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Abstract
We present a new convergence analysis for the over-relaxed alternating direction method
of multipliers (ADMM) when the subproblem cannot be exactly solved, i.e., inexact over-
relaxed ADMM. Our method builds on (Hu and Lessard, 2017) that relates the convergence
analysis of optimization algorithms to the stability of a discrete-time linear dynamic system.
By expressing the inexact over-relaxed ADMM as a discrete-time linear dynamic system,
we show that both the linear and sublinear convergence of inexact over-relaxed ADMM can
be obtained by solving or verifying the feasibility of a small semidefinite program (SDP).
More importantly, we prove that the associated SDP has an analytical solution for various
parameters. We demonstrate the theoretical result by applying the inexact over-relaxed
ADMM to solve a distributed ℓ1-norm regularized logistic regression problem.
Keywords: Over-relaxed ADMM; Inexact Solution, Dissipativity Theory

1. Introduction

The alternating direction method of multipliers (ADMM) is a classic optimization algorithm
and traces back to (Gabay and Mercier, 1976; Lions and Mercier, 1979). In the last decade,
the alternating direction method of multipliers (ADMM) (Boyd et al., 2011; Eckstein and
Yao, 2015; Xu et al., 2017; França et al., 2018) has garnered attention and interest in the
machine learning community because of its simplicity and applicability to a wide variety of
large-scale distributed convex optimization problems (Deng and Yin, 2016; Nishihara et al.,
2015; Zhang et al., 2012; Wang et al., 2013; Zhang and Kwok, 2014; Xu et al., 2017; Liu
et al., 2021; Zhou and Li, 2023). Specifically, it solves the problems in the form of

min
x,z

f(x) + g(z), s.t. Ax+Bz = c, (1)

where x ∈ Rp, z ∈ Rq, A ∈ Rp×p, B ∈ Rp×q and c ∈ Rp. In general, f(x) is a loss function
(e.g., logistic loss), and g(z) is some regularization function (e.g., ℓ1-norm) which is typically
used to promote a certain structure (e.g., sparsity) in the optimal solution. Many convex
optimization problems in machine learning and statistics (Bubeck, 2015; Sra et al., 2012;
Boyd et al., 2011) can be formulated in the form of problem (1).
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In order to solve the problem (1) via ADMM, we first introduce Lagrange multiplier
ρu ∈ Rp for (1) where ρ > 0 is the penalty parameter. Then the augmented Lagrangian
Lρ(x, z,u) is defined as following

Lρ(x, z,u) = f(x) + g(z)− ρ⟨u,Ax+Bz− c⟩+ ρ

2
∥Ax+Bz− c∥2. (2)

Then, standard ADMM (Boyd et al., 2011; Gabay and Mercier, 1976; Eckstein and Bertsekas,
1992) performs following three updates at each iteration:

xk+1
def
= argmin

x
Lρ(x, zk,uk), (3a)

zk+1
def
= argmin

z
Lρ(xk+1, z,uk), (3b)

uk+1
def
= uk −

(
Axk+1 +Bzk+1 − c

)
, (3c)

In this work, we consider a popular variant of standard ADMM, named over-relaxed ADMM,
which introduces a relaxation parameter to improve the convergence of ADMM (Eckstein
and Bertsekas, 1992). Specifically, the over-relaxed ADMM consists of the iterations

xk+1
def
= argmin

x

{
f(x) +

ρ

2
∥Ax+Bzk − c− uk∥2

}
, (4a)

zk+1
def
= argmin

z

{
g(z) +

ρ

2
∥αAxk+1 − (1− α)Bzk +Bz− αc− uk∥2

}
, (4b)

uk+1
def
= uk −

(
αAxk+1 − (1− α)Bzk +Bzk+1 − αc

)
, (4c)

where the relaxation parameter α is typically chosen from α ∈ (0, 2]. If α = 1, the algorithm
reduces to standard ADMM. It is called over-relaxed ADMM when α > 1 (Boyd et al., 2011).
Generally, the over-relaxed ADMM can improve the convergence of ADMM (Eckstein and
Bertsekas, 1992; Eckstein, 1994). In this work, our analysis covers all choices α ∈ (0, 2] even
in a larger range of α.

ADMM is an appealing approach for solving distributed machine learning problems in
which the datasets are stored locally on different workers (Boyd et al., 2011; Nishihara et al.,
2015; Zhang and Kwok, 2014; Xu et al., 2017; Zhou and Li, 2023). It is straightforward to show
that (4a) can be decomposed into several independent problems that can be simultaneously
and independently solved by only accessing the local dataset on each particular worker. This
is highly desirable in the era of big data. More importantly, a larger number of practical
experiences suggest that ADMM often quickly converges to modest accuracy solutions, which
is particularly useful in machine learning applications (Boyd et al., 2011).

While the ADDM has shown great success in practical applications, the theoretical
understanding of over-relaxed ADMM remains limited. Most of the works in the literature
analyze the convergence of ADMM by assuming (4a) and (4b) must be exactly solved at
every iteration (Nishihara et al., 2015; Monteiro and Svaiter, 2013; Goldstein et al., 2014;
Xu et al., 2017; França et al., 2018). Indeed, we can efficiently solve them to obtain the
exact solutions xk+1 and zk+1 for several notable choices of f(x) and g(z), e.g., g(z) = ∥z∥1
(Tibshirani, 1996). However, in many important scenarios (4a) and (4b) may not admit an
analytic solution, or it may be computationally expensive to exactly solve them. Examples
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include sparse logistic regression (Boyd et al., 2011), total-variation (Fadili and Peyré, 2011;
Ng et al., 2010; Wang et al., 2008) and overlapping group lasso (Yuan et al., 2011). Therefore,
it is important to study the convergence of ADMM when (4a) and (4b) are not exactly solved
(Gol’shtein and Tret’yakov, 1979; Eckstein and Bertsekas, 1992).

When it is difficult to exactly solve (4a) and (4b), existing works mainly present two
different methods to obtain approximate solutions xk+1 and zk+1.

• One method is to find an approximate solution of (4a) and (4b) by using a generic
solver (e.g., L-BFGS, first-order gradient method) to solve (4a) and (4b) or their dual
problems (Boyd et al., 2011; Fadili and Peyré, 2011; Ng et al., 2010).

• The other method seeks to construct an upper bound problem for (4a) and (4b) in
which the upper bound admits an analytical solution (Zhang et al., 2010, 2011; He
and Yuan, 2012; Lin et al., 2011). By doing that, one can easily obtain approximate
solutions xk+1 and zk+1 by solving the upper bound problem since they admit an
analytical solution.

Nevertheless, the assumption of the optimality of xk+1 and zk+1 for convergence analysis is
invalid in both methods. It has been empirically observed that the ADMM still converges
even when the (4a) and (4b) are approximately but carefully solved (Boyd et al., 2011).
Therefore, it is interesting to theoretically study the convergence of inexact over-relaxed
ADMM (He et al., 2002; Eckstein and Bertsekas, 1992; Gol’shtein and Tret’yakov, 1979).

Motivated by these recent advances (Lessard et al., 2016; Hu and Lessard, 2017) on
convergence analysis of first-order methods, we present a new general convergence analysis
for over-relaxed ADMM by allowing (4a) and (4b) to be approximately solved. Specifically,
our analysis is based on representing an optimization algorithm as a discrete-time dynamical
system (Hu and Lessard, 2017; Lessard et al., 2016). By expressing the inexact over-relaxed
ADMM as a discrete-time linear dynamic system, we show that both the linear and sublinear
convergence of inexact over-relaxed ADMM can be obtained by solving or verifying the
feasibility of a small semidefinite program (SDP). More importantly, we further prove that
the associated SDP has an analytical solution for various parameters.

1.1. Related Work

In the seminal work, Lessard et al. (2016) present the integral quadratic constraints (IQC)
framework to analyze optimization algorithms by casting them as discrete-time linear dynam-
ical systems. In this way, the convergence analysis of optimization algorithms is converted
into the stability analysis of the associated dynamic systems, which is equivalent to verifying
the feasibility of a SDP. One limitation of the IQC framework is the SDP generally does not
admit an analytical solution, thus the converge rates of optimization algorithms can only be
obtained by numerically solving the SDP.

Later, Hu and Lessard (2017) improve the IQC framework by drawing a connection
between IQC with the discretization approach (Wilson et al., 2021). Specifically, they
use the concept of dissipativity theory from control to provide a natural understanding of
Nesterov’s accelerated method. Consequently, the method based on dissipativity theory leads
to a simpler SDP than the one in (Lessard et al., 2016) and it can be solved analytically.
Furthermore, Hu and Lessard (2017) show that the dissipativity theory can be used to obtain
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the sublinear rate for algorithms with general convex objectives while the IQC is tailored for
analyzing linear rates of algorithms that require the objective to be strongly convex.

Both Lessard et al. (2016) and Hu and Lessard (2017) focus on the convergence analysis
of first-order methods and Nesterov’s accelerated method. Inspired by (Lessard et al., 2016),
Nishihara et al. (2015) also present a convergence analysis for over-relaxed ADMM by
relating it to verify the stability of a dynamic system. They show that the convergence
rate of over-relaxed ADMM can be obtained by numerically solving a SDP. However, their
analysis still exists following two limitations:

• Nishihara et al. (2015) assume subproblems (4a) and (4b) must be exactly solved that is
invalid in many real applications. For example, for large-scale distributed optimization,
the subproblem (4a) is often distributively solved by different workers that have various
computational abilities. Thus, assuming (4a) has been exactly solved may lead to a
significant delay due to the existing stragglers in distributed optimization.

• The method presented by Nishihara et al. (2015) employ a dynamic system with
time-invariant state transition matrices to represent the over-relaxed ADMM algorithm.
Thus, their method only works for the analysis of linear convergence rates that require
the objective to be strongly convex. On the other hand, many machine learning
problems are general but not strongly convex (Bach et al., 2012).

Both these two assumptions are too restrictive in many machine learning applications. In
contrast, we present a new convergence analysis for over-relaxed ADMM by removing the
above two assumptions. Specifically, our method allows the (4a) and (4b) to be approximately
solved in some extent. Furthermore, the proposed method can also be extended to obtain
the sublinear convergence rate for general convex objectives.

1.2. Organization and Contributions of This Paper

We first introduce the notation and preliminaries in Section 2. We then present convergence
analysis for inexact over-relaxed ADMM with strongly convex objectives by using the
dissipativity theory in Section 3, and extend the proposed method extends the method to
the case of generally convex objectives in Section 4. Finally, we demonstrate our analysis by
experiments in Section 5. In summary, this work makes the following contributions.

• We provide a new convergence analysis for over-relaxed ADMM by allowing the
subproblems (4a) and (4b) to be approximately solved. Specifically, Section 3.1 shows
that the inexact over-relaxed ADMM can be represented as a discrete-time linear
dynamical system. We then prove the linear convergence rate of inexact over-relaxed
ADMM in Section 3.2 by applying dissipativity theory to the dynamic system. In this
way, the proposed method provides a natural understanding of inexact over-relaxed
ADMM by adapting the intuitive notion of energy dissipation. Unlike (Nishihara et al.,
2015), our analysis leads to a simpler SDP that can be solved analytically.

• In Section 4, we extend our analysis to the case of f(x) being generally convex by
choosing an appropriate supply rate to define the dynamical system. In contrast, the
method of (Nishihara et al., 2015) is only tailored for strongly convex f(x). In this
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case, we prove that the sublinear convergence rate of inexact over-relaxed ADMM can
be obtained by verifying the feasibility of an SDP. More importantly, we further prove
that the SDP is feasible for a wide range of α and ρ.

• In Section 5, we demonstrate our theoretical results by applying inexact over-relaxed
ADMM to solve ℓ1-norm regularized logistic regression. It is worth noting that the
analysis of (Nishihara et al., 2015) is not applicable to this case as neither the optimality
of xk+1 nor strong convexity of f(x) is valid. In contrast, our Theorem 9 provides a
convergence guarantee for this case.

2. Preliminaries and Notation

Throughout this paper, vectors and matrices are denoted by lower- and upper-case boldface
characters (e.g., a and A), respectively. We use ai and Aij to denote the i-th entry of a
and the (i, j)-th entry of A, respectively. Let 0 denote a vector of zeros. Let Ip and 0p

denote the p× p identity and zero matrices, respectively. For A ∈ Rm×n and B ∈ Rp×q, their
Kronecker product is denoted by A⊗B and satisfies the properties (A⊗B)⊤ = A⊤ ⊗B⊤

and (A⊗B)(C⊗D) = (AC)⊗ (BD) when the matrices have compatible dimensions. For
matrix A ∈ Rm×n, the largest and smallest singular values are denoted by σmax

A and σmin
A ,

respectively. Then, we use κA
def
= σmax

A /σmin
A to denote the condition number of A. We use

Sp++ to denote the set of symmetric positive definite p× p matrices.
For a generic norm ∥ · ∥, we say that function f is m-strongly convex w.r.t. ∥ · ∥ if

f(x) ≥ f(y) + ⟨∇f(y),x− y⟩+ m

2
∥x− y∥2,∀x,y ∈ Rp. (5)

We say that function f is L-smooth w.r.t. ∥ · ∥ if

f(x) ≤ f(y) + ⟨∇f(y),x− y⟩+ L

2
∥x− y∥2,∀x,y ∈ Rp. (6)

For 0 < m ≤ L, let Sp(m,L) denote the set of differentiable convex functions f : Rp → R
that are m-strongly convex and L-smooth w.r.t. ∥ · ∥. If f ∈ Sp(m,L), the condition number
of f is denoted by κf

def
= m/L. We use Sp(0,∞) to denote the set of convex functions. For

any f ∈ Sp(0,∞), let ∂f denote the subdifferential of f .

Lemma 1 For any f ∈ Sp(0,∞), the subdifferential ∂f is a monotone operator, i.e., if
u ∈ ∂f(x) and v ∈ ∂f(y), it holds

⟨x− y,u− v⟩ ≥ 0,∀x,y ∈ Rp. (7)

Lemma 1 can be easily proved by applying the definition of subdifferential.

Lemma 2 (Theorem 2.1.11 of (Nesterov, 2013)) For any f ∈ Sp(m,L) where 0 < m ≤
L < ∞, it holds

⟨x− y,∇f(x)−∇f(y) ≥ mL

m+ L
∥x− y∥2 + 1

m+ L
∥∇f(x)−∇f(y)∥2,∀x,y ∈ Rp. (8)
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Algorithm 1 Inexact Over-relaxed Alternating Direction Method of Multipliers (ADMM)
1: Input: penalty parameter ρ, relaxation parameter α
2: Initialize x0, z0,u0

3: for k = 0, . . . , T − 1 do
4: Set xk+1 ≈ argmin

x

{
f(x) + ρ

2∥Ax+Bzk − c− uk∥2
}

s.t. (9a) is satisfied

5: Set zk+1 ≈ argmin
z

{
g(z)+ρ

2∥αAxk+1−(1−α)Bzk+Bz−αc−uk∥2
}

s.t. (9b) is satisfied

6: Set uk+1 = uk −
(
αAxk+1 − (1− α)Bzk +Bzk+1 − αc

)
7: end for
8: Output: xT ,yT ,uT

3. Dissipativity for Inexact ADMM with Strongly Convex Objectives

In this section, we present convergence analysis for over-relaxed ADMM with inexact sub-
problem solutions (i.e., xk+1 and zk+1) for (4a) and (4b), respectively. Our method builds
on the dissipativity framework (Hu and Lessard, 2017), which provides rigorous convergence
analysis for Nesterov’s accelerated method from an energy dissipation perspective.

3.1. Inexact ADMM as a Dynamical System

We first consider interpreting the over-relaxed ADMM with inexact subproblem solutions
(i.e., xk+1 and zk+1) as a discrete-time linear dynamical system. In this way, we can analyze
its convergence by applying dissipativity theory to the dynamical system (Hu and Lessard,
2017). To this end, we formally introduce the notion of inexact solutions for subproblems
(4a) and (4b). For convenience, we denote the objectives of (4a) and (4b) by f̃ρ(x)

def
=

f(x)+ ρ
2∥Ax+Bzk−c+uk∥2 and g̃ρ(z)

def
= g(z)+ ρ

2∥αAxk+1− (1−α)Bzk+Bz−αc−uk∥2,
respectively. For non-negative scalars ϵk+1 and δk+1, we say xk+1 and zk+1 are ϵk+1-
suboptimal and δk+1-suboptimal solutions to (4a) and (4b), respectively, if they satisfy
For non-negative scalars ϵk+1 and δk+1, we say xk+1 and zk+1 are ϵk+1-suboptimal and
δk+1-suboptimal solutions to (4a) and (4b), respectively, if they satisfy

f̃ρ(xk+1)−min
x

f̃ρ(x) ≤ ϵk+1, (9a)

g̃ρ(zk+1)−min
z

g̃ρ(z) ≤ δk+1. (9b)

It is easy to see that the accuracy of suboptimal solutions xk+1 and zk+1 are denoted by ϵk+1

and δk+1, respectively. If ϵk+1 = δk+1 = 0, xk+1 and zk+1 are the exact optimums, otherwise
they are just an approximate solutions to (4a) and (4b), respectively. Algorithm 1 presents
the inexact ADMM with over-relaxation.

To represent the inexact over-relaxed ADMM as a dynamic system, same as in (Nishihara
et al., 2015), we make the following assumption.

Assumption 1 For m and L with 0 < m ≤ L < ∞, we assume that f ∈ Sp(m,L) and
g ∈ Sp(0,∞). In addition, we assume that A is invertible and B has full column rank.



Convergence Analysis of Inexact Over-relaxed ADMM via Dissipativity Theory

For any x ∈ Rp and z ∈ Rq, we define new variables w
def
= Ax ∈ Rp and s

def
= Bz ∈ Rp. Given

functions f and g, we define f̂ρ, ĝρ : Rp → R as

f̂ρ(w)
def
= ρ−1f(A−1w) and ĝρ(s)

def
= ρ−1g(B+s) + IimB(s), (10)

where B+ is any left inverse of B and IimB is the {0,∞}-indicator function of the image of
B. It is easy to see that f̂ρ is (m̂/ρ)-strongly convex and (L̂/ρ)-smooth w.r.t. ∥ · ∥, where
m̂

def
= m/(σmax

A )2 and L̂
def
= L/(σmin

A )2. By applying the definitions of f̂ρ and ĝρ, we can rewrite
(2) as

Lρ(w, s,u) = f̂ρ(w) + ĝρ(s)− ⟨u,w + s− c⟩. (11)

Then, the inexact over-relaxed ADMM updates can be rewritten as

wk+1 ≈ argmin
w

{
f̂ρ(w) +

1

2
∥w + sk − c− uk∥2

}
, (12a)

zk+1 ≈ argmin
s

{
ĝρ(s) +

1

2
∥αwk+1 − (1− α)sk + s− αc− uk∥2

}
, (12b)

uk+1 = uk −
(
αwk+1 − (1− α)sk + sk+1 − αc

)
. (12c)

The key of our method is to represent the inexact over-relaxed ADMM Algortihm 1 as a
discrete-time linear dynamical system, so we can analyze its convergence behavior by using
an energy dissipation perspective. To this end, we define the discrete-time linear dynamical
system with the states {ξk}k≥0, inputs {vk}k≥0, and outputs {y1

k}k≥0, {y2
k}k≥0 defined as

ξk
def
=

[
sk
uk

]
, vk

def
=

[
βk+1 + ηk+1

γk+1 + ζk+1

]
, y1

k
def
=

[
wk+1 − c

βk+1 + ηk+1

]
, y2

k
def
=

[
sk+1

γk+1 + ζk+1

]
, (13)

where βk+1
def
= ∇f̂ρ(wk+1),γk+1 ∈ ∂ĝρ(sk+1), ∥ηk+1∥2 ≤ 2(ρ + m̂)ϵk+1/ρ

2 and ∥ζk+1∥2 ≤
2δk+1/ρ.

Lemma 3 Suppose that Assumption 1 holds and Algorithm 1 is run with penalty parameter
ρ and over-relaxation parameter α. Then inexact over-relaxed ADMM Algorithm 1 can be
expressed as the following discrete-time linear dynamical system

ξk+1 =
(
Â⊗ Ip

)
ξk +

(
B̂⊗ Ip

)
vk, (14a)

y1
k =

(
Ĉ1 ⊗ Ip

)
ξk +

(
D̂1 ⊗ Ip

)
vk, (14b)

y2
k =

(
Ĉ2 ⊗ Ip

)
ξk +

(
D̂2 ⊗ Ip

)
vk, (14c)

where Â, B̂, Ĉ1, Ĉ2, D̂1 and D̂2 are defined as

Â
def
=

[
1 1−α
0 0

]
, B̂

def
=

[
α −1
0 1

]
, Ĉ1 def

=

[
−1 1
0 0

]
, D̂1 def

=

[
−1 0
1 0

]
, Ĉ2 def

=

[
1 1−α
0 0

]
, D̂2 def

=

[
α −1
0 1

]
. (15)

Due to the limit in space, we provide all proofs in Appendix. By applying the convexity of
f(x) and g(z), it can be shown that the solution to (1) is a fixed point of (14) as it satisfies
the KKT conditions of (1).
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3.2. Convergence Analysis via Dissipativity Theory

Let x⋆, z⋆ and u⋆ be the primal and dual optimal solutions of (1), respectively. We define
w⋆

def
= Ax⋆, s⋆

def
= Bz⋆,β⋆

def
= ∇f̂ρ(w⋆),γ⋆ ∈ ∂ĝρ(s⋆) and

ξ⋆
def
=

[
s⋆
u⋆

]
, v⋆

def
=

[
β⋆

γ⋆

]
, y1

⋆
def
=

[
w⋆ − c
β⋆

]
, y2

⋆
def
=

[
s⋆
γ⋆

]
,

such that (ξ⋆,v⋆,y
1
⋆,y

2
⋆) is a fixed point of the dynamical system (14). We define the

following Lyapunov function as
VP(ξ)

def
= (ξ − ξ⋆)

⊤P(ξ − ξ⋆), (16)

where P
def
= P̂ ⊗ Ip and P̂ ∈ S2++. We analyze the convergence of inexact over-relaxed

ADMM by showing that the associated dynamical system (14) is dissipative with respect
to a supply rate S(ξk,vk) (Hu and Lessard, 2017). Specifically, we seek to construct the
following dissipation inequality

VP(ξk+1)− τ2VP(ξk) ≤ S(ξk,vk),∀k ≥ 0, (17)

where τ ∈ (0, 1). This inequality states that every step of the dynamical system dissipates at
least (1− τ2) of the internal energy. If (17) is constructed, we can easily bound VP(ξk+1)
by recursively applying it. Therefore, the stability of the dynamical system implies the
convergence of the optimization algorithm as the Lyapunov function VP(ξk) is convergent.

In our case, we define the supply rate function S(ξk,vk) as

S(ξk,vk)
def
=

[
ξk − ξ⋆
vk − v⋆

]⊤[Ĉ1 D̂1

Ĉ2 D̂2

]⊤[
λ1M̂1 0

0 λ2M̂2

][
Ĉ1 D̂1

Ĉ2 D̂2

]⊗ Ip

[ξk − ξ⋆
vk − v⋆

]
, (18)

where λ1, λ2 ≥ 0 and M̂1, M̂2 are defined as

M̂1 def
=

[
2ρ−2m̂L̂ −ρ−1(m̂+ L̂)

−ρ−1(m̂+ L̂) 2

]
, M̂2 def

=

[
0 −1
−1 0

]
.

To construct (17), we need to provide an appropriate P such that the dissipation inequality
holds. Next, we show that P can be obtained by solving a 4× 4 semidefinite program.

Lemma 4 Suppose that Assumption 1 holds and Algorithm 1 is run with penalty parameter
ρ and over-relaxation parameter α. If there exists τ ∈ (0, 1) and P̂ ∈ S2++ such that[

Â⊤P̂Â− τ2P̂ Â⊤P̂B̂

B̂⊤P̂Â B̂⊤P̂B̂

]
−

[
Ĉ1 D̂1

Ĉ2 D̂2

]⊤[
λ1M̂1 02
02 λ2M̂2

][
Ĉ1 D̂1

Ĉ2 D̂2

]
⪯ 0, (19)

then ∀k ≥ 0:

VP(ξk+1)− τ2VP(ξk) ≤ θ̃ϵk+1 + θ̂∥ξk − ξ⋆∥
√
ϵk+1 + θ∥ξk+1 − ξ⋆∥

√
δk+1, (20)

where θ̃, θ̂ and θ are defined as

θ̃
def
=

4λ1
(
ρ+ m̂

)
max(3ρ, ρ+ m̂+ L̂)

ρ3
, θ̂

def
=

2
√
2λ1
√
ρ+ m̂max(2ρ, m̂+ L̂)

ρ2
, θ

def
= 2λ2

√
2

ρ
.
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Remark 5 For first-order methods and Nesterov’s method, Hu and Lessard (2017) show
one can choose a non-positive supply rate, i.e., S(ξk,vk) ≤ 0, so that the internal energy
V (ξk) converges to the minimum value no slower than a linear rate ρ2. In contrast, (20)
in Lemma 4 implies the supply rate S(ξk,vk) for inexact over-relaxed ADMM is generally
non-negative, except the subproblems (4a) and (4b) are exactly solved at every iterations, i.e.,
ϵk = δk = 0,∀k ≥ 1. From an energy dissipation perspective, this is due to the driving force
vk continues to inject some energy into the dynamic system due to the inexactness of xk+1

and zk+1.

As we will see in Theorem 7, τ is the linear convergence rate of the over-relaxed ADMM.
Therefore, it is important to find the smallest rate τ such that there exists a P̂ to satisfy
(19). To this end, Nishihara et al. (2015) suggest performing a binary search over τ and
numerically solving (19) for each τ to find the smallest τ such that (19) is feasible. Although
the SDP is small, it is still computationally expensive as one needs to solve it for many values
of τ . In contrast, França and Bento (2016) show that there is an exact analytical solution
to (19). For convenience, we assume the value of ρ is set to ρ = ρ0

√
m̂L̂ where ρ0 > 0 and

definite κ
def
= κfκ

2
A.

Lemma 6 (Theorem 3 of (França and Bento, 2016)) For ADMM (i.e., ϵk = δk = 0,∀k ≥ 1)
with over-relaxation α ∈ (0, 2), if κ > 1 and ρ0 > 0, the following is an explicit point of (19)
with λ1, λ2 ≥ 0 and P̂ ≻ 0 and τ ∈ (0, 1):

P̂ =

[
1 ζ
ζ 1

]
, ζ = −1+

α
(
χ(ρ0)

√
κ− 1

)
1− α+ χ(ρ0)

√
κ
, λ1 =

αρ0
√
κ
(
1− α+ χ(ρ0)

√
κ
)

(κ− 1)
(
1 + χ(ρ0)

√
κ
) , λ2 = 1+ ζ

with τ = 1− α
1+χ(ρ0)

√
κ

where χ(x)
def
= max(x, x−1) ≥ 1, ∀x > 0.

If (4a) and (4b) are exactly solved at every iteration (i.e., ϵk = δk = 0, ∀k ≥ 1), the
dissipation inequality (20) becomes

VP(ξk+1)− τ2VP(ξk) ≤ 0. (21)

Comparing it with (17), it is equivalent to stating S(ξk,vk) ≤ 0,∀k ≥ 0. Then, VP(ξk+1)
can be easily bounded by applying (21). In a general case, inexact xk+1 and zk+1 leads to
S(ξk,vk) > 0 that needs to be first bounded. The next theorem shows the convergence of
inexact over-relaxed ADMM.

Theorem 7 Suppose that Assumption 1 holds. Let the sequences {xk}k≥1, {zk}k≥1 and
{uk}k≥1 generated by running Algorithm 1 with penalty parameter ρ and over-relaxation
parameter α. We define

φk
def
=
[
(Bzk)

⊤ u⊤
k

]⊤
, φ⋆

def
=
[
(Bz⋆)

⊤ u⊤
⋆

]⊤
.

If there exists τ ∈ (0, 1) and P̂ ∈ S2++ such that the linear matrix inequality (19) is satisfied,
then for ∀T ≥ 1:

∥φT −φ⋆∥≤τT

√κP∥φ0 −φ⋆∥+

√ θ̃

σmin
P

+
θ̂

τσmin
P

 T∑
k=1

τ−k√ϵk +
θ

σmin
P

T∑
k=1

τ−k
√
δk

. (22)
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Theorem 7 suggests that we obtain a linear convergence rate for inexact over-relaxed ADMM,
provided that

√
ϵk and

√
δk decrease linearly to 0. Suppose

√
ϵk and

√
δk decrease linearly

at a rate of τ̂ ∈ (0, 1). If τ̂ < τ , then we can show inexact over-relaxed ADMM linearly
converges at a rate τ that is the same as the exact ADMM. If τ̂ > τ , then inexact over-relaxed
ADMM achieve linear convergence rate τ̂ . Theorem 7 implies that (4a) and (4b) are allowed
to be approximately solved as long as they become more accurate as the iterations progress.

4. Dissipativity for Inexact ADMM with Generally Convex Objectives

In the previous section, our convergence analysis for inexact over-relaxed ADMM assumes
the objective to be strongly convex. However, this is not the case for many machine learning
problems. Nishihara et al. (2015) suggest to add a term δ

2∥x∥
2 to the objective such that

f(x) + δ
2∥x∥

2 is strongly convex. This trick is less appealing as it modifies the objective.
Furthermore, it is difficult to tune the value for δ in practice. In order to address this
problem, we now extend our analysis to the case of generally convex objectives. We first
relax Assumption 1 by allowing f to be generally convex.

Assumption 2 For 0 < L < ∞, we assume that f ∈ Sp(0, L) and g ∈ Sp(0,∞). In
addition, we assume that A is invertible and B has full column rank.

Similar to the case of strongly convex objectives, we first represent the inexact over-relaxed
ADMM as a discrete-time linear dynamical system. The states {ξk}k≥0, inputs {vk}k≥0

and outputs {y1
k}k≥0, {y2

k}k≥0 are the same as (13) except ∥ηk+1∥2 ≤ 2ϵk+1/ρ. The proof is
similar to that of Lemma 3.

Lemma 1 Suppose that Assumption 2 holds and Algorithm 1 is run with penalty parameter
ρ and over-relaxation parameter α. Then, the inexact over-relaxed ADMM can be expressed
as the same discrete-time linear dynamical system defined as (14) except ∥ηk+1∥2 ≤ 2ϵk+1/ρ.

By the variational inequality reformulation (He and Yuan, 2012), the optimal condition
of (1) is characterized as following

f(x)− f(x⋆) + g(z)− g(z⋆) +

 x− x⋆

z− z⋆
ρ(u− u⋆)

⊤ −ρA⊤u⋆

−ρB⊤u⋆

Ax⋆ +Bz⋆ − c

 ≥ 0,∀x,y,u, (23)

where x⋆, z⋆ and u⋆ are the primal and dual optimal solutions of (1), respectively. Next, we
show that the convergence of inexact over-relaxed ADMM for generally convex objectives
can be proved by showing that the left-hand side of (23) is convergent. The key idea is to
choose an appropriate supply rate S(ξk,vk). Specifically, we choose the following supply rate

S(ξk,vk)
def
=

[
ξk − ξ⋆
vk − v⋆

]⊤[Ĉ1 D̂1

Ĉ2 D̂2

]⊤[
M̂1 0

0 M̂2

][
Ĉ1 D̂1

Ĉ2 D̂2

]⊗ Ip

[ξk − ξ⋆
vk − v⋆

]
, (24)

where M̂1 and M̂2 are

M̂1 def
=

[
0 −1

2
−1

2
ρ

2L̂

]
, M̂2 def

=

[
0 −1

2
−1

2 0

]
.

The next lemma provides an upper bound for S(ξk,vk).
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Lemma 8 Suppose that Assumption 2 holds and Algorithm 1 is run with penalty parameter
ρ and over-relaxation parameter α. Then for ∀k ≥ 0:

S(ξk,vk) ≤f̂ρ(w⋆)− f̂ρ(wk+1) + ĝρ(s⋆)− ĝρ(sk+1)−

wk+1 −w⋆

sk+1 − s⋆
uk+1 − u⋆

⊤ −u⋆

−u⋆

w⋆ + s⋆ − c


+
〈
ηk+1,

ρ

L̂
(βk+1 − β⋆)− (wk+1 −w⋆)

〉
+

ρ

2L̂
∥ηk+1∥2 − ⟨sk+1 − s⋆, ζk+1⟩. (25)

In the case of generally convex objectives, the ADMM can only achieve a sublinear
instead of a linear convergence rate. Thus, we need to change the dissipation inequality (17).
Specifically, we now seek to construct the following dissipation inequality

VP(ξk+1)− VP(ξk) ≤ S(ξk,vk),∀k ≥ 0. (26)

It can be constructed by solving a small semidefinite program. The next theorem presents
the sublinear convergence of inexact over-relaxed ADMM for generally convex objectives.

Theorem 9 Suppose that Assumption 2 holds. Let the sequences {xk}k≥1, {zk}k≥1 and
{uk}k≥1 generated by running Algorithm 1 and with penalty parameter ρ and over-relaxation
parameter α. If there exists P̂ ∈ S2++ such that[

Â⊤P̂Â− P̂ Â⊤P̂B̂

B̂⊤P̂Â B̂⊤P̂B̂

]
−

[
Ĉ1 D̂1

Ĉ2 D̂2

]⊤[
M̂1 02
02 M̂2

][
Ĉ1 D̂1

Ĉ2 D̂2

]
⪯ 0, (27)

then we have a sublinear convergence rate for inexact over-relaxed ADMM, i.e.,

f(x̄T )− f(x⋆) + g(z̄T )− g(z⋆) +

 x̄T − x⋆

z̄T − z⋆
ρ(ūT − u⋆)

⊤ −ρA⊤u⋆

−ρB⊤u⋆

Ax⋆ +Bz⋆ − c


≤ ρ

T

√VP(ξ0) +

√3ρ+ 2L̂

ρL̂
+

ρ+ L̂

L̂

√
2

ρσmin
P

 T∑
k=1

√
ϵk +

√
2

ρσmin
P

T∑
k=1

√
δk

2

, (28)

where x̄T
def
= 1

T

∑T
k=1 xk, z̄T

def
= 1

T

∑T
k=1 zk and ūT

def
= 1

T

∑T
k=1 uk.

Remark 10 When the x- and z-subproblems are exactly solved at every iteration (i.e., ϵk = 0
and δk = 0, ∀k ≥ 1), then Theorem 9 provides the same sublinear convergence rate of ADMM
for generally convex objectives provided by He and Yuan (2012). However, their result is only
applicable for standard ADMM (i.e., α = 1). In contrast, the result of Theorem 9 holds for a
wide range of α.

Theorem 9 suggests that inexact over-relaxed ADMM achieves sublinear convergence rate
O(1/T ) if both {√ϵk} and {

√
δk} are summable. A sufficient condition for achieving O(1/T )

convergence rate is that
√
ϵk and

√
δk decreases at a rate of O(1/kr) for any r > 1. It is

worth noting that the convergence rate of inexact over-relaxed ADMM is still O(1/T ) but
yielding a better constant factor for a larger value of r when r > 1. In addition, the sum



Zhou Pan

of error sequences {√ϵk} and {
√
δk} in O(

√
k) need to be in o(1/

√
k) for ensuring inexact

over-relaxed ADMM to converge. This is a considerably weak condition. Thus, inexact
over-relaxed ADMM for convex objectives still converges even the (4a) and (4a) are not
exactly solved by carefully controlling the error sequences {√ϵk} and {

√
δk}. This explains

the practical performances of inexact over-relaxed ADMM.
In the case of strongly convex objectives, the explicit convergence rate τ of inexact

over-relaxed ADMM is determined by the solution of (19). In contrast, the convergence rate
of inexact over-relaxed ADMM for generally convex objectives is always O(1/T ) if (27) is
satisfied. Thus, if we can prove (27) is feasible, then we do not need to numerically solve it
in this case. The next theorem shows (27) is feasible by providing an explicit solution.

Theorem 11 Suppose that Assumption 2 holds. For inexact over-relaxed ADMM with
penalty parameter ρ and over-relaxation parameter α, then P̂ = 0.5I2 satisfies the linear
matrix inequality (27).

Theorem 11 suggests that (27) is definitely satisfied. Thus, we do not need to numerically
solve or verify the SDP in practice. This makes Theorem 9 is more useful in real applications.
It is worth noting that Theorem 11 requires no assumptions on the value of α. Specifically,
Theorem 11 also suggests that the sublinear convergence of over-relaxed ADMM is even for
α ≥ 2. In contrast, prior works assume either α = 1 or α ∈ (0, 2).

5. Experiments

In this section, we apply inexact over-relaxed ADMM to solve a distributed ℓ1-norm regular-
ized logistic regression (Koh et al., 2007). The problem can be written as

min
{xj ,vj}Jj=1,z

J∑
j=1

nj∑
i=1

f j
i (xj) + λ∥z∥1 s.t. xj − z = 0, ∀j = 1, . . . , J, (29)

where f j
i (xj) = log

(
1 + exp

(
− bji

(
⟨aji ,xj⟩ + vj

)))
, J is the number of workers, nj is the

number of samples on the jth worker, aji and bji are the input and output of the ith sample
on the jth worker, respectively.

Table 1: Statistics of the datasets.

Dataset MDS RCV1

# Samples 63,904 20,242
# Features 10,000 47,236
Sparsity (%) 0.9 0.2

It is easy to verify that the objective is generally
convex instead of strongly convex. In this case, the
convergence rate of inexact over-relaxed ADMM can
be obtained from Theorem 9 as it satisfies Assump-
tion 2. In this problem, the x-minimization (4a) can
be divided into J independent problems that can be
solved in parallel. Note that the (4a) does not admit
an analytical solution due to the logistic loss. Thus, we employ the L-BFGS to solve it at
every iteration. We test two different ways to terminate the L-BFGS solver:

• Running the L-BFGS solver such that ϵk decreasing at the rate O(1/kc) with c = 1, 2, 3.

• Running the L-BFGS solver up to a fixed number of iterations c = 1, 3, 5, 7.

In our experiments, we use two dastasets: MDS (Blitzer et al., 2007) and RCV1 (Lewis
et al., 2004). Table 1 shows the statistics of two datasets. As observed, these two datasets
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Figure 1: Result of inexact over-relaxed ADMM for solving (29). From top to bottom: MDS
and RCV1. Horizontal axis denotes the number of inexact over-relaxed ADMM
iterations and vertical axis is (f(xk)− f(x⋆) + g(zk)− g(z⋆))/(f(x⋆) + g(z⋆)).

are highly sparse. Specifically, we randomly and averagely divide each dataset into J parts.
We set J = 10 and J = 4 for MDS and RCV1, respectively. In our experiments, we set
ρ = 10 and α = 1.8 for both datasets.

Figure 1 shows the results of inexact over-relaxed ADMM on the two datasets. As
observed, both strategies for terminating L-BFGS solvers lead to global convergence by
carefully choosing a reasonable value for c. As observed on both datasets, the choice of
ϵk ∼ O(1/k3) achieves the fastest convergence rate and the choice of ϵk ∼ O(1/k2) achieves
very similar performance as ϵk ∼ O(1/k3). In addition, running the L-BFGS solver with
fixed 7 iterations also provides considerably good performance. This empirically shows that
ADMM is not highly sensitive to inexact solutions of subproblems which is consistent with
our theoretical results.

6. Conclusion

In this work, we present a new convergence analysis for over-relaxed ADMM. Our work is
inspired by (Nishihara et al., 2015) but overcomes its two limitations. First, our method allows
the subproblems of ADMM can be inexactly solved. Second, we further prove the sublinear
convergence rate of inexact over-relaxed ADMM for a generally convex objective. Both
these two improvements are important for applying ADMM to machine learning problems in
practice. Our analysis works for a wide range of parameters of over-relaxed ADMM.
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