
Differentiable and Transportable Structure Learning

Jeroen Berrevoets 1 Nabeel Seedat 1 Fergus Imrie 2 Mihaela van der Schaar 1 3

Abstract

Directed acyclic graphs (DAGs) encode a lot of
information about a particular distribution in their
structure. However, compute required to infer
these structures is typically super-exponential in
the number of variables, as inference requires
a sweep of a combinatorially large space of po-
tential structures. That is, until recent advances
made it possible to search this space using a
differentiable metric, drastically reducing search
time. While this technique— named NOTEARS
—is widely considered a seminal work in DAG-
discovery, it concedes an important property in
favour of differentiability: transportability. To
be transportable, the structures discovered on one
dataset must apply to another dataset from the
same domain. We introduce D-Struct which re-
covers transportability in the discovered structures
through a novel architecture and loss function
while remaining fully differentiable. Because D-
Struct remains differentiable, our method can be
easily adopted in existing differentiable architec-
tures, as was previously done with NOTEARS. In
our experiments, we empirically validate D-Struct
with respect to edge accuracy and structural Ham-
ming distance in a variety of settings.

1. Introduction
Machine learning has proven to be a crucial tool in many
disciplines. With disciplines such as causal deep learning
[1] and applications in medicine [2–6], economics [7–9],
physics [10–15], robotics [16–19], and even entertainment
[20–22], machine learning is transforming the way in which
experts interact with their field. These successes are in large
part due to increasing accuracy of diagnoses, marketing
campaigns, analyses of experiments, and so forth.

1DAMTP, University of Cambridge, UK 2UCLA, CA, USA
3The Alan Turing Institute, UK. Correspondence to: Jeroen
Berrevoets <jeroen.berrevoets@maths.cam.ac.uk>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

However, machine learning has much more to offer than im-
proved accuracy, as machine learning is slowly recognised
as a tool for scientific discovery [23–26]. In these successes,
machine learning helped uncover previously unknown re-
lationships between variables. In an effort to make these
discoveries more robust, we propose D-Struct, a differen-
tiable and transportable structure learner.

The structures. We focus on discovering directed acyclic
graphs (DAGs) in a domain X . A DAG helps us under-
stand how different variables in X interact. Consider a
three-variable domain X := {X,Y, Z}, governed by a joint-
distribution, PX . A DAG explicitly models variable interac-
tions in PX . For example, consider the following DAG: G =

X YZ , where G depicts PX as a DAG. Such a
DAG allows useful analysis of the (in)dependence of vari-
ables in PX [27, 28]. From G, we learn that X does not
directly influence Y , and that X ⊥⊥ Y |Z as X does not give
any additional information on Y once we know Z.

The above forms the basis for conventional DAG-structure
learning [29–33]. In particular, X ⊥⊥ Y |Z strongly lim-
its the possible DAGs that model PX . Given more inde-
pendence statements, we limit the potential DAGs further.
However, independence tests are computationally expen-
sive which is problematic as the number of potential DAGs
increases super-exponentially in |X | [34].

This limitation strongly impacted the adoption of DAG-
learning until Zheng et al. [35] proposed NOTEARS, which
incorporates a differentiable metric to evaluate whether or
not a discovered structure is a DAG [35, 36]. Using auto-
matic differentiation, NOTEARS learns a DAG-structure in
a much more efficient way than methods based on condi-
tional independence tests (CITs).

While NOTEARS makes DAG inference tractable, we recog-
nise an important limitation in the approach: a discovered
DAG does not generalise to equally factorisable distribu-
tions, i.e. NOTEARS is not transportable [37]. While we
explain why this is the case in Section 2.1 (and confirm it
empirically in Section 4), we give a brief description of the
problem below, helping us to state our contribution.

Transportability. Consider Fig. 1, depicting two hospi-
tals: hospital A � and hospital B �. Each hospital hosts
patients described by the same set of features, such as age

1

Differentiable and Transportable Structure Learning

�
�

�





Population
of patients.

Different
distributions.

Different
hospitals.

Different
datasets.

The same
DAGs.

These
DAGs are

transportable!

Figure 1: Transportability in DAG discovery. Different patients go to different hospitals (left), yet we wish to infer a
general structure (right) across hospitals. A structure can only be considered a discovery if it generalises in distributions
over the same domain. For example, the way blood pressure interacts with heart disease is the same for all humans and
should be reflected in the discovered structure.

and gender. However, the hospitals may have different pa-
tient distributions, e.g. patients in A are older compared
to B. Crucially, their underlying biology remains the same.
Using NOTEARS to learn a DAG from data on hospital A
does not guarantee the same DAG is discovered from data in
hospital B, despite the two hospitals being governed by the
same DAG. Being unable to transport findings across distri-
butions is a major shortcoming, as replicating a discovery
is considered a hallmark of the scientific method [38–41].
The ability to carryover information from one distribution
to another is referred to as transportability [37].

Contributions. In this paper, we present D-Struct, the first
transportable differentiable structure learner. Transportabil-
ity grants D-Struct several advantages over the state-of-the
art: (i) D-Struct is more accurate which we show in a vari-
ety of settings; (ii) D-Struct is fast, in fact, we report time-
to-convergence often up to 20 times faster than NOTEARS
(Fig. 8); (iii) D-Struct is easily integrated in existing ar-
chitectures such as [42–46]. Finally, despite the motivation
being multi-origin data, (iv) D-Struct also works for a sin-
gle dataset: using a novel subsampling routine (Section 3.2),
we show that D-Struct is also more accurate when applying
ideas from transportability to the single dataset setting.

2. Preliminaries and related work
Our goal is to build a differentiable and transportable DAG-
learner. Without loss of generality, we focus our discussion
mostly on NOTEARS [35] (and refinements [36, 47–50])
as it is the most adopted differentiable DAG learner. For
a more in-depth overview of DAG-learners (CIT-based as
well as score-based), we refer to Appendix G or relevant
literature [27, 34, 51]. Here, we discuss transportability,
NOTEARS, and why NOTEARS is not transportable.

Factorisation and independence. Consider a distribution,
PX , which we can factorise into,∏

i

PXi|Xi+1:d
, (1)

with i ∈ [d], where [d] := 1, . . . , d, and Xi representing the
ith element in X . Eq. (1) may get quite long with increasing

d, which becomes restrictive when learning a factorisation
in P̂X from data. Instead, we can simplify eq. (1) using in-
dependence statements, e.g. Xi ⊥⊥ Xk invokes the equality:
PXi|Xj,k

= PXi|Xj
. Simplifying eq. (1) results in a smaller

Markov boundary [52] (see Appendix D).

Direction. We are interested in directed and acyclic graphi-
cal (DAG) structures. Let GX := {X , E} be a DAG, where
E ⊂ X × X is a set of edges connecting random variables
in X , with (Xi,Xj) ∈ E implying (Xj ,Xi) ̸∈ E [53].

While independence is symmetric, it is still possible to infer
non-symmetrical structures using only independence state-
ments and d-separation [31, 51, 54–57]. Given a collection
of conditional independence statements, e.g. X ⊥⊥ Y |Z,
d-separation (see Def. 4) helps identify a directed structure
[58, 59]. If a set Xd d-separates A and B, then it blocks all
their connecting paths, noted as d-sepG(A;B|Xd).

With d-separation and the common faithfulness assump-
tion (see Appendix G), we have a link between GX and
PX . Specifically, conditional independence implied by GX
corresponds to conditional independence in PX [60], i.e. if
X ⊥⊥P Y |Z then X ⊥⊥G Y |Z, where ⊥⊥S denotes indepen-
dence in S. The reverse is not necessarily true as there can
be many Markov equivalent graphs that correspond with P
in terms of (in)dependence [27]. The set of conditional inde-
pendence assertions in P is denoted as I(P). Similarly, all
independence statements implied by a graph G are denoted
as I(G) = {(X ⊥⊥ B|Xd) : d-sepG(A;B|Xd)}, referred to
as the set of global Markov independencies [27, Chapter 3].

Invariance and discovery. Consider two datasets, D1 =
{X(n) ∈ X : n ∈ [N]} andD2 = {X(m) ∈ X : n ∈ [M]},
spanning the same space X . As a sample X(n) from D1

depicts the same variables as a sample X(m) from D2, both
datasets should reflect the same underlying mechanisms.
For example, if hospital A collected data on its patients in X
(say D1) and associated smoking with cancer, then– if true
–this should also be found in data from hospital B (D2).

Of course, while the samples in D1 and D2 come from
the same domain X , they may be sampled from different

2

Differentiable and Transportable Structure Learning

distributions, P1
X and P2

X , respectively. As in Fig. 1, hospi-
tals A and B may be located in different regions, resulting
in different patient characteristics. However, key in a sci-
entific discovery is that it generalises beyond distributions
and carries over the entire domain X . In other words, any
structure we may find in D1 should also be found in D2, as
for almost all distributions Pi

X ∈ P that factorise over G1,
I(Pi

X) = I(G) = I(Pj
X) where Pi

X ̸= Pj
X [27, Theorem

3.5]; if this is not the case, we haven’t discovered anything.

Transportability. Using the DAG to carryover conclusions
from one dataset to a differently distributed other dataset
is the general definition of transportability [37]. In this
paper, we refine this by defining it in the context of DAGs
specifically. Def. 1 defines transportability in our context;
when a DAG found in D1 is also found in D2, we consider
that DAG, and the method proposing it, transportable.

Definition 1 (Transportability). With multiple datasets
{Dk ∼ Pk

X : k ∈ [K]} over the same domain X , sam-
pled from potentially different distributions Pi

X ̸= Pj
X if

i ̸= j for all i, j ∈ [K], we call a method transportable
if it learns a structure that is the same across all datasets:
{Dk → Gk : k ∈ [K]} s.t. G1 = · · · = GK .

In the case of CIT-based methods, we are guaranteed trans-
portability in our setting as transportability is a property
directly related to the set of independencies of both distri-
butions and DAGs. But not so for differentiable structure
learners. Our goal is to propose a differentiable structure
learner that exhibits this property as well.

Learning from multi-sourced data. We stress that we do
not focus on just learning from multi-sourced data. Contrast-
ing papers on federated structure learning (FSL) [62, 63] or
multitask-learning (MTL) [64], transportability allows vary-
ing distributions across domains, thereby generalising these
settings. Our setting contrasts FSL and MTL as we focus
on differently distributed multi-sourced data specifically.

2.1. Differentiable structure learning

CIT-based methods evaluate each Markov equivalent DAG
using I(G ∈ GX), where GX denotes the space of all
possible DAGs in the domain X . The major issue with
this is computation. Essentially, there are two aspects that
negatively impact computation time: first, the number of
to-be-evaluated DAGs in GX increases super-exponentially
in |X | (e.g. 10 variables result in > 4×1018 possible DAGs
[34, 65, 66]); second, simply recovering I(PX) to evaluate
each G ∈ GX requires many independence tests, each with
additional compute. Appendix G includes an overview of
the most well-known CIT-based (and score-based) methods.

1For all distributions except for a measure zero set in the space
of conditional probability distribution parameterizations [61].

Differentiable score functions. Enter differentiable score
functions (DSFs). With DSFs one traverses GX smartly,
arriving at a DAG much faster [66–68]. Furthermore, a
differentiable method is easily included in a variety of dif-
ferentiable architectures, allowing joint optimisation of both
the graphical structure as well as the accompanying struc-
tural equations or another downstream use [42–46].

Most notable is NOTEARS [35], proposing to optimise:

min
A∈A

F (A) + λ1∥A∥1 +
ρ

2
|h(A)|2 + λ2h(A), (2)

where A ∈ Rd×d denotes an adjacency matrix; F (A) is
a likelihood-based loss (like the MSE); ρ and λ1,2 are the
parameters of their proposed augmented Lagrangian; and

h(A) := tr(exp(A ◦A))− d, (3)

is the actual differentiable score function, where tr(·) is the
matrix trace operator and ◦ is the element-wise (Hadamard)
product. Importantly, h(A) = 0 indicates A is a DAG.
Considering that eq. (3) is differentiable, we can take its
derivative with respect to A and minimise eqs. (2) and (3).

Naturally, gradient-based learning may guide optimisation
in different directions with different random initialisations
of A, potentially arriving at different local minima. This
is certainly the case in recent improvements of NOTEARS
as they almost exclusively focus on non-linear structural
equations which result in non-convex losses [36, 48, 49].

Transportability of DSFs. Current DSFs are not trans-
portable due to eq. (2) having conflicting solutions— con-
trasting the single solution (set) that transforms I(P) to G.
Essentially, the approximate nature of (stochastic) gradient-
based learning can result in conflicting estimate structures
[64], shown empirically in Section 4 and Appendix A.8.

3. D-Struct: Differentiable and transportable
Structure learning

Structure learners transform finite data into structure:

D → G,

as does D-Struct. We introduce D-Struct in Section 3.1 and
immediately extend to a single-dataset setting in Section 3.2.
In Section 3.3 we provide implementation details using
NOTEARS as a comparison. Each of our claims is backed
by empirical evidence in Section 4 and Appendix A.

3.1. D-Struct: Transportable structure learning
To enforce transportability, D-Struct employs an ensemble
architecture of multiple initialisations of a chosen DSF and
their architecture. Each loss is then combined with a regu-
larisation function based on the D-Struct architecture. Fig. 2
depicts this architecture, highlighting how our regularisation
scheme is backpropagated throughout the entire network.

3

Differentiable and Transportable Structure Learning

Forward pass
Backward pass
Composes

D

D1

D2

..
.

Dk

G1

G2

Gk

{P} ∼ P
×

×

×

LDSF(Gi)

LMSE(G1, . . . ,Gk)

G

Transportable Structure Learning (Section 3.1)

Subset Construction (Section 3.2)

Figure 2: D-Struct architecture. D-Struct is split into two major parts: subset construction (Section 3.2) and the
transportable structure learning algorithm (Section 3.1). The losses, LDSF and LMSE, are combined and backpropagated
through the architecture to enforce transportability. Lastly, all DSFs are merged into a final DAG structure G.

Given datasets D1, . . . ,DK , we can use any DSF (e.g. [35,
36, 47–50]) to learn a DAG. Specifically, we let K distinct
DSFs learn a DAG from one of the K datasets, agnostic
from each other. We consider these learning objectives
to be K parallel objectives, as illustrated in Fig. 2 in the
rightmost part. Crucially, D-Struct does not restrict which
type of DSF we can use. In a linear setting, one can use
vanilla NOTEARS [35], whereas in a non-linear setting,
one can use the non-parametric version [36]. Naturally, any
restriction posed by the chosen DSF will be inherited by D-
Struct. We use NOTEARS-MLP [36] in Sections 3.3 and 4,
while Appendix A includes pairings with other DSFs.

At this point, we identify a first loss term: LDSF(Gk), which
depends on the chosen DSF (illustrated in red in Fig. 2). In
the case of NOTEARS, LDSF(Gk) corresponds with eqs. (2)
and (3). Whenever data is passed through the architecture–
without mixing distinct datasets –we evaluate the discovered
structure as LDSF(Gk|X ∼ Dk), where X ⊆ D. If the
chosen DSF requires hyperparameters (such as λ1,2 and
ρ in eq. (4)), we have to also include these in D-Struct’s
set of required hyperparameters. While it is possible to
set different hyperparameter values for each of the DSFs
separately (which is potentially helpful when there is a lot
of variety in the K distinct datasets), we fix these across
DSFs in light of simplicity. A discussion on D-Struct’s
hyperparameters can be found in Appendix A.1.

Given {LDSF(Gk) : k ∈ [K]} we enforce transportabil-
ity across each Dk by comparing the structures G1, . . . ,Gk.
We do this by calculating the difference of the adjacency
matrices Ak ∈ Rd×d. Specifically, for each gradient cal-
culation (before we perform a backward pass), we take the
(element-wise) mean adjacency matrix, Ā1:K = 1

K

∑
k Ak,

detach it from the gradient and backpropagate the MSE for
each parallel DSF. In particular, we include the following
regularisation term in D-Struct’s loss:

LMSE(Ak) := ∥Ak − Ā1:K∥22. (4)

Minimising eq. (4) results in transportable structures (see
Theorem 3.1). Note that eq. (4) (green in Fig. 2) remains
differentiable, which was our goal for D-Struct. We add
LMSE(Gk) to the DSF loss,

L(Gk|Dk) := LDSF(G|Dk) + αLMSE(A(Gk)), (5)

where A(G) indicates the adjacency matrix of G, and α is a
scalar hyperparameter (refer to Appendix A.1 for hyperpa-
rameter settings, details, and further insights). Note that the
second term in eq. (5) does not depend onDk. Having LMSE
be agnostic to the data makes sense as transportability is not
a property of the data. Indeed, recall from Section 2 that
transportability is a property of the structure learner instead.

Including the term given by eq. (4) in eq. (5) enforces trans-
portability as the architecture encourages the DSFs to con-
verge to the same adjacency matrix, as per Theorem 3.1.

Theorem 3.1 (Minimising eq. (4) yields transportability.).

Proof. Eq. (4) is equal to 0— for every adjacency matrix
Ak —when A1 = · · · = AK . Even a slight difference in
one of the Ak will result in a non-zero (4) as Ā1:K will
be affected, resulting in |Ak − Ā1:K | > 0. Having every
A1 = · · · = AK and thus equal structures in Gk— where
each Ak is learned from a distinct Dk —corresponds with
transportable structures as we have defined in Def. 1

3.2. D-Struct: Subset construction

In Section 3.1, we assumed data is provided in multiple dis-
tinct datasets, i.e. they stem from a multi-origin datasource.
However, here we explain how even in the single-origin
case D-Struct is applicable, irrespective of which DSF we
end up choosing. Naturally, if one already has distinct data,
Dk ∼ Pk, one can use D-Struct as proposed in Section 3.1.

Different distributions may guide each (distinct) optimisa-
tion target in a different direction. Combining their results

4

Differentiable and Transportable Structure Learning

D

(a) We are presented with a dataset D over
the domain X .

P1
X

P2
X

(b) With two distributions P1
X and P2

X , we
can sample from D.

D1

D2

(c) Sampling according to two distributions
results in two subsets D1 ∪ D2 = D.

Sample according to Results in

Figure 3: Differently distributed single-origin data. (a) We illustrate a single-origin dataset D, sampled from one
distribution. (b) We illustrate two distributions over the domain of D, which are used to resample two subsets from D,
thereby creating a new multi-origin datasource (c).

P1 P2 P3

Selected indices:

D1

D2

D3

1 2 3 4 5 6 7 8 9 10

Figure 4: K distributions. We have illustrated the subset
sampling with beta-distributions above, for K = 3. For each
density and index, we evaluate its PDF, normalize it and
perform a Bernoulli experiment. The selected indices are
shown below the PDFs (black indicates a selected index).

will encourage the total model to be more robust and gener-
alisable. However, while a multi-origin datasource may be
governed by multiple distributions, a single-origin one is not.
Our task is clear: from a single-origin datasource, we have to
mimic a multi-origin datasource in such a way that we know
each subset has a different distribution, yet maintains the
properties of the original single-origin-distribution. Doing
so allows us to enforce transportability through eq. (4).

The lefthand side of Fig. 2 shows that we need to construct
a multi-origin setup, prior to using D-Struct as we have
done in Section 3.1. We preface the multi-origin case with
a step that divides D into subsets {D1, . . . ,Dk}, according
to different distributions P := {P1

X , . . . ,Pk
X }. In Fig. 3, we

illustrate how we sample fromD using Pk ∈ P . In principle,
each element X(n) ∈ D has a Pk(X(n)) probability to
be sampled from D, for each Pk ∈ P . As such, each
distribution leads to a subset Pk×D → Dk where

⋃
k Dk =

D, and Dk need not be disjoint but is not equal to D.

We perform this preprocessing step in three parts: Step
1, we correlate the index of each element in D with their
values in X . Step 2, we define K distributions over [N] and
then in Step 3 we use these distributions to sample indices.
The sampled indices compose the subset. While we have
included a detailed description of our implementation in
Appendix F, we give a brief step-wise explanation below.

◆ Step 1 Correlating indices and values. Reindexing
D according to some ordering in X ensures a dependency
betweenX and i ∈ [N], where i < j indicates X(i) < X(j),
i.e. the order of X’s in the data structure representing D is
correlated with the values of the X’s.

◆ Step 2 Distributions over [N]. Step 1 allows us to create
subsets based on one-dimensional distributions {Pk

[N] : k ∈
[K]}, rather than more complicated distributions over X .
An added bonus to these one-dimensional distributions is
that they easily scale to more dimensions in X . Of course,
the number of distributions, and consequentially their shape,
should change as a function of K. Specifically, with higher
K, we have to ensure that the probability mass of each
distribution is concentrated in different areas of [N]. As
such, we chose to model these as beta-distributions with,

α, β ∈
{
(i,K), (K,K), (K, j) :

i ∈ interp(1,K − 1), j ∈ interp(K − 1, 1)
}
,

where interp(a, b) is a linear interpolation between a and b,
used to sample ⌊K2 ⌋ i’s and j’s. When K is even we omit
(K,K) so that the number of distributions always equals K.

◆ Step 3 Selecting indices. Our final task is to create
K subsets, which due to Step 1 is simplified to choosing
indices. These indices are selected based on the distributions
defined in Step 2. First, we evaluate each density’s PDF
for every index (after normalisation: i

N) and normalise the
output to be between 0 and 1. Once we have K values for

5

Differentiable and Transportable Structure Learning

each index, we perform Bernoulli experiments to determine
whether the index is selected as part of subset k ∈ [K]. This
is illustrated in Fig. 4 for K = 3 using beta distributions.

In our experiments (Section 4 and Appendix A), we show
that D-Struct greatly improves the performance of non-
transportable DSFs. Furthermore, we empirically validate
our subsampling routing compared to random sampling.

3.3. Example implementation using NOTEARS-MLP
D-Struct works with any DSF, though it is instructive
to illustrate this with an example. For this, we chose
NOTEARS-MLP [36] which is a non-parametric (cfr. the
structural equations) extension of the classic NOTEARS
paper [35]. The main challenge to incorporating D-Struct
into NOTEARS-MLP is to integrate it into its dual ascent
strategy, which solves the (non-convex) constrained optimi-
sation problem in eq. (2) [47] with an augmented Lagrangian
method [69, Chapter 5].

The constraint in the optimisation problem stems from, for
example, knowing that the diagonal of A can only contain
zeros [35, 36, 47]. NOTEARS (and its extensions) solve this
problem by using the L-BFGS-B optimizer [70], which can
handle parameter bounds out-of-the-box, making it a suit-
able choice to optimise the augmented Lagrangian2. This is
made explicit in Algs. 1 and 2.

Init.: θk for each k ∈ [K]
Input: htol, ρmax
Setup :h←∞, ρ1,...,K ← 1, ρ← 1
for maximum amount of epochs do

for k ∈ [K] do
for batch ∼ Dk do

training step(θk, batch);
h← maxk h(A(θk));
ρ← mink ρk;

Algorithm 1: Outer-loop of dual ascent procedure for
D-Struct(NOTEARS-MLP)

Algorithms 1 and 2 highlight algorithmic differences be-
tween D-Struct and NOTEARS-MLP. Most obvious is the
creation of multiple parameters θk for each k ∈ [K], where
each θk indicates the set of parameters for one initialisation
of NOTEARS-MLP, following the architecture depicted in
Fig. 2. The set {θk : k ∈ [K]} then denotes the parame-
ters for D-Struct. As such, the number of parameters for
D-Struct scales linearly in K, compared to the used DSFs.

From Algs. 1 and 2, we learn that information across the
different NOTEARS-MLPs is shared in training step
(corresponding to Alg. 2). Typically, a training step is solely

2This also allows including prior knowledge on I(P). We
discuss this in more detail in Appendix E.

Input: θk, batch
while ρ < ρmax do

lm ← LMSE(θ1, . . . , θK);
ld ← LDSF(batch);
θ ←L-BFGS-B.update(lm, ld);
h′ ← h(A(θk));
if h′ > 0.25h then

ρk ← 10ρk;
else

break;

Algorithm 2: training step for D-
Struct(NOTEARS-MLP) cfr. Alg. 1

focused on one structure learner leaving the learner unaware
of the other DSFs, as is also implied in Alg. 1 which iterates
over each learner separately. Sharing information across
each learner— through LMSE(θ1, . . . , θk) computed in the
first line in Alg. 2’s while loop —enforces transportability.

D-Struct hardly increases implementation complexity. In
fact, besides architectural alterations (as explained in Sec-
tion 3.1 and Fig. 2), the optimisation strategy is mostly
adopted from the underlying DSF. This is an important ad-
vantage. Zheng et al. [35] already state the importance
of an easy to implement model; we only add 10 lines to
their approximate 60 lines. Furthermore, we also noticed
improvements in efficiency as D-Struct drastically reduces
computation time compared to NOTEARS despite the en-
semble architecture (see Appendix A.4).

4. Experiments
Recall from Section 3 that D-Struct’s objective is to trans-
form a dataset into a DAG, whilst remaining differentiable.
With D-Struct, our aim is to increase performance of any
DSF by enforcing transportability on the learner’s outcome
structure. As such, the most pressing questions are: (1) Are
the discovered structures transportable?, (2) Does D-Struct
improve existing learners?, and (3) Do we really need our
subsampling routine? We answer these questions one-by-
one below with empirical validation.

However, before we answer these questions, we would also
like to point to Appendix A which answers (many) more
questions, such as: Does D-Struct pay for accuracy with
computation? (Appendix A.4) What about different thresh-
old values? (Appendix A.6) Does D-Struct also work with
other DSFs? (Appendix A.3) What if we don’t use the sub-
sampling routine? (Appendix A.5) Does it also work with
two datasets? (Appendix A.7), and so forth. Furthermore,
we only present a snapshot of the experimental results in the
main text. For almost all experiments, we have included a
“completed” set in the relevant appendices.

(1) Transportability. Before testing accuracy, we first em-

6

Differentiable and Transportable Structure Learning

Table 1: Results on Erdos-Renyı̀ (ER) graphs. First block: We sample ten different ER random graphs, and accompanying
non-linear structural equations as in Zheng et al. [36]. From each system, we then sample a varying number of samples and
evaluate NOTEARS-MLP with D-Struct (indicated as “✓”) and without D-Struct (indicated as “✗”). Second block: For each
row we sample ten new graphs with varying connectedness (s is the expected number of edges). Third block: Each row
varies the variables-count (d) and samples ten new random graphs. In all cases, we report the average performance in terms
of SHD, FPR, TPR, and FDR, with std in scriptsize. Unless otherwise indicated, n = 1000, d = 5,K = 3, s = 2d.

metric SHD (↓) FPR (↓) TPR (↑) FDR (↓)
D-Struct ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

n varying sample size

200 3.60±0.27 4.20±0.44 2.00±0.67 4.20±0.44 0.67±0.05 0.64±0.05 0.25±0.06 0.42±0.04

500 3.20±0.80 3.94±0.33 1.20±0.44 3.94±0.33 0.66±0.24 0.56±0.04 0.18±0.05 0.44±0.04

1000 2.75±0.47 3.67±0.82 1.00±0.37 2.67±0.63 0.75±0.08 0.63±0.13 0.18±0.03 0.39±0.11

2000 2.66±0.80 3.54±0.16 1.88±0.67 2.09±0.31 0.81±0.11 0.75±0.03 0.27±0.07 0.33±0.00

s varying graph connectedness

0.5d 3.75±1.6 7.33±0.13 0.50±0.25 1.05±0.02 0.83±0.19 0.88±0.04 0.42±0.16 0.73±0.01

1d 3.50±0.86 7.67±0.45 0.55±0.22 1.53±0.09 0.75±0.09 0.46±0.09 0.40±0.09 0.77±0.07

1.5d 3.00±1.15 5.67±1.75 1.00±0.19 1.55±0.08 0.89±0.07 0.62±0.06 0.32±0.05 0.53±0.04

2d 2.28±0.80 3.67±0.82 1.00±0.32 2.67±0.63 0.67±0.17 0.70±0.09 0.11±0.03 0.32±0.08

d varying dimension count

5 2.28±0.80 3.67±0.82 1.00±0.32 2.67±0.63 0.67±0.17 0.70±0.09 0.11±0.03 0.32±0.08

7 8.67±0.56 12.9±0.15 0.72±0.05 1.07±0.01 0.96±0.02 0.83±0.01 0.49±0.01 0.63±0.01

10 19.71±0.72 30.8±0.98 0.42±0.13 1.18±0.04 0.70±0.16 0.71±0.06 0.34±0.08 0.70±0.02

pirically confirm that NOTEARS is not transportable while
D-Struct is. We compare NOTEARS with D-Struct using
1000 samples drawn from an Erdos-Renyı̀ (ER) random
graph, and split the samples into two equal-sized subsets.
We evaluate the structural Hamming distance (SHD) be-
tween the graphs learned by NOTEARS on each dataset,
and the same for the internal graphs learned by D-Struct.
The DAGs learnt by D-Struct are perfectly transportable
(SHD= 0) in 8/10 runs (mean SHD 0.46 ± 0.27), with
only minor discrepancies in the other cases. Conversely,
NOTEARS has a mean SHD of 1.14± 0.20, only display-
ing transportability in 2 cases. Similar results for other
DSFs are reported in Appendix A. In Appendix A.8, we ex-
tend this experiment to more DAGs, though our conclusion
remains the same. For illustration, we have also included
some of the DAGs reported in our Appendix A.8 in Fig. 6.

From Fig. 6, it is clear that neglecting transportability leads
to conflicting results and increased SHD. Furthermore, the
subgraphs in D-Struct are perfectly transportable (SHD=0).
More instances of this experiment can be found in Ap-
pendix A.8, or by running our code (cfr. Appendix A.1).

(2) Accuracy. The most straightforward way to see if D-
Struct is better is by repeating the experiments in Zheng
et al. [36]. We report only a subset of our outcomes in
the main text, mainly on D-Struct’s improvement over
NOTEARS-MLP. However, more metrics and experiments
on different DSFs can be found in Appendix A. In Table 1

Table 2: Usefulness of our subsampling routine. We
sample ten different ER graphs like in Table 1. From
each system, we sample n = 2000 samples and evaluate
NOTEARS-MLP with (“✓”) our subsampling routine from
Section 3.2 and without (“✗”) the subsampling routine, us-
ing random splits instead. Each row repeats our experiment
with different K. We report the average (and std) perfor-
mance in terms of the SHD.

metric SHD (↓)
Subsample ✓ ✗

K varying amount of splits

2 2.80±0.53 3.40±0.58

3 3.00±0.37 4.00±0.59

5 2.80±0.57 4.40±1.29

we report the false positive rate (FPR), true positive rate
(TPR), false discovery rate (FDR), and structural Hamming
distance (SHD) of the estimated DAGs using data sampled
from different ER random graphs with varying sample size
(n), expected number of edges (s), and dimension count (d).
In all cases, we find that D-Struct significantly improves
NOTEARS-MLP (other DSFs in Appendix A). A similar in
Fig. 5 which reports the SHD for more parameters and data
from Erdos-Renyı̀ as well as Scale-Free graphs [35].

(3) Subset construction. A final property we wish to val-
idate is the need for sampling K different subsets using

7

Differentiable and Transportable Structure Learning

200 500 1,000 2,000
2

3

4

5

n

SH
D

0.5 1 1.5 2

2

4

6

8

10

sd
5 7 10

0

10

20

30

d
2 3 5

1

2

3

4

5

6

K

varying n varying s varying d varying K

E
rdos-R

enyı̀

200 500 1,000 2,000

2

4

6

8

n

SH
D

0.5 1 1.5 2

2

4

6

8

10

sd
5 7 10

0

10

20

30

d
2 3 5

0

2

4

6

8

10

K

D-Struct(NOTEARS-MLP) NOTEARS-MLP

Scale-Free

Figure 5: Structure recovery. We report the SHD (↓) compared to the true graph. We report performance as a function of
four different parameters (changing the properties of the task). D-Struct outperforms NOTEARS-MLP in all these settings.
Additional results are reported in Appendix A. Unless otherwise indicated, n = 1000, d = 5,K = 3, s = 2d.

A

B

CD

E

True graph

A

B

CD

E

Mean NT

A

B

CD

E

NT 1

A

B

CD

E

NT 2
A

B

CD

E

Mean DS

A

B

CD

E

DS 1

A

B

CD

E

DS 2

Figure 6: Evaluating transportability. We ran two
NOTEARS-MLP (NT) and one D-Struct (DS) with K = 2
on the experimental setting in (1). Red indicates violations
w.r.t. to the true DAG, and blue indicates violations across
subgraphs. Dashed edges were missing w.r.t. the compari-
son DAG. We observe a smaller SHD in both the subgraphs
(SHD=0) and the mean graph (SHD=2) by DS, while the
DAGs discovered by DS are perfectly transportable, unlike
NT which are not (NT-mean SHD=4, NT-subs SHD=3).

our subsampling routine from Section 3.2. This is an im-
portant validation as it shows that D-Struct does not only
gain in performance due to its ensemble architecture. For
this, we compare D-Struct’s performance with and without
our subsampling routine. Using D-Struct without our sub-
sampling routine amounts to providing K random splits,
rather than carefully sampling K distinct Dk ∼ Pk. Table 2
shows that our subsampling routine does improve D-Struct’s
performance as expected, validating our goal to explicitly
optimise for transportable structure learners.

We believe that these experiments confirm that D-Struct can
help us create useful structure learners. In Appendix A.1, we
include a link to our code repository, encouraging readers
to reproduce our results, as well as provide hyperparameter
ablations and settings.

5. Discussion
D-Struct advances differentiable structure learning by intro-
ducing transportability, a property guaranteed by CIT-based
methods. We show empirically that enforcing this property
substantially improves the performance of a range of DSFs.
We believe D-Struct can have a positive impact on archi-
tectures and problems relying on differentiable structure
learners, as well as on general scientific data analysis.

Relating DSFs to causality. As pointed out by Kaiser and
Sipos [71] and Reisach et al. [72], DSFs are often wrongly
used to recover a causal DAG. While DAGs are indeed the
model of choice to model causality, there is currently no
guarantee that a DAG discovered using any DSF can be
identified (and thus used) as such. With this, we wish to
state explicitly that a DSF’s output is not to be interpreted
as a causal model (see Appendix B for more discussion).

Future work. The inability to recover causal structure is a
consequence of there existing many more useful properties
stemming from a CIT-based approach (multiple books con-
cern this very topic, e.g. Koller and Friedman [27], Pearl
[52], Jordan [73], Lauritzen [74]). Bridging the gap between
these methods is a clear path forward, hopefully increas-
ing differentiable structure learners’ potential even further.
Specifically, using structure learners to uncover a causal
structure from observational data requires stricter assump-
tions. As such, one particularly interesting avenue of future
work is to allow DSFs (not only D-Struct) to adhere to
some of these assumptions and use them to guarantee causal
discovery, taking DSFs to the next level.

Finally, D-Struct is only the first step of scientific discovery.
Like other DSFs, D-Struct suggests a link between variables,
the scientist should still confirm this link in the lab.

8

Differentiable and Transportable Structure Learning

Acknowledgements
We thank our funding agencies: Jeroen Berrevoets is funded
by the W.D. Armstrong Trust. Nabeel Seedat is funded by
The Cystic Fibrosis Trust. Fergus Imrie is funded by an
NSF grant (1722516).

We would also like to thank our reviewers and labmates at
the vanderschaar-lab (https://vanderschaar-lab.
com) for their helpful suggestions.

References
[1] Jeroen Berrevoets, Krzysztof Kacprzyk, Zhaozhi Qian,

and Mihaela van der Schaar. Causal deep learning.
arXiv preprint arXiv:2303.02186, 2023.

[2] Rohan Bhardwaj, Ankita R Nambiar, and Debojyoti
Dutta. A study of machine learning in healthcare. In
2017 IEEE 41st Annual Computer Software and Ap-
plications Conference (COMPSAC), volume 2, pages
236–241. IEEE, 2017.

[3] Jeroen Berrevoets, James Jordon, Ioana Bica, Mihaela
van der Schaar, et al. Organite: Optimal transplant
donor organ offering using an individual treatment
effect. Advances in neural information processing
systems, 33:20037–20050, 2020.

[4] Mihaela van der Schaar, Ahmed M Alaa, Andres Floto,
Alexander Gimson, Stefan Scholtes, Angela Wood,
Eoin McKinney, Daniel Jarrett, Pietro Lio, and Ari
Ercole. How artificial intelligence and machine learn-
ing can help healthcare systems respond to covid-19.
Machine Learning, 110(1):1–14, 2021.

[5] Alvin Rajkomar, Jeffrey Dean, and Isaac Kohane. Ma-
chine learning in medicine. New England Journal of
Medicine, 380(14):1347–1358, 2019.

[6] Jeroen Berrevoets, Ahmed Alaa, Zhaozhi Qian, James
Jordon, Alexander ES Gimson, and Mihaela Van
Der Schaar. Learning queueing policies for organ
transplantation allocation using interpretable counter-
factual survival analysis. In International Conference
on Machine Learning, pages 792–802. PMLR, 2021.

[7] Susan Athey et al. The impact of machine learning on
economics. The economics of artificial intelligence:
An agenda, pages 507–547, 2018.

[8] Susan Athey and Guido W Imbens. Machine learning
methods that economists should know about. Annual
Review of Economics, 11:685–725, 2019.

[9] Sendhil Mullainathan and Jann Spiess. Machine learn-
ing: an applied econometric approach. Journal of
Economic Perspectives, 31(2):87–106, 2017.

[10] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Lau-
rent Daudet, Maria Schuld, Naftali Tishby, Leslie Vogt-
Maranto, and Lenka Zdeborová. Machine learning and

the physical sciences. Reviews of Modern Physics, 91
(4):045002, 2019.

[11] Alexander Radovic, Mike Williams, David Rousseau,
Michael Kagan, Daniele Bonacorsi, Alexander Him-
mel, Adam Aurisano, Kazuhiro Terao, and Taritree
Wongjirad. Machine learning at the energy and inten-
sity frontiers of particle physics. Nature, 560(7716):
41–48, 2018.

[12] Sankar Das Sarma, Dong-Ling Deng, and Lu-Ming
Duan. Machine learning meets quantum physics. arXiv
preprint arXiv:1903.03516, 2019.

[13] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu,
Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-
informed machine learning. Nature Reviews Physics,
3(6):422–440, 2021.

[14] Philip G Breen, Christopher N Foley, Tjarda Boekholt,
and Simon Portegies Zwart. Newton versus the ma-
chine: solving the chaotic three-body problem using
deep neural networks. Monthly Notices of the Royal
Astronomical Society, 494(2):2465–2470, 2020.

[15] Silviu-Marian Udrescu and Max Tegmark. Ai feyn-
man: A physics-inspired method for symbolic regres-
sion. Science Advances, 6(16):eaay2631, 2020.

[16] Jan Reinhard Peters. Machine learning of motor skills
for robotics. University of Southern California, 2007.

[17] Xue Bin Peng, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Sim-to-real transfer of
robotic control with dynamics randomization. In 2018
IEEE international conference on robotics and au-
tomation (ICRA), pages 3803–3810. IEEE, 2018.

[18] Ben Kehoe, Sachin Patil, Pieter Abbeel, and Ken Gold-
berg. A survey of research on cloud robotics and au-
tomation. IEEE Transactions on automation science
and engineering, 12(2):398–409, 2015.

[19] Pieter Abbeel, Adam Coates, and Andrew Y Ng. Au-
tonomous helicopter aerobatics through apprenticeship
learning. The International Journal of Robotics Re-
search, 29(13):1608–1639, 2010.

[20] Yanir Kleiman, Simon Pabst, and Patrick Nagle. Boost-
ing vfx production with deep learning. In ACM SIG-
GRAPH 2019 Talks, pages 1–2. 2019.

[21] Dan Ring, Johanna Barbier, Guillaume Gales, Ben
Kent, and Sebastian Lutz. Jumping in at the deep
end: how to experiment with machine learning in post-
production software. In Proceedings of the 2019 Digi-
tal Production Symposium, pages 1–5, 2019.

[22] Yi Wang. Film and television special effects produc-
tion based on modern technology: from the perspective
of statistical machine learning. In 2022 4th Interna-
tional Conference on Smart Systems and Inventive
Technology (ICSSIT), pages 833–836. IEEE, 2022.

9

https://vanderschaar-lab.com
https://vanderschaar-lab.com

Differentiable and Transportable Structure Learning

[23] Alex Davies, Petar Veličković, Lars Buesing, Sam
Blackwell, Daniel Zheng, Nenad Tomašev, Richard
Tanburn, Peter Battaglia, Charles Blundell, András
Juhász, et al. Advancing mathematics by guiding hu-
man intuition with ai. Nature, 600(7887):70–74, 2021.

[24] John Jumper, Richard Evans, Alexander Pritzel, Tim
Green, Michael Figurnov, Olaf Ronneberger, Kathryn
Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna
Potapenko, et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–
589, 2021.

[25] Kathryn Tunyasuvunakool, Jonas Adler, Zachary Wu,
Tim Green, Michal Zielinski, Augustin Žı́dek, Alex
Bridgland, Andrew Cowie, Clemens Meyer, Agata
Laydon, et al. Highly accurate protein structure pre-
diction for the human proteome. Nature, 596(7873):
590–596, 2021.

[26] Kiersten M. Ruff and Rohit V. Pappu. Alphafold
and implications for intrinsically disordered pro-
teins. Journal of Molecular Biology, 433(20):
167208, 2021. ISSN 0022-2836. doi: https:
//doi.org/10.1016/j.jmb.2021.167208. URL https:
//www.sciencedirect.com/science/
article/pii/S0022283621004411. From
Protein Sequence to Structure at Warp Speed: How
Alphafold Impacts Biology.

[27] Daphne Koller and Nir Friedman. Probabilistic graph-
ical models: principles and techniques. MIT press,
2009.

[28] Sewall Wright. The method of path coefficients. The
annals of mathematical statistics, 5(3):161–215, 1934.

[29] Max Chickering, Dan Geiger, and David Heckerman.
Learning bayesian networks: Search methods and ex-
perimental results. In Proceedings of the fifth interna-
tional workshop on artificial intelligence and statistics,
1995.

[30] Clark Glymour, Kun Zhang, and Peter Spirtes. Re-
view of causal discovery methods based on graphical
models. Frontiers in genetics, 10:524, 2019.

[31] Dan Geiger and Judea Pearl. On the logic of causal
models. In Machine Intelligence and Pattern Recogni-
tion, volume 9, pages 3–14. Elsevier, 1990.

[32] Christopher Meek. Strong completeness and faith-
fulness in bayesian networks. arXiv preprint
arXiv:1302.4973, 2013.

[33] Frederick Eberhardt. Introduction to the foundations
of causal discovery. International Journal of Data
Science and Analytics, 3(2):81–91, 2017.

[34] Jonas Peters, Dominik Janzing, and Bernhard
Schölkopf. Elements of causal inference: foundations
and learning algorithms. The MIT Press, 2017.

[35] Xun Zheng, Bryon Aragam, Pradeep Ravikumar, and
Eric P. Xing. DAGs with NO TEARS: Continuous
Optimization for Structure Learning. In Advances in
Neural Information Processing Systems, 2018.

[36] Xun Zheng, Chen Dan, Bryon Aragam, Pradeep
Ravikumar, and Eric P. Xing. Learning sparse non-
parametric DAGs. In International Conference on
Artificial Intelligence and Statistics, 2020.

[37] Judea Pearl and Dana Mackenzie. The Book of Why:
The New Science of Cause and Effect. Hachette UK,
2018.

[38] Monya Baker. 1,500 scientists lift the lid on repro-
ducibility. Nature, 533(7604), 2016.

[39] Colin F Camerer, Anna Dreber, Eskil Forsell, Teck-
Hua Ho, Jürgen Huber, Magnus Johannesson, Michael
Kirchler, Johan Almenberg, Adam Altmejd, Taizan
Chan, et al. Evaluating replicability of laboratory
experiments in economics. Science, 351(6280):1433–
1436, 2016.

[40] Robert K Merton. The sociology of science: Theo-
retical and empirical investigations. University of
Chicago press, 1973.

[41] Victoria Stodden. The scientific method in practice:
Reproducibility in the computational sciences. 2010.

[42] Rohit Bhattacharya, Tushar Nagarajan, Daniel Malin-
sky, and Ilya Shpitser. Differentiable causal discovery
under unmeasured confounding. In International Con-
ference on Artificial Intelligence and Statistics, pages
2314–2322. PMLR, 2021.

[43] Trent Kyono, Yao Zhang, and Mihaela van der Schaar.
Castle: Regularization via auxiliary causal graph dis-
covery. Advances in Neural Information Processing
Systems, 33:1501–1512, 2020.

[44] Roxana Pamfil, Nisara Sriwattanaworachai, Shaan De-
sai, Philip Pilgerstorfer, Konstantinos Georgatzis, Paul
Beaumont, and Bryon Aragam. Dynotears: Structure
learning from time-series data. In International Con-
ference on Artificial Intelligence and Statistics, pages
1595–1605. PMLR, 2020.

[45] Trent Kyono, Yao Zhang, Alexis Bellot, and Mihaela
van der Schaar. Miracle: Causally-aware imputation
via learning missing data mechanisms. Advances in
Neural Information Processing Systems, 34, 2021.

[46] Boris van Breugel, Trent Kyono, Jeroen Berrevoets,
and Mihaela van der Schaar. Decaf: Generating fair
synthetic data using causally-aware generative net-
works. Advances in Neural Information Processing
Systems, 34, 2021.

[47] Sébastien Lachapelle, Philippe Brouillard, Tristan
Deleu, and Simon Lacoste-Julien. Gradient-based

10

https://www.sciencedirect.com/science/article/pii/S0022283621004411
https://www.sciencedirect.com/science/article/pii/S0022283621004411
https://www.sciencedirect.com/science/article/pii/S0022283621004411

Differentiable and Transportable Structure Learning

neural dag learning. In International Conference on
Learning Representations, 2020. URL https://
openreview.net/forum?id=rklbKA4YDS.

[48] Yue Yu, Tian Gao, Naiyu Yin, and Qiang Ji. Dags
with no curl: An efficient dag structure learning ap-
proach. In Marina Meila and Tong Zhang, editors,
Proceedings of the 38th International Conference on
Machine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pages 12156–12166. PMLR,
18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/yu21a.html.

[49] Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-
GNN: DAG structure learning with graph neu-
ral networks. In Kamalika Chaudhuri and Rus-
lan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learn-
ing Research, pages 7154–7163. PMLR, 09–15
Jun 2019. URL https://proceedings.mlr.
press/v97/yu19a.html.

[50] Kevin Bello, Bryon Aragam, and Pradeep Kumar
Ravikumar. DAGMA: Learning DAGs via m-matrices
and a log-determinant acyclicity characterization. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Infor-
mation Processing Systems, 2022. URL https://
openreview.net/forum?id=8rZYMpFUgK.

[51] Judea Pearl. Causality. Cambridge university press,
2009.

[52] Judea Pearl. Probabilistic reasoning in intelligent
systems: networks of plausible inference. Morgan
kaufmann, 1988.

[53] Martin J Wainwright, Michael I Jordan, et al. Graphi-
cal models, exponential families, and variational infer-
ence. Foundations and Trends® in Machine Learning,
1(1–2):1–305, 2008.

[54] Judea Pearl. Fusion, propagation, and structuring in
belief networks. Artificial intelligence, 29(3):241–288,
1986.

[55] Thomas Verma and Judea Pearl. Causal networks: Se-
mantics and expressiveness. In Machine intelligence
and pattern recognition, volume 9, pages 69–76. Else-
vier, 1990.

[56] Dan Geiger, Thomas Verma, and Judea Pearl. d-
separation: From theorems to algorithms. In Ma-
chine Intelligence and Pattern Recognition, volume 10,
pages 139–148. Elsevier, 1990.

[57] Dan Geiger, Thomas Verma, and Judea Pearl. Identi-
fying independence in bayesian networks. Networks,
20(5):507–534, 1990.

[58] Ronald A Howard and James E Matheson. The prin-
ciples and applications of decision analysis. Strategic
Decisions Group, Palo Alto, CA, pages 719–762, 1984.

[59] JQ Smith. Influence diagrams for statistical modeling.
The Annals of Statistics, 1, 1989.

[60] Dan Geiger and Judea Pearl. Logical and algorithmic
properties of conditional independence and graphical
models. The annals of statistics, 21(4):2001–2021,
1993.

[61] Christopher Meek. Strong completeness and faith-
fulness in bayesian networks. In Proceedings of the
Eleventh Conference on Uncertainty in Artificial Intel-
ligence, 1995.

[62] Erdun Gao, Junjia Chen, Li Shen, Tongliang Liu,
Mingming Gong, and Howard Bondell. Federated
causal discovery. arXiv preprint arXiv:2112.03555,
2021.

[63] Ignavier Ng and Kun Zhang. Towards federated
bayesian network structure learning with continuous
optimization. In International Conference on Artificial
Intelligence and Statistics, pages 8095–8111. PMLR,
2022.

[64] Xinshi Chen, Haoran Sun, Caleb Ellington, Eric Xing,
and Le Song. Multi-task learning of order-consistent
causal graphs. Advances in Neural Information Pro-
cessing Systems, 34:11083–11095, 2021.

[65] Robert W Robinson. Counting unlabeled acyclic di-
graphs. In Combinatorial mathematics V, pages 28–43.
Springer, 1977.

[66] Matthew J Vowels, Necati Cihan Camgoz, and Richard
Bowden. D’ya like dags? a survey on structure learn-
ing and causal discovery. ACM Computing Surveys
(CSUR), 2021.

[67] Ignavier Ng, Sébastien Lachapelle, Nan Rosemary
Ke, Simon Lacoste-Julien, and Kun Zhang. On the
convergence of continuous constrained optimization
for structure learning. In International Conference on
Artificial Intelligence and Statistics, pages 8176–8198.
PMLR, 2022.

[68] Dennis Wei, Tian Gao, and Yue Yu. Dags with no fears:
A closer look at continuous optimization for learning
bayesian networks. Advances in Neural Information
Processing Systems, 33:3895–3906, 2020.

[69] Dimitri P. Bertsekas. Nonlinear Programming. Athena
Scientific, 3rd edition, 2016. ISBN 978-1-886529-05-
2.

[70] Richard H Byrd, Peihuang Lu, Jorge Nocedal, and
Ciyou Zhu. A limited memory algorithm for bound
constrained optimization. SIAM Journal on scientific
computing, 16(5):1190–1208, 1995.

11

https://openreview.net/forum?id=rklbKA4YDS
https://openreview.net/forum?id=rklbKA4YDS
https://proceedings.mlr.press/v139/yu21a.html
https://proceedings.mlr.press/v139/yu21a.html
https://proceedings.mlr.press/v97/yu19a.html
https://proceedings.mlr.press/v97/yu19a.html
https://openreview.net/forum?id=8rZYMpFUgK
https://openreview.net/forum?id=8rZYMpFUgK

Differentiable and Transportable Structure Learning

[71] Marcus Kaiser and Maksim Sipos. Unsuitability of
NOTEARS for causal graph discovery when dealing
with dimensional quantities. Neural Processing Let-
ters, pages 1–9, 2022.

[72] Alexander G Reisach, Christof Seiler, and Sebas-
tian Weichwald. Beware of the simulated dag! var-
sortability in additive noise models. arXiv preprint
arXiv:2102.13647, 2021.

[73] Michael Irwin Jordan. Learning in graphical models.
MIT press, 1999.

[74] Steffen L Lauritzen. Graphical models, volume 17.
Clarendon Press, 1996.

[75] Albert-László Barabási and Réka Albert. Emergence
of scaling in random networks. science, 286(5439):
509–512, 1999.

[76] Peter Spirtes, Clark N Glymour, Richard Scheines, and
David Heckerman. Causation, prediction, and search.
MIT press, 2000.

[77] Thomas S. Verma and Judea Pearl. Equivalence and
synthesis of causal models. In Proceedings of the Sixth
Conference on Uncertainty in Artificial Intelligence,
1990.

[78] Ignavier Ng, AmirEmad Ghassami, and Kun Zhang.
On the role of sparsity and dag constraints for
learning linear dags. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin, editors, Ad-
vances in Neural Information Processing Systems,
volume 33, pages 17943–17954. Curran Associates,
Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/
d04d42cdf14579cd294e5079e0745411-Paper.
pdf.

[79] Eric Walter. Identifiability of parametric models. Else-
vier, 2014.

[80] AmirEmad Ghassami, Negar Kiyavash, Biwei Huang,
and Kun Zhang. Multi-domain causal structure learn-
ing in linear systems. Advances in neural information
processing systems, 31, 2018.

[81] Jonas Peters, Peter Bühlmann, and Nicolai Mein-
shausen. Causal inference by using invariant predic-
tion: identification and confidence intervals. Jour-
nal of the Royal Statistical Society. Series B (Statis-
tical Methodology), 78(5):947–1012, 2016. ISSN
13697412, 14679868. URL http://www.jstor.
org/stable/44682904.

[82] Biwei Huang, Kun Zhang, Jiji Zhang, Joseph D Ram-
sey, Ruben Sanchez-Romero, Clark Glymour, and
Bernhard Schölkopf. Causal discovery from hetero-
geneous/nonstationary data. J. Mach. Learn. Res., 21
(89):1–53, 2020.

[83] Jiji Zhang and Peter Spirtes. Detection of unfaithful-
ness and robust causal inference. Minds and Machines,
18(2):239–271, 2008.

[84] Markus Kalisch and Peter Bühlman. Estimating
high-dimensional directed acyclic graphs with the pc-
algorithm. Journal of Machine Learning Research, 8
(3), 2007.

[85] Jiji Zhang and Peter L Spirtes. Strong faithfulness
and uniform consistency in causal inference. arXiv
preprint arXiv:1212.2506, 2012.

[86] Caroline Uhler, Garvesh Raskutti, Peter Bühlmann,
and Bin Yu. Geometry of the faithfulness assumption
in causal inference. The Annals of Statistics, pages
436–463, 2013.

[87] Dan Geiger and David Heckerman. Learning gaussian
networks. In Uncertainty Proceedings 1994, pages
235–243. Elsevier, 1994.

[88] David Heckerman, Christopher Meek, and Gregory
Cooper. A bayesian approach to causal discovery.
In Innovations in Machine Learning, pages 1–28.
Springer, 2006.

12

https://proceedings.neurips.cc/paper/2020/file/d04d42cdf14579cd294e5079e0745411-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d04d42cdf14579cd294e5079e0745411-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d04d42cdf14579cd294e5079e0745411-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d04d42cdf14579cd294e5079e0745411-Paper.pdf
http://www.jstor.org/stable/44682904
http://www.jstor.org/stable/44682904

Differentiable and Transportable Structure Learning

Appendix: D-Struct

Table of Contents
A Additional experiments 13

A.1 Settings and details . 13

A.2 Completed results . 15

A.3 Other DSFs . 16

A.4 Computational efficiency . 17

A.5 Subsampling datasets . 17

A.6 Binary adjacency matrices . 17

A.7 Multiple datasets . 18

A.8 DAGs: D-Struct vs NOTEARS . 18

A.9 Gains from enforcing transportability . 18

B Causal interpretation and uniqueness 19

C Transportability in non-overlapping domains 24

D Definitions 24

E Incorporating prior knowledge on I(P) using L-BFGS-B 25

F Additional details on subsampling from different distributions 26
F.1 The general way . 26

F.2 How it’s implemented in D-Struct . 27

G CIT-based methods, score-based methods and faithfulness 27
G.1 CIT-based methods . 27

G.2 (Differentiable) Score-based methods . 28

A. Additional experiments
Please find our online code repository at:

https://github.com/jeroenbe/d-struct
or

https://github.com/vanderschaarlab

Our code is based on code provided by Zheng et al. [36], and we annotated our code where we used their implementation.

A.1. Settings and details

In the interest of space, we left out a few details in our main text. Here we discuss hyperparameters (those in addition to the
hyperparameters required for the selected DSFs), the evaluation metrics, and how we combine the different parallel DAGs.

Hyperparameters. D-Struct inherits hyperparameters from the chosen underlying DSFs. These hyperparameters act in the
same way as they would in their original incarnation. For a discussion on these hyperparameters, we refer to the relevant
literature on these methods specifically.

13

https://github.com/jeroenbe/d-struct
https://github.com/vanderschaarlab

Differentiable and Transportable Structure Learning

However, D-Struct also adds two additional parameters: K and α. The impact of K is already discussed in the main text,
recapitulated as: K implicitly determines the sizes of the subsets used to train the parallel DSFs, as such, for high K we
should have high n. With both increasing, we report better performance (particularly in Scale-Free DAGs).

The impact of α is a bit more subtle, and also a function of K. First, consider Fig. 7, displaying the impact on each evaluation
metric as a function of different α. What we find is that setting α is mostly dependent on K as lower α tend to work better
with higher K, and vice versa for lower K. This makes sense as we sum each LMSE, resulting in a higher value with more
K. If α is large in a setting with large K, the regularisation effect would simply be too large. We set our hyperparameters to
those which yielded best performance (deduced from Fig. 7 for α, and K = 3 when not varied over as this yielded the most
stable results overall).

200 500 1,000 2,000

2

4

6

n

SH
D

0.5 1 1.5 2

2

4

6

sd
5 7 10

0

5

10

15

20

d
2 3 5

2

4

6

K

α = 1 α = 2 α = 3 α = 4 α = 5

varying n varying s varying d varying K

Figure 7: Results showing the effect of α. Depending on the nature of the problem the degree of regularization imposed by
α can vary. This then changes the amount we enforce the similarity between the different D-Struct adjacency. matrices.

Evaluation metrics. The learned graphs from NOTEARS and D-Struct are assessed using four graph metrics namely: (1)
Structural Hamming distance (SHD), (2) False discovery rate (FDR), (3) False positive rate (FPR) and (4) True positive rate
(TPR). These values are standard when evaluating structure learning methods. We provide some insight into these evaluation
metrics below.

Structural Hamming distance (SHD) SHD is the total number of edge additions, deletions, and reversals needed to
convert the estimated DAG into the true DAG. That means that the worst case SHD is d2 − d, as we bound the
diagonal to be 0 at all times. As such, the reported SHD with varying d is expected to be higher, not due to
hardness of the problem, but as a property of the SHD (see for example Fig. 5).

False discovery rate (FDR) Whenever an edge is suggested in the estimated DAG, which is incorrect, we add
to the falsely discovered edges. As such, the FDR is defined as the number of reversed edges and edges that
should not exist, divided by the number of edges in total. Of course, the exception is when no edges are suggested
at all (which implies dividing by 0), which naturally has an FDR of zero.

False positive rate (FPR) We sum the edges that should have been reversed and those that should not exist,
and divide by the total number of non-edges in the ground truth DAG. A non-edge is an edge that does not exist.
With a more connected ground truth DAG, we expect this number to be lower automatically (as the numerator
of the FPR would be higher). This is the reason why we let s be a function of d, as increasing the number of
expected edges with d would somewhat counter this effect. Note that, in Table 1 we see the FPR increasing
proportionate to the factor multiplied with d, which is as we would expect.

True positive rate (TPR) This signifies the number of correctly estimated edges, over the number of edges in
the true graph. Note that, reversed edges are counted as wrong edges.

Combining graphs. Inference is done by combining the K internal graphs. In our implementation of D-Struct, we combine
graphs by averaging the adjacency matrices and apply a threshold to convert the average graph into a binary matrix. The
latter is a similar strategy to most DSFs’ strategies to convert a continuous matrix into a binary one. This is a relatively
simple method with promising results, in line with what is currently done in the literature.

However, given that D-Struct has multiple graphs, we can actually come up with different strategies (a potential topic for
future research). Naturally, this would be more relevant with high K, which in turn requires a larger sample size, as per

14

Differentiable and Transportable Structure Learning

Table 3: Results on Erdos-Renyı̀ (ER) graphs. First block: We sample five different ER random graphs, and accompanying
non-linear structural equations using an index-model. From each system, we then sample a varying number of samples and
evaluate NOTEARS-MLP with D-Struct (indicated as “✓”) and without D-Struct (indicated as “✗”). Second block: For each
row we sample a new ER graph with a varying degree of connectedness (s indicates the expected number of edges). In both
cases, we report the average performance in terms of SHD, FPR, TPR, and FDR, with std in scriptsize.

metric SHD (↓) FPR (↓) TPR (↑) FDR (↓)
D-Struct ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

n varying sample size

200 3.60±0.27 4.20±0.44 2.00±0.67 4.20±0.44 0.67±0.05 0.64±0.05 0.25±0.06 0.42±0.04

500 3.20±0.80 3.94±0.33 1.20±0.44 3.94±0.33 0.66±0.24 0.56±0.04 0.18±0.05 0.44±0.04

1000 2.75±0.47 3.67±0.82 1.00±0.37 2.67±0.63 0.75±0.08 0.63±0.13 0.18±0.03 0.39±0.11

s varying graph connectedness

0.5d 3.75±1.60 7.33±0.13 0.50±0.25 1.05±0.02 0.83±0.19 0.88±0.04 0.42±0.16 0.73±0.01

1d 3.50±0.86 7.67±0.45 0.55±0.22 1.53±0.09 0.75±0.09 0.46±0.09 0.40±0.09 0.77±0.07

1.5d 3.00±1.15 5.67±1.75 1.00±0.19 1.55±0.08 0.89±0.07 0.62±0.06 0.32±0.05 0.53±0.04

2d 2.28±0.80 3.67±0.82 1.00±0.32 2.67±0.63 0.67±0.17 0.70±0.09 0.11±0.03 0.32±0.08

d varying dimension count

5 2.28±0.80 3.67±0.82 1.00±0.32 2.67±0.63 0.67±0.17 0.70±0.09 0.11±0.03 0.32±0.08

7 8.67±0.56 12.88±0.15 0.72±0.05 1.07±0.01 0.96±0.02 0.83±0.01 0.49±0.01 0.63±0.01

10 19.71±0.72 30.82±0.98 0.42±0.13 1.18±0.04 0.70±0.16 0.71±0.06 0.34±0.08 0.70±0.02

our discussion above. Specifically, we enter the domain of ensemble learning. Like D-Struct, ensemble methods need to
combine, potentially conflicting, outcomes and provide the user with only one outcome.

One avenue is to not vote on a per-element basis, but on a per-graph basis. Imagine, two graphs in K that are exactly the
same aspire more confidence in their accuracy. We could even relax similarity to an SHD across graphs, where we weigh
each graph’s “vote” proportionally to their combined SHD. We believe this to be a promising area of future research.

Experimental procedure. Here we explain how our experimental setup works, which steps we need to perform before
starting an experiment, and which information each model is provided.

There are two main parts to an experimental setup: (i) we need a structure, (ii) we need a set of structural equations
accompanying the structure of step (i).

(i) The structure. In our setup, a structure can only be a DAG. To reduce bias as much as possible, we do not determine
structures up front, but sample random structures for each experimental run. Of course, the same random structure is
presented for each benchmark. Sampling random structures happens in two ways: either we sample a random Erdös-Renyi
graph, which requires a dimension count (d), and an expected number of edges (ds); or we use a scale-free graph which
is generated using the process described in Barabási and Albert [75] as was also done in Zheng et al. [36], which needs a
parameter β = 1 (the exponent for the preferential attachment process). The expected number of edges in our setup depends
on d such that s resembles the ratio of edges versus non-edges in the random graph.

(ii) The equations. With a sampled structure from (i), we can now sample some structural equations. In our pa-
per, we use an index model to sample these. In short, an index model is randomly parameterised as: fj(Xpa(j)) =∑3

m=1 hm(
∑

k∈pa(j) θjmkXk), where h1 = tanh, h2 = cos, h3 = sin, and each θjmk is drawn uniformly from range
[−2,−0.5] ∪ [0.5, 2]. Exactly as was reported in Zheng et al. [36].

A.2. Completed results

Recall from Section 4 that we only reported a subset of the results. In Tables 3 and 7 we report the remainder for
NOTEARS-MLP and the D-Struct implementation on scale-free graphs.

15

Differentiable and Transportable Structure Learning

Table 4: Results on Erdos-Renyı̀ (ER) graphs. First block: We sample five different ER random graphs, and accompanying
non-linear structural equations using an index-model. From each system, we then sample a varying number of samples and
evaluate NOTEARS-SOB with D-Struct-SOB (indicated as “✓”) and without D-Struct (indicated as “✗”). Second block: For
each row we sample a new ER graph with a varying degree of connectedness (s indicates the expected number of edges). In
both cases, we report the average performance in terms of SHD, FPR, TPR, and FDR, with std in scriptsize.

metric SHD (↓) FPR (↓) TPR (↑) FDR (↓)
D-Struct-SOB ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

n varying sample size

200 5.20±1.11 3.80±0.43 3.60±0.81 3.80±0.43 0.41±0.13 0.68±0.05 0.45±0.09 0.39±0.04

500 4.40 ±1.36 4.20±0.39 1.60±0.67 4.20±0.39 0.58±0.14 0.64±0.04 0.26±0.14 0.42±0.04

1000 3.00±0.36 4.00±0.52 2.33±0.21 4.00±0.52 0.74±0.05 0.67±0.06 0.26±0.02 0.40±0.05

2000 3.50±0.37 2.50±0.20 1.86±0.26 2.50±0.20 0.66±0.05 0.83±0.02 0.24±0.03 0.25±0.02

s varying graph connectedness

0.5d 31.50±7.50 42.00±0.25 0.74±0.19 1.00±0.005 0.83±0.17 0.88±0.05 0.82±0.0043 0.94±0.003

1d 24.00±1.35 42.00±0.49 0.59±0.04 1.05±0.01 0.95±0.05 0.60±0.10 0.83±0.009 0.93±0.01

1.5d 30.67±3.52 40.38±0.33 0.81±0.09 1.06±0.008 0.90±0.05 0.66±0.05 0.83±0.02 0.89±0.007

2d 30.50±0.50 38.00±0.64 0.87±0.01 1.09±0.02 1.00±0.00 0.68±0.05 0.75±0.00 0.84±0.01

d varying dimension count

5 3.00±0.36 4.00±0.52 2.33±0.21 4.00±0.52 0.74±0.05 0.67±0.06 0.26±0.02 0.40±0.05

7 7.19±0.48 14.95±0.37 0.53±0.04 1.24±0.03 0.86±0.02 0.65±0.04 0.44±0.02 0.72±0.02

10 29.67±2.33 38.33±0.17 0.81±0.06 1.06±0.004 0.96±0.04 0.70±0.02 0.77±0.02 0.86±0.005

K varying subset count

2 4.50±0.866 5.67±0.46 4.00±0.71 5.67±0.46 0.56±0.11 0.48±0.05 0.46±0.09 0.56±0.05

3 3.00±0.36 4.00±0.52 2.33±0.21 4.00±0.52 0.74±0.05 0.67±0.06 0.26±0.02 0.40±0.05

5 2.50±0.29 4.17±0.63 2.50±0.29 4.17±0.63 0.77±0.06 0.65±0.07 0.27±0.04 0.42±0.06

A.3. Other DSFs

We repeat the results above for NOTEARS-SOB which is a Sobolev-based implementation of NOTEARS, in Tables 4 and 6.
The main difference here with NOTEARS-MLP is the nonparametric estimation of the structural equations in Ĝ. Note that,
future implementations of DSFs broadly alter the way in which the structural equations are estimated, and much less on how
the proposed structure is evaluated to be a DAG (as they are mostly based on eq. (3)). Overall, we find that NOTEARS-SOB
behaves the same as NOTEARS-MLP: D-Struct vastly improves performance. We further test D-Struct for high dimensional
settings using DAGMA [50] in Table 5, a recent DSF where the score function relies on a log-determinant and can be
optimised using Adam which results in large performance increases.

Note that code to reproduce the above results is provided in the online code repository linked to above.

Table 5: D-Struct in high dimensions. We use a D-Struct variant of DAGMA [50] which can be optimised using the Adam
optimiser resulting in large performance increases. This allows us to scale D-Struct to high dimensions.

method d SHD(↓) FPR(↓) TPR(↑) FDR(↓)
D-Struct (DAGMA) 100 3 0.0 0.0 0.94
DAGMA 100 11 0.001 0.085 0.86

D-Struct (DAGMA) 50 1 0.0 0.0 0.98
DAGMA 50 15 0.003 0.093 0.78

16

Differentiable and Transportable Structure Learning

Table 6: Results on Scale-Free (SF) graphs. First block: We sample five different SF random graphs, and accompanying
non-linear structural equations using an index-model. From each system, we then sample a varying number of samples and
evaluate NOTEARS-SOB with D-Struct (indicated as “✓”) and without D-Struct (indicated as “✗”). Second block: For each
row we sample a new SF graph with a varying degree of connectedness (s indicates the expected number of edges). Third
block: For each row we vary the feature dimension count (d). Fourth block: For each row we vary the number of subsets for
D-Struct (s).In all cases, we report the average performance in terms of SHD, FPR, TPR, and FDR, with std in scriptsize.

metric SHD (↓) FPR (↓) TPR (↑) FDR (↓)
D-Struct ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

n varying sample size

200 6.00±0.69 3.8±0.25 1.8±0.20 1.27±0.08 0.49±0.12 0.83±0.03 0.63±0.08 0.39±0.02

500 3.40±0.88 4.60±0.25 0.67±0.14 1.53±0.08 0.57±0.09 0.69±0.03 0.41±0.12 0.48±0.03

1000 2.75±0.86 4.33±0.50 0.58±0.22 1.44±0.17 0.61±0.15 0.76±0.05 0.36±0.15 0.44±0.05

s varying graph connectedness

0.5d 14.11±5.40 39.53±0.37 0.31±0.13 0.89±0.01 0.22±0.14 0.20±0.11 0.42±0.17 0.93±0.01

1d 8.11±3.96 39.46±0.38 0.13±0.09 0.89±0.01 0.30±0.18 0.16±0.09 0.22±0.15 0.99±0.01

1.5d 15.20±3.44 38.31±0.41 0.32±0.14 1.05±0.01 0.58±0.23 0.52±0.07 0.40±0.17 0.98±0.01

2d 15.20±3.44 38.25±0.44 0.32±0.14 1.04±0.01 0.58±0.23 0.50±0.07 0.40±0.17 0.89±0.01

d varying dimension count

5 2.75±0.86 4.33±0.50 0.58±0.22 1.44±0.17 0.61±0.15 0.76±0.05 0.36±0.15 0.44±0.05

7 8.25±3.09 15.00±0.22 0.55±0.21 1.00±0.01 0.96±0.08 0.78±0.02 0.49±0.16 0.76±0.01

10 16.80±4.21 35.75±0.33 0.36±0.17 0.99±0.01 0.58±0.24 0.67±0.03 0.42±0.17 0.85±0.01

K varying subset count

2 3.00±0.42 6.00±0.30 0.53±0.21 2.00±0.10 0.66±0.04 0.57±0.04 0.21±0.07 0.60±0.03

3 2.75±0.86 4.33±0.5 0.58±0.22 1.44±0.17 0.61±0.15 0.76±0.05 0.36±0.15 0.44±0.05

5 2.80±0.57 5.25±0.21 0.73±0.15 1.75±0.07 0.74±0.09 0.68±0.03 0.31±0.07 0.53±0.02

A.4. Computational efficiency

In Fig. 8, we learn that despite its parallel ensemble architecture, D-Struct is actually much faster than NOTEARS. Note that
D-Struct is built on top of NOTEARS, meaning this computational gain is not due to differences in implementation. Instead,
we believe computation gains are largely due to D-Struct’s learning scheme. Rather than using the entire dataset at once to
learn one (computationally intensive) DSF, D-Struct splits the data and learns multiple DSFs from several smaller datasets.
We believe this is an important result: the whole reason for having differentiable structure learners is due to their efficiency
gains over CIT-based methods.

A.5. Subsampling datasets

We refer to Table 8 for the full results presented originally in Table 2. While FPR may be a little higher, using D-Struct
still outperforms not using D-Struct in terms of the FPR– already shown in Table 1. Furthermore, as the subsampling
routine forces D-Struct to learn on different distributions, it is possible that this increase in FPR is a result of initially more
conflicting DAG structures. When combined, these structures include more edges which in turn result in more potential
for a false positive edge discovery. In fact, we observe a lower necessary threshold when using our subsampling routine,
necessary to transform the real-values matrix into a binary adjacency matrix.

A.6. Binary adjacency matrices

We also report the same metrics as a function of the DAG-finding threshold in Fig. 9, where the threshold is applied to the
adjacency matrix to produce a binary matrix on which we compute the metrics. Of course, a threshold will be selected in
practice; however, we show that for a range of plausible threshold values and all metrics that subsampling with our routine is
indeed beneficial, compared to randomized subsampling. From this, it seems that the results we find in Table 8 are consistent

17

Differentiable and Transportable Structure Learning

Table 7: Results on Scale-Free (SF) graphs. First block: We sample five different SF random graphs, and accompanying
non-linear structural equations using an index-model. From each system, we then sample a varying number of samples and
evaluate NOTEARS-MLP with D-Struct (indicated as “✓”) and without D-Struct (indicated as “✗”). Second block: For each
row we sample a new SF graph with a varying degree of connectedness (s indicates the expected number of edges). Third
block: For each row we vary the feature dimension count (d). Fourth block: For each row we vary the number of subsets for
D-Struct (s).In all cases, we report the average performance in terms of SHD, FPR, TPR, and FDR, with std in scriptsize.

metric SHD (↓) FPR (↓) TPR (↑) FDR (↓)
D-Struct ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

n varying sample size

200 2.80±0.86 6.20±0.57 0.73±0.28 2.07±0.19 0.80±0.11 0.54±0.08 0.26±0.11 0.62±0.06

500 2.20±0.80 7.20±0.66 0.27±0.12 2.20±0.18 0.77±0.13 0.37±0.09 0.14±0.06 0.72±0.06

1000 3.25±1.49 5.33±0.61 0.75±0.43 1.78±0.20 0.68±0.15 0.66±0.08 0.29±0.18 0.53±0.06

s varying graph connectedness

0.5d 3.33±0.88 8.00±0.37 0.50±0.19 1.17±0.06 0.92±0.08 0.38±0.05 0.41±0.08 0.82±0.03

1d 3.33±0.89 8.00±1.00 0.50±0.19 1.17±0.17 0.92±0.08 0.38±0.13 0.41±0.08 0.82±0.07

1.5d 3.25±0.41 7.67±0.31 0.50±0.07 1.17±0.04 0.94±0.04 0.42±0.06 0.43±0.03 0.80±0.03

2d 2.75±1.03 5.00±1.00 0.33±0.23 1.22±0.22 0.64±0.15 0.50±0.07 0.14±0.09 0.48±0.12

d varying dimension count

5 3.25±1.49 5.33±0.61 0.75±0.43 1.78±0.20 0.68±0.15 0.66±0.08 0.29±0.18 0.53±0.06

7 8.22±1.31 15.67±0.14 0.54±0.09 1.04±0.01 0.98±0.02 0.83±0.03 0.54±0.04 0.76±0.01

10 16.80±4.21 35.75±0.33 0.36±0.17 0.99±0.01 0.58±0.24 0.67±0.03 0.42±0.17 0.85±0.01

K varying subset count

2 2.40±0.24 6.50±0.46 0.53±0.08 2.16±0.15 0.83±0.05 0.50±0.06 0.21±0.03 0.65±0.06

3 2.00±1.04 5.33±0.6 0.33±0.47 1.78±0.20 0.68±0.14 0.66±0.09 0.14±0.09 0.53±0.06

5 0.75±0.48 5.25±0.21 0.25±0.16 2.55±0.11 1.00±0.00 0.33±0.05 0.09±0.05 0.76±0.03

even with changing thresholds.

A.7. Multiple datasets

Below we assess the scenario where indeed we have multiple datasets. Essentially, we skip the step explained in Section 3.2
and provide multiple datasets which we know to be differently distributed while respecting a shared underlying DAG: using
the same underlying DAG, we sample different associated SEMs. We report these results in Table 9. As we have for other
experiments, we arrive at the same conclusion that D-Struct consistently performs better than the benchmark DSFs

A.8. DAGs: D-Struct vs NOTEARS

We wish to also highlight that indeed what is recovered by D-Struct is different from NOTEARS. For this, we refer to
Figs. 10 and 11, each representing an independent run.

A.9. Gains from enforcing transportability

A key concept of D-Struct is to enforce transportability, which is done using our novel loss function.

L(Gk|Dk) := LDSF(G|Dk) + αLMSE(A(Gk)),

The question is what do we gain from the usage of the α term which is key to enforcing transportability. We conduct an
experiment where we set α = 0. This not only assesses the importance of this term, but also without LMSE this amounts to
assessing K independent versions of vanilla NOTEARS.

18

Differentiable and Transportable Structure Learning

200 500 1k 2k

5x
10x
15x
20x
25x

Number of samples (n)

Sp
ee

du
p

Figure 8: Speedup of D-Struct over NOTEARS. Difference in computation time between NOTEARS-MLP and D-Struct,
over n. On average, D-Struct is 10x quicker.

0.7 0.8 0.9
1

2

3

4

5

threshold
0.7 0.8 0.9

0

1

2

3

4

threshold
0.7 0.8 0.9

0.6

0.7

0.8

0.9

threshold
0.7 0.8 0.9

0

0.1

0.2

0.3

0.4

threshold

with subsampling (✓) without subsampling (✗)

SHD (↓) FPR (↓) TPR (↑) FDR (↓)

Figure 9: Subsampling with different DAG-thresholds. The DAG-threshold transforms the real-valued adjacency matrix,
to a binary one. As the threshold increases, the amount edges that remain part of the DAG decreases. The above confirms
our findings from Table 8 in different settings.

Results: When we combine the K DAGs by averaging them, the result is NOT a DAG.

This highlights that indeed that (1) transportability is key as part of this formulation and (2) that simply running parallel
versions of NOTEARS is not a sufficient solution.

We highlight this by showing the independent DAGs discovered without transportability enforced, the average of the DAGs
and the true DAG. These results are reported in Figs. 12 and 13

B. Causal interpretation and uniqueness
Causality. Causal relationships between variables are often expressed as DAGs [51]. While D-Struct is able to recover
DAGs more reliably, there is actually no guarantee that the found DAG can be interpreted as a causal DAG. There is a simple
reason for this: we do not make any additional identification assumptions on the structural equations when learning DAGs,
at least not beyond what is already assumed in the used DSFs. Furthermore, should D-Struct be combined with a DSF that is
able to recover a causal DAG3, the way in which the K internal DAGs are combined may violate these assumptions (recall
DAG combination from Appendix A.1).

With D-Struct, we recover a Bayesian network (BN), which is directed, yet the included directions are not necessarily
meaningful. The only guarantee we have with BNs is that they resemble a distribution, which express some conditional
distributions (as per the independence sets in Section 2). Order is not accounted for in these independence sets. For more
information regarding this, we refer to Appendix D and Koller and Friedman [27].

However, as is indicated in Koller and Friedman [27, Chapter 21], a “good” BN structure should correspond to causality,
where edges X → Y indicate that X causes Y . Koller and Friedman [27] state that BNs with a causal structure tend to be
sparser. Though, if queries remain probabilistic, it doesn’t matter whether or not the structure is causal, the answers will

3We know of none that is able to.

19

Differentiable and Transportable Structure Learning

Table 8: Usefulness of our subsampling routine. We sample ten different ER random graphs, and accompanying non-
linear structural equations as in Zheng et al. [36]. From each system we then sample n = 2000 samples, and evaluate
NOTEARS-MLP with our subsampling routine from Section 3.2 (indicated as “✓”) and without the subsampling routine,
using random splits instead (indicated as “✗”). For each row, we repeat our experiment with different K. In both cases, we
report the average performance in terms of SHD, FPR, TPR, and FDR, with std in scriptsize.

metric SHD (↓) FPR (↓) TPR (↑) FDR (↓)
Subsample ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

K varying amount of splits

2 2.80±0.53 3.40±0.58 2.80±0.53 2.60±0.33 0.80±0.06 0.71±0.07 0.28±0.05 0.30±0.16

3 3.00±0.37 4.00±0.59 2.00±0.51 1.60±0.45 0.73±0.04 0.58±0.06 0.22±0.05 0.24±0.17

5 2.80±0.57 4.40±1.29 1.40±0.50 0.60±0.26 0.71±0.06 0.53±0.15 0.18±0.06 0.07±0.10

Table 9: Multiple datasets results on Erdos-Renyı̀ (ER) graphs. First block: We sample five different ER random graphs,
and accompanying non-linear structural equations using an index-model. From each system, we then sample a varying
number of samples and evaluate NOTEARS-MLP with D-Struct (indicated as “✓”) and without D-Struct (indicated as “✗”).
Second block: We repeat the experiment in the first block but evaluate using NOTEARS-Sob with and without D-Struct. In
both cases, we report the average performance in terms of SHD, FPR, TPR, and FDR, with std in scriptsize.

metric SHD (↓) FPR (↓) TPR (↑) FDR (↓)
D-Struct-MLP ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

K varying subset count

2 3.00±1.05 5.00±0.58 1.80±0.37 5.00±0.58 0.76±0.12 0.56±0.07 0.23±0.07 0.50±0.06

3 2.25±0.95 2.67±0.45 1.75±0.47 2.67±0.45 0.86±0.11 0.81±0.05 0.19±0.06 0.27±0.04

5 1.667±1.20 4.00±0.33 1.00±0.57 4.00±0.33 0.88±0.11 0.66±0.04 0.12±0.07 0.40±0.03

D-Struct-SOB ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

K varying subset count

2 2.75±0.48 3.67±0.55 2.00±0.41 3.67±0.55 0.78±0.06 0.70±0.06 0.22±0.05 0.37±0.05

3 1.25±0.47 3.33±0.33 1.00±0.41 3.33±0.33 0.89±0.06 0.74±0.04 0.11±0.05 0.33±0.03

5 2.00±0.41 4.00±0.21 1.75±0.25 4.00±0.21 0.89±0.05 0.66±0.02 0.18±0.03 0.40±0.02

remain the same. Only when we are interested in interventional queries (by using do-calculus) do we have to make sure the
DAG is a causal one.

Uniqueness. The above is a pragmatic view. To our knowledge, there is no real proof stating that sparser DAGs are (even
more likely to be) causal. However, it could offer guidance to try and recover a causal DAG, assuming it to be sparse [78].
The latter, of course, is assuming that there exists a unique or correct DAG, which is something we implicitly assume to be
true. Naturally, when aiming to make a discovery, we aim to recover a true DAG, where a truthful DAG corresponds with a
DAG that can be uniquely recovered.

However, there is a difference between a unique DAG, and the unique DAG. Where the former is a matter of identifiability
(discussed more below), the latter is one of causality. With the latter we mean: “can a method actually recover the unique
causal DAG?” From Meek [61] and Meek [61] we learn that, from observational data alone, this is impossible and should
thus not be a goal if one is not willing to make additional assumptions.

We stress that transportability is a weaker goal than identifiability. Enforcing transportability does not guarantee unique
or repeatable results. Take CIT-based methods— which we know to be fully transportable. While it is true that the same
set of independence statements will always result in the same DAG (i.e. transportability), it is not necessarily true that we
will always recover the same independence statements. Depending on which independence test one uses to build the set
of independence statements, the resulting DAG may look entirely different. Similarly for D-Struct, while D-Struct does
encourage similar DAGs (see for example Appendix A), we have no guarantee to recover the same DAG over different runs.
The latter is a requirement for identifiability [79] as identifiability requires the model to always converge to the same set of

20

Differentiable and Transportable Structure Learning

Table 10: Multiple datasets results on Scale-Free (SF) graphs. First block: We sample five different SF random graphs,
and accompanying non-linear structural equations using an index-model. From each system, we then sample a varying
number of samples and evaluate NOTEARS-MLP with D-Struct (indicated as “✓”) and without D-Struct (indicated as “✗”).
Second block: We repeat the experiment in the first block but evaluate using NOTEARS-Sob with and without D-Struct. In
both cases, we report the average performance in terms of SHD, FPR, TPR, and FDR, with std in scriptsize.

metric SHD (↓) FPR (↓) TPR (↑) FDR (↓)
D-Struct-MLP ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

K varying subset count

2 3.75±0.48 4.67±0.55 0.83±0.35 1.56±0.18 0.71±0.10 0.62±0.08 0.28±0.10 0.52±0.06

3 2.00±0.58 4.00±0.58 0.67±0.19 1.22±0.15 0.86±0.08 0.76±0.06 0.24±0.05 0.41±0.05

5 1.00±0.71 5.67±0.50 0.17±0.17 1.89±0.17 0.86±0.10 0.57±0.05 0.08±0.08 0.58±0.04

D-Struct-SOB ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗

K varying subset count

2 2.11±0.66 6.56±0.45 0.59±0.17 2.19±0.15 0.86±0.09 0.49±0.06 0.24±0.08 0.66±0.05

3 2.67±0.44 4.71±0.22 0.74±0.13 1.52±0.07 0.76±0.05 0.76±0.03 0.29±0.05 0.46±0.02

5 1.25±0.37 5.67±0.37 0.21±0.09 1.89±0.12 0.89±0.06 0.62±0.05 0.08±0.03 0.57±0.04

0 1 2 3 4

0
1

2
3

4

0.0

0.2

0.4

0.6

0.8

1.0

(a) True DAG.

0 1 2 3 4

0
1

2
3

4

0.0

0.2

0.4

0.6

0.8

1.0

(b) D-Struct estimated DAG.
SHD=2, FDR=0.11, FPR=1.

0 1 2 3 4

0
1

2
3

4

0.0

0.2

0.4

0.6

0.8

1.0

(c) NOTEARS estimated DAG.
SHD=2, FDR=0.2, FPR=2.

Figure 10: First independent run

0 1 2 3 4

0
1

2
3

4

0.0

0.2

0.4

0.6

0.8

1.0

(a) True DAG.

0 1 2 3 4

0
1

2
3

4

0.0

0.2

0.4

0.6

0.8

1.0

(b) D-Struct estimated DAG.
SHD=2, FDR=0.11, FPR=1.

0 1 2 3 4

0
1

2
3

4

0.0

0.2

0.4

0.6

0.8

1.0

(c) NOTEARS estimated DAG.
SHD=2, FDR=0.2, FPR=2.

Figure 11: Second independent run

parameters.

However, we do believe transportability is a vehicle to bring us closer to unique identification with DSFs. It is clear from our
experiments that transportable learners greatly improve edge accuracy. As our synthetic setup is governed by one (and thus

21

Differentiable and Transportable Structure Learning

0 1 2 3 4
0

1
2

3
4

0.0

0.2

0.4

0.6

0.8

1.0

(a) True DAG.

0 1 2 3 4

0
1

2
3

4

0.0

0.2

0.4

0.6

0.8

1.0

(b) NOTEARS: Mean.
This is not a DAG!

0 1 2 3 4

0
1

2
3

4

0

2

4

6

8

10

(c) NOTEARS: 1st DAG.

0 1 2 3 4

0
1

2
3

4

0

1

2

3

4

5

6

(d) NOTEARS: 2nd DAG.

0 1 2 3 4

0
1

2
3

4 0.8

0.9

1.0

1.1

1.2

1.3

1.4

(e) NOTEARS: 3rd DAG.

0 1 2 3 4

0
1

2
3

4

0.0

0.2

0.4

0.6

0.8

1.0

(f) D-Struct: Mean.
This is a DAG!

0 1 2 3 4

0
1

2
3

4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(g) D-Struct: 1st DAG.

0 1 2 3 4

0
1

2
3

4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(h) D-Struct: 2nd DAG.

0 1 2 3 4

0
1

2
3

4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(i) D-Struct: 3rd DAG.

Figure 12: First independent run. Note the differences between the three DAGS on each partition for NOTEARS (Row 1),
the average is also not a DAG. Whereas, for D-Struct note the similarities by enforcing transportability, the average is also a
DAG.

22

Differentiable and Transportable Structure Learning

0 1 2 3 4

0
1

2
3

4

0.0

0.2

0.4

0.6

0.8

1.0

(a) True DAG.

0 1 2 3 4

0
1

2
3

4

0.0

0.2

0.4

0.6

0.8

1.0

(b) NOTEARS: Mean.
This is not a DAG!

0 1 2 3 4

0
1

2
3

4

0

2

4

6

8

10

12

14

(c) NOTEARS: 1st DAG.

0 1 2 3 4

0
1

2
3

4

0

2

4

6

8

10

12

14

(d) NOTEARS: 2nd DAG.

0 1 2 3 4

0
1

2
3

4 0.9

1.0

1.1

1.2

1.3

1.4

1.5

(e) NOTEARS: 3rd DAG.

0 1 2 3 4

0
1

2
3

4

0.0

0.2

0.4

0.6

0.8

1.0

(f) D-Struct: Mean.
This is a DAG!

0 1 2 3 4

0
1

2
3

4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(g) D-Struct: 1st DAG.

0 1 2 3 4

0
1

2
3

4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(h) D-Struct: 2nd DAG.

0 1 2 3 4

0
1

2
3

4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

(i) D-Struct: 3rd DAG.

Figure 13: Second independent run. Note the differences between the three DAGS on each partition for NOTEARS (Row
1), the average is also not a DAG. Whereas, for D-Struct note the similarities by enforcing transportability, the average is
also a DAG.

non-transportable
models

◆ DSFs[35, 36, 48,
49]

◆ CIT[76, 77]

◆ D-Struct

transportable
models

identifiable
models

causal
models

easy
identification

hard
identification

Figure 14: Comparison of methods w.r.t. identification and uniqueness. The ultimate goal of structure learning is to
come up with unique and correct structures. Once we recover the one true DAG, we may interpret the structure as a causal
model. However, discovering a causal structure using only observational data is not possible. Yet, we can approach it with
methods that restrict the set of possible DAGs. From this illustration, we gather that D-Struct is an attempt to restrict the
solution space of DSFs, going one step further towards unique solutions.

23

Differentiable and Transportable Structure Learning

unique) graph, having a more accurate learner means a learner that discovers a DAG that is more like the unique, underlying
graphical model. Consider Fig. 14 for an illustration comparing the relevant methods in terms of model identification.

C. Transportability in non-overlapping domains
Consider the multi-origin setting, where we have at least two datasets, each stemming from a different source. It is entirely
possible that, given the different sources, these datasets are not comparable in terms of recorded features. We can recognise
two major manifestations of this phenomenon: either (i) the supports of the datasets do not match, or (ii) the dimensions do
not match.

(i) Different support. Recall from Section 2 that DAGs encode a set of independence statements. As such, it is mainly
independence that governs structure. Transportability in the setting of conflicting support, thus requires some (mild)
assumptions. Specifically, we require that independence holds, regardless of support. This is mostly a pragmatic assumption.
If for example, we find that Xi ⊥⊥ Xj , where each component denotes a dimension in X , we usually don’t specify over what
support this independence holds. Implicitly, we assume that independence holds, regardless of what area in {Xi,Xj} we
find ourselves in.

Note that the chosen distributions in P in Section 3.2 govern the entire domain [N], and as a consequence X . As such, the
problem of conflicting support does not manifest in our solution of single-origin D-Struct. In case one chooses distributions
that do not cover [N] equally, we have to assume independence is constant across different supports (i.e. the assumption
explained above).

(ii) Different dimensions. A more difficult setting of conflicting domains, is when we record different variables in each of
the multi-origin datasets. In order for a DAG to be transportable, we require the variable sets to correspond. As such, we
are only able to work with overlapping intersections of the non-overlapping domains. Doing so requires some additional
assumptions on the noise: assuming we record some noise on each variable, we have to make the additional assumption that
the noise is independent of the other variables, or at least the variables outside the intersection between domains. The latter
is made quite often, and should not limit the applicability of D-Struct in this setting too much (recall that the applicability of
D-Struct is mostly determined by the used DSF). The reason relates to the second assumption, below.

The second assumption is a bit stricter: any variables outside the intersection cannot be confounding variables inside
the intersection. If two variables have no direct edges, and the nodes part of an indirect edge fall outside the domain-
intersection, we have to expect the DSF to find an edge between these two nodes. While this direct edge is wrong, this is
actually the expected behaviour of most DSFs as the algorithms will find these variables to be correlated (due to the third,
now unobserved, variable). The only way to overcome these situations is to use DSFs that naturally handle unobserved
confounding.

Related work. Some work on structure discovery from multiple (non-overlapping) domains has been proposed. For
example, Ghassami et al. [80] in the linear setting, Peters et al. [81] for the interventional setting, or Huang et al. [82] in the
temporal setting. While the difference between the first ([80]) is clear (only focusing on linear systems, whereas we focus
on a non-parametric setting), the others are not immediately clear. Some intuition into the difference can be achieved by
considering that both the interventional and temporal know where the difference in distribution is coming from. So much so,
that the known difference is exploited when garnering (causal) structural information. We believe applying our findings on
transportability to the settings described earlier can be a promising new avenue of research.

D. Definitions
Definition 2 (Markov blanket.). A Markov blanket of a random variable Xi in a random set X := {X1, . . . , Xd} is any
subset X ′ ⊂ X where, when conditioned upon, results in independence between X \ X ′ (the other variables) and Xi,

Xi ⊥⊥ X \ X ′|X ′. (6)

We will denote the Markov blanket of Xi as X ′(Xi).

In principle, Def. 2 means that X ′ contains all the information present in X to infer X1. Note that this does not mean that
X \ X ′ contains no information to infer X1, but variables in X ′ are sufficient to predict X1.

One step further, is a Markov boundary [52]:

24

Differentiable and Transportable Structure Learning

Definition 3 (Markov boundary.). A Markov boundary of a random variable Xi of a random set X := {X1, . . . , Xd} is any
subset X− ⊂ X which is a Markov blanket (Def. 2) itself, but does not contain any proper subset which itself is a Markov
blanket. We will denote the Markov boundary of Xi as X−(Xi).

We can relate the Markov boundary (Def. 3) to probabilistic graphical modelling, as from a simplified factorisation (in
eq. (1)), we can compose a Bayesian network. Specifically, each variable Xj ∈ X−(Xi) depict one of three types of
relationships: Xj is a parent of Xi, denoted as Pa(Xi) = Xj ; Xj is a child of Xi, denoted as Ch(Xi) = Xj ; or Xj is a
parent of a child of Xi, denoted as Pa(Ch(Xi)) = Xj . Assuming that PX is governed by a Markov random field (rather
than a Bayesian network) simplifies things, as the Markov boundary depicts only directly connected variables.

While the above may suggest that the Markov boundary only implies a vague graphical structure, doing this for every variable
in X will strongly constrain the possible graphical structures respecting any found independence statements. D-separation
(Def. 4) is then used to further limit the set of potential DAGs [34, 51]. Relating the above definitions to those discussed in
Section 2. For more information regarding the above, we refer to Koller and Friedman [27].

Definition 4 (d-separation [34].). In a DAG G, a path between nodes Xi and Xj is blocked by a set Xd ⊂ X (which excludes
Xi and Xj) whenever there is a node Xk, such that one of two holds:

(1) Xk ∈ Xd and

Xk−1 ← Xk ← Xk+1,

or Xk−1 → Xk → Xk+1,

or Xk−1 ← Xk → Xk+1.

(2) neither Xk nor any of its descendants is in Xd and

Xk−1 → Xk ← Xk+1.

Furthermore, in a DAG G, we say that two disjoint subsets A and B are d-seperated by a third (also disjoint) subset Xd if
every path between nodes in A and B is blocked by Xd. We then write

A ⊥⊥G B|Xd.

When Xd d-seperates A and B in G, we will denote this as d-sepG(A;B|Xd).

Definition 5 (Faithfulness from Peters et al. [34].). Consider a distribution PX and a DAG G
(i) PX is faithful to G if

A ⊥⊥ B|C ⇒ A ⊥⊥G B|C,
for all disjoint sets A,B and C.

(ii) a distribution satisfies causal minimality with respect to G if it is Markovian with respect to G,
but not to any proper subgraph of G.

Part (i) posits an implication that is the opposite of the global Markov condition

A ⊥⊥G B|C ⇒ A ⊥⊥ B|C,

for which we refer to Peters et al. [34, Def. 6.21].

Part (ii) is actually implied when part (i) is satisfied, when PX is Markovian w.r.t. G, as per Peters et al. [34, prop. 6.35]. To
have an idea of when faithfulness is not satisfied, we refer to Zhang and Spirtes [83] and Spirtes et al. [76, Theorem 3.2].

E. Incorporating prior knowledge on I(P) using L-BFGS-B
Consider the following, where we wish to discover a structure between 3 variables: X , Y , Z, where the ground truth satisfies
X ⊥⊥ Y |Z. According to the rules of d-speration (cfr. Def. 4), we are always in a structure where X and Y are only directly
connected to Z, i.e. no direct connection between X and Y exists. Let us further assume that the system is linear (as this is
what vanilla NOTEARS assumes, but without loss of generality towards recent NOTEARS extensions), then we have the
following,

25

Differentiable and Transportable Structure Learning

structural equations

X := ϵX ,

Z := βZ,XX + ϵZ ,

Y := βY,ZZ + ϵY ,

structure

X YZ

adjacency matrix

A =

0 0 1
0 0 0
0 1 0

 .

Naturally, using only conditional independence, the directions of the arrows are not identifiable as explained above. However,
NOTEARS is unable to narrow it down to the equivalence classes expressed in Def. 4. The reason is simple, NOTEARS’
three optimisation components (the h-measure, an L2 loss, and an L1 regularizer on A, [78]) are satisfied exactly the same
with the following system:

structural equations

X := ϵX ,

Z := βZ,XX + ϵZ ,

Y := βY,XX + ϵ′Y ,

structure

X YZ

adjacency matrix

A′ =

0 1 1
0 0 0
0 0 0

 ,

where βY,X = βY,ZβZ,X , and ϵ′Y = βY,ZϵZ + ϵY resulting in Y being determined again by a simple linear equation. Both
systems allow the same data to be generated, however under the constraint that X ⊥⊥ Y |Z only the former is possible.

We argue that NOTEARS (and extensions) are unable to differentiate between them. Consider the components optimised by
NOTEARS: both solutions propose a DAG (i.e. h(A) = h(A′) = 0); each DAG has an equal amount of arrows, leading to
the same L1-loss across A and A′; and each equation is linear so NOTEARS is able to perfectly converge to each solution
using its L2 loss. Given that each component scores exactly the same, NOTEARS is unable to differentiate between these
two results. Crucially however, in the latter system X is always dependent of Y , resulting in X ̸⊥⊥ Y |Z (and even X ̸⊥⊥ Y
eliminating v-structures) which is completely opposite to the former system.

Prior Markov independencies. We can however force known independence statements into DSFs a priori, using the
L-BFGS-B optimizer. For example, consider the following I = Xi ⊥⊥ Xj |Z. If I is known a priori, then we also know
there cannot (under any circumstance) exist a direct link between Xi and Xj as this would immediately contradict I which
in turn would invalidate a structure proposing such a link.

As such, we propose to fix these directed edges to 0→ Aij(G),Aji(G), and exclude them from gradient calculation. This
will not only constrain each DSL in step 2 above resulting in easier convergence, but it will also enforce any known I(PX)
to be taken into account. Setting AX,Y = AY,X = 0 would immediately restrict NOTEARS from converging to this false
solution as the solution would require AX,Y to be 1. The same approach is currently used in NOTEARS (and consequentially
D-Structs parallel DSFs), by setting bounds of each diagonal element in A to (0, 0).

Setting some elements to 0 using the L-BFGS-B bounds, we effectively limit the set of possible solutions. In fact, when
applied to the above problems, the second solution would sit outside the set of possible solutions, ensuring that NOTEARS
cannot converge to it.

F. Additional details on subsampling from different distributions
In Section 3.2 we introduced a method to sample subsets from a single-origin dataset such that the subsets correspond to
distinct user-defined distributions. To provide some additional detail, we shall first discuss the general case, and then move
on to discuss how we implemented this in D-Struct.

F.1. The general way

A high-level view of our subsampling routine is provided in Fig. 3. From Fig. 3 we learn that we need two ingredients for
our subroutine to work:

1. We need a dataset that spans some domain X . We can retrieve this domain simply by calculating the maximum and
minimum value of each dimension in X . We have illustrated a simple dataset in Fig. 3a.

26

Differentiable and Transportable Structure Learning

2. We need a set of K distinct distributions that span X . In principle, there is no constraint on these, besides them being
different from one another, and each region in X having a non-zero probability of being sampled. This is illustrated in
Fig. 3b.

Using the above two ingredients, we create K empty subsets. For each subset, we then define one distribution, illustrated
in Fig. 3b. In Fig. 3 we used a Gaussian for each subset as they span the domain, and are simple to evaluate. Using these
distributions, we will fill each subset using data from Fig. 3a. Each data point in our dataset is evaluated K times: using the
user-defined distributions in Fig. 3b, we either include the sample in the corresponding subset, or not. When the probability
of being sampled is high enough, it is included, when it is not high enough, it is excluded. High enough could be determined
by something simple as a threshold, or something less parametric as a Bernoulli experiment. When finished, the subsamples
look like Fig. 3c.

Alas, Gaussian distributions become more difficult to handle with increasing dimensionality as data is spread sparser in high
dimensions. The provided high-level example may serve well as a (visual) explanation of our subroutine, it does not work
well in practice. As such, we used a different implementation for D-Struct, which we explain in Section 3.2, and in more
detail below.

F.2. How it’s implemented in D-Struct

Recall that the main issue with the simple Gaussian implementation above is that it does not scale well to high dimensions.
As such, we need a different implementation that scales to high dimensions.

Defining the distributions. We do this using a very simple idea: rather than sampling in covariate space, we sample the
dataset’s indices, which correspond to a sample’s covariates. However, before we do this, we need to make sure that the
indices are in some way correlated with the covariates, which is not the case for a standard dataset as they are sampled i.i.d.

To provide some correlation between index and covariates, we first sort the covariates and reindex the dataset. This way, a
smaller set of covariates now corresponds with a smaller index-value. Note that it is unimportant whether we sort descending
or ascending, the only thing that matters is that there is some logical ordering.

Having an index that is correlated with the covariates allows us to define a distribution over the indices (which are one-
dimensional) rather than over the covariates (which are d-dimensional). We chose the beta distribution as our user-specified
distribution, where each of the K distributions is given different parameters. The advantage a beta distribution has is its
flexibility to move its density over the entire domain (contrasting Gaussian distributions which are symmetrical). This point
is illustrated in Fig. 4.

Sampling data. Once we have defined our distributions, we can use them to sample data. As with our high-level idea
in Appendix F.1, we will evaluate each data point K times to determine whether or not it should be included in each
subset. However, rather than evaluating the chosen distributions using the covariates directly, we now use the index instead.
Regardless of the number of dimensions we have, the index remains one-dimensional.

Evaluating a sample in D-Struct is done using a Bernoulli experiment: with the beta distributions we query the probability
of being sampled and provide it to a Bernoulli experiment, the outcome determines inclusion or exclusion.

G. CIT-based methods, score-based methods and faithfulness
G.1. CIT-based methods

CIT-based methods such as the well-known PC-algorithm, the SGS algorithm, or the inductive causation (IC) algorithm all
require faithfulness as per Def. 5. The reason is such that they render the Markov equivalence class identifiable. As we have
explained in Section 3.1, using d-separation we have a one-to-one correspondence to this class of DAGs. Any query of a
d-separation statement can therefore be answered by checking the corresponding conditional independence test [16].

Most CIT-based methods have 2 main phases, based on a set of conditional independence statements. Assuming the latter is
a correct set (that is, we have correctly inferred all the independence statements present in PX), we first infer a skeleton
graph, and then orient the edges. After these two phases, we have either a fully identified DAG, or Markov equivalence
graphs in case there are edges we were not able to orient.

Phase 1: inferring a skeleton. Based on Theorem G.1 (below) introduced in Verma and Pearl [77], the SGS and IC

27

Differentiable and Transportable Structure Learning

algorithm build a skeleton from a completely unconnected graph.

Lemma G.1. The following two statements hold:

(i) Two nodes X and Y in a DAG (X , E) are adjacent iff they cannot be d-separated by any subset
S ⊂ X \ {X,Y }.
(ii) If two nodes X and Y in a DAG (X , E) are not adjacent, then they are d-separated by either
PaX or PaY .

Clearly, by using the above lemma, SGS [76] and IC [51] require faithfulness. Contrasting methods that build from an
unconnected graph is the PC-algorithm, which does the reverse: PC starts with a fully connected graph and step-by-step
removes edges when they violate (ii) in Theorem G.1. While a different approach, both require d-separation, i.e. this too
requires faithfulness to hold!

Phase 2: orienting the edges. As per Meek [61], there exists a set of graphical rules that is shown to correctly orient the
edges based only on d-separation. Of course, this requires a complete set of correct independence statements which is
arguably a much stricter assumption than faithfulness.

Essentially, we can relax the assumption of a complete set of independencies, but we’ll have to replace it with other
assumptions. One such example is assuming a PX to be Gaussian (which is also quite strict, but it serves our example).
With the latter assumption, we can test for partial correlation [34, Appendices A.1 and A.2], which allows us to identify the
underlying Markov equivalence class [84]. Furthermore, by additionally assuming a condition called strong faithfulness
[85, 86], we have uniform consistency [84]. We refer to Peters et al. [34, Ex. 7.9] for an example.

G.2. (Differentiable) Score-based methods

Contrasting CIT-based methods are score-based methods. Score-based methods generalise our differentiable score-based
methods and non-differentiable methods. Contrasting CIT-based methods, which directly encode the independence
statements governing PX into G, a score-based method will evaluate G on how well it fits the observed data. The rationale
behind these score-based methods is that wrongly encoded independence statements will yield poor model fits [87, 88].

We can formalise a score-based method as a function S which is to be optimised over candidate DAGs:

Ĝ := argmax
G DAG over D∈X

S(D,G).

As such, there are two elements that comprise a score-based method: (i) the function S, and (ii) the way we optimise S. In
our case, that is:

(i) S corresponds to eq. (5), which is in large part determined by the underlying DSF through LDSF.

(ii) S is optimised using gradient-optimisation, which has proven very efficient in this problem setting

Importantly, the rationale behind these methods does not require the faithfulness assumption for them to work. The latter
may lead to violations against d-separation in case faithfulness does hold. However, in Appendix E we show how we can
combat this by also incorporating any known independencies into our graph (which does require the faithfulness assumption
to hold for those independence statements) using the L-BFGS-B optimisation algorithm.

28

	Introduction
	Preliminaries and related work
	Differentiable structure learning

	D-Struct: Differentiable and transportable Structure learning
	D-Struct: Transportable structure learning
	D-Struct: Subset construction
	Example implementation using NOTEARS-MLP

	Experiments
	Discussion
	Appendix
	 Appendix: D-Struct
	Additional experiments
	Settings and details
	Completed results
	Other DSFs
	Computational efficiency
	Subsampling datasets
	Binary adjacency matrices
	Multiple datasets
	DAGs: D-Struct vs NOTEARS
	Gains from enforcing transportability

	Causal interpretation and uniqueness
	Transportability in non-overlapping domains
	Definitions
	Incorporating prior knowledge on I(P) using L-BFGS-B
	Additional details on subsampling from different distributions
	The general way
	How it's implemented in D-Struct

	CIT-based methods, score-based methods and faithfulness
	CIT-based methods
	(Differentiable) Score-based methods

