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ABSTRACT
Squared forms of photos are widely used in social media as album
covers or thumbnails of image streams. In this study, we realize
photo squarization by modeling Retargeting Visual Perception Issues,
which reflect human perception preference toward image ratarget-
ing. General image retargeting techniques deal with three common
issues, namely, salient content, object shape, and scene composition,
to preserve the important information of original image. We pro-
pose a new way based on multi-operator techniques to investigate
human behavior in balancing the three issues. We establish a new
dataset and observe human behavior by inviting investigators to
retarget images to square manually. We propose a data-driven ap-
proach composed of perception and distillation modules by using
deep learning techniques to predict human perception preference.
The perception part learns the relations among the three issues,
and the distillation part transfers the learned relations to a simple
but effective network. Our study contributes to deep learning lit-
erature by optimizing a network index and lightening its running
burden. Experimental results show that photo squarization results
generated by the proposed model are consistent with human visual
perception results.
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1 INTRODUCTION
At present, people like to share their opinions, insights, and experi-
ences on the Internet which not only can act as a record but also
can send messages to the audience from all over the world. Social
media, such as Instagram, Flickr, and Facebook, provide tools for
users to display photos in addition to textual information. However,
in many cases, the photos need to be displayed in a fixed resolu-
tion, that is, in square shape. As shown in Figure 1, a normal web
page on Flickr (“Albums” page) contains dozens of photos, which
are essentially square thumbnails of photos with different aspect
ratios. Therefore, each square thumbnail should display the most
prominent information present in the original photo. The standard
operation used by most social media to perform photo squarization
is cropping. Most methods use a saliency map or an object detector
to identify regions in the image that can serve as effective crops
in creating thumbnails [7, 27, 35]. Unfortunately, some important
content may have to be discarded due to space limitation and the
composition of the original photo may be destroyed.

Content-aware image retargeting (CAIR) is a possible choice to
solve the photo squarization problem in social media. Various meth-
ods have been suggested for CAIR to preserve important content as
much as possible [3, 18, 24]. However, most methods are developed
by following one single scheme, thereby leading to adaptability
problem on general displaying use for social media. Multi-operator
methods [8, 25, 31] have been proposed to solve this issue, in which
different mechanisms (e.g., seam carving, scaling, and cropping)
are integrated to accommodate the variation in contents and com-
positions of images. Each operator is related to a specific visual
perception-based information preserving issue (e.g., salient content,
object shape, and scene composition). However, these methods al-
locate the utilization percentages of operators only in accordance
with image similarity and fail to consider user preferences due to
lack of user interaction as input; this factor is important in practical
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Figure 1: “Albums” page of a Flickrmember. All album cover
images are in square shape with a certain degree of infor-
mation loss. We propose a CNN-based photo squarization
method for transforming photos of arbitrary aspect ratios
to square. This method can capture user’s visual preference
during retargeting operations.

photography [13, 23]. This drawback limits the practical application
of these methods.

One the one hand, previous studies have shown that learning-
based approach for image synthesis is effective in reaching the
desired outcomes with low investment on time and effort during
acquisition [7, 28, 37]. On the other hand, multi-operator image re-
targeting has been shown to capture user preference effectively [4].
Although the two techniques have shown success, methods that
tightly integrate them for learning-based multi-operator image
reshaping have yet to be explored.

Square shape is broadly used in social media for photo display.
Hence, we focus on the photo squarization problem that has a great
research value in the image retargeting field. Two major challenges
are acquiring user preference information for retargeting a photo
to square and predicting squarization strategy that is consistent
with human visual perception. The key idea behind user prefer-
ence acquisition is to understand human behavior in balancing
three issues during retargeting operations: salient content, object
shape, and scene composition. We call the three issues as Retargeting
Visual Perception Issues (RVPIs). First, these issues are the most
important information that needs to be preserved during retarget-
ing process. Second, the positions and shapes of visual elements
in different photos often vary considerably. Thus, we need to ac-
curately transform the abstract information losses related to the
three issues into concrete image retargeting operations. Moreover,
the visual perception-based retargeting strategy for squarization
should be predicted directly from the visual features of the original
photo. However, existing CAIR methods either use iterative frame-
works [8, 30] or rely on single operator and thus cannot capture
different perception preferences of users [3, 7, 19].

We attempt to engage user preference into a multi-operator retar-
geting algorithm for overcoming the above-mentioned challenges.
In this way, human behavior in balancing RVPIs for a given im-
age and desired size can be determined. This problem is central to
social media and image retargeting research. We build a synergy
between visual images and human perception by transforming ab-
stract losses into concrete image retargeting operations (Section 3).
We propose a data-driven approach to predict people’s perception
preference by suggesting a CNN-based framework that involves two

different modules: perception module that mines the relationship
among RVPIs and distillation module that encodes such knowledge
together with variant losses into a simple but effective network
(Section 4). Convincing visual and quantitative experimental results
are shown to demonstrate the effectiveness of the learned method
(Section 5).

Our work makes the following technical contributions:
(1) A new way to observe human perception preferences among

RVPIs during photo squarization process, which can also be
attempted for general image retargeting problems.

(2) A new dataset with annotations that indicates user prefer-
ences toward photo squarization problem.

(3) A new two-module deep neural network for learning user
preferences and predicting retargeting operations for photo
squarization. To the best of our knowledge, we are the first to
allocate the final percentages of operators directly in accor-
dance with the features of original photo without iteration
and input-output similarity comparison.

2 RELATEDWORK
Image Reshaping. Transforming an image to a new shape is an in-

teresting topic in image synthesis. Gal et al. [10] used a feature map
to roughly mask the important features of an image and then per-
formed non-homogeneous texture mapping to transform the image
into arbitrary shape. Li et al. [17] proposed a geodesic-preserving
method to transform panorama to rectangle. Qi et al. [22] reshaped
an image into non-rectangular shape by removing a sequence of
seam segments that does not considerably alter or distort the im-
age content. In current study, we focus on reshaping a photo of
arbitrary aspect ratio to square by CAIR.

Image Retargeting. Image retargeting preserves the important
content of an image after resizing. Cropping [7, 27, 35] is a simple
retargeting method that removes outer parts of an image while
protecting the subject and edge continuity. This method will not
change any area of the original image and does not result in dis-
tortion. Thus, cropping has been widely used in social media to
generate square thumbnails or thumbnails of other shapes. How-
ever, cropping often destroys the completeness of the objects and
causes unexpected loss of information. In recent years, CAIR tech-
nology has been extensively investigated. The methods can roughly
be categorized into discrete and continuous retargeting. Discrete
methods change the aspect ratio of an image by repeatedly remov-
ing or inserting pixels or patches at unimportant areas. Avidan et
al. [2] introduced the concept of seam carving and solved it using
dynamic programming, in which a gradient energy was used as the
importance map. Rubinstein et al. [24] improved seam carving by
using a forward energy. Pritch et al. [21] performed a discrete la-
beling over individual pixels and retargeted an image by removing
segments in the net. These approaches are effective at retargeting
images with rich texture content but may cause artifacts of local
discontinuity. Continuous methods [14, 16, 32] focus on preserv-
ing local structure and optimize a warping from the source size
to the target size in accordance with its important regions and
permissible deformation. Panozzo et al. [20] minimized warping
energy in the space of axis-aligned deformations to avoid unnatural
distortions. Lin et al. [18] presented a patch-based scheme with
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an extended significance measurement to preserve shapes of vi-
sually salient objects and structural lines. These approaches can
preserve the geometric structure of image content smoothly but
may also permit unwanted low important regions to appear in the
retargeting result. Multi-operator methods [4–6, 31] fuse discrete
and continuous methods into a unified optimization framework.
Rubinstein et al. [25] defined a retargeting space as a conceptual
multi-dimensional space in combination with several operators and
used bi-directional warping with dynamic programming to find
an optimal path in this space. Wang et al. [29] exploited comple-
mentary relationships among three condensation operators and
fused them into a unified grid-based convex programming prob-
lem. Fang et al. [8] constructed the retargeting operator sequence
by evaluating the similarity between the original and retargeted
images at each iteration. However, these methods depend on low-
level feature-based saliency maps, which can barely reflect visual
semantics.

At present, deep learning- or perception-based approaches have
facilitated further research on image retargeting. Esmaeil et al. [7]
utilized a fully-convolutional deep neural network to develop a
cropping-based thumbnail generation framework by learning spe-
cific filters for thumbnails of different sizes and aspect ratios. Liu
et al. [19] developed an aggregation-based CNN to learn the deep
representation for gaze shifting path and then used these features
for image retargeting through a probabilistic model. Cho et al. [3]
utilized a weakly- and self-supervised deep CNN to retarget source
images directly to target ratio. Xia et al. [33] proposed a photo
retargeting model by learning human gaze shifting process, in
which a few active graphlet paths were selected on the basis of
a sparsity-guided ranking algorithm. Zhou et al. [36] used pho-
tographs marked as aesthetically pleasing for training and utilized
the learned priors to shrink the corresponding gaze shifting path of
a retargeted photograph to maximize its similarity to those from the
training photographs. Noticeably, the above-mentioned perception-
guided retargeting methods still cannot capture user preferences
in resizing an image in accordance with three perceptual aspects:
salient content, object shape, and scene composition.

3 DATASET
We introduce a new scheme to observe human subjective perception
toward image retargeting task by building a synergy between visual
images and human perception (Section 3.1). We investigate human
behavior in balancing RVPIs, which are related to information loss
of images during retargeting (Section 3.2).

3.1 Perception Formulation
Perception-aware image retargeting results are generated by for-
mulating abstract human perception into concrete representation.
Defining and quantifying the distribution among RVPIs directly
are difficult even for experts. However, people know good retarget-
ing results depending on their perception toward different images.
Given the lessons from multi-operator approaches, we observe peo-
ple’s behavior in balancing RVPIs by offering them three basic
retargeting operators to retarget images manually. The details of
the operator selection are given as follows:

(1) We use seam carving [24] to measure loss in salient content.
This CAIR method carves one seam with the lowest energy
each time in accordance with the energy functions defined
beforehand. A high execution time of seam carving (Rsc )
indicates a large proportion of salient content of the original
imagewill be preserved and large proportions of object shape
and scene composition may be damaged.

(2) We use cropping to measure loss in object shape. This sim-
ple method removes outer parts of an image to protect the
subject. A high execution time of cropping (Rcr ) indicates a
large proportion of object shape of the original image will
be preserved and large proportions of salient content and
scene composition may be lost.

(3) We use scaling to measure loss in scene composition. This
uniform method transforms the original size to the target
size given a scale factor. A high execution time of scaling
(Rsl ) indicates a large proportion of scene composition of
the original image will be preserved and a large proportion
of object shape of the original image may be distorted.

Without loss of generality, we arrange the operator order as
seam carving→cropping→scaling. Then, human perceptions are
formulated into a fixed order that is filled with the number of times
that each operator is performed to generate retargeted images,
denoted as [Rsc ,Rcr ,Rsl ].

Notably, we do not add warping into our framework due to
three reasons: first, integrating warping may introduce artifacts
of boundary distortion and over-stretching of homogeneous con-
tent [29]. Second, the functionality of warping can be substituted
by seam caving and scaling. Third, adding operators will increase
the difficulty in data annotation.

3.2 Data Collection
We collect 5, 084 images as the supporting database on the basis
of the following principles: 1) Popularity: We collect images from
Flickr, Pinterest, and Pexels under the Creative Commons license
because of the aim of contributing to social media. By summarizing
tags in “the most popular tag in history” block on each website,
eight categories, namely, nature landscape, portrait, animal, food,
art, fashion, festival, and architecture, are obtained, and used as
keywords to search images. 2) Comprehensive: Images from “Retar-
getMe” [23], which is a classic benchmark for image retargeting
methods, are added. 3) Operability: Duplicate images and images
with too large or too small aspect ratio are manually picked out.
Figure 2 shows some images in our dataset. The original aspect
ratios of these images range from 0.52 to 3.97. The saliency map is
also prepared for each image by using the method in [15].

Figure 2: Images in the collected dataset.
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Six expert photographers (3males, 3 females, age range of 20-45)
are invited to do the annotation. Each participant needs to square
all the 5, 084 images by allocating the three operators. We show
the original image and a bar with two sliders (Figure 3) to partici-
pants. For each photo, the initial allocation of the three operators
is calculated by a state-of-the-art multi-operator image retargeting
method [4]. The squarization result will be generated and displayed
in real time when the slider value is changed. Participants are asked
to adjust the sliders freely with no time limitation until they see
the ideal results.

Figure 3: Annotation website for data collection.

We calculate Kendall’s tau (τ ) coefficient among the six partic-
ipants. The results of τ = 0.85 and siд. = 3.11e−14 confirm that
the participants have a general consensus with regard to the rating
of three operators. We use the set of values that has the smallest
difference from the average value of the six participants as the final
annotation for each image. Figure 4 shows the average numbers of
each operator for every 100 times of execution by manual labeling
and automatic calculation following the method in [4]. From the
results, we can observe that seam carving as a CAIR technique is
adopted most frequently. Therefore, humans are highly sensitive to
the change in salient image content. Human behaviors in balancing
RVPIs are different from the automatically calculated assignments.
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Figure 4: Allocation statistics for data collection.

4 APPROACH
On the basis of the annotated dataset, we propose a data-driven
approach to learn human behavior in balancing the RVPIs when
retargeting a photo to square by using multiple retargeting oper-
ators. Then, given an input photo, we use the model to predict
the allocation of the percentage of each operator for squarization,
which is consistent with human perception preference.

4.1 Problem Formulation
Given a photo I of size (w ,h), we define [Rsc ,Rcr ,Rsl ] as the opera-
tion allocation performed on one dimension of I to obtain a square
imageT of size (t ,t ), where t =min(w,h). Similar to all social media,
we square the input photo by retargeting at the shorter dimension.
This way can ensure that the maximum information of the original
photo is kept. The squarization is performed using a combination of
the three operators by regular sequences. Without loss of generality,
we use the reduction in image width as an example. Specifically,
to reduce the width of an image I by R =max(w,h) − t pixels, Rsc
seams are carved out, Rcr columns are cropped from the image, and
the image is scaled by Rsl pixels, where Rsc +Rcr +Rsl = R. We let
r = [rsc =

Rsc
R , rcr =

Rcr
R , rsl =

Rsl
R ] be the normalized representa-

tion of [Rsc ,Rcr ,Rsl ] and focus on learning the mapping function
f : f (I ) → r ∈ R3. Then, our learning goal can be formulated as
the following equation:

avдmin | |r∗ − r | |2

s .t . r∗sc , r
∗
cr , r

∗
sl ≥ 0, (1)

r∗sc + r
∗
cr + r

∗
sl = 1 ,

where r∗ = f (I ) is the learning target.

4.2 Learning Approach
Figure 5 shows the overall structure of our learning approach. Two
modules are adopted: perception and distillation modules. We pro-
pose the perception part to learn the relationships among different
operations and distill such “dark knowledge” into the second part.
Different from most distillation models that focus on classification
research, our learning target proposed in Section. 4.1 is an objec-
tive regression with constraints that are applied to the distillation
module. Details about the two modules are given as follows.

Perception module. Instead of directly solving the optimization
problem raised in Equation (1), we propose a perception module to
learn the relationship among the three kinds of operations. Given
the real-value vector ri , the most frequently used operator can be
treated as the superior operator OPi for image I . The perception
module focuses on the classification of superior operators. For this
typical multiclass classification problem, we adopt cross entropy
loss with l2 normalization as the objective function.

The perception model is designed on the basis of VGG16 archi-
tecture [26]. The pre-trained VGG16 parameters are used as the
seed, but the parameters of the last three fully connected layers
are dropped. We initialize them by Xavier initialization [11]. Batch
normalization is also added. Then, a mapping between the original
image and the perceptive value of network will be formed. We
define the output of this perception module as rp which serves as
the soft target for distillation part.
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Figure 5: Overall structure of learning approach. Twomodules are introduced: perception and distillationmodules. The desired
outputs are generated by the distillation module, which is trained using three types of losses.

Distillation module. Distillation technology proposed recently
provides fresh portion to construct networks and can transform a
large model to a small one [9, 34]. Distillation has difficulty reducing
the network structure while keeping the performance in a small
one. By adopting a reasonable distillation technology, the efficiency
of network execution can be enhanced greatly and the overfitting
can be relieved to some degree.

We transfer the output of the perception module to the distil-
lation module by training it with soft targets for the non-special
classes in addition to training it using Equation (1). For the distilla-
tion module, we set the optimized objective to train by considering
the two aspects. One is for transferring soft targets rp , which is
also known as dark knowledge learned by the perception module
into the distillation module, namely, Lossperception . The other is
the offset between the input label r and the output r∗ together with
the constraints in Equation (1), namely, Losstarдet :

Loss(r∗, rp , r ) = Lossperception (r
∗, rp )+

λ · Losstarдet (r
∗, r ), (2)

where λ balances the two kinds of losses and Lossperception (r∗, rp )
is the Euclidean distance between r∗ and rp . We set λ = 2 in our
experiments.

Losstarдet is calculated as

Losstarдet (r
∗, r ) = Lossr eд(r

∗, r ) + βLosscons (r
∗)

= | |r∗ − r | |2 + βLosscons (r
∗), (3)

where Losscons (r∗) encodes the constraints in Equation (1):

Losscons (r
∗) = (

3∑
k=1

r∗(k) − 1)2 +
3∑

k=1
max(0,−r∗(k)), (4)

where r∗(·) is the prediction for one of the three operations. The
first item in Equation (4) corresponds to the equality constraint.
The second item equals 0 when r∗(·) ≥ 0.

Specifically, the distillation module is composed of a shallow
three-layer CNN. The first convolutional layer is fed by the input
image with 64 kernels of size 5 × 5. The second convolutional layer
takes the output of the first convolutional layer as input and filters
it with 32 kernels of size 3 × 3. The third convolutional layer is set
with 96 kernels of size 3 × 3 with a pad of one pixel. The output
layer is fully connected to the last convolutional layer with three
output neurons.

5 IMPLEMENTATION AND EXPERIMENTS
5.1 Implementation Details
We randomly choose 3, 660 images from the collected dataset for
training and use the rest as the evaluating set. Rotation and contrast
adjustments are performed for the data argumentation. In accor-
dance with the two-module method, our training process consists
of two parts as well. The training set is sent into the perception part
at the beginning to achieve the perceptive values, which will be
used as the new labels to the distillation part. The configuration of
the two modules is set as learning rate: 10−5, batch size: 20. When
evaluating, only the distillation module will be activated and the
outputs of the distillation module are l1 normalized. Then, the pre-
dicted allocation r∗ is transferred to the number of times that each
operator is adopted by multiplying R. Predictions less than zero
are set to zero. The entire network is optimized on a PC equipped
with 3.6 GHZ Intel Core i7 and Nvidia Geforce GTX 1080Ti GPU
with 11172 MB memory. The implementation is based on the Ten-
sorflow platform [1]. Figures 6 and 7 show the squarization results.
Our method can generate better results than other state-of-the-art
CAIR methods and these results are visually consistent with human
preference results. More results are shown in the supplementary
material.
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(a) Original Photo (b) CR (c) SC (d) WARP (e) FMO (f) Human (g) Ours

Figure 6: Comparison of our photo squarization results with those of other state-of-the-art methods for transverse images.

(a) Original (b) CR (c) SC (d) WARP (e) FMO (f) Human (g) Ours

Figure 7: Comparison of our photo squarization results with those of other state-of-the-art methods for longitudinal images.
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5.2 Experiments
To solve the regression task proposed in Equation (1), our approach
adopts twomodules including several losses. Comparisons on losses
and net structures are provided. Furthermore, we discuss the com-
putational time of our approach.

Evaluation metrics. We useMean Absolute Error (MAE) and Root
Means Square Error (RMSE) as evaluation metrics. MAE measures
the absolute difference between r and r∗, whereas

RMSE =

√√√
1
N

∑
N

3∑
k=1

(r∗(k) − r (k))2,

where N is the size of testing set.

Loss variants. We test the performance of loss variants on three
kinds of CNN structures: the shallow three-layer CNN used in
distillation module, VGG16 [26], and ResNet [12].

• CNNs with regression loss. We fine tune CNNs on the train-
ing data to solve the regression problem directly.

• CNNs with regression loss and constraints. We fine tune
CNNs on the training data to solve the regression problem
with the Losscons described in Equation (4).

Notably, all the outputs are l1 normalized.We compare the proposed
method with the fast multi-operator (FMO) [4] method, which uses
the same three operators.

The results on testing data are reported in Table 1. Although
all the predicted values are forced to meet the constraints in Equa-
tion (1) by using l1 normalization, adopting constraint loss to train
the network can yield satisfying results. We conduct paired sam-
ple t-test to evaluate whether the improvement of using variant
losses is significant. the p −values when using VGG16 and ResNet
structures are 0.041 and 0.009, respectively, which demonstrate
the significance of the improvements; by contrast, for the shallow
network, the p −value = 0.341 > 0.05 indicates the constraint loss
does not work efficiently.

Table 1: Comparisons of loss function variants.

Strategy MAE RMSE
reg. reg.+cons. reg. reg.+cons.

Shallow 0.50 0.51 0.60 0.57
VGG16 0.40 0.35 0.41 0.31
ResNet 0.37 0.33 0.32 0.25
FMo 0.37 0.27
Ours 0.14 0.16

Net structure. Methods that try to model the RVPI directly by a
one-way CNN with all the three kinds of losses have been tested.
RMSE for ResNet and VGG are 0.25 and 0.31, respectively. Table 1
shows that our approach reports a better performance than the
one-way structure. The reason is that the RVPIs are related to
one another and difficult to be predicted directly. The solution
requires relevant analysis on RVPIs. When the entire structure is
separated into two parts, the outcomes of perception module can
imply the inner structure of the RVPIs that are not encoded in the

original regression/classification labels and are transferred into the
distillation part. Thus, we convert the original regression labels
into category labels and propose an additional classification task,
namely, perception module.

Computational time. In terms of the computational time of the
network, the training process takes about 2 h to converge. When
testing, the distillationmodel takes about 0.5 s to process 100 images.
Therefore, this model is about six times faster than a fine-tuned
VGG16 style model using our dataset. This comparison of computa-
tional time exhibits the advantage of distillation structure in terms
of running speed (Section 4.2). Notably, while the FMO procedure
needs about 7 s per image. Our method is 1, 400 times faster than
FMO and thus exhibits a better real-time character.

5.3 User Study
To quantitatively evaluate our contribution, we set up two user
studies that involve 65 investigators (31 males, 34 females, age range
of 20-45) with different experiences. First, we conduct a user study
to compare the retargeting results with those of state-of-the-art
CAIR algorithms, namely, cropping (CR hereinafter), FMO [4], AAD
warping [20], and seam carving (SC hereinafter) [2]. We display 96
sets of retargeting images in turn, which contain the original image
and six retargeting results generated respectively from CR, FMO,
AAD, SC, humans, and our method. The retargeting results are
shown in a random order except the original image that is always
displayed in front. Then, we ask the investigators to select the three
best results in each set by clicking the mouse. The selection has no
time limitation, but the entire study needs to be completed within
1 h.

Table. 2 reports the distribution of the votes. We can observe
that our method outperforms other methods and is comparable
to human perception. For each method involved in the user study,
the distribution of user voting obeys binomial distribution. Given
that the subjects are asked to select three results out of six images
each time, the expected value equals C2

5
C3
6
= 0.5. The mean voting

scores of AAD, our method and human perception are larger than
0.5. We conduct binomial test to evaluate whether the superiority
is significant. The p-values are 0.031, 0.010, and 0.003. Therefore,
the users think the three methods significantly perform more than
the average.

Table 2: Statistics of votes in user study.

Method CR FMO AAD SC Human Ours
Mean Voting 40% 47% 53% 30% 68% 62%

Second, we perform another user study to examine the deviation
between our result and human re-perception result. Re-perception
indicates we run the annotation progress again with the start allo-
cation set to our result. The subjects involved in the second user
study is the same as in the first one, in which 96 images are tested.
The deviation between the start point and the re-perception dis-
tribution is recorded. The entire study time is set to 2 h and has
no limitation for a certain image adjustment. The average time
consumption obtained by statistical analysis is 1 h 22 min 14 s,
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and the deviations are recorded. Table 3 shows the statistics. We
can observe that people have less distribution adjustments for our
results. Therefore, our results are more close to people’s subjective
consciousness.

Table 3: Statistics of distribution adjustments in re-
perception.

Deviation of FMO Ours
Distribution adjustments 37% 12%

5.4 Discussion
The measure of RVPIs should be an inner property depending on
the original image. Hence, we test the learned model to arbitrary
target aspect ratios. Figure 8 illustrates the retargeting results by
using the learned allocation of the operators on three target ratios.
Although we focus on photo squarization, the proposed method
can also be attempted to universal problems.

(a) Original Photo (b) 75.0% (c) 62.5% (d) 50%

Figure 8: Retargeting to arbitrary aspect ratios.

Another emphasis is that the learned model is based on the
consistency of human perception. Although the overall analysis of
Kendall’s tau (τ ) coefficient shows that people can reach agreements
on most images, consistency is low in some cases. Figure 9 shows
an example in which the τ coefficient is lower than 0.3. When the
aspect ratio of the original image (Figure 9(a)) is abnormal, the
coefficient level among users is low. For these instances, partici-
pants can not square it to good results even if they use all kinds
of proportional combination. Under such circumstances, even the
trained model can generate results as human. Therefore, the results
of squarization are usually not ideal.

Figure 10 shows a failure case of the proposed model. The aver-
age difference of operator utilization time between the predicted
operator allocation (Figure 10(b)) and the annotated allocation (Fig-
ure 10(c)) is 0.313. Additional cropping operations are used in our
results to protect the object shape.

6 CONCLUSION AND FUTUREWORK
In this study, we focus on the generation of square thumbnails, that
is, “photo squarization,” of images on social media platform. We
propose a data-driven approach that considers human perception to

(a) Original Photo (b) Human (c) Ours

Figure 9: Special cases of the dataset.

(a) Original Photo (b) r=(0.38,0.14,0.48) (c) r∗=(0.45,0.27,0.28)

Figure 10: Failure case of our method. The predicted opera-
tion allocation has low consistency with the ground truth.

learn and predict human behavior in dealing with three basic issues
in image retargeting, namely, salient content, object shape, and scene
composition. We establish a new dataset with human perception
information and train a two-module CNN framework that takes
advantage of deep learning and multi-operator image retargeting.
Experimental results show that the proposed method can create
highly appealing results.

In the proposed squarization process, the length of the origi-
nal short side is adopted as the target dimension. Therefore, the
changing of aspect ratio acts as a down-sampling operation, thereby
ignoring up-sampling operation that may have an outperforming
effect. In the future, we will consider up-sampling operation. The
database will also be enlarged to offer a large number of photo exam-
ples. Human behavior in dealing with different target aspect ratios
will also be analyzed. Other visual media types, such as videos, will
be considered as well.
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