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Abstract
Contrastively trained encoders have recently
been proven to invert the data-generating process:
they encode each input, e.g., an image, into
the true latent vector that generated the image
(Zimmermann et al., 2021). However, real-world
observations often have inherent ambiguities. For
instance, images may be blurred or only show
a 2D view of a 3D object, so multiple latents
could have generated them. This makes the
true posterior for the latent vector probabilistic
with heteroscedastic uncertainty. In this setup,
we extend the common InfoNCE objective and
encoders to predict latent distributions instead of
points. We prove that these distributions recover
the correct posteriors of the data-generating pro-
cess, including its level of aleatoric uncertainty,
up to a rotation of the latent space. In addition to
providing calibrated uncertainty estimates, these
posteriors allow the computation of credible in-
tervals in image retrieval. They comprise images
with the same latent as a given query, subject to
its uncertainty. Code is at https://github.
com/mkirchhof/Probabilistic_
Contrastive_Learning.

1. Introduction
Contrastive learning (Chen et al., 2020) trains encoders to
output embeddings that are close to one another for seman-
tically similar inputs and far apart for unsimilar inputs. This
general notion of similarity allows transferring pretrained
encoders to downstream tasks (Wang et al., 2022; Ardeshir
& Azizan, 2022; Islam et al., 2021; Khosla et al., 2020).

Recently, Zimmermann et al. (2021) corroborated this in-
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tuition by a theoretical result: under weak assumptions,
the embeddings learned under an InfoNCE (Oord et al.,
2018) loss are exactly equal to the true latent vectors, up to
a rotation of the spherical latent space. This comes from
a nonlinear Independent Component Analysis (ICA) per-
spective (Comon & Jutten, 2010). It assumes an unknown
nonlinear generative process that transforms true latents into
our observations. Contrastively trained encoders invert this
nonlinear function and recover the original latent space.

This holds for the class of generative processes that are de-
terministic and injective, so that each image could have been
generated by only one latent vector. This is often violated in
practice. In Figure 1, the lower image of an animal is in low-
resolution, so it is impossible to tell which exact species,
i.e., which latent variables, underlie the image. In fact, most
scenarios in the wild involve some form of such aleatoric
uncertainty, including 3D-to-2D projections (Chen et al.,
2021), partially covered objects (Kraus & Dietmayer, 2019),
or images with a low resolution or bad crop (Li et al., 2021).
It also manifests itself outside the image domain, such as
in the inherent ambiguity of natural language (Chun et al.,
2022) or measurement noise in general (Meech & Stanley-
Marbell, 2021). Quantifying such uncertainties is a key goal
of the recent reliable machine learning efforts (Tran et al.,
2022; Galil et al., 2023). This has use cases in safety-critical
downstream applications like medical imaging (Barbano
et al., 2022). If an image is too ambiguous, a model can
reject it or defer the prediction to a human. Another appli-
cation is active learning, where we want to choose samples
with high uncertainty (Lewis & Catlett, 1994).

This work generalizes the previous theoretical result to this
more challenging setting. We do not assume that generative
process is an injective and deterministic function, but allow
it to be a conditional distribution. We propose Monte-Carlo
InfoNCE (MCInfoNCE), a probabilistic analog of InfoNCE.
It trains encoders to predict distributions over the possible
latents, called probabilistic embeddings (Oh et al., 2019; Shi
& Jain, 2019). We prove that MCInfoNCE attains its global
minimum when the encoder recovers the true posteriors of
the generative process, up to a rotation of the latent space;
both in terms of both the mean (which latent is most likely
to have generated the image) and the variance (the level of
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Figure 1. Deteministic encoders embed images to points in the latent space. This recovers the latent vectors that generated them (dashed),
up to a rotation (top). However, if an image is ambiguous there are multiple possible latents that could have generated it (bottom). An
encoder trained with MCInfoNCE correctly recovers this posterior of the generative process, up to a rotation, from contrastive supervision.

aleatoric uncertainty of the individual image). Our work
thus generalizes the previous theoretical result in nonlinear
ICA to a broader class of generative processes, and provides
a theoretical foundation for probabilistic embeddings.

We show empirically that an encoder trained with MCIn-
foNCE learns the correct posteriors in a controlled experi-
ment with known posteriors. We find that it even provides
sensible embeddings when the distribution family or the
encoder dimensionality is misspecified and when the gener-
ative process may be injective, making it robust in practice.
We then show that these predicted uncertainties are consis-
tent with human annotator disagreements reported in the
recent CIFAR-10H dataset (Peterson et al., 2019), providing
a way to handle uncertainty for high-dimensional inputs. We
also demonstrate that knowing the true posteriors enables
new applications, such as computing credible intervals for
image retrieval tasks. They visualize how uncertain we are
about a query image by showing other images that represent
the region of latents the query is in with a given probability.

In summary, (1) We extend nonlinear ICA to non-injective
non-deterministic generative processes to model realistic
input ambiguities. (2) We propose MCInfoNCE for training
encoders that predict probabilistic embeddings. (3) We show
theoretically and empirically that the predicted posteriors are
correct and reflect the true amount of aleatoric uncertainty.

2. Related Works
Our work serves as a bridge between the theoretical under-
standing of contrastive learning via nonlinear ICA, proba-

bilistic embeddings, and recent discussions on the aleatoric
uncertainty inherent in vision problems. Below, we discuss
how our work extends and connects recent work in these
three fields. Extended literature reviews can be found in
Kendall & Gal (2017) and Karpukhin et al. (2022).

Nonlinear ICA. From a nonlinear Independent Compo-
nent Analysis (ICA) perspective (Hyvärinen & Oja, 2000;
Comon & Jutten, 2010), images x are generated from
ground-truth latent components z via an unknown nonlinear
generative process. The goal is to invert it to recover the
original latents z, which are useful for downstream tasks.
This formalization allows for theoretical proofs of which
(contrastive) losses achieve this. Building on Wang & Isola
(2020), Zimmermann et al. (2021) recently proved that op-
timizing a contrastive InfoNCE loss (Oord et al., 2018)
recovers z up to a rotation of the latent space, as visualized
in Figure 1. This requires certain assumptions about the
generative process. A recent strain of literature seeks to
reduce these assumptions (Leemann et al., 2022) to allow
modeling broader classes of generative processes, bringing
the theoretical results closer to practice. Our work broadens
this class by no longer requiring the injectivity assumption
of Zimmermann et al. (2021) and at the same time allowing
stochasticity. This is made possible by modeling the gen-
erative process as a conditional distribution P (x|z) instead
of a function, which generalizes the class of generative pro-
cesses. In the vein of Zimmermann et al. (2021), we prove
that our contrastive MCInfoNCE loss recovers the correct
posterior distribution P (z|x) of the original latents, up to a
rotation of the latent space.
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Aleatoric Uncertainty. The above generalization allows us
to model scenarios in which we encounter aleatoric uncer-
tainty, i.e., the input has reduced information such that z is
only recoverable only up to some uncertainty. A prominent
practical example is face recognition, where images may be
blurred or in low-resolution (Shi & Jain, 2019; Schlett et al.,
2022). Other problems with ambiguous inputs include 3D
reconstruction from 2D data (Chen et al., 2021), partially
occluded traffic participants (Kraus & Dietmayer, 2019), or
noisy physical sensors (Meech & Stanley-Marbell, 2021).
Such problems with aleatoric uncertainty can be detected by
label noise: CIFAR-10H (Peterson et al., 2019) comprises
multiple labels for each image in the CIFAR-10 test-set,
and shows that the more ambiguous an image is, the more
annotator labels disagree. This finding occurs in several
other recent classification datasets (Schmarje et al., 2022;
Mehrtens et al., 2023; Tran et al., 2022), but also in more
complex tasks such as multimodal visual question answer-
ing (VQA). Chun et al. (2022) show that there are many
possible textual answers to the same visual prompt because
language is inherently more ambiguous than vision; i.e.,
language has more aleatoric uncertainty. Our MCInfoNCE
loss explicitly accounts for these uncertainties and learns the
correct level of aleatoric uncertainty, which we demonstrate
on high-dimensional image inputs.

Probabilistic Embeddings. An emerging approach to mod-
eling this uncertainty is to have encoders predict distribu-
tions over the latent space instead of point estimates. There
are three main lines of work to learn these probabilistic em-
beddings. The first idea is to compute a match probability
between point estimates, but to integrate it over the predicted
distributions. This idea was pioneered via Hedged Instance
Embeddings (HIB) (Oh et al., 2019) and has since been
successfully extended, e.g., to the above multimodal VQA
problem (Chun et al., 2021; Neculai et al., 2022). A second
line of works turns existing losses into probabilistic ones
by integrating the whole loss over the predicted probabilis-
tic embeddings (Scott et al., 2021; Roads & Love, 2021).
Our MCInfoNCE extension of InfoNCE demonstrates that
this blueprint strategy can inherit the properties of the origi-
nal losses, like Zimmermann et al. (2021)’s identifiability
theorem. The third line of works provides distribution-to-
distribution distances to replace point-to-point distances in
losses. The most popular approach is the expected likeli-
hood kernel (ELK) (Jebara & Kondor, 2003; Shi & Jain,
2019). It has recently shown success even in high dimen-
sional embedding spaces (Kirchhof et al., 2022; Karpukhin
et al., 2022). Yet, there is no answer to whether and in what
sense the predicted probabilistic embeddings, and in particu-
lar their variances, are correct. Our work answers this ques-
tion through its proof and a controlled experiment where the
true posteriors are recovered. The experiments on CIFAR-
10H further ground this theoretical correctness in the human

perception of uncertainty. We also show novel practical
applications of probabilistic embeddings, such as retrieving
credible intervals on which latents the image might show.

3. Probabilistic Generative Processes
In this section, we extend the generative processes com-
monly used in nonlinear ICA to non-injective, randomized
ones. This allows modeling real-world image distributions
better and serves as a framework for the upcoming proof.

Let us first understand the class of generative processes for
which Zimmermann et al. (2021) prove identifiability. They
take the nonlinear ICA perspective that there is a natural gen-
erative process g that transforms latent components z ∈ Z
into the images x = g(z) we observe, as shown in Figure 1.
Following the popular cosine-based similarity comparisons
(Deng et al., 2019; Teh et al., 2020), Z is assumed to be
a D-dimensional hypersphere Z = SD−1. We are inter-
ested in recovering the latents z that underlie the images x,
because they are low-dimensional descriptions useful for
downstream tasks. To formalize this problem, they assume
that g : Z → X is an injective (and deterministic) function.
Thus, only one latent z can correspond to each image x, and
g is invertible. They prove that an encoder f trained with a
contrastive InfoNCE loss achieves this inversion and recov-
ers the correct latent z, i.e., f(x) = f(g(z)) = ẑ = Rz, up
to an orthogonal rotation R of the learned embedding space.

However, let us move on to setups where an image x may
be motion blurred, low-resolution, or partially obscured.
For instance, a 2D projection x of a 3D object z does not
show the back part of z, and there are several possible z
that could have generated x. In other words, the generative
process g is non-injective and the best our encoder can do is
to recover the set of possible latents {ẑ|g(ẑ) = x}. Further,
g may be stochastic. E.g., a random patch of pixels may be
occluded, or the image may be zoomed in and show only a
random crop of z. The best the encoder can do is to predict
a posterior over the possible latents, see Figure 1.

The common denominator of these setups is that g loses in-
formation about z and x becomes ambiguous. To subsume
them, we can model g as a likelihood P (x|z). This general
formulation allows for a large class of operations within
g. However, this generality comes at the cost that P (x|z)
can be very complicated and difficult to parameterize. We
therefore apply a posterior trick: instead of explicitly char-
acterizing g by P (x|z) we implicitly characterize it by its
posteriors P (z|x). We parameterize P (z|x) by simple von
Mises-Fisher distributions vMF(z;µ(x), κ(x)):

P (z|x) = C(κ(x))eκ(x)µ(x)
⊤z . (1)

This distribution on SD−1 is unimodal around the location
parameter µ(x) ∈ Z with a certain concentration (i.e., an
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inverse variance) κ(x) ∈ R>0, and a normalizing constant
C(·). The functions µ : X → SD−1 and κ : X → R>0

fully parameterize the posterior of each image x. In particu-
lar, κ(·) represents the aleatoric uncertainty due to informa-
tion loss, which can be heterogeneous across the images.

The intuition behind modeling the posterior of the gener-
ative process as a vMF is that latents of degraded images
can usually be located down to sets of semantically simi-
lar rather than very dissimilar latents. This is reflected in
the unimodality of the vMF and its use of the dot product,
which commonly represents how semantically similar two
latents are. There may still be images where it is impos-
sible to tell which highly dissimilar latents they show. In
these cases, κ(x) is low and the posterior spreads broadly
across the latent space. At the other end of the spectrum,
as κ(x) → ∞, P (z|x) converges to a Dirac distribution.
This allows modelling deterministic and injective generative
processes as in Zimmermann et al. (2021). This makes the
vMF a reasonable and flexible choice for the posterior of
generative processes.

4. Probabilistic Contrastive Learning
This section presents our main theoretical result: a proba-
bilistic encoder trained under an MCInfoNCE loss recovers
the true posteriors of probabilistic generative processes, up
to a rotation, from simple contrastive supervision.

4.1. MCInfoNCE for Probabilistic Contrastive Learning

Let us first formalize the contrastive learning setup. Each
training triplet comprises a reference sample x along with
a positive (similar) sample x+ and negative (dissimilar)
samples x−

1 , . . . , x
−
M against which it is to be contrasted.

As introduced in the previous section, we assume that
these samples are generated from corresponding latents
z, z+, z−1 , . . . , z−M . Following Zimmermann et al. (2021),
the reference z is drawn from the marginal distribution in
the latent space, a uniform distribution. The positive sample
z+ is drawn from a close region around z, while negatives
z−1 , . . . , z−M are random i.i.d. draws from the marginal:

z ∼ P (z) = Unif(z;SD−1), (2)

z+ ∼ P (z+|z) = vMF(z+; z, κpos), (3)

z−m ∼ P (z−|z) =: P (z−) = Unif(z−;SD−1). (4)

The fixed constant κpos > 0 controls how close latents must
be to be considered positive to each other1. This formaliza-
tion of contrastive learning ensures that positive samples
are semantically similar and negatives are dissimilar. Zim-
mermann et al. (2021) showed this is the generative process
InfoNCE implicitly assumes. The probabilistic generative

1κpos should not to be confused with κ(x), which controls the
heteroscedastic uncertainty of the generative process.

process comes into play when the latents z, z+, z−1 , . . . , z−M
are transformed into observations x, x+, x−

1 , . . . , x
−
M via

P (x|z). This defines P (x), P (x+|x), and P (x−), and thus
our contrastive training data (x, x+, x−

1 , . . . , x
−
M ).

Our Monte-Carlo InfoNCE (MCInfoNCE) loss is

Lf :=− log E
z∼Q(z|x)

z+∼Q(z+|x+)

z−
m∼Q(z−

m|x−
m),m=1,...,M

 eκposz
⊤z+

1
M eκposz⊤z+

+ 1
M

M∑
m=1

eκposz⊤z−
m

 (5)

and is evaluated over the contrastive training dataset via

L := E
x∼P (x)

x+∼P (x+|x)
x−
m∼P (x−),m=1,...,M

(
Lf

(
x, x+, {x−

m}m=1,...,M

))
. (6)

This probabilistically generalizes the widely used InfoNCE
family (Oord et al., 2018), and, in the limit of M → ∞,
SimCLR (Chen et al., 2020). Instead of outputting a point
embedding, the encoder f we train outputs probabilistic
embeddings Q(z|x) := vMF(z; µ̂(x), κ̂(x)) by predicting
f(x) = (µ̂(x), κ̂(x)). The InfoNCE fraction within Lf is
evaluated over these posteriors. In practice, we backpropa-
gate through K = 512 MC samples via a reparametrization
trick for vMFs (Davidson et al., 2018; Ulrich, 1984):

Lf≈− log

1

K

K∑
k=1

eκposz
⊤
k z+

k

1
M eκposz⊤

k z+
k + 1

M

M∑
m=1

eκposz⊤
k z−

m,k

. (7)

The only training data for MCInfoNCE are contrastive exam-
ples, without any additional supervision on the true aleatoric
uncertainty κ(x) or the generative latents z.

4.2. Provably Learning the Correct Posteriors

We prove below that the optimizer of this loss learns the
correct latent posteriors. More precisely, it predicts the cor-
rect location µ̂(x) = R · µ(x), up to a constant orthogonal
rotation R of the latent space, and the correct level of am-
biguity κ̂(x) = κ(x) for each observation x. To prove this,
we first show that MCInfoNCE is a cross-entropy between
the generative process and the learned contrastive encoder
(Proposition 4.1). This means that the loss matches the
expected positivity of a pair (x, x+) computed using the
true P (z|x) to that computed using Q(z|x). We then show
that this expected positivity can be written as a function and
depends only on (µ(·)⊤µ(·), κ(·)), resp. (µ̂(·)⊤µ̂(·), κ̂(·))
(Proposition 4.2). Due to monotonicity, the predicted func-
tion value can only match that of the generative process if
their arguments (µ(·)⊤µ(·), κ(·)) and (µ̂(·)⊤µ̂(·), κ̂(·)) are
equal (Proposition 4.3). In summary, the posteriors must be
equal, up to a rotation of the latent space (Theorem 4.4).
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First, we generalize Zimmermann et al. (2021) and Wang &
Isola (2020) to probabilistic generative processes.

Proposition 4.1 (L is minimized iff expected positivity
matches). Let the latent marginal P (z) =

∫
P (z|x)dP (x)

and
∫
Q(z|x)dP (x) be uniform. limM→∞ L attains its

minimum when ∀x, x+ ∈ {x ∈ X |P (x) > 0}∫∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dz =∫∫
P (z|x)P (z+|x+)P (z+|z)dz+dz .

The intuition is that MCInfoNCE corresponds to a cross-
entropy between the true latents and our model predictions.
This characterizes the solution set: An encoder Q minimizes
MCInfoNCE if and only if the chance of (x, x+) being a
positive pair computed using Q is equal to the true chance
of being a positive pair computed using the GT distribution
P for all data pairs (x, x+). We refer to this chance, the
upper integral, as expected positivity. Next, we prove that
the equality of the expected positivities implies that the
predicted posteriors Q must be equal to the GT P , up to
the mentioned rotations. To this end, we first find that the
expected positivity marginalizes out all random variables
and can be written as a function of µ(x) and κ(x).

Proposition 4.2 (Expected positivity is a function). Let
P (z|x) and P (z+|z) be vMF distributions as defined in
Section 4.1. Given x, x+ ∈ X , we can rewrite∫∫

P (z|x)P (z+|x+)P (z+|z)dz+dz (8)

=: hκpos(µ(x)
⊤µ(x+), κ(x), κ(x+)), (9)

i.e., as a function hκpos that depends only on
µ(x)⊤µ(x+), κ(x), and κ(x+). The same function
can be used for µ̂(x)⊤µ̂(x+), κ̂(x), κ̂(x+):∫∫

Q(z|x)Q(z+|x+)P (z+|z)dz+dz (10)

= hκpos(µ̂(x)
⊤µ̂(x+), κ̂(x), κ̂(x+)). (11)

The key is that the expected positivities calculated using Q
and P have the same functional form hpos; they differ only
in their arguments, where they use either the true κ(x), µ(x)
or the predicted κ̂(x), µ̂(x). What remains to show is that
the expected positivities can only be equal if the arguments
match, i.e., κ̂(x) = κ(x) and µ̂(x)⊤µ̂(x+) = µ(x)⊤µ(x+).
Proposition 4.3 proves this via some monotonicities of hpos.

Proposition 4.3 (Arguments of hpos must be equal).
Define hpos as in Proposition 4.2. Let X ′ ⊆
X , µ, µ̂ : X ′ → Z , κ, κ̂ : X ′ → R>0,
κpos > 0. If hκpos(µ̂(x)

⊤µ̂(x+), κ̂(x), κ̂(x+)) =

hκpos(µ(x)
⊤µ(x+), κ(x), κ(x+)) ∀x, x+ ∈ X ′, then

µ̂(x)⊤µ̂(x+) = µ(x)⊤µ(x+) and (12)

κ̂(x) = κ(x) ∀x, x+ ∈ X ′. (13)

In the above Equation (12), the pairwise cosine similari-
ties in the true and the predicted latent space can only be
equal if the two spaces are the same up to a rotation, i.e.,
µ̂(x) = Rµ(x). This is ensured by the Extended Mazur-
Ulam Theorem (Zimmermann et al., 2021). We can now
combine these ingredients to derive our main result: If an
encoder minimizes the MCInfoNCE loss, then it must have
identified the correct posteriors, up to a constant orthogonal
rotation of the latent space.

Theorem 4.4 (L identifies the correct posteriors). Let Z =
SD−1 and P (z) =

∫
P (z|x)dP (x) and

∫
Q(z|x)dP (x) be

the Unif(z;Z). Let g be a probabilistic generative process
defined in Formulas 2, 3, and 4 with known2 κpos. Let g
have vMF posteriors P (z|x) = vMF(z;µ(x), κ(x)) with
µ : X → SD−1 and κ : X → R>0. Let an encoder f(x)
parametrize vMF distributions vMF(z; µ̂(x), κ̂(x)). Then
f∗ = argminf limM→∞ L has the correct posteriors up to
a rotation, i.e., µ̂(x) = Rµ(x) and κ̂(x) = κ(x), where R
is an orthogonal matrix, ∀x ∈ {x ∈ X |P (x) > 0}.

This generalizes the recent results of Zimmermann et al.
(2021) to the broader family of probabilistic generative pro-
cesses. MCInfoNCE recovers not only the correct (mean)
embeddings µ(x) under a noisy and non-injectivity genera-
tor, but also the heterogeneous aleatoric uncertainty κ(x).

5. Experiments
5.1. MCInfoNCE Learns the Correct Posteriors

In this section, we experimentally confirm the theoretical
result that probabilistic embeddings learned under a MCIn-
foNCE loss recover the correct posteriors up to a rotation.
We also test its robustness to violated assumptions.

Setup. To test whether MCInfoNCE recovers the correct
posteriors, we need a controlled experiment where the true
posteriors of the generative process are known. Previous
nonlinear ICA experiments randomly initialize a multi-
layer perceptron (MLP) as the nonlinear data-generating
process and train a second one to invert it (Hyvarinen &
Morioka, 2017; Zimmermann et al., 2021). In our proba-
bilistic setup we randomly initialize two MLPs to parameter-
ize µ(x) and κ(x) of the vMF posteriors of the generative
process. The MLP for µ(x) outputs normalized vectors
of dimension D = 10 and the MLP for κ(x) outputs a
scalar κ̃(x) wrapped in an exponential Softplus function
κ(x) = 1+exp(κ̃(x)) to ensure the strict positivity of κ(x)

2In practice, κpos is a tuneable temperature hyperparameter.
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Table 1. MCInfoNCE recovers the generative processes’ true pos-
teriors for various degrees of ambiguity and even in the limit of an
injective generative process. Mean ± std. err. for five seeds.

True vs Pred. Location µ̂(x) True vs Pred. Certainty κ̂(x)
Generative Process Ambiguity RMSE ↓ Rank Corr. ↑ RMSE ↓ Rank Corr. ↑
Ambiguous (κ(x) ∈ [16, 32]) 0.04± 0.00 0.99± 0.00 6.15± 0.61 0.82± 0.04
Clear (κ(x) ∈ [64, 128]) 0.05± 0.00 0.98± 0.00 125.02± 10.64 0.64± 0.04
Injective (κ(x) = ∞) 0.05± 0.01 0.98± 0.00 κ̂(x) → ∞

Generative Process
 Latent Space

Learned Encoder
 Latent Space

Figure 2. Five posteriors of the generative process and the encoder
trained in a run with a 2D latent space. The encoder correctly
predicts the posteriors of the generative process, up to a rotation:
Rank corr. between µ̂(x) and the true µ(x) is 1.00± 0.00 (RMSE
0.05±0.00) and that of κ̂(x) is 0.82±0.05 (RMSE 2.89±0.56).

(Li et al., 2021; Shi & Jain, 2019). We sample contrastive
training data (x, x+, (x−

m)m=1,...,M ) from the generative
process parameterized by µ(x) and κ(x) via rejection sam-
pling, as explained in the supplementary. On this data, we
train two MLPs to predict µ̂(x) and κ̂(x). All hyperparame-
ters of the generative process and MLP architectures follow
the deterministic counterpart of this experiment in Zimmer-
mann et al. (2021) and are reported in the supplementary.

Metrics. To quantify if the predicted posteriors are correct
up to a rotation, i.e., κ̂(x) = κ(x) and µ̂(x) = Rµ(x) with
an orthogonal matrix R, we compare κ̂(x) to κ(x) on 104

samples of x and compare µ̂(x1)
⊤µ̂(x2) to µ(x1)

⊤µ(x2)
on all pairs (x1, x2) of the 104 samples. We use the root
mean square error (RMSE) to test for exact correctness and
Spearman’s rank correlation (Rank Corr.) to test for correct
ordering. The latter is sufficient in practical scenarios that
are invariant to scale, such as retrieval based on embedding
distances µ̂(x1)

⊤µ̂(x2) or abstention from prediction based
on a threshold of the predicted certainty κ̂(x).

Results. Table 1 shows that MCInfoNCE recovers the
correct posteriors of ambiguous inputs up to a high rank
correlation of 0.99 for µ̂(x) and 0.82 for κ̂(x). Figure 2
visualizes this in a simplified 2D case. The learned latent
space equals the true latent space up to a rotation. How-
ever, we can see in Table 1 that κ̂(x) tends to be over-
confident (RMSE = 125.02) especially for high values of
κ(x) ∈ [64, 128] (yet, the ranking is still largely preserved,
Rank Corr. = 0.64). This is because Formula 7 is a biased
MC estimator of the loss in Formula 5. This is also known
as marginal likelihood estimation problem (Perrakis et al.,

Table 2. MCInfoNCE predicts sensible vMF posteriors if the true
generative posteriors are non-vMF. Mean ± std. err. for five seeds.

True vs Pred. Location µ̂(x) True vs Pred. Spread
Posterior RMSE ↓ Rank Corr. ↑ RMSE ↓ Rank Corr. ↑
vMF 0.04± 0.00 0.99± 0.00 0.05± 0.00 0.75± 0.04
Gaussian 0.04± 0.00 0.99± 0.00 0.04± 0.00 0.70± 0.05
Laplace 0.05± 0.01 0.98± 0.00 0.02± 0.00 0.66± 0.06
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Figure 3. The marginal likelihood approximation bias diminishes
with sufficient MC samples. Mean ± std. err. for five seeds.

2014; Burda et al., 2015). The bias decreases with the num-
ber of MC samples, as shown in Figure 3. In the standard
setup with κ(x) ∈ [16, 32], it is largely mitigated with 16
samples (RMSE = 4.55), or already with 4 samples if only
the relative ordering of the samples matters in practice (Rank
Corr. = 0.77). This coincides with the range of number of
MC samples used by other probabilistic embedding losses:
Oh et al. (2019) use 10 and Kirchhof et al. (2022) use 5. In
summary, MCInfoNCE behaves as theoretically expected
and fulfills our main theoretical hypothesis.

Violated Assumptions. We test MCInfoNCE in setups
where its assumptions are violated. First, we change the
posterior of the generative process to Gaussian and Laplace
distributions on SD−1 while the encoder still predicts vMFs.
Since these distributions have incomparable variance param-
eters, we measure their spread by the avg. absolute cosine
distance from the mode. Table 2 shows that the vMFs model
Gaussians almost as well as vMFs (Rank Corr. 0.70 vs
0.75), since Gaussians with normalized outputs are similar
to vMFs (Mardia et al., 2000). For Laplace, the encoder
predicts vMFs with high concentrations (κ̂(x) ≈ 2000), be-
cause the Laplace distribution is more concentrated around
its mode than the vMF the encoder uses. Second, we over-
and underparameterize the latent dimension of the encoder
compared to that of the generative process (D = 10). Fig-
ure 4 shows that encoder dimensions between 8 and 32 still
all yield κ̂ predictions with a Rank Corr. ≥ 0.6. Third, we
test the behaviour of MCInfoNCE when the generative pro-

6



Probabilistic Contrastive Learning Recovers the Correct Aleatoric Uncertainty

Table 3. Besides MCInfoNCE, ELK also gives correct probabilistic
embeddings. Mean ± std. err. for five seeds.

True vs Pred. Location µ̂(x) True vs Pred. Certainty κ̂(x)
Loss RMSE ↓ Rank Corr. ↑ RMSE ↓ Rank Corr. ↑
HIB 0.18± 0.02 0.82± 0.03 1014 ± 1014 −0.02± 0.09
ELK 0.02± 0.00 1.00± 0.00 21.70± 0.31 0.92± 0.00
MCInfoNCE 0.04± 0.00 0.99± 0.00 6.15± 0.61 0.82± 0.04
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Figure 4. MCInfoNCE learns good κ̂(x) even when the encoder
latent space dimension mismatches the true generative dimension-
ality (D = 10). Mean ± std. err. for five seeds.

cess is injective and deterministic, i.e., when all posteriors
are Diracs. This is a limiting case of the vMFs the encoder
uses. Table 1 shows that the predicted vMFs converge to
infinite concentrations κ̂(x), recovering the Diracs. Last,
the uniformity assumption was violated in all experiments
as we only ensured µ(x) to be not collapsed, but not neces-
sarily fully spread around SD−1. In summary, these results
indicate that MCInfoNCE is a robust approach even when
characteristics of the generative process such as its (non-)
injectivity, posterior family, or dimension are unknown.

Further losses. Recent literature has proposed other losses
to predict probabilistic embeddings. We investigate their
empirical successes further under our experimental setup
to find whether they exactly match the true posteriors. We
reimplement Hedged Instance Embeddings (HIB) (Oh et al.,
2019) and Expected Likelihood Kernels (ELK) (Kirchhof
et al., 2022) and modify them to our contrastive setup, as
detailed in the supplementary. All losses are hyperparameter
tuned via grid search. Table 3 shows that all losses recover
µ(x) with a Rank Corr. ≥ 0.82 despite the high noise in
our experimental setup. We find that, besides MCInfoNCE,
ELK also recovers κ(x) well (Rank Corr. = 0.92). This is
the first confirmation that ELK predicts correct posteriors
in a controlled setup and opens space for future theoretical
investigations.

Table 4. Predicted certainties κ̂(x) of MCInfoNCE correlate with
human annotator disagreement and information reduction via crop-
ping images smaller. Rank correlation on unseen test data.

Loss Annotator Entropy ↑ Crop Size ↑
HIB 0.28± 0.00 0.69± 0.02
ELK 0.14± 0.05 0.51± 0.03
MCInfoNCE 0.29± 0.01 0.68± 0.01
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Figure 5. Rejecting images with low certainty values κ̂(x) im-
proves the performance on the remaining data monotonically with
the threshold. This shows that κ̂(x) is predictive of performance.

5.2. Posteriors Reflect Aleatoric Uncertainty in Practice

After confirming that the predicted posteriors are correct,
this section shows that they resemble the aleatoric uncer-
tainty in image data. We also show that this enables novel
applications such as credible intervals for image retrieval.

Measuring Aleatoric Uncertainty. In the upcoming ex-
periment, we do not have access to any ground-truth κ(x)
against which to compare κ̂(x). Instead, we need to com-
pare it to various indicators of aleatoric uncertainty. We use
three different indicators that capture human uncertainty, in-
formation loss, and performance decrease with respect to the
amount of aleatoric uncertainty. First, if an image is ambigu-
ous, human annotators disagree about the latent that it shows.
We therefore conduct our experiment on CIFAR-10H (Peter-
son et al., 2019). It comprises fifty class annotations for each
image. This gives a soft-label distribution whose entropy
reflects the ambiguity of the image. We compute the Rank
Corr. between 1/κ̂(x) and this annotator entropy to measure
how well κ̂(x) reflects human-perceived input ambiguity.
Second, we induce controlled information loss by deteriorat-
ing the image. (Wu & Goodman, 2020) identified cropping
to increase aleatoric uncertainty most clearly. Thus, we crop
test images to percentages crop size ∼ Unif([0.25, 1])
of their original size. The aleatoric uncertainty increases
the more the image is cropped. We thus report the Rank
Corr. between 1/κ̂(x) and the crop size as a second met-
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Table 5. κ̂(x) can be learned by MCInfoNCE from both soft and
hard labels. Rank correlation on unseen test data.

Labels Annotator Entropy ↑ Crop Size ↑
CIFAR-10H Soft Labels 0.29± 0.01 0.68± 0.01
CIFAR-10H Hard Labels 0.24± 0.01 0.64± 0.02
CIFAR-10 Hard Labels 0.28± 0.01 0.69± 0.02

ric. Third, ambiguous images inevitably lead to decreased
performance. To investigate whether κ̂(x) is indicative of
performance, we calculate the Recall@1 (Jegou et al., 2010)
on the p% images with the highest κ̂(x). If κ̂(x) correctly
reflects aleatoric uncertainty, removing ambiguous images
should improve performance, so the Recall@1 should in-
crease monotonically with p. This metric also illustrates the
popular use case of abstaining from uncertain predictions.

Architecture and Training. We translate the CIFAR-
10H classification task into a contrastive task by consid-
ering images to be positive if they are in the same class
and negative otherwise. We create training examples
(x, x+, x−

1 , . . . , x
−
M ) by drawing class labels for each im-

age from its soft class distribution, selecting a random im-
age x, an image x+ with the same class label, and M im-
ages x−

m with different class labels. On this data, we train
a ResNet-18 (He et al., 2016) pre-trained on CIFAR-10
(Phan, 2021) that outputs embeddings e(x). We define
µ̂(x) := e(x)/∥e(x)∥2 and, following common practices
for probabilistic embeddings (Kirchhof et al., 2022; Scott
et al., 2021; Li et al., 2021), κ̂(x) as ∥e(x)∥2. We run a
5-fold cross validation where we train for 175 epochs and
select the best epoch via the Rank Corr. with the crop size
on validation data. We choose this metric over the others be-
cause it can be computed on any dataset without additional
supervision. All details on generating the contrastive data
and the hyperparameter search are in the supplementary.

Results. Table 4 shows that κ̂(x) learned via MCInfoNCE
has a high Rank Corr. of 0.68 with the information lost due
to cropping, i.e., images with less information return more
uncertain posteriors. The correlation with the human anno-
tator entropy is lower (0.29), but positive. HIB achieves a
similar performance, while ELK shows lower correlations
with both ground-truths (0.51 and 0.14, resp.). Figure 5
shows the performance decrease metric. Up to noise, the Re-
call@1 increases monotonically as images with the lowest
κ̂(x) are rejected. This means that κ̂(x) is a good predic-
tor of performance. As an additional qualitative metric the
supplementary shows images with the lowest and highest
κ̂(x) of each class. MCInfoNCE learns from labeling noise
in this experiment, since the image class was drawn anew
from its soft label distribution each time the image was used.
In practice, we may have only one annotation per image, so
that labeling noise occurs across examples rather than on
each individual image. To this end, we further train on hard

Query Images in 95% Credible Interval

κ̂ = 82

κ̂ = 45

κ̂ = 25

Figure 6. We use an image’s posterior to define the credible interval
that its latents lie in with a given probability. Clear query images
(top) have small credible intervals containing images of the same
class as the query. More ambiguous queries (bottom) return larger
credible intervals with images from multiple possible classes.

labels. These are either the most likely class of each soft
label distribution on CIFAR-10H or the classical class la-
bels on the CIFAR-10. Table 5 shows that MCInfoNCE can
learn under both of these circumstances with a performance
roughly equal to that when soft labels are available.

Credible Intervals for Image Retrieval. Since we esti-
mate posteriors Q(z|x), we can also introduce Bayesian
credible intervals (Lee, 1989) to our image representation
task. Such intervals CIp(x) ⊂ Z contain the true generative
latent z of x with a user-defined probability p ∈ [0, 1], i.e.,
P (z ∈ CIp(x)) = p for x ∼ P (x|z). Credible intervals
help understand the degree to which our model can identify
the latent that x shows. We can visualize these latents by
searching for images whose µ̂(x) fall within CIp. Figure 6
shows such intervals on our MCInfoNCE model for CIFAR-
10H. A clear image (top) has a sharp posterior and thus a
small CI containing only one image from the same class.
The CI of a more ambiguous query image, like the second,
tells us that the model places the query in the region of cats,
but that it could also be a dog. Highly ambiguous queries,
like the last one, lead to wide CIs that span multiple possible
classes. They examples show how credible intervals can
augment retrieval with uncertainty-awareness: They deter-
mine the number of images to retrieve subject to the query’s
ambiguity and allow users to judge the uncertainty better
than a simple scalar uncertainty value.

6. Discussion
Relations to Broader Variational Inference. Our work
advances the recent theoretical discussions about contrastive
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learning and variational inference. Oord et al. (2018) and
Poole et al. (2019) initially showed that the minimizer of
InfoNCE is the likelihood ratio of positive and negative den-
sities of the generative process. Zimmermann et al. (2021)
used this to show that the minimizer recovers the latents,
modulo rotations. Our work shows that we can even learn
the correct posterior of a probabilistic generative process,
modulo rotations, i.e., the internal probabilistic latent repre-
sentations of our specific encoder are indeed correct. This
may have implications to other works on variational ap-
proaches and contrastive learning, like Aitchison (2021).

Multi-modal Posteriors. The vMF posteriors should be
able to capture most augmentations in self-supervised con-
trastive learning that deteriorate the image whole image,
i.e., all latent factors equally. However, it is also interest-
ing to think about deteriorations that lead to multi-modal
posteriors. In this case, Proposition 4.1 does not make any
parametric assumption on the posteriors and thus still holds.
Proposition 4.2 and Proposition 4.3 need to be extended
regarding the identifiability of the mixture component, but
could then utilize our propositions for each component. We
see this as an exciting direction for future works.

7. Conclusion
This work presented MCInfoNCE, a probabilistic con-
trastive loss that predicts posteriors instead of points. We
proved that it learns the generative processes’ true posteriors.
This provides a theoretical grounding for the recent proba-
bilistic embeddings literature and connects it to a probabilis-
tic extension of nonlinear ICA. In practice, the posteriors
allow predicting the level of aleatoric uncertainty in am-
biguous inputs as well as estimating credible intervals with
flexible sizes depending on a query’s ambiguity in image
retrieval. These are only two usages that correct posteriors
enable and further usages are a promising area for future
research. Aleatoric uncertainty is not only faced in com-
puter vision and retrieval. We hope that the blueprint way of
enhancing InfoNCE into MCInfoNCE inspires applications
in further tasks with intrinsic ambiguities in their inputs.
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A. Proofs
A.1. Proof of Proposition 4.1

Proposition 4.1 (L is minimized iff marginals match) Let the latent marginal distributions P (z) =
∫
P (z|x)dP (x) and∫

Q(z|x)dP (x) be uniform. limM→∞ L attains its minimum when ∀x, x+ ∈ {x ∈ X |P (x) > 0}∫∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dz =∫∫
P (z|x)P (z+|x+)P (z+|z)dz+dz .

Proof. All of the above densities are integrable, so we can write the loss function L in the form of Riemann integrals.

lim
M→∞

L = − lim
M→∞

∫
P (x)P (x+|x)

∫ M∏
m=1

P (x−
m) log

∫
Q(z|x)Q(z+|x+) (14)

M∏
m=1

Q(z−m|x−
m)

eκposz
⊤z+

1
M eκposz⊤z+

+ 1
M

M∑
m=1

eκposz⊤z−
m

dz−1 . . . z−Mdz+dzdx−
1 . . . dx−

Mdx+dx (15)

We know that κpos < ∞, κ(x) < ∞∀x ∈ X , the normalization constants C(κ) < ∞∀κ < ∞, and the dot products are
bounded. This implies that all densities inside these integrals as well as the exponentials in the fraction are bounded. Thus,
the whole term inside the outmost integral is bounded. Due to the dominated convergence theorem we can pull the limit into
the integral.

= −
∫
P (x)P (x+|x) lim

M→∞

∫ M∏
m=1

P (x−
m) log

∫
Q(z|x)Q(z+|x+) (16)

M∏
m=1

Q(z−m|x−
m)

eκposz
⊤z+

1
M eκposz⊤z+

+ 1
M

M∑
m=1

eκposz⊤z−
m

dz−1 . . . z−Mdz+dzdx−
1 . . . dx−

Mdx+dx (17)

The strong law of large numbers and the fact that
∫
Q(z−|x−)P (x−)dx− = P (z) imply

= −
∫
P (x)P (x+|x) lim

M→∞
log

∫
Q(z|x)Q(z+|x+)

eκposz
⊤z+

1
M eκposz⊤z+

+ E
z−∼P (z)

(eκposz⊤z−
)
dz+dzdx+dx . (18)

Both densities and the fraction inside the inner integral are positive and bounded, so the integral is, too. In this range, i.e.,
(0,∞), the logarithm is continuous, so the continuous mapping theorem gives

= −
∫
P (x)P (x+|x) log lim

M→∞

∫
Q(z|x)Q(z+|x+)

eκposz
⊤z+

1
M eκposz⊤z+

+ E
z−∼P (z)

(eκposz⊤z−
)
dz+dzdx+dx . (19)

With the arguments from above, the inside of the inner integral is bounded, so we can again apply the dominated convergence
theorem.

= −
∫

P (x)P (x+|x) log
∫

Q(z|x)Q(z+|x+) lim
M→∞

eκposz
⊤z+

1
M eκposz⊤z+

+ E
z−∼P (z)

(eκposz⊤z−
)
dz+dzdx+dx (20)

= −
∫

P (x)P (x+|x) log
∫

Q(z|x)Q(z+|x+)
eκposz

⊤z+

E
z−∼P (z)

(eκposz⊤z−
)
dz+dzdx+dx (21)
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Since P (z) = Unif(SD−1) = 1
∥SD−1∥ , which we define as 1

S in shorthand, we get

= −
∫

P (x)P (x+|x) logS
∫

Q(z|x)Q(z+|x+)
eκposz

⊤z+∫
SD−1

eκposz⊤z−
dz−

dz+dzdx+dx (22)

= −
∫

P (x)P (x+|x) logS
∫

Q(z|x)Q(z+|x+)P (z+|z)dz+dzdx+dx . (23)

Let us turn our attention to P (x+|x). By marginalization, factorization, and the conditional independencies of the data-
generating process, we get

P (x+|x) (24)

=

∫
P (x+, z+, z|x)dz+dz (25)

=

∫
P (x+|z+, z, x)P (z+|z, x)P (z|x)dz+dz (26)

=

∫
P (x+|z+)P (z+|z)P (z|x)dz+dz . (27)

After a multiplication with 1, Bayes Theorem, and using P (z) = 1
S , we get

=

∫
P (x+|z+)P (z+)P (x+)

P (z+)P (x+)
P (z+|z)P (z|x)dz+dz (28)

=

∫
P (z|x)P (z+|x+)P (z+|z)P (x+)

P (z+)
dz+dz (29)

=P (x+)S

∫
P (z|x)P (z+|x+)P (z+|z)dz+dz . (30)

We can insert this into Formula 23.

−
∫

P (x)P (x+)S

∫
P (z|x)P (z+|x+)P (z+|z)dz+dz (31)

logS

∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dzdx+dx (32)

= E
x∼P (x)

x+∼P (x+)

(
S

∫
P (z|x)P (z+|x+)P (z+|z)dz+dz logS

∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dz

)
. (33)

Note that both terms are conditional on x, x+ and the expected value is taken over both of these. I.e., L in the limit is a
(non-normalized) cross-entropy between

∫
P (z|x)P (z+|x+)P (z+|z)dz+dz and

∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dz. The

loss is minimized iff the two terms match for all values in the outmost expected value, i.e., ∀x, x+ ∈ {x ∈ X |P (x) > 0}. □

A.2. Proof of Proposition 4.2

Proposition 4.2 (The marginal is a function) Let P (z|x) and P (z+|z) be vMF distributions as defined in Section 4.1. Given
x, x+ ∈ X , we can rewrite ∫∫

P (z|x)P (z+|x+)P (z+|z)dz+dz (34)

=: hκpos(µ(x)
⊤µ(x+), κ(x), κ(x+)), (35)

i.e., as a function hκpos that depends only on µ(x)⊤µ(x+), κ(x), and κ(x+). The same function can be used for
µ̂(x)⊤µ̂(x+), κ̂(x), κ̂(x+): ∫∫

Q(z|x)Q(z+|x+)P (z+|z)dz+dz (36)

= hκpos(µ̂(x)
⊤µ̂(x+), κ̂(x), κ̂(x+)). (37)

13
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Proof. Let us first insert the vMF densities.∫∫
P (z|x)P (z+|x+)P (z+|z)dz+dz (38)

=C(κ(x+))C(κpos)

∫∫
C(κ(x)) exp[κ(x)µ(x)⊤z + κ(x+)µ(x+)⊤z+ + κposz

⊤z+]dz+dz (39)

=C(κ(x+))C(κpos)

∫
C(κ(x)) exp(κ(x)µ(x)⊤z)

∫
exp[(κ(x+)µ(x+) + κposz)

⊤z+]dz+dz (40)

The term inside the inner integral can be rewritten into an unnormalized vMF density if we specify µ∗ :=
κ(x+)µ(x+)+κposz

∥κ(x+)µ(x+)+κposz∥
and κ∗ := ∥κ(x+)µ(x+) + κposz∥. The integral over this density is 1.

=C(κ(x+))C(κpos)

∫
C(κ(x)) exp(κ(x)µ(x)⊤z)

1

C(κ∗)

∫
C(κ∗) exp[κ∗µ∗⊤z+]dz+dz (41)

=C(κ(x+))C(κpos)

∫
C(κ(x)) exp(κ(x)µ(x)⊤z)

1

C(κ∗)
dz (42)

=C(κpos) E
z∼vMF(µ(x),κ(x))

 C(κ(x+))

C
(√

κ(x+)2 + κ2
pos + 2κ(x+)κposµ(x+)⊤z

)
 (43)

=:hκpos(µ(x)
⊤µ(x+), κ(x), κ(x+)) (44)

In the last step, the expected value is over µ(x+)⊤z, z ∼ vMF(µ(x), κ(x)). This depends only on the distance µ(x)⊤µ(x+)
instead of the full location parameters µ(x) and µ(x+) because the vMF is rotationally symmetric and we can perform a
suitable Householder rotation, see also Romanazzi (2014). □

A.3. Proof of Proposition 4.3

Proposition 4.3 (Arguments of hpos must be equal) Define hpos as in Proposition 4.2. Let X ′ ⊆ X , µ, µ̂ : X ′ → Z ,
κ, κ̂ : X ′ → R>0, κpos > 0. If hpos(µ̂(x)

⊤µ̂(x+), κ̂(x), κ̂(x+)) = hpos(µ(x)
⊤µ(x+), κ(x), κ(x+)) ∀x, x+ ∈ X ′, then

µ̂(x)⊤µ̂(x+) = µ(x)⊤µ(x+) and (45)

κ̂(x) = κ(x) ∀x, x+ ∈ X ′. (46)

Proof. (a) The normalization constant of the vMF C(κ) = κD/2−1

(2π)D/2ID/2−1(κ)
, where Io is the modified Bessel function of

the first kind and order o, is strictly monotonically decreasing and convex (Kirchhof et al., 2022).

(b) Consider arbitrary x = x+, x ∈ X ′. In this case, µ(x)⊤µ(x+) = µ̂(x)⊤µ̂(x+) = 1, and both sides of the equality
simplify ∫∫

Q(z|x)Q(z+|x+)P (z+|z)dz+dz =

∫∫
P (z|x)P (z+|x+)P (z+|z)dz+dz (47)

⇐⇒ hκpos(1, κ(x), κ(x)) = hκpos(1, κ̂(x), κ̂(x)) (48)

⇐⇒ h̃κpos(κ(x)) = h̃κpos(κ̂(x)) (49)

with h̃κpos(κ) := hκpos(1, κ, κ). Due to (a), the denominator in Formula 43 grows strictly faster than the numerator. So h̃ is
strictly monotonically increasing. Thus, h̃κpos(κ(x)) = h̃κpos(κ̂(x)) only if κ(x) = κ̂(x).

(c) Let x, x+ ∈ X ′ be arbitrary. From (b) we know κ̂(x) = κ(x), so we can simplify

hκpos(µ(x)
⊤µ(x+), κ(x), κ(x+)) = hκpos(µ̂(x)

⊤µ̂(x+), κ̂(x), κ̂(x+)) (50)

⇐⇒ h∗
κpos,κ(x),κ(x+)(µ(x)

⊤µ(x+)) = h∗
κpos,κ(x),κ(x+)(µ̂(x)

⊤µ̂(x+)) (51)

with h∗
κpos,κ(x),κ(x+)(·) := hκpos(·, κ(x), κ(x+)). In other words, both sides of the equality are the same function

h∗
κpos,κ(x),κ(x+) with only one free variable. Due to (a), the denominator in Formula 43 strictly decreases with in-

creasing µ(x)⊤µ(x+) if κ(x+) > 0 and κpos > 0. So, h∗
κpos,κ(x),κ(x+) is strictly monotonically increasing and

h∗
κpos,κ(x),κ(x+)(µ(x)

⊤µ(x+)) = h∗
κpos,κ(x),κ(x+)(µ̂(x)

⊤µ̂(x+)) implies µ(x)⊤µ(x+) = µ̂(x)⊤µ̂(x+). □
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A.4. Proof of Theorem 4.4

Theorem 4.4 (L identifies the correct posteriors) Let Z = SD−1 and P (z) =
∫
P (z|x)dP (x) and

∫
Q(z|x)dP (x) be the

uniform distribution over Z . Let g be a probabilistic generative process defined in Formulas 2, 3, and 4 with known κpos.
Let g have vMF posteriors P (z|x) = vMF(z;µ(x), κ(x)) with µ : X → SD−1 and κ : X → R>0. Let an encoder f(x)
parametrize vMF distributions vMF(z; µ̂(x), κ̂(x)). Then f∗ = argminf limM→∞ L has the correct posteriors up to a
rotation of Z , i.e., µ̂(x) = Rµ(x) and κ̂(x) = κ(x), where R is an orthogonal rotation matrix, ∀x ∈ {x ∈ X |P (x) > 0}.

Proof. If f∗ optimizes L, then by Proposition 4.1 ∀x, x+ ∈ {x ∈ X |P (x) > 0} we have∫∫
Q(z|x)Q(z+|x+)P (z+|z)dz+dz =

∫∫
P (z|x)P (z+|x+)P (z+|z)dz+dz . (52)

Then by Proposition 4.3 with X ′ := {x ∈ X |P (x) > 0} we get κ̂(x) = κ(x) and µ(x)⊤µ(x+) = µ̂(x)⊤µ̂(x+). With the
extended Mazur-Ulam Theorem (Zimmermann et al., 2021), the latter implies µ̂(x) = Rµ(x) with an orthogonal rotation
matrix R ∈ RD×D. □

B. Controlled Experiment
B.1. Network Architectures

We use MLPs to parametrize the generative processes’ posteriors µ(x) and κ(x) as well as the encoder µ̂(x) and κ̂(x).

For µ(x) and µ̂(x) we follow Zimmermann et al. (2021). The MLP for µ(x) has three linear layers with 10 dimensions
and leaky ReLU activations. To prevent collapsed initializations we take 1000 exemplary samples for µ(x) and re-
initiate it if the smallest cosine similarity x⊤

1 x2 between any pair x1, x2 of them is bigger than 0.5. µ̂(x) has six hidden
linear layers with leaky ReLU activations plus an input and and output layer with the input and output dimensions
[D → 10·D, 10·D → 50·D, 50·D → 50·D, 50·D → 50·D, 50·D → 50·D, 50·D → 50·D, 50·D → 10·D, 10·D → D].
The outputs of both networks are normalized to an L2 norm of 1 to ensure they are on the unit sphere.

The MLPs for κ(x) and κ̂(x) have the same architecture as µ(x) and µ̂(x), but κ(x) has one less hidden layer than
µ(x). The last layer of both networks outputs only a scalar instead of a D-dimensional vector. It is postprocessed by
κ̃(x) = 1 + exp(κ(x)) to ensure their strict positivity. Before training, κ̂(x) is normalized to output the same range of
values as κ(x) to improve training stability.

B.2. Generating Contrastive Training Data

The generative process in Section 4.1 first draws latents z and then generates observations x to create contrastive training
data. However, we want to control our generative processes’ posteriors. Thus, we need to first sample x and then z ∼ P (z|x).
A method to sample backwards like this while still obtaining samples as if they were from the forward generative process is
rejection sampling. We first draw random candidates (x, x+) from X = [0, 1]D, then draw (z, z+) from their corresponding
posteriors. To ensure that they form a valid positive example as per the distributions in Formulas 2 and 3, we accept or reject
them with a probability proportional to

C(κpos)e
κposz

⊤z+

C(κpos)eκposz⊤z+
+ C(0)

. (53)

This is the probability that z and z+ are positive to one another. The proposal distribution’s density for rejection sampling is
dropped here due to the uniform priors. Negative examples (x−

m)m=1,...,M are drawn randomly from X due to Formula 4.

B.3. Experiment Parameters

Following Zimmermann et al. (2021), all experiments used κpos = 20 and the above network architectures. The learning
rate was 0.0001 and was decreased after each 25% of training progress by a factor of 0.1. Performance was measured at the
end of the training without early stopping on 10000 sampled x points. All experiments were implemented in Python 3.8.11,
PyTorch 1.9.0 on NVIDIA-RTX 2080TI GPUs with 12GB VRAM. Table 6 below summarizes the remaining parameters
used by all ablations of the controlled experiment.
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Experiment Gen. D Enc. D′ Posterior min(κ(x)) max(κ(x)) Batchsize Number of Batches Number MC Samples Comment

Ambiguous (κ(x) ∈ [16, 32]) 10 10 vMF 16 32 512 100000 512 Also used for HIB, ELK, InfoNCE
Clear (κ(x) ∈ [64, 128]) 10 10 vMF 64 128 512 100000 512
Injective (κ(x) = ∞) 10 10 vMF/Dirac ∞ ∞ 512 100000 512
D = 2 2 2 vMF 16 32 512 8192 512
Gaussian 10 10 Gaussian 16 32 512 100000 512 σ2 = 1/κ(x)
Laplace 10 10 Laplace 16 32 512 100000 512 b = 1/κ(x)
MC Samples 10 10 vMF 16 32 512 100000 x x ∈ {1, 4, 16, 64, 256, 512}
Encoder Dim 10 x vMF 16 32 512 100000 512 for x ∈ {4, 8, 10, 16, 32}
— ” — 512 256 for x = 64
— ” — 256 256 for x = 128
High Dim x x vMF 16 32 512 100000 512 x ∈ {10, 16}
— ” — 256 256 for x ∈ {32, 40, 48, 56, 64}

Table 6. Parameters of the generative process and loss in the controlled experiments. x denotes variable parameters. Batchsize and number
of MC samples were reduced in high dimensions to not exceed the available VRAM.

B.4. Contrastive Hedged Instance Embeddings

HIB (Oh et al., 2019) is formulated similarly to MCInfoNCE in that it also draws samples of a posterior and computes a
probability score with them. HIB originally uses Gaussians and compares L2 distances between samples. We adapt this to
vMFs and cosine distances to align it with the spherical formulation of the latent space. The reformulated HIB loss is

LHIB := E
x∼P (x)

x+∼P (x+|x)
x−
m∼P (x−),m=1,...,M

− log E
z∼Q(z|x)

z+∼Q(z+|x+)

(
s(a · z⊤z+ + b)

)
− 1

M

M∑
m=1

log E
z∼Q(z|x)

z+∼Q(z−|x−
m)

(
1− s(a · z⊤z−m + b)

), (54)

where s(·) is the Sigmoid function and a and b are tuneable hyperparameters. We excluded the KL regularizer originally
proposed by Oh et al. since none of the other losses receive prior information on κ(x).

B.5. Contrastive Expected Likelihood Kernel

The ELK is commonly used inside a classification cross-entropy loss (Kirchhof et al., 2022). Its key characteristic is that it re-
places the point-to-point distance, e.g., cosine distance, by the expected likelihood distance. An analytical solution to compare
two vMFs is provided in the supplementary of Kirchhof et al.. We can plug this distance dEL-vMF(µ̂(x1), κ̂(x1), µ̂(x2), κ̂(x2))
into InfoNCE and transform it into a similarity by multiplying it with −1 to obtain our contrastive ELK loss:

LELK := E
x∼P (x)

x+∼P (x+|x)
x−
m∼P (x−),m=1,...,M

− log
e−κposdEL-vMF(µ̂(x),κ̂(x),µ̂(x

+),κ̂(x+))

1
M e−κposdEL-vMF(µ̂(x),κ̂(x),µ̂(x+),κ̂(x+)) + 1

M

M∑
m=1

e−κposdEL-vMF(µ̂(x),κ̂(x),µ̂(x
−
m),κ̂(x−

m))

. (55)

B.6. Hyperparameter Tuning

All losses were tuned on the ”Standard” experiment setup via grid search. The seed for the generative process was exclusive
and not used in the five seeds of the final results. Table 7 below gives the hyperparameters along with the chosen best setup
according to the rank correlation between κ(x) and κ̂(x).

There are two interesting results in this tuning. First, the true generative κpos was indeed the best choice. All methods
performed worse when they learned it themselves (starting from the true value) or when given a different value (not shown
here). Second, MCInfoNCE performs best with a high number of negative samples. This corroborates the theoretical study
of its limiting behaviour as M → ∞.

Phasewise training is the empirical strategy of first learning µ̂(x) during the first half of epochs, then fixing it and learning
κ̂(x) (Shi & Jain, 2019; Li et al., 2021). MCInfoNCE showed an improved performance with this strategy. This is likely
because the training signal of κ(x) is far lower in the loss than that of µ(x). During the training phase of µ̂(x), it turned out
beneficial to use negatives from the same batch, i.e., M = 0.
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HIB ELK MCInfoNCE

Number of negatives M {0, 1, 32} {0,1, 32} {0, 1,32}
κpos learnable {yes, no} {yes, no} {yes, no}
Phasewise training {yes, no} {yes, no} {yes, no}
a {0.5,1, 2, 4}
b {−8,−4,−2,−1,0, 1, 2, 4, 8}

Table 7. Possible hyperparameters and best-performing hyperparameters (bold). M = 0 corresponds to not sampling negatives, but using
one sample from the same batch as a negative. HIB’s additional hyperparameters were tuned after the first three parameters to reduce the
number of grid-search evaluations.

B.7. Ablation with High Latent Space Dimension

We use the latent space dimension D = 10 for most experiments following Zimmermann et al. (2021). Below in Figure 7,
we increase the latent space dimension of the generative process and encoder up to 64. We notice considerable performance
drops for D ≥ 40. Other losses than MCInfoNCE also suffer this. Hence, it is likely because of our experimental setup: We
use uniformly distributed negatives instead of sophisticated negative mining and the rejection sampling has lower success
probabilities in high dimensions, making it harder to generate valid contrastive examples.
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Figure 7. The metrics worsen if the generative process has a latent space of dimension D ≥ 40. This is likely not due to MCInfoNCE, but
a limitation of the contrastive setup of our controlled experiment. Mean ± std. err. for five seeds.

B.8. Ablation with Joint Architecture

In the upper experiments, the networks for κ(x) and µ(x) (and κ̂(x) and µ̂(x)) were independent, i.e., did not share
parameters. This was to make clear that κ(x) characterizes the uncertainty of the input x, rather than the latent of a shared
backbone. However, a shared backbone with two heads for µ(x) and κ(x) is a common architecture as, e.g., in VAEs. We’ve
thus run an ablation where µ(x) is the output of the embedder (a 6-layer MLP) and κ(x) is a 3-layer MLP attached after it.
This keeps the total number of parameters the same as in the independent case. We rerun the ”Ambiguous” setting with
κ(x) ∈ [16, 32]. Table 8 shows that MCInfoNCE achieves similar performance in both cases.

Table 8. MCInfoNCE also discovers correct posteriors if µ̂(x) and κ̂(x) have a shared backbone. Mean ± std. err. for five seeds.

True vs Pred. Location µ̂(x) True vs Pred. Certainty κ̂(x)
Architecture RMSE ↓ Rank Corr. ↑ RMSE ↓ Rank Corr. ↑
Independent Networks 0.04± 0.00 0.99± 0.00 6.15± 0.61 0.82± 0.04
Shared Backbone with Two Heads 0.04± 0.00 0.99± 0.00 7.31± 1.53 0.87± 0.02
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C. CIFAR-10H Experiment
C.1. Contrastive Learning on CIFAR

To test whether the predicted certainty κ̂(x) aligns with human-judged aleatoric uncertainty, we require a dataset that
provides a ground-truth. CIFAR-10H (Peterson et al., 2019) provides 50 annotations for each test-set image of CIFAR-10.
We use the entropy of the probability distribution over these annotations as a measure of aleatoric uncertainty in each image,
and compare its negative to the predicted certainty κ̂(x) via rank correlation. Since the annotations were only collected for
the 10000 images of the test set of CIFAR-10, we apply a 5-fold cross validation. The 10000 images are randomly split into
sets of 2000. For five iterations, three of these sets form the train data, one the validation, and one the test data. To prevent
confusions with the CIFAR-10 train and test set, we refer to these as the CIFAR-10H train, validation, and test sets. The
image indices that belong to each set are provided in our code repository.

This leaves us with the task of redefining the CIFAR classification task into a contrastive learning problem. To this end,
we simply assume that images are positive to one another if they belong to the same class and negative if they do not.
CIFAR-10H, however, has soft class distributions for each image instead of a crisp class. Thus, we first draw a class c
from the class distribution P (C|x) of a reference image x from the train set. We then draw a positive image x+ from a
multinomial distribution over all train images weighed by their probabilities of that class P (C = c|x+). Negative images
x− are selected the same way, but weighed by the probability of not being class c, i.e., 1− P (C = c|x−). This provides the
contrastive data generator required for training.

Since the human annotation data might be noisy in how well it captures the aleatoric uncertainty, we complement it with a
synthetical way to introduce aleatoric uncertainty. In a second test dataset, we copy the CIFAR-10H test images, but perform
a random crop and rescale that reduces the image to a proportion crop size ∼ Unif([0.25, 1]) of its original width and
length. This directly reduces the information available in the image and therefore increases its aleatoric uncertainty, without
introducing artifacts that might let the image go out-of-distribution. We calculate the rank correlation of the reduction in size
crop size and the (negative) predicted certainty −κ̂(x) as an alternative way to evaluate whether κ̂(x) reflects loss in
information in the input, and therefore aleatoric uncertainty.

C.2. Hyperparameters

We use a ResNet-18 (He et al., 2016) pretrained on the CIFAR-10 train dataset (Phan, 2021) and replace the classification
layer by a linear layer with the input and output dimensions [512, D]. We then train the linear layer and the ResNet backbone
under each loss for 8192 batches of batchsize 128, which corresponds to roughly 175 epochs on the 6000 CIFAR-10H train
images. We use the CIFAR-10H validation set to select the best model, evaluated after each 16 batches. The criterion
is the rank correlation between κ̂(x) and the crop size in the synthetically deteriorated CIFAR-10H validation set. We
chose this metric rather than the human annotator disagreement since it can be generated on arbitrary datasets without new
annotations. All losses use 128 MC samples and, according to the results in Appendix B.6, a fixed κpos. We use the same
Adam optimizer with a learning rate of 0.0001, learning rate scheduling, and (optional) phase-wise training as in B.6. The
remaining hyperparameters were tuned via grid search. The best choices are highlighted in Table 9.

Loss HIB ELK MCInfoNCE MCInfoNCE MCInfoNCE
Train Dataset / Label Type CIFAR-10H soft CIFAR-10H soft CIFAR-10H soft CIFAR-10H hard CIFAR-10 hard

Latent Dim D {8, 16} {8, 16} {8, 16} {8,16} {8, 16}
Number of negatives M {0, 1, 32} {0,1, 32} {0, 1,32} {0, 1, 32} {0, 1, 32}
κpos {16,32, 64} {16,32, 64} {16, 32, 64} {16, 32, 64} {16, 32,64}
Phasewise training {yes, no} {yes, no} {yes, no} {yes, no} {yes, no}
a {0.5, 1,2, 4}
b {−2,−1, 0,1, 2}

Table 9. Possible hyperparameters and best-performing hyperparameters (bold). M = 0 corresponds to not sampling negatives, but using
one sample from the same batch as a negative. HIB’s additional hyperparameters were tuned after the first four parameters to reduce the
number of grid-search evaluations.
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C.3. Ablation without Pretraining

All experiments on CIFAR started from weights pretrained on CIFAR-10 to reduce the required computational resources.
However, it is also an intriguing question if MCInfoNCE is able to train a network from scratch. Table 10 shows that it
achieves a similar performance to when it is used on pretrained weights. The small gap in performance may be explained by
the fact that we chose the same hyperparameters for both scenarios for fairness. In particular, the learning rate is tuned for
the pretrained scenario but not for the non-pretrained one.

Table 10. MCInfoNCE can also be used to train on CIFAR-10H from scratch, without pretraining. Rank correlation on unseen test data.

Pretraining Annotator Entropy ↑ Crop Size ↑
With Pretraining 0.33 0.70
From Scratch 0.31 0.62

C.4. Uncertainty Estimation is Not At Stakes With First-Moment Estimation

It is a popular question whether uncertainty estimation worsens the general performance, i.e., the estimation of the first-
moment embedding µ̂(x). To add evidence to this discussion, we’ve implemented the normal InfoNCE loss which estimates
only µ̂(x) but not κ̂(x). In both for the CIFAR and controlled experiment. Table 11 shows that MCInfoNCE is not worse than
InfoNCE at predicting µ̂(x). In terms of the RMSE in the controlled experiment, it even outperforms InfoNCE as InfoNCE
puts the embeddings too close to one another (RMSE = 0.83). This is although InfoNCE was hyperparameter-tuned.

Table 11. MCInfoNCE is not worse than InfoNCE at predicting the first moment of the embedding despite also providing a variance
estimate.

Loss µ(x) vs µ̂(x) RMSE ↓ µ(x) vs µ̂(x) Rank Corr. ↑ Recall@1 on CIFAR-10H ↑
MCInfoNCE 0.04± 0.00 0.99± 0.00 0.863
InfoNCE 0.83± 0.00 0.99± 0.00 0.858

C.5. Credible Intervals

Since we have a (estimated) posterior distribution P (z|x), we can give a credible interval CIp ⊆ Z that the latent z of x
falls into with a probability p ∈ [0, 1], i.e., P (z ∈ CIp) = p. We center this interval around the mode of the posterior vMF,
such that it is a highest posterior density interval (HPDI). Due to the rotational symmetry of the vMF, for a given κ(x) and
credible level p, this interval has the form CIp = {z ∈ Z|z⊤µ(x) ≤ t}, i.e., all latents z closer to the mode µ(x) than a
certain threshold t ∈ [−1, 1] measured by cosine similarity. This threshold is the (approximated) (1− p) quantile of the
vMF.

To visualize this latent interval, we define the credible images interval (CII). This is a pre-image of the corresponding CI and
gives all images whose mode is within the CI, i.e., CIIp := {x ∈ X |µ(x) ∈ CIp}. This can either be visualized via a GAN
conditional on z ∈ CIp or by images from the dataset with µ(x) ∈ CIIp. We note that this does not reflect the aleatoric
uncertainty of those images. We leave this extension for future work.

C.6. Qualitative Evaluation of Aleatoric Uncertainty

Besides the quantitative metrics reported in the main text, we can also take a qualitative look at whether κ̂(x) represents
aleatoric uncertainty in the inputs. Figure 8 visualizes the five images with the lowest and highest κ̂(x) in each class in the
CIFAR-10H test set, i.e., on unseen data. It can be seen that images with a low κ̂(x) tend to hide characteristic parts of
the object via bad crops, being too far away from the object, or an uncommon perspective. Images with a high κ̂(x) show
characteristic features clearly, making it less ambiguous to tell what they show. In other words, they indeed have a lower
aleatoric uncertainty.
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Lowest κ̂(x) Highest κ̂(x)

Class=Truck

Class=Ship

Class=Horse

Class=Frog

Class=Dog

Class=Deer

Class=Cat

Class=Bird

Class=Automobile

Class=Airplane

Figure 8. Images for which MCInfoNCE predicts the highest aleatoric uncertainty , i.e., lowest κ̂(x), (left) per class qualitatively look
more ambiguous than those with the highest predicted κ̂(x) (right).
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