclude that

z4 + (a− 3)z3 + (3− 3a)z2 + (2a− 2)z + 2 > 0, ∀z ∈ (−a, 2). (A.6)

By (A.3), (A.4), (A.5), (A.6), we know ga(z)ga(zga(z))− 1 ̸= 0 if z /∈ {−a, 0, 2}. Hence fa does
not have a period-2 point on [−a, 2].

To prove the first part in (ii) (the limit converges to 0 almost surely), we will prove

(1) lim
t→∞

zt ∈ {−a, 0, 2}, (2) The set S such that the orbit with z0 ∈ S has measure 0. (A.7)

We now consider two cases – a ∈ (0, 2
√
2− 2] and a ∈ (2

√
2− 2, 1].

Case 1: a ∈ (0, 2
√
2− 2]. Note that we have

|ga(zt)| = |z2t + (a− 2)zt + 1− 2a| ≤ max
(
|ga(−a)|, |ga(2)|, |ga

(
1− a

2

)
|
)
= 1,

where the last equality holds since ga(−a) = ga(2) = 1 and |ga
(
1− a

2

)
| = a2+4a

4 ≤ 1 for any
a ∈ (0, 2

√
2− 2]. Hence, we know

|zt+1| = |fa(zt)| = |ztga(zt)| ≤ |zt|, ∀zt ∈ [−a, 2] (A.8)

Hence limt→∞ |zt| exists.

lim
t→∞

|zt| = lim
t→∞

|zt+1| = lim
t→∞

|zt||ga(zt)|

Hence, we know

lim
t→∞

|zt| = 0, or lim
t→∞

|zt| ≠ 0, lim
t→∞

|ga(zt)| = 1.

If limt→∞ |zt| ≠ 0, then we have two subcases

• Sub-case 1: limt→∞ zt exists. We can verify that

lim
t→∞

zt = lim
t→∞

zt+1 = fa( lim
t→∞

zt)

and thus limt→∞ zt is one of the fixed points of fa(z) ∈ {−a, 0, 2}.

16
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• Sub-case 2: limt→∞ zt does not exist. Since limt→∞ |zt| exists, we know there exists an
infinite subsequence (denoted as A1) of {zt}∞t=0 with some limit c and the complement
of the sequence, as another infinite subsequence (denoted as A2), has limit −c for some
constant c > 0. Hence, we can pick a sequence of the subscripts k1 < k2 < ... < kn < ...
such that zk1

, ..., zkn
, ... belong to A1 and zk1+1, ..., zkn+1, ... belong to A2. Moreover, we

have

c = lim
i→∞

zki = − lim
i→∞

zki+1 = − lim
i→∞

zkiga(zki) = −cga(c)

This implies that ga(c) = −1, i.e.,

c2 + (a− 2)c+ 2− 2a = 0.

From its discriminant (a− 2)2− 4(2− 2a) = a2+4a− 4 ≤ 0 for a ∈ (0, 2
√
2− 2] where

equality holds only at 2
√
2− 2, we know a = 2

√
2− 2 and thus c = 2−

√
2. However, we

can apply the similar trick and pick another sequence k̃1 < k̃2 < ... < k̃n < ... such that
zk̃1

, ..., zk̃n
, ... belong to A2 and zk̃1+1, ..., zk̃n+1, ... belong to A1. This implies

−c = lim
i→∞

zk̃i
= − lim

i→∞
zk̃i+1 = − lim

i→∞
zki

ga(zki
) = −(−c)ga(−c)

which gives

c2 − (a− 2)c+ 2− 2a = 0.

This contradicts with a = 2
√
2− 2 and c = 2−

√
2. This means case 2 does not exist.

Hence, we know |zt| is decreasing (not necessarily strictly) and limt→∞ zt ∈ {−a, 0, 2}.

Case 2: a ∈ (2
√
2− 2, 1]. We divide the interval [−a, 2] into the following five parts:

I1 =

[
−a,

2− a−
√
a2 + 4a

2

]
, I2 =

[
2− a−

√
a2 + 4a

2
, 0

]
,

I3 = [0, 0.25] , I4 =

[
0.25,

2− a+
√
a2 + 4a

2

]
, I5 =

[
2− a+

√
a2 + 4a

2
, 2

]
.

Recall that by Lemma 7 we have:

fa(I1) = I1 ∪ I2, fa(I2) ⊆ I3, fa(I3) ⊆ I2, fa(I4) = I1 ∪ I2, fa(I5) = I3 ∪ I4 ∪ I5.

We have the following conclusion. Observe that fa is continuous, and

zt+1 − zt = fa(zt)− zt = zt(zt + a)(zt − 2) ≥ 0, ∀zt ∈ I1 =

[
−a,

2− a−
√
a2 + 4a

2

]
,

zt+1 − zt = fa(zt)− zt = zt(zt + a)(zt − 2) ≤ 0, ∀zt ∈ I5 =

[
2− a+

√
a2 + 4a

2
, 2

]
.

We know if the sequence {zt}∞t=0 visits I5, by Lemma 5 we know either limt→∞ zt = 2 or there
exists M > 0 such that zt /∈ I5 for any t ≥ M . Then if the sequence visits I1 then by Lemma
5 either limt→∞ zt = −a or there exists M̃ > M > 0 such that zt ∈ I2 ∪ I3 for any t ≥ M̃ ,
since fa(I1) ⊆ I1 ∪ I2 and fa(I2 ∪ I3) ⊆ I2 ∪ I3. Hence, the proof is reduced to the case when
z0 ∈ I2 ∪ I3. For the case when z0 ∈ I2 ∪ I3 =

[
2−a−

√
a2+4a

2 , 0.25
]
. The key observation is to

show that in this interval

|zt+2| ≤ |zt|. (A.9)

Recall that by Lemma 7 (ii) we have

fa (I2) ⊆ I3, fa(I3) ⊆ I2. (A.10)
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To prove (A.9), we know it holds when zt = 0. When zt ̸= 0, by (A.10) we know f
(2)
a (zt) and zt

have the same sign provided zt ∈ I2 ∪ I3 =
[
2−a−

√
a2+4a

2 , 0.25
]
. This together with

f (2)
a (z) = fa(z)ga(fa(z)) = zga(z)ga(zga(z))

implies that ga(z)ga(zga(z)) ≥ 0 when z ∈
[
2−a−

√
a2+4a

2 , 0
)
∪ (0, 0.25]. Thus we know

|zt+2| = |ztga(zt)ga(ztga(zt))| = |zt|ga(zt)ga(ztga(zt)).

Thus to prove (A.9) it suffices to show ga(z)ga(zga(z))− 1 ≤ 0, which is true by combining (A.3),
(A.4), (A.5), and (A.6). This completes the proof of (1) in (A.7). To prove (2) in (A.7), we first
notice that fa(z) − z = z(z + a)(z − 2) > 0 for any z ∈ (−a, 0), and thus zt+1 > zt for any zt
near −a. Hence, limt→∞ zt = −a if and only if there exists t such that zt = −a. This implies that
f
(t)
a (z0) = −a for some t. Similarly, fa(z)− z < 0 for any z ∈ (0, 2), which implies zt+1 < zt for

any zt near 2. Hence, limt→∞ zt = 2 if and only if z0 = 2. Define

S =

∞⋃
n=0

f (−n)
a (−a) ∪ {2}

where f (−n)
a (−a) denotes the preimage of −a under f (n)

a . Clearly, each preimage is a finite set, and
thus S is countable. Hence, we know as long as z0 ∈ [−a, 2]\S, we have limt→∞ zt = 0. Since S
is a countable set and z0 is chosen uniformly at random, we know limt→∞ zt = 0 almost surely.

For the rest of (ii), we have already proved in (A.8) that {|zt|}∞t=0 is decreasing when 0 < a ≤
2
√
2−2. To see {|zt|}∞t=0 has catapults when 2

√
2−2 < a ≤ 1, we consider the following intervals

J1 = [−a, 0] = I1 ∪ I2, J2 =

[
0,min

{
2− a+

√
a2 + 4a− 4

2
, 0.25

}]
⊆ I3,

where we have a2 + 4a− 4 > 0 for a > 2
√
2− 2 so J2 is well-defined. Notice that

0 < z <
2− a+

√
a2 + 4a− 4

2
⇔ ga(z) < −1, z > 0.

Hence we know for any zt ∈ J2, we will have

|zt+1| = |ztga(zt)| > |zt|. (A.11)

On the other hand, notice that 0 is in the orbit if and only if z0 /∈ S0, where S0 is defined as

S0 =

∞⋃
n=0

f (−n)
a (0)

where f−n
a (z) denotes the set of preimage of z under f (n)

a . Note that each preimage is finite and
thus S0 is countable. Hence, we know almost surely the orbit will not contain 0, and recall that
by Lemma (7) (ii) and limt→∞ zt = 0, we know there are infinitely many t such that t ∈ J2, and
thus (A.11) holds for infinitely many t almost surely. By definition 2, we know {|zt|} has catapults
almost surely. ■

The following theorem indicates that, fa is chaotic provided that a > a∗ where a∗ ∈ (1, 2)

Lemma 9. Suppose 1 < a ≤ 2 and −a ≤ z0 ≤ 2. Then we have

• (i) −a ≤ zt ≤ 2 for any t, and fa(z) has a period-2 point on [0, 1].

• (ii) There exists a∗ ∈ (1, 2) such that for any a ∈ (a∗, 2), fa is Li-Yorke chaotic, and for
any a ∈ (1, a∗), fa is not Li-Yorke chaotic.

• (iii) If there exists an asymptotically stable orbit and z0 is chosen from [−a, 2] uniformly at
random, then the orbit of z0 is asymptotically periodic almost surely.
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Proof. The boundedness of zt is a direct result of Lemma 6 (iii). To prove the rest of (i), we notice
that for a ∈ (1, 2]

ga(0)ga(0ga(0)) = (1− 2a)2 > 1, ga(1)ga(1ga(1)) = −a < −1.

By continuity of ga(zga(z)) we know there exists a point z0 ∈ (0, 1) such that ga(z0ga(z0)) = 1.
This indicates that f (2)(z0) = z0ga(z0ga(z0)) = z0 but clearly fa(z0) ̸= z0 since (0, 1) does not
contain any fixed point of fa.

To prove (ii), notice that

f1

(
1− 2× 1

3

)
=

5

27
< 1 < 2 = f2

(
1− 2× 2

3

)
.

By continuity of fa
(
1−2a

3

)
(with respect to a) there exists c ∈ (1, 2) such that

fc

(
1− 2c

3

)
=

(2c− 1)(2c2 + 7c− 4)

27
= 1. (A.12)

Moreover we have

fc(−c) = −c <
1− 2c

3
, fc

(
1− 2c

3

)
= 1 >

1− 2c

3
.

Hence by continuity of fc(z), we can pick z0 ∈
(
−c, 1−2c

3

)
such that fc(z0) = 1−2c

3 . We have

−c < z0 <
1− 2c

3
= fc(z0). (A.13)

By (A.12), (A.13), and Lemma 6 (i), we have

f (3)
c (z0) = f (2)

c

(
1− 2c

3

)
= fc(1) = −c ≤ z0, (A.14)

fc(z0) =
1− 2c

3
< 1 = fc(1) = f (2)

c (z0) . (A.15)

Combining (A.13), (A.14), (A.15) we can easily verify that

f (3)
c (z0) ≤ z0 < fc(z0) < f (2)

c (z0).

By Theorem B.1 (i.e., Theorem 1 in Li and Yorke (1975)), we know fc is Li-Yorke chaotic. More-
over, for any a ∈ (c, 2], we know

fa

(
1− 2a

3

)
=

(2a− 1)(2a2 + 7a− 4)

27
>

(2c− 1)(2c2 + 7c− 4)

27
= fc

(
1− 2c

3

)
= 1,

which together with fa(0) = 0 < 1 implies we can pick y0 such that

1− 2a

3
< y0 < 0, fa(y0) = 1.

Similarly, we have

fa(−a) = −a <
1− 2a

3
< y0, fa

(
1− 2a

3

)
> 1 > y0

which implies we can pick x0 such that

−a < x0 <
1− 2a

3
, fa(x0) = y0.

Now we know

f (3)
a (x0) < x0 < fa(x0) < f (2)

a (x0).

By Theorem B.1 (i.e., Theorem 1 in Li and Yorke (1975)), we know fa is Li-Yorke chaotic. Hence,
we know c defined in (A.12) satisfies that for any a ∈ (c, 2], fa is Li-Yorke chaotic. Hence, we
know

a∗ = inf
a∈(1,2)

{a : fb is Li-Yorke chaotic for any b ∈ [a, 2].}
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where the set is not empty, since we have proven c belongs to the above set. This completes the
proof of (ii).

To prove (iii), we notice that if fa(z) has an asymptotically stable periodic orbit, by Theorem B.2
(i.e., Theorem 2.7 in Singer (1978)) and the fact that fa(x) has negative Schwarzian derivative at
non-critical points (Lemma 4) and we know there exists a critical point c of fa(z) such that the orbit
of c converges to this asymptotically stable orbit. Notice that by Lemma 6 we know c = 1 or 1−2a

3 .
c = 1 can be excluded since fa(1) = −a, and −a is an unstable period-1 point. Hence, we know
c = 1−2a

3 is asymptotically periodic. By Theorems B.3 and B.4 (i.e., Theorem B and Corollary in
Nusse (1987)), we know almost surely z0 will not converge to any periodic orbit if z0 is chosen from
[−a, 2] uniformly at random. This completes the proof.

■

Remarks:

• See Figure 5(b) for a pair of period-2 points when a = 1.2, and Figure 5(c) for a period-3 orbit
when a = 1.6. The triangle markers denote the periodic points.

• By Theorem B.2 (i.e., Theorem 2.7 in Singer (1978)) and the fact that −a is an unstable period-1
point we know fa(z) has at most one asymptotically stable periodic orbit.

Lemma 10. Suppose a > 2. z0 is chosen from [−a, 2] uniformly at random. Then limt→∞ |zt| =
+∞ almost surely.

Proof. Notice that by Lemma 6 we know

fa

(
1− 2a

3

)
=

4a3 + 12a2 − 15a+ 4

27
>

(4a3 + 12a2 − 15a+ 4)|a=2

27
= 2, ∀a > 2,

where the inequality holds since 4a3 + 12a2 − 15a+ 4 is increasing on (2,∞). Moreover, we have

fa(z)− z = z(z + a)(z − 2) > 0, ∀z ∈ (2,∞).

Hence we know for the initialization at the critical point z0 = 1−2a
3 , we have z1 > 2, and the

whole sequence is increasing. On the other hand, all fixed points of fa(z) are no greater than 2, we
know zt will diverge to +∞. For another critical point z0 = 1 we know its orbit converges to the
periodic orbit of z0 = −a, which is an unstable period-1 point. Hence, we know from Theorem B.2
(i.e., Theorem 2.7 in Singer (1978)) that there does not exist an asymptotically stable periodic orbit,
otherwise the orbit of one critical point must converge to it. Hence, by Theorems B.3 and B.4 (i.e.,
Theorem B and Corollary in Nusse (1987)) we know limt→∞ |zt| = +∞ almost surely provided z0
uniformly chosen from (−a, 2), i.e., almost all points in [−a, 2] converge to the absorbing boundary
point +∞. ■

A.2 PROOFS OF RESULTS IN SECTION 3

Proof of Theorem 3.1. Define

α(t) := c+ γX⊤w(t), β := y +
c2

2γ
, κ := ηγ ∥X∥2 .

To prove (i), we observe that

∇wg(w;X) = (c+ γ(X⊤w))X

Let weights at time t be w(t). Thus, the gradient descent takes the form

w(t+1) = w(t) − η(g(w(t);X)− y)(c+ γX⊤w(t))X = w(t) − ηe(t)α(t)X.

Simple calculation gives

e(t) =
(α(t))2

2γ
− β (A.16)
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and

α(t+1) = (1− ηγ ∥X∥2 e(t))α(t) = (1− κe(t))α(t).

Hence

e(t+1) − e(t) =
1

2γ

(
(α(t+1))2 − (α(t))2

)
=
(
(1− κe(t))2 − 1

) (α(t))2

2γ

which together with (A.16) implies

κe(t+1) = κe(t)(κe(t) + βκ)
(
κe(t) − 2

)
+ κe(t).

By definition of a and zt in (3.2) we know a = βκ and zt = κe(t). We know (i) holds.

To compute the largest eigenvalue of the Hessain matrix (i.e., the sharpness defined in EoS literature)
of the loss in (ii), we notice that the gradient of the loss function takes the form

∇ℓ(w) = (g(w;X)− y)∇wg(w;X).

Hence

∇2ℓ(w) = ∇wg(w;X)∇wg(w;X)⊤ + (g(w;X)− y)∇2
wg(w;X) = (α2 + γe)XX⊤,

where we overload the notation and define

α = c+ γX⊤w, e = g(w;X)− y.

The sharpness is given by

λmax(∇2ℓ(w(t))) = ((α(t))2 + γe(t)) ∥X∥2 = (3γe(t) + 2γy + c2) ∥X∥2 =
3zt + 2a

η
.

■

Proof of Theorem 3.2. The gradient descent takes the form

w(t+1) = w(t) − η

2n

n∑
i=1

∇ℓi(w
(t)) = w(t) − η

n

n∑
i=1

e(t)(Xi)α
(t)(Xi)Xi.

Similarly to (A.16), for each error term e(t)(Xi) we have

e(t)(Xi) =
(α(t)(Xi))

2

2γ
− β(Xi), (A.17)

and

α(t+1)(Xi) = γX⊤
i w(t+1) + c(Xi)

=γ

X⊤
i w(t) − η

n

n∑
j=1

e(t)(Xj)α
(t)(Xj)X

⊤
i Xj

+ c(Xi)

=α(t)(Xi)−
γη

n

n∑
j=1

e(t)(Xj)α
(t)(Xj)X

⊤
i Xj

=α(t)(Xi)−
γη

n

n∑
j=1

(
α(t)(Xj)

3

2γ
− β(Xj)α

(t)(Xj)

)
X⊤

i Xj

We overload the notation and set

X = (X1, ..., Xn)
⊤
, #(X) = (#(X1), ...,#(Xn))

⊤
, ∀# ∈ {α(t), e(t), a, β}.

We can obtain

α(t+1)(X) = α(t)(X)− η

n
XX⊤

(
α(t)(X)3

2
− γβ(X)⊙ α(t)(X)

)
, (A.18)
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where ⊙ denotes the Hadamard product.

As XX⊤ = diag(∥X1∥2 , ..., ∥Xn∥2), we can rewrite (A.18) as the following non-interacting ver-
sion for each data point:

α(t+1)(Xi) =α(t)(Xi)−
η ∥Xi∥2

2n

(
α(t)(Xi)

3 − 2γβ(Xi)α
(t)(Xi)

)
=

(
1− γη ∥Xi∥2

n
e(t)(Xi)

)
α(t)(Xi).

This together with (A.17) implies

e(t+1)(Xi)− e(t)(Xi) =
1

2γ

(
(α(t+1)(Xi))

2 − (α(t)(Xi))
2
)

=

(
−2γη ∥Xi∥2

n
e(t)(Xi) +

γ2η2 ∥Xi∥4

n2
(e(t)(Xi))

2

)(
e(t)(Xi) + β(Xi)

)
=κn(Xi)e

(t)(Xi)
(
κn(Xi)e

(t)(Xi)− 2
)(

e(t)(Xi) + β(Xi)
)

By definition of z(t)i and ai we know

z
(t+1)
i = z

(t)
i (z

(t)
i + ai)(z

(t)
i − 2) + z

(t)
i = fai

(z
(t)
i ).

The sharpness is given by

∇2ℓ(w(t)) =
1

n

n∑
i=1

(
∇wg(w

(t);Xi)∇wg(w
(t);Xi)

⊤ + (g(w(t);Xi)− yi)∇2
wg(w

(t);Xi)
)

=
1

n

n∑
i=1

(
(α(t)(Xi))

2 + γe(t)(Xi)
)
XiX

⊤
i

=
1

n

n∑
i=1

(3γe(t)(Xi) + 2γyi + c2(Xi))XiX
⊤
i .

Therefore we know

∇2ℓ(w(t))Xi =
1

n
(3γe(t)(Xi) + 2γyi + c2(Xi)) ∥Xi∥2 Xi =

3z
(t)
i + 2ai

η
Xi, for all 1 ≤ i ≤ n.

which means we find n eigenvalues and eigenvectors pairs
(

3z
(t)
1 +2a1

η , X1

)
, ...,

(
3z(t)

n +2an

η , Xn

)
.

Note that ∇2ℓ(w(t)) is a sum of n rank-1 matrices, and we have found n orthogonal eigenvalues.

Hence we know λmax(∇2ℓ(w(t))) = max1≤i≤n
3z

(t)
i +2ai

η . This completes the proof. ■

Proof of Theorem 3.3. Define

A(t) =
2η√
mdn

n∑
j=1

e
(t)
j XjX

⊤
j .

Note that we have

∇ℓ
(t)
j (U(t)) =

(
1√
md

m∑
i=1

(X⊤
j u

(t)
i )2 − yj

)(
2√
md

XjX
⊤
j U(t)

)
=

2√
md

e
(t)
j XjX

⊤
j U(t).

This implies that the gradient descent update takes the form

U(t+1) = U(t) − η

n

n∑
j=1

∇ℓ
(t)
j (U(t)) = U(t) − 2η√

mdn

n∑
j=1

e
(t)
j XjX

⊤
j U(t) =

(
I −A(t)

)
U(t).
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Also we have

e
(t+1)
j − e

(t)
j =

1√
md

m∑
i=1

(
(X⊤

j u
(t+1)
i )2 − (X⊤

j u
(t)
i )2

)
=

1√
md

X⊤
j

(
U(t+1)(U(t+1))⊤ −U(t)(U(t))⊤

)
Xj

and

U(t+1)(U(t+1))⊤ =

I − 2η√
mdn

n∑
j=1

e
(t)
j XjX

⊤
j

U(t)(U(t))⊤

I − 2η√
mdn

n∑
j=1

e
(t)
j XjX

⊤
j

 .

Hence we know

e
(t+1)
j − e

(t)
j

=
1√
md

(
X⊤

j A(t)A(t)(A(t))⊤A(t)Xj − 2X⊤
j A(t)U(t)(U(t))⊤Xj

)
=

1√
md

(
4η2

md2n2
(e

(t)
j )2 ∥Xj∥4 X⊤

j U(t)(U(t))⊤Xj −
4η√
mdn

e
(t)
j ∥Xj∥2 X⊤

j U(t)(U(t))⊤Xj

)
=

(
4η2 ∥Xj∥4

md2n2
(e

(t)
j )2 − 4η ∥Xj∥2√

mdn
e
(t)
j

)(
e
(t)
j + yj

)
,

where the second equality uses XX⊤ = diag(∥X1∥2 , ..., ∥Xn∥2). By definition of z(t)i and ai we
know

z
(t+1)
i = fai(z

(t)
i ).

Hence we know the training dynamics of this model can be captured by the cubic map as well. ■

B AUXILIARY RESULTS

Theorem B.1 (Theorem 1 in Li and Yorke (1975)). Let I be a compact interval and let f : I → I
be continuous. Assume there is a point a ∈ I for which the points b = f(a), c = f (2)(a) and
d = f (3)(a) satisfy

d ≤ a < b < c (or d ≥ a > b > c).

Then f is Li-Yorke chaotic.
Theorem B.2 (Theorem 2.7 in Singer (1978)). Let I be a compact interval and let f : I → I be a
three times continuously differentiable function. If the Schwarzian derivative of f satisfies

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

< 0 for all x ∈ I with f ′(x) ̸= 0.

Then the stable set of every asymptotically stable orbit of f contains a critical point of f .
Theorem B.3 (Theorem B in Nusse (1987)). Let I be an interval and let f : I → I be a three times
continuously differentiable function having at least one aperiodic point on I and satisfying:

• (i) f has a nonpositive Schwarzian derivative, i.e.,

Sf(x) =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

≤ 0 for all x ∈ I with f ′(x) ̸= 0.

• (ii) The set of points, whose orbits do not converge to an (or the) absorbing boundary point(s) of
I for f is a nonempty compact set.

• (iii) The orbit of each critical point for f converges to an asymptotically stable periodic orbit of
f or to an (or the) absorbing boundary point(s) of I for f .
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• (iv) The fixed points of f (2) are isolated.

Then we have

• (1) The set of points whose orbits do not converge to an asymptotically stable periodic orbit of f
or to an (or the) absorbing boundary point(s) of I for f has Lebesgue measure 0;

• (2) There exists a positive integer p such that almost every point x in I is asymptotically periodic
with f (p)(x) = x, provided that f(I) is bounded.

Theorem B.4 (Corollary in Nusse (1987)). Assume that f : R → R is a polynomial function having
at least one aperiodic point and satisfying the following conditions:

• (i) The orbit of each critical point of f converges to an asymptotically stable periodic orbit of f
or to an (or the) absorbing boundary point(s) for f;

• (ii) Each critical point of f is real.

Then f satisfies the assumptions (i)-(iv) of Theorem B.3.

C EXPERIMENTAL INVESTIGATIONS (CONTINUED FROM SECTION 4)

Due to space limitation, we provide additional experimental results in this section.

C.1 ADDITIONAL EXPERIMENTS FOR THE ORTHOGONAL CASE

For this section, we follow the same experimental setup as described in Section 4.1. Only the
hidden-layer width is changed. Specifically, in Figures 6 and 7 we plot the training loss, sharpness
of training loss and the trajectory-averaging training in various phases.
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Figure 6: Hidden-layer width =5, with orthogonal data points. Rows from top to bottom represent
different levels of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes
are in log scale for the training loss curves. The second column is about the sharpness of the training
loss functions.
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Figure 7: Hidden-layer width =10, with orthogonal data points. Rows from top to bottom represent
different levels of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes
are in log scale for the training loss curves. The second column is about the sharpness of the training
loss functions.
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C.2 NON-ORTHOGONAL DATA

We next investigate the case when orthogonality condition does not hold. The setup is the same
as described in Section 4.1 except that n = 5000 and each entry of the data matrix X ∈ Rn×d is
now sampled from a standard normal distribution. We also generate 500 data points from the same
distribution for testing. Note that our theory in this work is only applicable for orthogonal data.
hence, for these experiments with non-orthogonal data, we first tune the step-size to be as large as
possible, say ηmax, so that the training does not diverge and then run the experiments for i+1

5 ηmax

with i = 0, ..., 4. Hence, the step-sizes for loss and sharpness curves 0, 1, 2, 3, 4 are chosen to be
10, 20, 30, 40, 50 for m = 5, 10 and 12, 24, 36, 48, 60 for m = 25.

In Figures 8, 9 and 10 we plot the training loss and the testing loss (with and without ergodic
trajectory averaging) in log scale. Notably different phases (including the periodic and catapult
phases) characterized theoretically for the case of orthogonal data, also appear to be present for the
non-orthogonal case. We also make the following intriguing conclusions:

• As a general trend, training roughly in the catapult phase and predicting without doing the ergodic
trajectory averaging appears to have the best test error performance.

• In some cases (especially the one with high noise variance), when testing after training in the
periodic phase, the test error goes down rapidly in the initial few iterations. Correspondingly,
ergodic trajectory averaging after training in the periodic phase, helps to obtain better test error
decay compared to ergodic trajectory averaging after training in the catapult phase. However, as
mentioned in the previous point, training roughly in the catapult phase and predicting without
doing the ergodic trajectory averaging performs the best.

• As discussed in Lim et al. (2022), in various cases, artificially infusing control chaos help to obtain
better test accuracy. Given our empirical observations and the results in Lim et al. (2022), it is
interesting to design controlled chaos infusion in gradient descent and perform ergodic training
averaging to obtain stable and improved test error performance.

Obtaining theoretical results corroborating the above-mentioned observations is challenging future
work.

0 25 50 75 100 125 150 175 200
Iterations

30

25

20

15

10

5

0

Lo
g 

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

25

20

15

10

5

0

Lo
g 

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

5

4

3

2

1

0

Lo
g 

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

4

3

2

1

0

1

Lo
g 

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Lo
g 

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

4

3

2

1

0

1

Lo
g 

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.0

1.5

1.0

0.5

0.0

0.5

Lo
g 

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

3

2

1

0

1

Lo
g 

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Lo
g 

Lo
ss

Training Log Loss 0
Training Log Loss 1
Training Log Loss 2
Training Log Loss 3
Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Lo
g 

Lo
ss

Testing Log Loss 0
Testing Log Loss 1
Testing Log Loss 2
Testing Log Loss 3
Testing Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Lo
g 

Lo
ss

Ergodic Training Log Loss 0
Ergodic Training Log Loss 1
Ergodic Training Log Loss 2
Ergodic Training Log Loss 3
Ergodic Training Log Loss 4

0 25 50 75 100 125 150 175 200
Iterations

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Lo
g 

Lo
ss

Ergodic Testing Log Loss 0
Ergodic Testing Log Loss 1
Ergodic Testing Log Loss 2
Ergodic Testing Log Loss 3
Ergodic Testing Log Loss 4

Figure 8: Hidden-layer width=5, with non-orthogonal data points. Rows from top to bottom repre-
sent different levels of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical
axes are in log scale for loss curves.
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Figure 9: Hidden-layer width=10, with non-orthogonal data points. Rows from top to bottom repre-
sent different levels of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical
axes are in log scale for loss curves.
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Figure 10: Hidden-layer width=25, with non-orthogonal data points. Rows from top to bottom
represent different levels of noise – mean-zero normal distribution with variance 0, 0.25, 1. The
vertical axes are in log scale for loss curves.
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C.3 TWO-LAYER NEURAL NETWORK WITH RELU

While our main focus in this work is for quadratic activation functions, it is also instructive to
examine the dynamics with other activation function, in particular the ReLU activation. Hence, we
follow the experimental setup from Section C.2, except that the activation function is now ReLU and
repeat our experiments. For this case, the step-sizes manually chosen to be 60, 120, 180, 240, 300
for loss/sharpness curves 0, 1, 2, 3, 4, respectively.
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Figure 11: Hidden-layer width=5 with ReLU activation. Rows from top to bottom represent different
levels of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes are in log
scale for loss curves. The last column is about the sharpness of the training loss functions.
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Figure 12: Hidden-layer width=10 with ReLU activation. Rows from top to bottom represent dif-
ferent levels of noise – mean-zero normal distribution with variance 0, 0.25, 1. The vertical axes are
in log scale for loss curves. The last column is about the sharpness of the training loss functions.

From Figures 11 and 12, (in particular from the sharpness plots), we observe various non-monotonic
patterns, roughly including periodic and chaotic patterns. Obtaining a precise theoretical character-
ization of the training dynamics for this setting is extremely interesting as future work.
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