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ABSTRACT

Unsupervised domain adaptation (UDA) aims to achieve high performance within
the unlabeled target domain by leveraging the labeled source domain. Source-free
UDA, which is a more challenging UDA task, can access the pre-trained model
within the source domain. The pre-trained model, however, provides a noisy
pseudo-label; thus, source-free UDA requires robust training. In this study, we
propose a Confidence score Weighting Adaptation (CoWA), which is a simple yet
effective source-free UDA method. CoWA utilizes the Joint Model-Data Structure
(JMDS) confidence score designed for source-free UDA as a sample-wise weight.
As components of CoWA, we introduce Suppressed Cross Entropy (SCE) loss and a
weight mixup to robustly leverage the low-confidence samples. Experiment results
show that CoWA achieves a superior performance compared to other source-free
UDA methods on various UDA benchmarks including open-set and partial-set
domain adaptation. Furthermore, on several benchmarks, CoWA surpasses state-
of-the-art conventional UDA methods that use labeled source domain data.

1 INTRODUCTION

In recent years, Deep Neural Networks (DNNs) (LeCun et al., 2015) have successfully demonstrated
a high performance in various applications across diverse fields. However, if the distribution of the
training and test data are different, a significant performance degradation occurs, which is known as a
domain shift (Pan & Yang, 2009). Unsupervised Domain Adaptation (UDA) aims at mitigating the
domain shift problem. It makes use of both fully annotated source domain data and unlabeled target
domain data assuming that the two domains have different data distributions. The objective of a UDA
task is to obtain a high target performance using the two domains jointly without accessing the target
label. UDA has been developed through many different methods, most of which can be classified
into two main paradigms: minimizing the discrepancy between the source and target domains (Kang
et al., 2019; Long et al., 2015; 2017) and using adversarial training to obtain domain-invariant
features (Ganin & Lempitsky, 2015; Tzeng et al., 2017; Xu et al., 2020).

All conventional UDA methods assume the availability of both the source data and their corresponding
labels. However, this may be impractical for the following reasons. First, increasing concerns
regarding the privacy and security of their data can force companies to release only the model and
not the data. Second, many resources are required to train a model when the number of source data
are much greater than the number of target data. For these reasons, source-free UDA has recently
been studied (Li et al., 2020; Liang et al., 2020a). Source-free UDA assumes that we can only access
a model pre-trained using the labeled source domain data instead of accessing the source data itself.
In other words, the aforementioned UDA paradigms cannot be applied to source-free UDA.

The pre-trained source model provides noisy pseudo-labels for the target data. Existing source-free
UDA methods regard noisy pseudo-labels as a minor problem. For example, Liang et al. (2020a)
proposed naive self-supervised pseudo-labeling which is a variant of weighted k-means clustering.
This approach utilizes a weighted mean using the prediction of the model to obtain new centroids.
Although this can help mitigate the noisy pseudo-label problem, it has little overall effect. To the best
of our knowledge, this is the first work to regard the noisy pseudo-label problem as a major problem
in source-free UDA and propose a method to solve it.

We propose a novel yet simple source-free UDA method, called Confidence score Weighting Adapta-
tion (CoWA) which utilizes a confidence score as a sample weight. CoWA is motivated based on
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the following evidence. First, by definition, samples with high confidence scores are more likely to
have correct pseudo-labels than samples with low-confidence scores (Geifman et al., 2018). Second,
each sample has a different confidence score for its pseudo-label. Third, a model is trained robustly
with noisy labels when easy samples are of higher importance (Ren et al., 2018). In experiments,
we confirm that sample reweighting with a confidence score shows better performance than train-
ing without sample reweighting. Moreover, the performance is increased when the reliability of a
confidence score increases.

CoWA uses a Joint Model-Data Structure (JMDS) confidence score and Suppressed Cross Entropy
(SCE) loss to jointly utilize the information of the model and data structure. The JMDS score
is computed offline using two probabilities: model- and data structure-based probabilities. To
compensate for the offline property of the JMDS, the SCE loss considers the online model knowledge.
Moreover, to robustly participate in low-confidence samples during training, we introduce a weight
mixup, which is a variant of a mixup (Zhang et al., 2017). It mixes the sample weight and considers
the confidence score of the mixed images. Finally, we add a data augmentation to CoWA for jointly
learning the information of the global- and local-views of the raw image.

We evaluated CoWA on various public UDA benchmarks namely, Office-31 (Saenko et al., 2010),
Office-Home (Venkateswara et al., 2017), and VISDA-2017 (Peng et al., 2017). CoWA achieved the
best performance on source-free UDA settings for all three benchmarks. Although CoWA is a source-
free UDA method, it obtained the best performance among all UDA methods, including conventional
UDA methods that directly use fully annotated source data, on the medium-sized Office-Home and
large-sized VISDA-2017 datasets. Moreover, CoWA achieved a state-of-the-art performance not only
under general UDA setting, but also in open-set and partial-set UDA with little modification during
implementation. Ablation studies demonstrated the effectiveness of the each CoWA component.

We summarize the contributions of our study as follows:

• To the best of our knowledge, this study is the first work to overcome the noisy pseudo-label
problem of the pre-trained model in source-free UDA.

• We propose a novel source-free UDA method, CoWA, using the JMDS score designed for
source-free UDA as a sample weight to robustly learn with noisy pseudo-labels.

• We achieved a state-of-the-art performance on source-free UDA settings for three UDA
benchmarks using CoWA, and even obtained the best performance in terms of the average
accuracy among all UDA methods on the Office-Home, and VisDA-2017.

2 RELATED WORK

2.1 UNSUPERVISED DOMAIN ADAPTATION

Conventional UDA is accessible to labeled source data during training. Therefore, it can extract
the full source domain information. Many methods have been proposed to obtain domain-invariant
features. Some methods (Kang et al., 2019; Long et al., 2015; 2017; Saito et al., 2018; Sun & Saenko,
2016; Tzeng et al., 2014) minimize the discrepancies between domains. Long et al. (2015) used
Maximum Mean Discrepancy (MMD), whereas Kang et al. (2019) applied Contrastive Domain
Discrepancy (CDD) to minimize the intra-class discrepancy and maximize the inter-class margin. An-
other approach to obtaining domain-invariant features is to use adversarial loss (Ganin & Lempitsky,
2015; Long et al., 2018; Pei et al., 2018; Tzeng et al., 2017; Zhao et al., 2018). Ganin & Lempitsky
(2015), motivated by Goodfellow et al. (2014), first introduced the adversarial approach that learns
the feature extractor to fool the domain discriminator which domain the feature comes from. Pei et al.
(2018) used multiple domain discriminators corresponding to each class to provide more class-aware
information in domain-invariant features.

Source-free domain adaptation is a more challenging UDA setting than the conventional UDA setting,
where only a source-trained model can be used. Thus, the existing methods are inapplicable to
source-free UDA. Collaborative Class Conditional Generative Adversarial Networks (3C-GAN) (Li
et al., 2020) are based on a time-consuming target-style image generation through a conditional GAN,
which requires auxiliary networks. Source HypOthesis Transfer (SHOT) (Liang et al., 2020a) matches
the target feature to a fixed pre-trained source classifier fine-tuning the feature extractor. SHOT
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applies self-supervised pseudo-labeling (SSPL) and uses information-maximization loss to balance
the pseudo-label and avoid a trivial solution. However, SHOT cannot fully extract the knowledge
of the target feature structure because it uses SSPL which does not consider the covariance of each
dimension on the feature space and cluster density. In this study, we use Gaussian Mixture Modeling
(GMM) on the feature space to extract the knowledge of the target data structure.

2.2 LEARNING FROM NOISY LABELS

Learning from noisy labels has become an important task in modern deep learning approaches. As
described by Mirzasoleiman et al. (2020), such learning has been improved by various approaches:
noise transition matrix estimation (Goldberger & Ben-Reuven, 2017; Patrini et al., 2017), a robust loss
function design (Ghosh et al., 2017; Van Rooyen et al., 2015; Wang et al., 2019), label correction (Ma
et al., 2018; Reed et al., 2014; Tanaka et al., 2018), regularization techniques (Cao et al., 2020; Zhang
et al., 2017; 2020), and sample selection or sample reweighting (Chen et al., 2019; Han et al., 2018;
Ren et al., 2018). However, learning from noisy labels leads to supervised learning. In our source-free
UDA setting, we cannot directly use these methods. To reflect the characteristics of each sample well,
we adopted a reweighting training sample scheme for our proposed method.

Sample reweighting has long been actively studied for a long time in various fields (Freund &
Schapire, 1997; Kahn & Marshall, 1953; Lin et al., 2017; Malisiewicz et al., 2011). In general, hard
examples with high importance are used to efficiently train the model. However, this is beneficial
when a clean label is guaranteed. If noise or outliers exist, the training of easy samples with high
importance is more beneficial. Self-paced learning (Kumar et al., 2010) obtains sample weights by
encouraging easier sample learning first. Gong et al. (2016) theoretically showed that self-paced
learning is robust to noisy data. In our study, we leverage a confidence score to detect an easy sample
and use it as a sample weight.

2.3 CONFIDENCE SCORE

We deal with a confidence score for a non-Bayesian multi-class classification problem. Geifman et al.
(2018) divided confidence scores into two main tasks; ordinal ranking and probability calibration.
Ordinal ranking is used for selective classification (Geifman & El-Yaniv, 2017; Lakshminarayanan
et al., 2016; Mandelbaum & Weinshall, 2017; Nair et al., 2020), which is a task that classifies
samples according to their confidence level for labels to avoid low-confidence samples during training.
Probability calibration (Guo et al., 2017; Heo et al., 2018; Kumar et al., 2018; Seo et al., 2018) aims
at providing a score that accurately estimates the true correctness likelihood. In this study, we focus
on ordinal ranking because our goal is to obtain high accuracy on the target data and not to obtain a
calibrated score. We present for the first time source-free UDA method using a confidence score.

Geifman et al. (2018) proposed a consensus on how to measure the performance of the confidence
score of ordinal ranking. They introduced a risk-coverage curve and proposed a normalized metric,
i.e., excess Area Under the Risk-Coverage Curve (E-AURC), as a measurement tool for the confidence
score function of a label. In addition, Ding et al. (2020) compared the Area Under Receiver Operating
Characteristic curve (AUROC), Area Under Precision-Recall curve (AUPR), and AURC instead of
E-AURC. They claimed that AURC is the only reliable measurement when the underlying models
are the same. Based on AURC with 0/1 loss, we compared our proposed confidence score with the
previously used confidence scores.

3 CONFIDENCE SCORE WEIGHTING ADAPTATION (COWA)

In this section, we describe our method, Confidence score Weighting Adaptation (CoWA), for source-
free domain adaptation. CoWA consists of Joint Model-Data Structure (JMDS) score, Suppressed
Cross Entropy (SCE) loss, weight mixup, and data augmentation. An overview of CoWA is shown
in Figure 1. We performed a K-way image classification task. In source-free UDA, we can only
use the target data Xt = {xti}

nt
i=1 whose corresponding ground truth label, Yt = {yti}

nt
i=1, which

is inaccessible during the learning stage. A pre-trained model M is trained using labeled source
data Xs = {xsi .ysi }

ns
i=1. Here, M is composed of a feature extractor f : Xt → Rd and classifier

g : Rd → RK where d is the dimension of the feature space. We aim to obtain a good target model
Mt by fine-tuning M using a pseudo-label Ŷt = {ŷti}

nt
i=1.
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Figure 1: An overview of CoWA. During the evaluation, we compute JMDS scores for all fea-
tures. Then, during training, we leverage the JMDS scores with SCE loss, weight mixup, and data
augmentation to update the model M .

3.1 JOINT MODEL-DATA STRUCTURE (JMDS) SCORE

Following Geifman et al. (2018), we define the confidence score function κ(xi, ŷi) for ordinal ranking.
The confidence score function κ(xi, ŷi) should give a high score for more likely correct samples.

κ(xi, ŷi) ≤ κ(xj , ŷj)⇒ Pr[ŷi = yi] ≤ Pr[ŷj = yj ] with a high probability of 1− δ, (1)

where 0 ≤ δ ≤ 1. If κ1(·) is a better confidence score function than κ2(·), then δ1 < δ2.

Many previous studies have used confidence scores to filter out low-confidence samples. However, as
shown in Figure 2, commonly used confidence scores namely, the maximum probability (Maxprob),
(negative) entropy, and cosine similarity (Kang et al., 2019; Mandelbaum & Weinshall, 2017) have
limitations. We define the scores to be within [0, 1]:

pM (xti) = softmax
(
g(f(xti))

)
where softmax(z)c =

ezc

ΣK
c′=1e

zc′
, Maxprob(xti) = max

c
pM (xti)c,

Entropy(xti) = 1 +
ΣK

c=1pM (xti)c log pM (xti)c

logK
, Cosine(xti) =

1

2
(1 +

〈xti, Cŷt
i
〉

‖xti‖‖Cŷt
i
‖

),

(2)
where pM is the model prediction and Cŷt

i
is the feature cluster center of the class ŷti . Figure 2a

shows the limitations of the Maxprob and entropy scores. Because we use noisy pseudo-labels, it is
desirable for easy samples to obtain high confidence scores (Ren et al., 2018). Based on the given
probability, the Maxprob and entropy scores do not reflect the confidence properly, as shown in
Figure 2a. Figure 2b shows the weakness of the cosine score. The dark regions in Figure 2b have the
same confidence levels based on the cosine score. However, when the data structure is considered,
the dark blue region should have a higher confidence level than the dark red region.

We need to obtain more reliable confidence score that overcomes the aforementioned limitations.
To overcome the problem shown in Figure 2b, we apply Gaussian Mixture Modeling (GMM) on
the feature space f(Xt) to consider the covariance of the feature space and data structure. After
conducting the GMM, we obtain the log-likelihood log pdata(x

t
i)c. Details of this are provided in the

Appendix. To address the weakness shown in Figure 2a, we propose a Log Probability Gap (LPG).
Given the probability p(x) =

(
p(x)1, p(x)2, · · · , p(x)K

)
where p(x)c = p(ŷ = c|x), LPG is the

scaled minimum gap from the pseudo-labeled element to those of the log probability log pdata(x)
obtained by the GMM on the target feature space. First, we define MINGAP for each sample and the
minimum gap from the pseudo-labeled element of the corresponding log probability.

MINGAP(xti, ŷ
t
i) = log pdata(x

t
i)ŷt

i
−max

a
log pdata(x

t
i)a, where a ∈ {1, 2, · · · ,K}, a 6= ŷti . (3)
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Figure 2: (a) An example of the limitations of Maxprob and Entropy scores. Red indicates a high
confidence, blue means low-confidence, and green means the same confidence. MINGAP shows
better reliability in this case. (b) An example of the weakness of the Cosine score. Based on the
cosine distance, (x1c1 , x

2
c1) has the same confidence-level with (x1c2 , x

2
c2). However, (x1c1 , x

2
c1) is

more confident when the data structure is considered.

LPG is the normalized MINGAP, the value of which is between 0 and 1,

LPG(xti, ŷ
t
i) =

MINGAP(xti)

maxj MINGAP(xtj , ŷ
t
j)
, i, j ∈ {1, 2, · · · , nt}. (4)

LPG provides a high score for a sample far from the decision boundary based on GMM: thus, LPG
can complement the weakness of the other scores.

The confidence score Probability of Pseudo-label (PPL) is also used to include the knowledge of
model into the confidence score. PPL is the model probability of the corresponding pseudo-label.

PPL(xti, ŷ
t
i) = pM (xti)ŷt

i
. (5)

The Joint Model-Data Structure (JMDS) score is the product of the LPG and PPL:

JMDS(xti, ŷ
t
i) = LPG(xti, ŷ

t
i) · PPL(xti, ŷ

t
i). (6)

The JMDS score contains data-structure-wise knowledge from the LPG and model-wise knowledge
from the PPL. In general, only one type of knowledge is considered for the existing scores. To the
best of our knowledge, this is the first study proposing a confidence score jointly using the knowledge
of the data structure and model. The experiment results regarding the superiority of the JMDS score
compared to the other scores are presented in Section 4.3.

Why is it better to consider PPL and LPG together in source-free UDA? In general, the model
fits the training data, and thus the model- and data-structure-wise knowledge are equivalent. However,
in the source-free UDA, the pre-trained source model fits the source which is different from the
training data. Therefore, the model- and data-structure-wise knowledge are different, and the learning
process should consider both types of knowledge together. With CoWA, the PPL scores represent
the model and source-wise knowledge, whereas the LPG scores represent the data-structure- and
target-wise knowledge. Consequently, to extract both the source and target domain knowledge, we
should consider the PPL and LPG scores together.

3.2 SUPPRESSED CROSS ENTROPY (SCE) LOSS

We conducted GMM on the feature space f(Xt) and computed the JMDS score of the samples. Al-
though the JMDS score can be obtained for every iteration, it requires heavy computation. Therefore,
we compute the JMDS score offline, which ignores the online model information. Instead, to utilize
online model information, we newly designed a Suppressed Cross Entropy (SCE) loss which is used
instead of Cross Entropy (CE) loss as follows:

LSCE(xti, ŷ
t
i) = −pM (xti)ŷt

i
log pM (xti)ŷt

i
,

∇LSCE(xti)ŷt
i

= −pM (xti)ŷt
i
∇LCE(xti)ŷt

i
= −pM (xti)ŷt

i
(1− pM (xti)ŷt

i
).

(7)
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Table 1: Accuracy (%) on Office-31 dataset for UDA and source-free UDA methods (ResNet-50).

Task Method A→D A→W D→A D→W W→A W→D Avg.

SF-UDA

SFIT (Hou & Zheng, 2021) 89.9 91.8 73.9 98.7 72.0 99.9 87.7
SHOT (Liang et al., 2020a) 94.0 90.1 74.7 98.4 74.3 99.9 88.6
3C-GAN (Li et al., 2020) 92.7 93.7 75.3 98.5 77.8 99.8 89.6
CoWA (worst) 94.6 96.0 75.4 98.6 76.1 99.4 90.0
CoWA (average) 94.2 95.7 77.3 98.4 78.0 99.8 90.6

UDA

ResNet (He et al., 2016) 68.9 68.4 62.5 96.7 60.7 99.3 76.1
CAN (Kang et al., 2019) 95.0 94.5 78.0 99.1 77.0 99.8 90.6
RSDA-MSTN (Gu et al., 2020) 95.8 96.1 77.4 99.3 78.9 100 91.1
FixBi (Na et al., 2020) 95.0 96.1 78.7 99.3 79.4 100 91.4

Note that pM (xti)ŷt
i

in front of the log term is not trainable because we stop the gradient for it. The
SCE loss acts as another confidence score weighting method based on the online model probability,
whereas the PPL considers offline model probability. The gradient of SCE is a quadratic function in
which the maximum of |∇LSCE(xti)ŷt

i
| is reached at pM (xti)ŷt

i
= 0.5. By contrast, |∇LCE(xti)ŷt

i
| is

maximized at pM (xti)ŷt
i

= 0.0. In other words, SCE suppresses the effect of online low-confidence
samples compared to CE.

CoWA adopts a sample reweighting scheme and thus, uses the SCE loss multiplied by the JMDS
score,

LJMDS-SCE(xti, ŷ
t
i) = −JMDS(xti, ŷ

t
i) · pM (xti)ŷt

i
log pM (xti)ŷt

i
. (8)

3.3 WEIGHT MIXUP

The direct use of low-confidence samples with standard training leads to a loss of robustness against
noisy pseudo-labels. To robustly learn using low-confidence samples, the sample reweighting scheme
suppresses the low-confidence samples whose confidence scores are close to zero and who rarely
participate in the training. Therefore, in this case, information provided by the target data distribution
cannot be fully used. In this section, we propose a technique called a weight mixup, which is a variant
of a mixup (Zhang et al., 2017), to enable robust learning even when involving more low-confidence
samples during learning to utilize most of the information provided by the target data distribution.

A mixup mixes the images and corresponding labels. All mixed samples have the same weight for
training. However, in the sample reweighting scheme, the sample has its own confidence score as
a weight for training. This means that mixed images that use low-confidence samples for mixing
should have a lower sample weight for mixup training. Therefore, the proposed weight mixup mixes
the corresponding sample weight.

x̃ti = γxti + (1− γ)xtj ,

ỹti = γŷti + (1− γ)ŷtj ,

w(x̃ti) = γ · JMDS(xti, ŷ
t
i) + (1− γ) · JMDS(xtj , ŷ

t
j),

(9)

where γ ∼ Beta(α, α), for α ∈ (0,∞). The loss function of the weight mixup is modified as follows:

Lmixup(x̃ti, ỹ
t
i) = −w(x̃ti) · (γ · log pM (x̃ti)ŷt

i
+ (1− γ) · log pM (x̃ti)ŷt

j
). (10)

Weight mixup makes the training robust in the following manner: A mixture of low- and high-
confidence samples will produce a sample with mid-level confidence, which will robustly and
effectively participate in the learning. By contrast, when low-confidence samples are mixed together,
the resulting sample will also be suppressed.

3.4 DATA AUGMENTATION

Data augmentation is a popular choice for various tasks such as supervised and unsupervised learn-
ing (Caron et al., 2020; Chen et al., 2020; Grill et al., 2020; Henaff, 2020; Krizhevsky et al., 2012).
In our study, we first generate xti, which is a transformed version of a raw image. We then create
x′

t
i, which is the transformed image of xti. Because the transformation we used has a RandomCrop

function, x′ti emphasizes more local information on the raw image than xti. In addition, x′ti shares the
same JMDS score as xti.
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Table 2: Accuracy (%) on Office-Home for UDA and source-free UDA methods (ResNet-50).

Task Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

SF-UDA

SHOT (Liang et al., 2020a) 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
BAIT (Yang et al., 2020) 57.4 77.5 82.4 68.0 77.2 75.1 67.1 55.5 81.9 73.9 59.5 84.2 71.6
CoWA (worst) 58.3 77.0 81.0 68.4 81.0 80.3 68.1 57.1 81.4 72.8 59.9 84.7 72.5
CoWA (average) 58.9 78.1 81.1 69.3 81.0 80.3 67.8 57.7 81.7 72.5 61.7 84.5 72.9

UDA
ResNet-50 (He et al., 2016) 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
RSDA-MSTN (Gu et al., 2020) 53.2 77.7 81.3 66.4 74.0 76.5 67.9 53.0 82.0 75.8 57.8 85.4 70.9
FixBi (Na et al., 2020) 58.1 77.3 80.4 67.7 79.5 78.1 65.8 57.9 81.7 76.4 62.9 86.7 72.7

Algorithm 1 presents the pseudo-code for the entire CoWA procedure. The total loss of the CoWA is
as follows:

LCoWA(xti, ŷ
t
i) = LJMDS-SCE(xti, ŷ

t
i) + λaug · LJMDS-SCE(x′

t
i, ŷ

t
i) + λmixup · Lmixup(x̃t, ỹt). (11)

4 EXPERIMENTS

4.1 SETUP

Algorithm 1: Training procedure for CoWA
Require :Unlabeled target data Xt = {xti}nt

i=1, the model
M = g ◦ f pre-trained by source data
Xs = {xsi , ysi }ns

i=1, transformation T (·).
epoch← 0 ;
while epoch < max_epoch do

Conduct Gaussian Mixture Modeling on f(Xt) and
obtain log probability log pdata(Xt) ;

Obtain pseudo-label Ŷt = {ŷti}nt
i=1 based on

log pdata(Xt);
Compute JMDS(Xt, Ŷt) score using

Equation (4), (5), (6);
for i← 1 to iterations_per_epoch do

Sample mini-batches of the target data (xt, ŷt);
Get transformed target data x′t = T (xt);
Obtain x̃, ỹ, w̃ using Equation (9);
Compute LCoWA using Equation (11);
Update the model M with SGD;

end
epoch← epoch + 1;

end

We evaluated our proposed method,
CoWA, on three public UDA bench-
marks. The first, Office-31 (Saenko et al.,
2010), is a commonly used small-sized
standard UDA benchmark that has three
domains from different sources, i.e., im-
ages collected from the Amazon website
(A), a Web camera (W), and a DSLR
camera (D). All three domains have 31
object classes of office supplies, and
there are a total of 4,110 images. The sec-
ond, Office-Home (Venkateswara et al.,
2017), is a challenging medium-sized
UDA benchmark containing Artistic im-
ages (Ar), Clip Art (Cl), Product images
(Pr), and Real-World images (Rw) do-
mains. All four domains have 15,500
images of 65 object classes. The third,
VISDA-2017 (Peng et al., 2017), is a
challenging large-sized UDA benchmark
which contains a training dataset with
152,397 synthetic data and a test dataset with 55,388 real images with 12 categories. Implementation
details are provided in the Appendix.

4.2 COWA EVALUATION

We evaluated the target model Mt trained by CoWA using source-free UDA (Hou & Zheng, 2021;
Li et al., 2020; Liang et al., 2020a; Yang et al., 2020) and various UDA baseline methods (Gu
et al., 2020; Kang et al., 2019; Na et al., 2020) for comparison. Note that our task is source-free
UDA, which is a more challenging task than conventional UDA which uses the source data during
training. The performance of the CoWA depends on its pre-trained source model. Thus, we trained
five different source models and reported the worst, and average performances to observe how the
CoWA performance actually varies depending on the pre-trained model. Table 1, 2, and 3 show the
classification accuracies for all tasks in each dataset. Here, SF-UDA indicates source-free UDA
methods and UDA indicates conventional UDA methods. The best accuracy is indicated in bold, and
the second-best accuracy is underlined.

In common, the worst case among the five CoWA trials achieved the best performance among the
source-free UDA methods on all three UDA benchmarks. In source-free UDA, CoWA improved
1.0% point on the Office-31 dataset, 1.1% point on the Office-Home dataset, and 5.3% point on
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Table 3: Accuracy (%) on VisDA-2017 for UDA and source-free UDA methods (ResNet-101).

Task Method ai
rp

la
ne

bi
cy

cl
e

bu
s

ca
r

ho
rs

e

kn
if

e
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ot
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cy

cl
e

pe
rs
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an

t

sk
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eb
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tr
ai

n

tr
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Average

SF-UDA

SFIT (Hou & Zheng, 2021) 94.3 79.0 84.9 63.6 92.6 92.0 88.4 79.1 92.2 79.8 87.6 43.0 81.4
SHOT (Liang et al., 2020a) 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
3C-GAN (Li et al., 2020) 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
CoWA (worst) 96.3 90.7 88.2 65.2 97.4 98.0 89.5 86.4 95.4 95.8 91.8 62.4 87.7
CoWA (average) 96.8 90.3 87.0 67.4 97.2 96.6 90.4 87.3 95.6 95.5 91.8 62.5 88.2

UDA
ResNet-101 (He et al., 2016) 72.3 6.1 63.4 91.7 52.7 7.9 80.1 5.6 90.1 18.5 78.1 25.9 49.4
CAN (Kang et al., 2019) 97.0 87.2 82.5 74.3 97.8 96.2 90.8 80.7 96.6 96.3 87.5 59.9 87.2
FixBi (Na et al., 2020) 96.1 87.8 90.5 90.3 96.8 95.3 92.8 88.7 97.2 94.2 90.9 25.7 87.2

Table 4: Accuracy (%) on Office-Home for ODA and PDA (ResNet-50).

Task (ODA) Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

SF-UDA SHOT (Liang et al., 2020a) 64.5 80.4 84.7 63.1 75.4 81.2 65.3 59.3 83.3 69.6 64.6 82.3 72.8
CoWA 63.6 80.1 83.9 67.6 75.4 84.3 66.4 61.6 84.4 73.2 63.6 83.8 74.0

UDA
ResNet-50 (He et al., 2016) 53.4 52.7 51.9 69.3 61.8 74.1 61.4 64.0 70.0 78.7 71.0 74.9 64.3
STA (Liu et al., 2019) 58.1 53.1 54.4 71.6 69.3 81.9 63.4 65.2 74.9 85.0 75.8 80.8 69.5
PGL (Luo et al., 2020) 61.6 77.1 85.9 68.8 72.0 82.8 72.2 58.4 82.6 78.6 65.0 83.0 74.0

Task (PDA) Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

SF-UDA SHOT (Liang et al., 2020a) 64.8 85.2 92.7 76.3 77.6 88.8 79.7 64.3 89.5 80.6 66.4 85.8 79.3
CoWA 71.2 89.4 91.1 75.9 79.7 91.6 80.4 71.3 93.0 83.6 72.8 89.3 82.4

UDA
ResNet-50 (He et al., 2016) 46.3 67.5 75.9 59.1 59.9 62.7 58.2 41.8 74.9 67.4 48.2 74.2 61.3
SAFN (Xu et al., 2019) 58.9 76.3 81.4 70.4 73.0 77.8 72.4 55.3 80.4 75.8 60.4 79.9 71.8
BA3US (Liang et al., 2020b) 60.6 83.1 88.4 71.8 72.8 83.4 75.5 61.6 86.5 79.3 62.8 86.1 76.0

the VISDA-2017 dataset in terms of the average accuracy. It indicates that the larger the dataset
size, the greater the effectiveness of CoWA. Moreover, the average accuracies of CoWA trials on
the Office-Home and VISDA-2017 dataset achieved the best performance among all UDA methods
including conventional UDA methods. CoWA improved 0.2% point on the Office-Home dataset, and
1.0% point on the VISDA-2017 dataset compared to state-of-the-art UDA methods.

CoWA can also be easily extended to other UDA tasks: open-set DA (ODA), and partial-set DA
(PDA). ODA assumes that the target domain contains all classes of the source and additional private
unknown classes. PDA assumes that the source domain contains all classes of the target. The
experiments of ODA and PDA follow the protocols of the Office-Home dataset in Liang et al. (2020a).
Details are provided in Appendix. Table 4 provides the result of additional experiments. CoWA
achieved the best performance on both ODA and PDA tasks.

4.3 ABLATION STUDY AND DISCUSSION

We conducted ablation studies for the components of CoWA. The results are reported in Table 5. The
upper part treats a sample reweighting scheme with JMDS confidence score, and the lower part treats
SCE, weight mixup, and data augmentation.

Discussion of sample reweighting scheme and JMDS score We introduced the JMDS score as a
reliable confidence score. To prove its efficacy, we compared the JMDS score with other scores (Kang
et al., 2019; Mandelbaum & Weinshall, 2017). The pseudo-label of Maxprob and Entropy scores is
given by the index of maximum model probability argmaxc pM (xti)c following naive PL (Lee et al.,
2013). Pseudo-label of Cosine is given by SSPL, which is proposed by Liang et al. (2020a), and
GMM. SSPL uses the modified K-means clustering to obtain pseudo-labels.

To evaluate the confidence score, we measured the AURC (Ding et al., 2020) using a 0/1 loss function
which returns a value of 1 if the pseudo-label and ground truth label of the sample are different, and
returns the value of 0 if they are the same. The risk-coverage curve is first proposed by Geifman et al.
(2018). After obtaining the high-confidence set, Xh

t = {xti|κ(xti, ŷ
t
i) > τ}, where τ is a threshold,

risk is the average empirical loss of Xh
t , and the coverage means |Xh

t |/|Xt|. A lower AURC value
indicates the better reliability since it implies a lower risk for the same coverage. When 0/1 loss is
applied, a high AURC indicates a low correctness of the pseudo-label.
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Figure 3: (a) The Risk-Coverage Curve and (b) the AURC value of various strategies.

The experimental results are shown in Figure 3. We used the same pre-trained source model of the
VISDA-2017 dataset for all strategies. We first compared GMM pseudo-labeling to naive PL and
SSPL at a coverage of 1.0 in Figure 3a, which means empirical risk for all samples. GMM showed
the lowest risk compared to other pseudo-labeling methods. This reveals that pseudo-labeling with
GMM is better than naive PL and SSPL. Next, in Figure 3b, we can quantitatively compare the
various strategies based on the AURC value. Using PPL or LPG score alone is worse than JMDS
score, which is a product of two scores. This reveals that jointly using the knowledge of the model
and data structure is better than considering only one aspect.

Table 5: Ablation results (%) of Office-31 dataset
from the same source model

Ablation study Avg

Source pre-trained model (not train) 78.6
Source pre-trained model + GMM PL (not train) 83.4
Naive PL + Standard training + CE 80.6
Naive PL + Maxprob weighting + CE 83.6
GMM PL + PPL weighting + CE 87.7
GMM PL + LPG weighting + CE 89.5
GMM PL + JMDS weighting + CE 90.1

GMM PL + JMDS + CE + Weight Mixup 90.0
GMM PL + JMDS + CE + Aug 89.7
GMM PL + JMDS + CE + Weight Mixup + Aug 90.5
GMM PL + JMDS + SCE + Weight Mixup + Aug (CoWA) 90.9

Then does sample reweighting scheme with a re-
liable confidence score really perform better? As
shown in the upper part of Table 5, the Maxprob
sample reweighting with naive PL achieves 3%
point higher accuracy than the standard training
with naive PL. Moreover, sample reweighting
with the JMDS score, which is the best score
based on AURC, shows the best performance
among various strategies and even surpasses the
state-of-the-art source-free UDA methods.

Discussion of SCE loss, weight mixup, and
data augmentation As shown in the lower
part of Table 5, we obtained the best performance when the SCE loss, weight mixup, and data
augmentation are all applied. This clearly shows that each component is essential for CoWA training.
First, as discussed in Section 3.2, SCE loss suppresses online low-confidence samples. Second,
weight mixup produces samples near the decision boundary based on GMM because γ is near 0.5
and α in our experiments is high. Third, data augmentation creates a transformed image that contains
more local-view information of the original image. The three components of CoWA play orthogonal
roles and thus the interplay among these three components leads to the superior results of CoWA.

5 CONCLUSION AND FUTURE WORK

In this study, we propose CoWA, a novel source-free UDA method that applies sample reweighting
scheme to robustly learn with noisy pseudo-labels. CoWA uses the JMDS score designed for source-
free UDA to extract both model- and data-structure-wise knowledge. The SCE loss and weight mixup
are added to robustly leverage the low-confidence samples, and data augmentation enhances the
feature discriminative power. Experiments show that the proposed CoWA achieves a state-of-the-
art performance on various UDA benchmarks. However, the performance of the CoWA varies by
approximately 1% point depending on the pre-trained source model, which must be resolved. In a
future study, we will consider more stable training that is less affected by the pre-trained model and
apply a strategy for choosing which model is more transferable.
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A GMM

We conduct Gaussian Mixture Modeling (GMM) on the feature space f(Xt) to consider the covari-
ance of the feature space and data structure. Using GMM, we can obtain the parameters µc,Σc,
andπc and log-likelihood

log p(xti|µc,Σc) = −1

2
(d log 2π + log |Σc|+ (f(xti)− µc)

T Σ−1c (f(xti)− µc)), (12)

where πc, µc and Σc are the mixing coefficient, mean vector and covariance matrix of the class
c ∈ {1, 2, · · · ,K} respectively. Now, we can obtain the log probability of xi for c:

log pdata(x
t
i)c =

log πc(x
t
i) + log p(xti|µc,Σc)

Σc′{log πc′(xti) + log p(xti|µc′ ,Σc′)}
where c, c′ ∈ {1, 2, · · · ,K}. (13)

B MORE IMPLEMENTATION DETAILS

B.1 DATASETS

First, Office-31 dataset was proposed by Saenko et al. (2010). They collected images from website
(www.amazon.com) or themselves. Second, Office-Home dataset was proposed by Venkateswara
et al. (2017). The Art (Ar) and Real-World (Rw) domains were created by public domain images
from websites like www.deviantart.com and www.flickr.com. The Product (Pr) domain
images were collected from website www.amazon.com and the Clipart (Cl) images were collected
from multiple clipart websites. Lastly, VISDA-2017 dataset was proposed by Peng et al. (2017).
The training domain images were collected from CAD-synthetic Images, the validation domain was
created by MS COCO dataset, and the testing domain images were gathered from YouTube Bounding
Boxes (YT-BB) dataset. All three datasets were collected from public data, so they do not contain
personally identifiable information or offensive content.

Table 6: The license of datasets from https://paperswithcode.com/datasets.

Dataset License

Office-31 Unknown
Office-Home Custom (non-commercial research and educational purposes)
VISDA-2017 Custom

B.2 RESOURCES FOR EXPERIMENTS

We used a single GeForce RTX-2080TI for all experiments. Table 7 shows the spent time for each
task. The time to create the pre-trained source model is excluded. A training time for CoWA depends
on target dataset and network architecture. Therefore, the source dataset is not indicated in the table.

Table 7: The times spent on each task.

Dataset Task Times

Office-31 · → A 39m
Office-31 · → D 12m
Office-31 · →W 14m
Office-Home · → Ar 22m
Office-Home · → Cl 37m
Office-Home · → Pr 37m
Office-Home · → Rw 52m
VISDA-2017 T→ V 6h 30m

B.3 TRANSFORMATIONS

We apply the transform used in Liang et al. (2020a). During CoWA training, Resize(256, 256),
RandomCrop(224), and RandomHorizontalFlip() functions in Pytorch are used sequentially.
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B.4 ODA AND PDA IMPLEMENTATION

We follow the protocols in Liang et al. (2020a) on the Office-Home dataset which has 65 classes.
ODA assumes first 25 source classes and 65 target classes. PDA assumes 65 source classes and first
25 target classes. For ODA, we follow the technique in SHOT that filters out a set of samples which
has a high entropy value. For PDA, we should filter out absent classes. Therefore, we propose a
technique to filtering classes. First, run EM iteration once. Second, filter out the founded classes
which have a smaller number of samples than a threshold. Finally, iteratively run aforementioned
steps until converges.

C MORE EXPERIMENTAL RESULTS

C.1 THE MEAN AND STANDARD DEVIATION

Table 8 shows the mean and standard deviation of the performance of CoWA. We conducted five
experiments with different random seeds. The mean value is the same as Table 1, 2, 3 in Section 5.

Table 8: The mean accuracy (%) and standard deviation of it on Office-31 dataset.

Dataset mean±std

Office-31 90.6 ± 0.6
Office-Home 72.9 ± 0.3
VISDA-2017 88.2 ± 0.4

C.2 EXPERIMENTS ABOUT WEIGHT MIXUP

The effectiveness of a weight mixup is shown in Table 9. Note that the other components except
for the weight mixup are fixed for this experiment. The weight mixup boosts the average accuracy
on Office-31 dataset more than the mixup Zhang et al. (2017). Moreover, the table shows that the
performance of CoWA boosts when a mixup coefficient, α, is getting larger. It reveals that creating
samples near decision boundary is beneficial for CoWA training.

Table 9: The experimental results (%) about weight mixup on Office-31 dataset.

α Avg.

Mixup

0.5 87.3
1.0 87.5
4.0 88.7
16.0 89.0

Weight mixup

0.5 90.1
1.0 90.3
4.0 90.4

16.0 (CoWA) 90.6

C.3 ADDITIONAL JMDS SCORE EVALUATIONS

Table 10 shows the results of the JMDS confidence score evaluation. The experiments demonstrate
that the JMDS confidence score obtains the best performance based on AURC in most cases.

C.4 ABLATION STUDIES ON OTHER DATASETS

We conduct more ablation studies for other datasets, Office-Home and VISDA-2017. Table 11 shows
the results of the average accuracy with five trials. Both of the datasets show the best performance
when using all components of CoWA. Note that the performance of GMM PL + JMDS + CE strategy
is also the best among source-free UDA methods.
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Table 10: Evaluations of the JMDS score based on AURC.

Dataset Task Naive PL+Maxprob Naive PL+Entropy SSPL+Cosine GMM+Cosine GMM+PPL GMM+LPG GMM+JMDS

Office-31

A→D 0.047 0.051 0.018 0.031 0.039 0.033 0.033
A→W 0.074 0.081 0.034 0.045 0.059 0.042 0.044
D→A 0.158 0.165 0.140 0.130 0.131 0.127 0.115
D→W 0.007 0.008 0.009 0.009 0.005 0.004 0.004
W→A 0.157 0.167 0.107 0.108 0.132 0.120 0.113
W→D 0.002 0.002 0.001 0.001 0.001 0.001 0.001

Office-Home

Ar→Cl 0.308 0.316 0.296 0.274 0.278 0.265 0.256
Ar→Pr 0.140 0.145 0.100 0.105 0.116 0.125 0.104
Ar→Rw 0.088 0.095 0.086 0.086 0.076 0.086 0.068
Cl→Ar 0.238 0.249 0.200 0.194 0.212 0.216 0.197
Cl→Pr 0.159 0.168 0.105 0.113 0.131 0.125 0.115

Cl→Rw 0.151 0.159 0.113 0.113 0.125 0.115 0.106
Pr→Ar 0.237 0.246 0.185 0.184 0.210 0.214 0.190
Pr→Cl 0.365 0.375 0.339 0.315 0.327 0.293 0.293
Pr→Rw 0.095 0.099 0.080 0.082 0.084 0.091 0.073
Rw→Ar 0.138 0.147 0.129 0.125 0.126 0.15 4 0.118
Rw→Cl 0.314 0.325 0.298 0.284 0.275 0.248 0.238
Rw→Pr 0.073 0.078 0.062 0.063 0.065 0.078 0.059

VISDA-2017 T→V 0.274 0.284 0.261 0.202 0.204 0.172 0.162

Table 11: Additional ablation results (%) for the other datasets.

Office-Home VISDA-2017

GMM PL + JMDS + CE 71.9 83.1
GMM PL + JMDS + CE + Weight Mixup 72.1 86.5
GMM PL + JMDS + CE + Aug 71.9 83.4
GMM PL + JMDS + CE + Weight Mixup + Aug 72.3 86.7
GMM PL + JMDS + SCE + Weight Mixup + Aug (CoWA) 72.9 88.3
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