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Abstract
Chain-of-Thought (CoT) is an efficient prompting method that enables the reasoning
ability of large language models by augmenting the query using multiple examples with
intermediate steps. Despite the empirical success, the theoretical understanding of how to
train a Transformer to achieve the CoT ability remains less explored. This is primarily due
to the technical challenges involved in analyzing the nonconvex optimization on nonlinear
attention models. To the best of our knowledge, this work provides the first theoretical study
of training Transformers with nonlinear attention to obtain the CoT generalization capability
so that the resulting model can reason on unseen tasks when the input is augmented by
examples of the new task. We first quantify the required training samples and iterations to
train a model with CoT ability. We then prove the success of its CoT generalization on
unseen tasks with distribution-shifted testing data. Moreover, we theoretically characterize
the conditions for an accurate reasoning output by CoT even when the provided reasoning
examples contain noises and are not always accurate. In contrast, in-context learning
(ICL), which can be viewed as one-step CoT without intermediate steps, may fail to
provide an accurate output when CoT does. These theoretical findings are justified through
experiments.

1. Introduction
Transformer-based large-scale foundation models, such as GPT-3 (Brown et al., 2020), GPT-
4 (OpenAI, 2023), LLaMa (Touvron et al., 2023a,b), and Sora (Liu et al., 2024), have
demonstrated remarkable success across various tasks, including natural language processing
(Brown et al., 2020; Touvron et al., 2023b), multimodal learning (OpenAI, 2023; Radford
et al., 2021), and image/video generation (OpenAI, 2023; Liu et al., 2024). What is more
surprising is that large language models (LLMs) demonstrate reasoning ability through the
so-called “Chain-of-Thought” (CoT) method (Wei et al., 2022). The objective is to let a pre-
trained LLM generate K steps of reasoning given input query xquery without any fine-tuning.
To achieve that, the input xquery is augumented with l examples {xi, {yi,j}Kj=1}li=1 of a
certain K-step reasoning task, where each xi is the input with yi,j as the j-th reasoning step,
and yi,K is the final output. A pre-trained model then takes the resulting augmented input,
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referred to as a prompt, and outputs the corresponding reasoning steps {zj}Kj=1 for xquery,
or simply outputs zK . CoT can be viewed as an extended and more intelligent method than
the previous in-context learning (ICL) method, where only input-label pairs {xi,yi,K}li=1

are augmented in the prompt to predict zK with the pre-trained model.
Inspired by the outstanding empirical performance of CoT in arithmetic reasoning (Wang
et al., 2023; Zhang et al., 2023d), symbolic reasoning (Zhang et al., 2023d; Zhou et al., 2023),
and commonsense reasoning (Wang et al., 2023), there have been some recent works (Li et al.,
2023d; Feng et al., 2023; Li et al., 2024d; Yang et al., 2024) on the theoretical understanding
of CoT. These works investigate CoT from the perspective of expressive power, i.e., they
construct the Transformer architecture that is proven to have the CoT ability. They also
demonstrate empirically that supervised training on pairs of CoT prompts and corresponding
outputs can lead to models with CoT ability. However, none of these results theoretically
address the question of why a Transformer can obtain generalization-guaranteed CoT ability
by training from data with gradient-based methods. Meanwhile, another line of research
(Zhang et al., 2023a; Huang et al., 2023; Wu et al., 2023a; Li et al., 2024a) aims to unveil the
reasons behind the ICL ability of Transformers through characterizing the training dynamics
of a Transformer in the supervised setting. These analyses are specifically applicable to ICL.
Therefore, a theoretical question still remains less explored, i.e.,

Why can a Transformer be trained to generalize on multi-step reasoning tasks via CoT?

1.1. Major Contributions
Following Li et al. (2023d); Feng et al. (2023); Li et al. (2024d); Yang et al. (2024); Wen et al.
(2024), we train the model in a supervised setting using prompt and label pairs. This paper
provides the first theoretical analysis of the training dynamics of nonlinear Transformers
to achieve CoT ability. We prove that the learned model has guaranteed CoT ability for
new tasks with distribution shifts from the training tasks, even when there exist noisy and
erroneous context examples in the prompt. We theoretically characterize the required number
of training samples and iterations needed to train a desirable model and the number of
context examples required for successful CoT reasoning with a generalization guarantee.
Moreover, we provide a theoretical explanation for why CoT outperforms ICL in some cases.
Our main technical contributions are as follows:
1. A quantitative analysis of how the training can enable the CoT ability:
We theoretically analyze the training dynamics on a one-layer single-head attention-only
Transformer and quantify the required number of context examples in each training sample,
the total number of training samples, and the number of training iterations needed to acquire
CoT ability. We illustrate that the CoT ability results from the property that the attention
values of the learned model are concentrated on testing context examples with the same
input patterns as the testing query during each reasoning step.
2. A quantitative analysis of how context examples affect CoT performance: We
characterize the required number of context examples in the testing prompt for successful
CoT with noise and error in contexts. Our bounds are consistent with the intuition that more
accurate context examples and more similar examples to the query improve CoT accuracy.
3. A theoretical characterization of why CoT outperforms ICL: We provide a
quantitative analysis of the requirements for successful ICL reasoning with our studied
trained model. We show that successful ICL requires an additional condition that the prompt
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has a dominant number of correct input-label examples, while CoT does not depend on this
condition. This can be viewed as one of the possible reasons why CoT outperforms ICL.

2. Problem Formulation
We study the problem of learning and generalization of K-steps reasoning tasks. Each task
f = fK ◦ · · · f2 ◦ f1 is a composition of functions {fi}Ki=1 and outputs labels z1, z2, · · · , zK
for the input xquery. During the k-th reasoning step, k ∈ [K], the label is zk = fk(zk−1),
where z0 := xquery.

2.1. Training to acquire the Chain-of-Thought ability
Following (Li et al., 2023d; Feng et al., 2023; Li et al., 2024d; Yang et al., 2024; Wen et al.,
2024), we first investigate the training on a Transformer model to obtain the CoT ability
in evaluating new data and tasks. It is a supervised learning setting on pairs of prompts
and labels. Different from the testing prompt that includes examples and only xquery, the
training prompt includes multiple K-steps reasoning examples and a (k − 1)-step reasoning
of xquery for any k in [K], and the label for this prompt is zk. Specifically,
Training Prompt and Label for CoT. For every prompt and output pair from a task
f = fK ◦· · · f2◦f1, we construct a prompt P that include the query input zk−1 by prepending
ltr reasoning examples and the first k− 1 steps of the reasoning query. The prompt P of the
query input zk−1 is formulated as:

P =
(
E1,E2, · · · ,Eltr ,Qk

)
∈ R2dX×(ltrK+k),

Ei =

(
xi yi,1 · · · yi,K−1

yi,1 yi,2 · · · yi,K

)
, Qk =

(
z0 z1 · · · zk−2 zk−1

z1 z2 · · · zk−1 0

)
, i ∈ [ltr],

(1)

where Ei is the i-th context example, and Qk is the first k steps of the reasoning query for any
k in [K]. We have yi,k = fk(yi,k−1) and zk = fk(zk−1) for i ∈ [ltr], k ∈ [K] with a notation
yi,0 := xi. Let ps and pquery be the s-th column and the last column of P , respectively, for
s ∈ [ltrK + k − 1]. xi,yi,k, zj ∈ RdX for i ∈ [ltr] and j, k ∈ [K]. We respectively call xi and
yi,k context inputs and outputs of the k-th step of the ith context example. For simplicity of
presentation, we denote z as the label of P , which is indeed zk for (1). All the notations are
summarized in Table 1 in Appendix.
The learning model is a single-head, one-layer attention-only Transformer. We consider
positional encoding {ck}Kk=1 ∈ R2dX . Following theoretical works (Jelassi et al., 2022; Huang
et al., 2024), we add the positional encoding to each pi by p̃i = pi+c(i mod K), i ∈ [K(ltr+1)].
p̃query is also defined by adding the corresponding ck to pquery. Mathematically, given a
prompt P defined in (1) with len(P ) (which is at most K(ltr + 1)) denoting the number of
columns, it can be written as

F (Ψ;P ) =

len(P )−1∑
i=1

WV p̃i · softmax((WK p̃i)
⊤WQp̃query), (2)

where WQ,WK ∈ Rm×(2dX ), WV ∈ RdX×(2dX ) are the embedding matrices for queries,
keys, and values, respectively. Ψ := {WQ, WK ,WV } denotes the set of all model weights.
Typically, m > 2dX .
The training problem to enable the reasoning solves the empirical risk minimization,
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min
Ψ

RN (Ψ) :=
1

N

N∑
n=1

ℓ(Ψ;P n, zn), (3)

using N prompt and label pairs {P n, zn}Nn=1. For the n-th sample, xnquery and the context
input xni are all sampled from a distribution D. The training task fn is sampled from T .
k is randomly selected from [K], and P n is constructed following (1). The loss function is
squared loss, i.e., ℓ(Ψ;P n, zn) = 1/2 · ∥zn − F (Ψ;P n)∥2, where F (Ψ;P n) is defined in (2).

2.2. Chain-of-Thought Inference
We then consider another K-steps reasoning task f ∈ T ′, whose target is to predict labels
{zk}Kk=1 given the input query xquery. T ′ is the set of testing tasks, and T ′ ̸= T .
Testing Prompt for CoT. The testing prompt P is composed of lts (≤ ltr) context
examples of K steps plus a query, which is constructed as

P = (E1,E2, · · · ,Elts ,pquery) ∈ R(2dX )×(ltsK+1),pquery = (x⊤
query,0

⊤)⊤, (4)

where Ei follows the form in (1) for i ∈ [lts].
We follow the CoT-I/O scheme formulated in (Li et al., 2023d; Feng et al., 2023; Li et al.,
2024d; Yang et al., 2024; Park et al., 2024) as the inference method. Specifically, for a K-step
CoT with lts examples on a certain f ∈ T ′, given the testing prompt P defined in (4), let
P1 = P and P0 be the first K · lts columns of P . When we use CoT prompting for prediction
in the k-th step, we first generate the output vk, k ∈ [K] via greedy decoding by feeding
the k-th step prompt Pk to the trained model Ψ obtained from (3). The greedy decoding
scheme means outputting the most probable token from the discrete set Y of all possible
outputs, as stated in (5).

vk = argmin
u∈Y

1

2
∥F (Ψ;Pk)− u∥2, (greedy decoding) (5)

Then, we use the output vk to update Pk and use vk as the query input to form the input
prompt Pk+1 for the next step, which is computed as

Pk =
(
Pk−1 qk

)
∈ R(2dX )×(Klts+k), Pk+1 =

(
Pk qk+1

)
∈ R(2dX )×(Klts+k+1),

where qk =
(
v⊤
k−1 v⊤

k

)⊤
, qk+1 =

(
v⊤
k 0⊤

)⊤
,

(6)

where qk is the k-th step reasoning column for the query. The model finally outputs
v1, · · · ,vK as CoT result for query xquery by (5). The CoT process is summarized in
Algorithm 2 of Appendix B.
When K ≥ 2, following (Li et al., 2023d; Feng et al., 2023; Li et al., 2024d; Yang et al., 2024),
the CoT generalization error given the testing query xquery, the testing data distribution
D′, and the labels {zk}Kk=1 on a K-steps testing task f ∈ T ′ is defined as

R̄f
CoT,xquery∼D′,f∈T ′(Ψ) = Exquery∼D′

[
1

K

K∑
k=1

1[zk ̸= vk]

]
, (7)

which measures the average error between the output and the label of each reasoning step.
A zero CoT generalization error indicates correct generations in all K steps.

4



How Do Nonlinear Transformers Acquire Generalization-Guaranteed CoT Ability?

2.3. In-Context Learning Inference
The ICL inference on a K-steps task f ∈ T ′ only predicts the final-step label by prepending
examples of input and label pairs before the query. ICL can be viewed as a one-step CoT
without intermediate steps. We evaluate the ICL performance with the trained model.
Testing Prompt for ICL. Mathematically, ICL is implemented by constructing P as

P = (E1, · · · ,Elts ,pquery),where pquery =

(
xquery

0

)
,Ei =

(
xi 0 · · · 0
yi,K 0 · · · 0

)
(8)

P ∈ R(2dX )×(ltsK+1), Ei ∈ R(2dX )×K for i ∈ [lts]. Note that in the ICL setting, Ei only has
input xi and the K-step output yi,K but does not include any intermediate labels. We pad
zeros in Ei so that its dimension is the same as Ei in (1) for the inference with the same
model as for CoT. The ICL output is v = argminu∈Y

1
2∥F (Ψ;P )− u∥2, following (5). The

ICL generalization error is

R̄f
ICL,xquery∼D′,f∈T ′(Ψ) = Exquery∼D′ [1[zK ̸= v]] , (9)

which measures the error between the one-step reasoning output and the final step label.

3. Main Theoretical Insights
We consider the setup that the model is trained using samples generated from tasks in T
that operate on M orthonormal training-relevant (TRR) patterns, while both CoT and
ICL are evaluated on tasks in T ′ that operate on M ′ orthonormal testing-relevant (TSR)
patterns that belong to the span of TRR patterns. We consider the general setup that the
context examples in the prompt for CoT and ICL testing are both noisy, i.e., TSR patterns
with additive noise, and partially inaccurate, i.e., the reasoning in some examples contains
incorrect steps. Our main insights are as follows.
P1. Training Dynamics of Nonlinear Transformer towards CoT. We theoretically
analyze the training dynamics on a one-layer single-head attention-only Transformer to
acquire the CoT generalization ability and characterize the required number of training
samples and iterations. Theorem 1 shows that to learn a model with guaranteed CoT ability,
the required number of context examples in each training sample, the total number of training
samples, and the number of training iterations are all linear in α−1, where α is the fraction
of context examples with inputs that share the same TRR patterns as the query. This is
consistent with the intuition that the CoT performance is enhanced if more context examples
are similar to the query. Moreover, the attention values of the learned model are proved
to be concentrated on testing context examples that share similar input TSR patterns as
the testing query during each of the reasoning steps (Proposition 1), which is an important
property that leads to the success of the CoT generalization.
P2. Guaranteed CoT Generalization. To achieve zero CoT error on tasks in T ′ with the
learned model, Theorem 2 shows that the required number of context examples, where noise
and errors are present, for task f in the testing prompt is proportional to (α′τ fρf )

−2, where
α′ is the fraction of context examples with inputs that share the same TSR patterns as the
query, the constant τ f in (0, 1) measures the fraction of accurate context examples, and a
larger constant ρf in (0, 1) reflects a higher reasoning accuracy in each step of the examples.
This result formally characterizes the intuition that more accurate context examples and
more similar examples to the query improve the CoT accuracy.
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P3. CoT outperforms ICL. In Theorem 3, We theoretically show that the required
number of testing context examples for ICL to be successful has a similar form to that for
CoT in Theorem 2, but with an additional requirement (Condition 1) that the fraction
of correct input-label examples in the testing prompt must be dominant. Because not all
testing cases satisfy this requirement, our result unveils the reason why CoT provides one
explanation for why CoT sometimes outperforms ICL.
The formal characterizations of theoretical results are in Section C in the Ap-
pendix. We also discuss the mechanism of CoT and the proof sketch in Appendix
D. We further introduce our numerical experiments in Appendix E.
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APPENDIX
Appendix A. Related Works

Expressive power of CoT Li et al. (2023d) proves the existence of a Transformer that can
learn a multi-layer perceptron (MLP). They interpret CoT as first filtering important tokens
and then making predictions by ICL. They also establish the required number of context
examples for a desired prediction with the constructed Transformer. Feng et al. (2023); Li
et al. (2024d); Merrill and Sabharwal (2024) show that Transformers with CoT are more
expressive than Transformers without CoT. Yang et al. (2024); Wen et al. (2024) show the
superiority of standard Transformers in some reasoning tasks compared with recurrent neural
networks and linear Transformers.
Theoretical analysis of ICL As a simplified one-step version of CoT, ICL has gained much
attention from the theoretical community. Garg et al. (2022); Akyürek et al. (2023); Bai et al.
(2023); Guo et al. (2023) demonstrate that Transformers are expressive to conduct many
machine learning algorithms in context. Akyürek et al. (2023); Von Oswald et al. (2023);
Ahn et al. (2023); Cheng et al. (2023); Ding et al. (2024) especially show the existence of
Transformers to implement gradient descent and its variants with different input prompts.
Zhang et al. (2023a); Huang et al. (2023); Wu et al. (2023a); Li et al. (2023b, 2024a) explore
the training dynamics and generalization of ICL on single-attention Transformers. Cui
et al. (2024); Chen et al. (2024) provably show the superiority of multi-head attention over
single-head attention to achieve ICL ability.
Training and Generalization of Transformers There have been several recent works
about the optimization and generalization analysis of Transformers. Jelassi et al. (2022);
Li et al. (2023e); Oymak et al. (2023); Li et al. (2023a,c); Luo (2023); Huang et al. (2024)
study the generalization of one-layer Transformers by assuming spatial association, seman-
tic/contextual structure, or the majority voting of tokens in the data. Oymak et al. (2023);
Tarzanagh et al. (2023b,a); Tian et al. (2023a,b); Li et al. (2024c); Ildiz et al. (2024); Nichani
et al. (2024); Makkuva et al. (2024) investigate the training dynamics or loss landscape
of Transformers for the next token prediction by assuming infinitely long input sequences,
causal structure/Markov Chain of data, or a proper prediction head. Deora et al. (2023);
Chen and Li (2024) analyze the optimization and generalization of multi-head attention
networks.
Learning and generalization of neural networks. Some existing works (Zhong et al.,
2017; Li et al., 2022b; Zhang et al., 2023b; Li et al., 2024b) study the generalization
performance following the model recovery framework by investigating the local convexity
around a ground truth parameter. Some other works (Allen-Zhu et al., 2019; Cao and Gu,
2019; Chen et al., 2020; Li et al., 2022a; Wu et al., 2023b; Sun et al., 2024) follow the
neural-tangent-kernel (NTK) analysis, which considers strongly overparameterized networks
to linearize the neural network around the initialization. The generalization performance
is independent of the internal structure or the distribution of input features. Other works
Daniely and Malach (2020); Shi et al. (2021); Karp et al. (2021); Brutzkus and Globerson
(2021); Zhang et al. (2023c); Li et al. (2023a); Zhang et al. (2024); Chowdhury et al. (2024)
probe the generalization of neural networks by assuming key patterns and unimportant
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patterns in each data for learning. Our analysis in this work belongs to the last line of
research.

Appendix B. Training Algorithms

B.1. Training Algorithm

For simplicity of analysis, we let W = W⊤
KWQ and WV = (0dX×dX IdX 0dX×dE ) as (Jelassi

et al., 2022; Huang et al., 2023; Zhang et al., 2023a; Huang et al., 2024). Let {ck}Kk=1 be a
set of orthonormal vectors. The model is trained using stochastic gradient descent (SGD)
with step size η with batch size B, summarized in Algorithm 1 in Appendix B. Each entry of
W (0) is generated from N (0, ξ2) for a tiny ξ > 0. Model parameters WV and a are fixed
during the training. The fraction of prompts with zk−1 as the query input is 1/K for any
k ∈ [K] in each batch.
The training algorithm is summarized as in Algorithm 1.

Algorithm 1 Training with Stochastic Gradient Descent (SGD)
1: Hyperparameters: The step size η, the number of iterations T , batch size B.
2: Initialization: Let W = W⊤

KWQ and WV = (0dX×dX IdX 0dX×dE ). Each entry of
W (0) is generated from N (0, ξ2) for a small constant ξ > 0. WV and a are fixed during
the training.

3: Training by SGD: For each iteration, we independently sample xquery ∼ D, f ∈ Ttr to
form a batch of training prompt and labels {P n, zn}n∈Bt as introduced in Section C.1.
Each TRR pattern is sampled equally likely in each batch. For each t = 0, 1, · · · , T − 1

W (t+1) = W (t) − η · 1

B

∑
n∈Bt

∇W (t)ℓ(Ψ(t);P n, zn). (10)

4: Output: W (T ).

We then summarize the algorithm of the CoT inference introduced in Section 2.2 as in
Algorithm 2.

Algorithm 2 Inference with Chain-of-Thought (CoT)
1: Input: z0 = v0 = xquery, P0, and P1.
2: for k = 1, · · · ,K − 1, do

Compute vk by greedy decoding in (5). Then update Pk and Pk+1 by (6). (11)

3: end for
4: Output: v1,v2, · · · ,vK−1, and vK by (5).
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Appendix C. Theoretical Results

We first introduce the formulation of data and tasks in Section C.1. Sections C.2, C.3, and
C.4, respectively characterize the training analysis of the Transformer and generalization
using CoT and ICL with the trained model.

C.1. The Formulation of Data and Tasks

Training data and tasks: Consider M training-relevant (TRR) patterns µ1,µ2, · · · ,µM ,
which form an orthonormal set M = {µi}Mi=1. M = Θ(d),M ≤ d. µi ⊥ ck for i ∈ [M ′], k ∈
[K].
Every training prompt P in (1) contains the query and training examples from the same
training task f in the set of training tasks T . Specifically, each training task f is a composition
of K functions f = fK ◦ · · · ◦ f2 ◦ f1 where each function fk belongs to a function set F .
The k-th step label of the query is zk = fk(zk−1) given the k-th step input zk−1 with
zk ∈ M, k ∈ [K]. Moreover, the k-th step label of the i-th (i ∈ [ltr]) context example
is yi,k = fk(yi,k−1) given the k − 1th step input yi,k−1, k ∈ [K] with xi,yi,k ∈ M, where
yi,0 := xi. We assume that fk(x) ̸= fk′(x

′) if and only if either x ̸= x′ or fk ̸= fk′ .
Training prompt: Consider a training prompt P on task f ∈ T defined in (1) with the
query input zk−1, k ∈ [K]. Let α ∈ (0, 1− c] for some constant c > 01 denote the fraction of
context examples with input sharing the same TRR pattern as the query input.
Testing task and query: Consider M ′ testing-relevant (TSR) patterns µ′

1,µ
′
2, · · · ,µ′

M ,
which form an orthonormal set M′ = {µ′

i}M
′

i=1. M ′ ≤ M . We also have µ′
i ⊥ ck for

i ∈ [M ′], k ∈ [K]. Let T ′ denote the set of testing tasks, which all operate on patterns in
M′ rather than M in training tasks in T . Every testing task f = fK ◦ · · · f2 ◦ f1 ∈ T ′ is a
composition of K functions. The reasoning for the testing query is considered to be noiseless
and accurate. That means,

zk ∈ M′ for all k ∈ {0} ∪ [K], and zk = fk(zk−1), z0 = xquery.

Testing prompt: We consider the general setup that testing examples are noisy and
erroneous. By noisy examples, we mean all inputs and outputs of each step are noisy versions
of TSR patterns, i.e.,

xi,yi,k ∈ {b ∈ Rd|b = µ′
j + δ, j ∈ [M ′], δ ⊥ M′, ∥δ∥ ≤

√
2/2}, (12)

with noise δ ̸= 0 for i ∈ [Klfts], k ∈ [K]. Denote TSR : Rd 7→ Z+ as a function that outputs
the index of the TSR pattern of the noisy input. We consider the case that at least an α′

fraction of context examples where the TSR pattern of the input ys,1, s ∈ [lfts] is the same as
xquery.
By erroneous examples, we mean that the reasoning steps in test examples may contain errors.
To formally model this, we define the step-wise transition matrices {Af

k}
K
k=1 ∈ RM ′×M ′

such that Af
k represents the reasoning probabilities of step k in test examples. Specifically,

there exists some constant ρf in (0, 1) such that for all s ∈ [lfts], k ∈ [K], the i, j-th entry of
Af
k satisfies

1. This is to prevent the trivial case that the model only learns the positional encoding but not the TRR
patterns when α becomes arbitrarily close to 1.
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Afk(i,j) = Pr(TSR(ys,k) = j|TSR(ys,k−1) = i),

and Afk(i,j∗) ≥ 1/(1− ρf ) ·Afk(i,j),∀j ∈ [M ′], where µ′
j∗ = fk(µ

′
i),

(13)

Note that (13) indicates that for any given k, in the k-th reasoning step of the test example,
the k-th step output is a noisy version of the true label with the highest probability, which
guarantees that the examples are overall informative in the k-th step. This requirement is
intuitive because otherwise, these examples would overall provide inaccurate information on
the k-th step reasoning. Moreover, (13) models the general case that, with some probability,
the k-step reasoning is inaccurate in the examples. ρf is referred to as the primacy of the
step-wise transition matrices. ρf reflects the difference in the probability of correct reasoning
and incorrect reasoning in each step, and a larger ρf indicates a larger probability of accurate
reasoning.
Let Bf =

∏K
k=1A

f
k be the K-step transition matrix. Then Bf

(i,j) is the probability that
the K-th step output is a noisy version of µ′

j , when the input is a noisy version of µ′
i in the

testing example. We similarly define ρfo in (0, 1) as the primacy of Bf , where

Bf
(i,j∗) ≥ 1/(1− ρfo ) ·B

f
(i,j), ∀j ∈ [M ′], j∗ = arg max

j∈[M ′]
Bf

(i,j). (14)

C.2. The Sample Complexity Analysis of the Training Stage

We first characterize the convergence and the testing performance of the model during the
training stage with sample complexity analysis in Theorem 1.

Theorem 1 For any ϵ > 0, when (i) the number of context examples in every training
sample is

ltr ≥ Ω(α−1), (15)

(ii) the number of iterations satisfies

T ≥ Ω(η−1α−1K3 log
K

ϵ
+ η−1MK(α−1 + ϵ−1)), (16)

and (iii) the training tasks and samples are selected such that every TRR pattern is equally
likely in each training batch2 with batch size B ≥ Ω(max{ϵ−2,M} · logM), the step size η < 1
and N = BT samples, then with a high probability, the returned model guarantees

Exquery∈M,f∈T [ℓ(Ψ;P , z)] ≤ O(ϵ). (17)

Theorem 1 indicates that with long enough training prompts and a sufficient number of
iterations and samples for training, a one-layer Transformer can achieve a diminishing loss
of O(ϵ) on data following the same distribution as training examples. The results indicate
that (i) the required number of context examples is proportional to α−1; (ii) the required
number of iterations and samples increases as M and α−1 increases. As a sanity check, these
bounds are consistent with the intuition that it will make the training stage more time-
and sample-consuming if the number of TRR patterns increases or the fraction of prompt
examples that share the same TRR pattern as the query decreases.

2. This condition is to ensure a balanced gradient update among all TRR patterns, as used in (Li et al.,
2024a) for ICL.
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C.3. CoT generalization guarantee

In this section, we first define two quantities, τ f , and τ fo for each testing task f ∈ T ′ based
on the formulation of testing data and tasks in Section C.1. These two quantities are used to
characterize the CoT and ICL generalization in Theorems 2 and 3, respectively.

Definition 1 For f = fK ◦ · · · f1 ∈ T ′, we define the min-max trajectory transition
probability as:

τ f = min
i∈[M ′]

K∏
k=1

Af
k(TSR(fk−1◦···f0(µ′

i)),TSR(fk◦···f0(µ′
i)))

, where f0(µ
′
i) := µ′

i, ∀ i ∈ [M ′], (18)

which measures the minimum probability of the most probable K-step reasoning trajectory over
the initial TSR pattern. We also define the min-max input-label transition probability
as

τ fo = min
i∈[M ′]

max
j∈[M ′]

Bf
i,j , (19)

which measures the minimum probability of the most probable output over the initial TSR
pattern.

Theorem 2 (CoT generalization) Given a trained model that satisfies conditions (i) to
(iii) in Theorem 1, as long as (iv)

µ′
j ∈ span(µ1,µ2, · · · ,µM ), (20)

for j ∈ [M ′], and (v) the number of testing examples for every task f ∈ T ′ is

lfts ≥ Ω((α′τ fρf )−2 logM), (21)

we have R̄f
CoT,xquery∈M′,f∈T ′(Ψ) = 0.

Remark 1 Theorem 2 characterizes the sufficient conditions for a trained one-layer Trans-
former to generate all K-steps reasoning correctly by CoT for a task f in T ′. First, the TSR
patterns of a new task in T ′ should be linear combinations of TRR patterns in the training
tasks in T . Second, the number of context examples should be in the order of α′−2, ρfs

−2
, and

τ f
−2. One can equivalently interpret the decrease in the number of required context examples

to achieve zero CoT error as an improvement of the CoT accuracy with fixed context length.
Then, when the fraction α′ of contexts where the TSR pattern of the first step input is the
same as the query increases, the contexts become more informative for the query. Thus,
the CoT accuracy increases. When ρf and τ f increase, the reasoning labels in the context
examples are more likely to be accurate based on their definitions in (13) and (18), then the
CoT accuracy is improved.

C.4. ICL Generalization and Comparison with CoT

Because only input-label pairs are used as context examples without intermediate reasoning
steps for ICL, then the input-label pairs in context examples should be accurate on average.
Otherwise, the context examples are not informative about the task and will lead to the
failure of ICL. We formulate this requirement as Condition 1.

16



How Do Nonlinear Transformers Acquire Generalization-Guaranteed CoT Ability?

Condition 1 For the testing task f = fK ◦ · · · ◦ f1 ∈ T ′, we have that for any i ∈ [M ′],

TSR(f(µ′
i)) = arg max

j∈[M ′]
Bf

(i,j). (22)

Condition 1 requires that in a context example, if the input TSR is µ′
i, then the output TSR

needs to be f(µ′
i) with the largest probability over all other TSR patterns. It is intuitive that

the success of ICL requires this condition. Note that although (13) indicates that, Afk(i, j
∗)

achieves the largest value for all j when µ′
j∗ = fk(µ

′
i) for every k and i, (13) does not always

lead to (22). One example that Condition 1 may not hold is shown in Figure 4 in Section E .
Our result of the ICL generalization is stated as follows.

Theorem 3 (ICL generalization) Given a trained model that satisfies conditions (i) to
(iii) of Theorem 1 and (20), for the testing task f ∈ T ′,

a. if Condition 1 does not hold, then R̄f
ICL,xquery∈M′,f∈T ′(Ψ) ≥ Ω(1);

b. if Condition 1 holds, we have R̄f
ICL,xquery∈M′,f∈T ′(Ψ) = 0, as long as the number of

testing examples is
lfts ≥ Ω((α′τ fo ρ

f
o )

−2 logM). (23)

Remark 2 (Comparison between CoT and ICL) Theorem 3(a) formally states that,
Condition 1 is necessary for a successful ICL generalization. Because Condition 1 is not
required for CoT generalization, CoT performs better than ICL if Condition 1 fails3. Theorem
3(b) characterizes that when Condition 1 holds, a desired ICL generalization needs a testing
prompt length linear in α′−2, ρfo

−2
, and τ fo

−2
for the testing task f ∈ T ′. This result is

the counterpart of the requirement (21) for the CoT generalization, indicating that more
context examples with the same TSR pattern as the query and more accurate context examples
improve ICL generalization.

Ref. Li et al. (2023d) also shows the advantage of CoT over ICL to learn MLP functions,
but in a different setting from ours, where our studied tasks operate on patterns. More
importantly, this paper characterizes the CoT and ICL performance theoretically when the
testing task has a distribution shift from training tasks (TRR patterns to TSR patterns),
and the testing examples contain errors, while Li et al. (2023d) only empirically evaluates
the CoT and ICL performance with noisy examples.

Appendix D. The Mechanism of CoT and the Proof Sketch

D.1. Transformers implement CoT by Attending to the Most Similar Examples
Every Step

3. Our insight of the comparison between CoT and ICL still holds when we evaluate CoT generalization only
by the final step output. This is because a successful CoT generalization in Theorem 2 on all reasoning
steps already ensures a satisfactory CoT generalization on the final step.
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Figure 1: Concentration of attention
weights for CoT inference.

In this section, we characterize the key mechanism of a
properly trained one-layer Transformer to implement
CoT on a K-steps reasoning task via training dynam-
ics analysis of the attention layer, as demonstrated in
Figure 1. This is different from the mechanism study
in (Li et al., 2023d; Feng et al., 2023) by constructing
a model that can conduct CoT. We have the following
proposition for the trained model.

Proposition 1 Let S∗
k denote the index set of the

context columns of the testing prompt P in (4) that
(a) correspond to the k-th step in a context example
and (b) share the same TSR pattern in the k-th input as the k-th input vk−1 of the query,
k ∈ [K]. Given a trained model that satisfies conditions (i) to (iii) of Theorem 1 and (20)
and (21) after T iterations, we have∑

i∈S∗
k

softmax(p̃⊤
i W

(T )q̃k) ≥ 1− ϵ, where p̃i = pi + c(i mod K), q̃k = qk + ck, (24)

with qk defined in (6). Moreover, for any f ∈ T ′, the k-th step output vk given xquery = µ′
i

satisfies,
vk = fk ◦ · · · ◦ f1(µ′

i). (25)

Proposition 1 first illustrates that, when conducting the k-th step reasoning of the query for
any k ∈ [K ′], the trained model assigns dominant attention weights on the prompt columns
that are also the k-th step reasoning of examples and share the same TSR pattern in the
k-th step input as the query. Then, given a sufficient number of testing context examples by
(21), it is ensured that the fraction of the correct TSR pattern is the largest in the output of
each step by (13). Subsequently, the generation by greedy decoding (5) is correct in each
step, leading to a successful CoT generalization.

D.2. An Overview of the Proof

The technical challenges of the proof are concentrated on Theorem 1, where the property of
the trained model is derived. The proof of Theorem 1 is built upon three Lemmas, which
characterize the two stages of the training dynamics. Specifically, Lemmas 6 and 7
show that if a training prompt P includes the first k steps of the reasoning query, then the
attention weights on columns of P with a different step from the query decrease to be close
to zero in the first stage. Lemma 8 computes the gradient updates in the second stage, where
the attention weights on columns in P that correspond to step k and have the same TRR
pattern as the query gradually become dominant. Theorem 1 unveils this training process by
showing the required number of training iterations and sample complexity.
To prove Theorem 2, we first compute the required number of context examples for the new
task f ∈ T ′ so that by concentration inequalities, the number of context examples with
accurate TSR is larger than examples with inaccurate TSR patterns in all K reasoning steps
with high probability. Then, due to the linear correlation between TSR and TRR patterns
(20), we also show that the trained Transformer can attend to context columns with the
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same TSR pattern as the query. Therefore, the model can make the correct generation in
each step. Theorem 3 follows a similar proof idea to Theorem 2, with the difference that the
trained model predicts output directly from the input query following Bf instead of using
K reasoning steps following Af

k , k ∈ [K] in CoT. Therefore, Condition 1 is required for the
success of ICL generalization.

Appendix E. Numerical Experiments
Data Generation and Model setup. We use synthetic data generated following Sections
2 and C.1. Let dX = 30, M = 20, M ′ = 10, α = 0.4. We consider 3-steps tasks for
training and testing, i.e., K = 3. A reasoning task f is generated by first sampling a set of
numbers of permutations {pi}Mi=1 with pi ∈ [M ] and then let fk(µpi) = µp((i+k) mod M)

for
i ∈ [M ], k, j ∈ [K]. The testing noise level is set to be 0.2 for any examples and f ∈ T ′.
The learning model is a one-layer single-head Transformer defined in (2). We set τ f = 0.5,
ρf = 0.8, α′ = 0.8 for CoT testing if not otherwise specified. All the experiments are
conducted on a single NVIDIA RTX A5000 GPU.
Experiments on the generalization of CoT. We first verify the required number of
context examples for a desired CoT generalization. We investigate the impact of α′, τ f , and
ρf by varying one and fixing the other two. Figure 2 illustrates that more testing examples
are needed when α′, τ f , or ρf is small, which verifies the trend of the lower bound of lfts in
(21).

(A) (B) (C)
Figure 2: CoT testing error with different (A) α′ (B) τf (C) ρf .

Experiments on the generalization of ICL and a comparison with CoT. We then
verify the ICL generalization with the trained model. We vary τ fo and ρfo by changing τ f

and ρf . Figure 2 indicates that more testing examples are required when α′, τ fo , or ρfo is
small, which is consistent with our bound in (23). We then consider the case where τ fo = 0.4

and ρfo = 0.1 so that the generated testing prompt may not satisfy Condition 1 depending
on the specific choices of Afk ’s. Figure 4 shows that when Condition 1 holds, the ICL testing
error decreases if the number of contexts increases. However, when Condition 1 fails, the
ICL testing error remains large, irrespective of the number of contexts.
Experiments on the training dynamics of CoT. In Figure 5, we compute the total
attention weights on four types of testing context columns along the training, which are
contexts with the same (or different) TSR pattern and in the same (or different) step as the
query. The result shows that the attention weights on contexts that share the same TSR
pattern and in the same step as the query increase along the training and converge to around
1. This verifies the mechanism formulated in (24). Meanwhile, Figure 5 also justifies the
two-stage training dynamics proposed in Section D.2, where we add a black vertical dashed
line to demonstrate the stage transition boundary. We observe that the attention weights

19



Li Wang Lu Cui Chen

(A) (B) (C)
Figure 3: ICL testing error with different (A) α′ (B) τf

o (C) ρfo .

Figure 4: Comparison between
CoT and ICL w./w.o.
Condition 1

Figure 5: Training dynam-
ics of Transform-
ers for CoT

on context columns with a different step, i.e., the red and yellow curves, decrease to zero in
the first stage. Then, the attention weights on contexts with the same TSR pattern and the
same step as the query, i.e., the blue curve, increase to 1 in the second stage.

Appendix F. Preliminaries

We first summarize the notations we use in this paper in Table 1.

Lemma 2 (Multiplicative Chernoff bounds, Theorem D.4 of (Mohri et al., 2018))
Let X1, · · · , Xm be independent random variables drawn according to some distribution
D with mean p and support included in [0, 1]. Then, for any γ ∈ [0, 1p − 1], the following
inequality holds for p̂ = 1

m

∑m
i=1Xi:

Pr(p̂ ≥ (1 + γ)p) ≤ e−
mpγ2

3 , (26)

Pr(p̂ ≤ (1− γ)p) ≤ e−
mpγ2

2 . (27)

Definition 3 ((Vershynin, 2010)) We say X is a sub-Gaussian random variable with
sub-Gaussian norm K > 0, if (E|X|p)

1
p ≤ K

√
p for all p ≥ 1. In addition, the sub-Gaussian

norm of X, denoted ∥X∥ψ2, is defined as ∥X∥ψ2 = supp≥1 p
− 1

2 (E|X|p)
1
p .
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Lemma 4 (Vershynin (2010) Proposition 5.1, Hoeffding’s inequality) Let X1, X2, · · · , XN

be independent centered sub-gaussian random variables, and let K = maxi ∥Xi∥ψ2 . Then for
every a = (a1, · · · , aN ) ∈ RN and every t ≥ 0, we have

Pr
(∣∣∣ N∑

i=1

aiXi

∣∣∣ ≥ t
)
≤ e · exp

(
− ct2

K2∥a∥2

)
, (28)

where c > 0 is an absolute constant.

Definition 5 Define that for p̃i that shares the same TRR/TSR pattern and in the same
step as the query,

pn(t) =
∑
i

softmax(p̃ni
⊤
W (t)p̃nquery). (29)

Lemma 6 Given the SGD training scheme described in Section B.1, B ≥ Ω(M logM), and
ltr ≥ Ω(α−1), we have the following results. When O(η−1α−2K3 log K

ϵ ) ≥ t ≥ 1, for any p
as a column of context examples in (1), we have

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤ η

B

∑
n∈Bb

(
1

KM
(1− pn(t))

2(−4pn(t)(1 +
α2

K2
) +

α2

K2
(1 +

2(K − 1)

K
))− α2

K3
(1− pn(t))

2).

(30)
For any p̃′ that shares the same TRR pattern and a different positional encoding as p̃, we
have

η

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t)) +

α2

K3
(1− pn(t))

2)

≤p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤ η

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t)) +

1

K
pn(t)(1− pn(t))

2

· (1 + α2

K2
)).

(31)

21



Li Wang Lu Cui Chen

For any p̃′ that shares a different TRR pattern but the same positional encoding as p̃, we
have

η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3

+
1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
))

≤p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3
).

(32)
For any p̃′ that shares a different TRR pattern and a different positional encoding from p̃,
we have

η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(1 +
(2−K)α2

K2
) + (1− pn(t))

2 · α
2

K3
)

≤p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

≤η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(2−K +
(2−K)α2

K2
) + (1− pn(t))

2pn(t)(1 +
α2

K2
) · 1

K
).

(33)

Lemma 7 Given the SGD training scheme described in Section B.1, B ≥ Ω(M logM), and
ltr ≥ Ω(α−1), and

t ≳ T1 := η−1α−2K3 log
K

ϵ
, (34)

we have that if pquery is in the k-th step,∑
i∈S[K]\k

softmax(p̃⊤
i W

(t)p̃query) ≤ ϵ (35)

where S[K]\k means the index set of context columns that are not in the k-th step.

Lemma 8 Given the SGD training scheme described in Section B.1, B ≥ Ω(M logM), and
ltr ≥ Ω(α−1), we have the following results. When t ≥ T1 = η−1α−2K3 log K

ϵ , for any p as
a column of context examples in (1), we have

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃ ≤ − η

2MB

∑
n∈Bb

4pn(t)(1− pn(t))
2. (36)

For any p̃′ that shares the same TRR pattern and a different positional encoding as p̃, we
have ∣∣∣∣∣∣p̃′⊤η

1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

∣∣∣∣∣∣ ≤ ηϵ. (37)
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For any p̃′ that shares a different TRR pattern but the same positional encoding as p̃, we
have ∣∣∣∣∣∣p̃′⊤η

1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

∣∣∣∣∣∣ ≤ η

2BM

∑
n∈Bb

pn(b)(1− pn(b))
2. (38)

For any p̃′ that shares a different TRR pattern and a different positional encoding from p̃,
we have ∣∣∣∣∣∣p̃′⊤η

1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
p̃

∣∣∣∣∣∣ ≤ ηϵ. (39)

Appendix G. Proof of Main Theorems

G.1. Proof of Theorem 1

Proof By the condition in Lemma 6, we have that

B ≥ Ω(M logM). (40)

We know that there exists gradient noise caused by imbalanced TRR patterns in each batch.
Then, by Hoeffding’s inequality (28),

Pr

∥∥∥ 1

|Bb|
∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
− E

[
∂ℓ(Ψ;P n, zn)

∂W

] ∥∥∥ ≥
∣∣∣E [∂ℓ(Ψ;P n, zn)

∂W

]
ϵ


≤e−Bϵ

2 ≤ M−C ,

(41)

if B ≳ ϵ−2 logM . Therefore, we require

B ≳ max{ϵ−2,M} logM. (42)

By Lemma 8 and Definition 5, for p̃ni that share the same TRR pattern and the same
positional encoding of p̃nquery,

pn(t+ 1)

|Sn1 |
= softmax(p̃ni

⊤
W (t+1)p̃nquery) ≥

1

l
· 1
α
K + (1− 1

K ) · ϵ+ ( 1
K − α

K )e−u
, (43)

where by (159),

u ≳
η

KM

t∑
b=0

(1− pn(b))
2pn(b). (44)

For p̃ni that only share the same positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) ≥

1

l
· 1
α
K eu + (1− 1

K ) · ϵ+ ( 1
K − α

K )
. (45)

Therefore, to make the attention weights between p̃nquery and p̃ni that share the same TRR
pattern and the same positional encoding dominant, we need a large enough u. When
1− pn(b) ≥ Ω(1), we have

t ≤ T2 := η−1KMα−1. (46)
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When 1− pn(b) ≤ O(1),

pn(t+ 1) =
eu

eu + 1−α
α

≳ 1− 1− α

α
e−u, (47)

and
1− pn(t+ 1) ≥ 1− α

αeu + (1− α)
≳

1− α

α
e−u. (48)

Then, we prove that when t is large enough, u(t) ≥ 1
2 log

η(1−α)2t
α2M

. We show it by induction.
Suppose that the conclusion holds when t = t0, then

u(t) ≥ η

KM

t0∑
b=0

(1− pn(b))
2pn(b) +

η

KM
(1− pn(t))

2pn(t)

≥1

2
log

(1− α)2t

2α2KM
+

η

KM
(1− pn(t))

2pn(t)

≥1

2
log

η(1− α)2(t+ 1)

α2KM
,

(49)

where the last step is by
1

2
log(1 +

1

t
) ≤ 1

2t
≤ η

KM
· (1− α

α
)2e− log

η(1−α)2t

α2KM . (50)

To make (1− pn(t))
2 < ϵ, we need

(
1− α

α
)2e−2u ≤ ϵ. (51)

Then, we get

u ≥ 1

2
log

1

ϵ
+ log

1− α

α
. (52)

Therefore, by
1

2
log

ηt

KM
+ log

1− α

α
≥ 1

2
log

1

ϵ
+ log

1− α

α
, (53)

we finally obtain
t ≥ T3 := η−1ϵ−1KM. (54)

For p̃ni that shares the same TSR pattern as the query, we have that when t = T1,

p̃ni
⊤
W (t)p̃nquery ≥ log

K

ϵ
. (55)

When t = T1 + T2 + T3,

p̃ni
⊤
W (t)p̃nquery ≥ Θ(1) · log K

ϵ
= Θ(log

K

ϵ
). (56)

Then,
T :=T1 + T2 + T3

=Θ(η−1α−1K3 log
K

ϵ
+ η−1MK(α−1 + ϵ−1)).

(57)

Therefore,
Exquery∼D,f∈T [ℓ(Ψ;P , z)] ≤ O(ϵ). (58)
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G.2. Proof of Theorem 2

Proof We know that α′ is the fraction of examples that share the same TSR pattern as the
query. We need that in each step, the number of examples that share the same TSR pattern
as the current step of the query is at least 1. Note that the probability of examples where
each reasoning step produces the most probable output is

K∏
k=1

Af
k(TSR(fk−1◦···f0(µ′

i)),TSR(fk◦···f0(µ′
i)))

, where f0(µ
′
i) := µ′

i, ∀ i ∈ [M ′], (59)

where the input to the first step has the TSR pattern µ′
i. Define mk(i) as the TSR pattern

in the k-th step output of the i-th context example by the transition matrix defined in
13. Consider that the TSR pattern of the k-th step label of the testing query is µ′

qk
,

which is also the most probable k-th step output of the k-th step of a certain xi with
TSR(xi) = TSR(xquery) = q0. Let the TSR pattern of another reasoning process, where for
a certain first-step input xi with TSR(x) = TSR(xquery) = q0, the k-th step output is the
most probable for k ∈ [K ′]\{h}, while the h-th step output is the second probable. Denote
the TSR pattern of the k-th step output of xi following this process as µ′

uk
with u0 = q0.

By the Chernoff bound of Bernoulli distribution in Lemma 2, we can obtain

Pr

(
1

lts

lts∑
i=1

1[mk(i) = µ′
qk
, ∀k ∈ [K ′]] ≤ (1− ρfs/2)α

′
K′∏
k=1

Afk(qk−1,qk)

)

≤e
−lts(ρfs )2α′ ∏K′

k=1 A
f
k(qk−1,qk = M−C ,

(60)

and by Lemma 4,

Pr

(
1

lts

lts∑
i=1

1[mk(i) = µ′
uk
,∀k ∈ [K ′]] ≥ (1− ρfs/2)α

′
K′∏
k=1

Afk(qk−1,qk)

)

≤Pr

(
1

lts

lts∑
i=1

1[mk(i) = µ′
uk
,∀k ∈ [K ′]] ≥ α′

K′∏
k=1

Afk(uk−1,uk)
+ t0

)
≤e−ltst

2
0 = M−C ,

(61)

for some c ∈ (0, 1) and C > 0, where the first step is by the definition of ρfs in (13), and

t0 ≲ ρfsα
′
K′∏
k=1

Afk(qk−1,qk)
. (62)

Hence, with a high probability,

lts ≳max{(ρfs
2
α′

K′∏
k=1

Afk(qk−1,qk)
)−1 logM, (ρfsα

′
K′∏
k=1

Afk(qk−1,qk)
)−2 logM}

≳(ρfsα
′
K′∏
k=1

Afk(qk−1,qk)
)−2 logM,

(63)
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such that the number of examples with the same TSR pattern as the query in each of the
total K steps is at least 1. To make the above condition hold for any TSR pattern of the
intermediate step of the query, we need

lts ≳ max
qk∈[M ′]

(ρfsα
′
K′∏
k=1

Afk(qk−1,qk)
)−2 logM

= max
i∈[M ′]

(ρfsα
′
K′∏
k=1

Af
k(TSR(fk−1◦···f0(µ′

i)),TSR(fk◦···f0(µ′
i)))

)−2 logM

=(ρfsα
′τ fs )

−2 logM.

(64)

Then, we show the CoT testing error is zero by induction. In the first step, consider
xi = µj + δi such that

p̃i =

(
µ′
j

yi

)
+

(
δi
0

)
+ ci. (65)

Since that
(δ⊤i , 0

⊤)W (0)p̃i ≲ ξ, (66)
by that each entry of W (0) follows N (0, ξ2), and

(δ⊤i , 0
⊤)

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
p̃query = 0, (67)

we have that for p̃i that shares the same TSR pattern as the query,

p̃i
⊤W (T )p̃query

=p̃i
⊤(W (0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)p̃query

=((µ′
j
⊤
,y⊤

i ) + c⊤i ))(W
(0) +

η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)p̃query.

(68)

Let µ′
j =

∑M ′

i=1 λj,iµi. Then, we have

p̃i
⊤W (T )p̃query

=((
M ′∑
i=1

λj,iµ
⊤
i ,y

⊤
i ) + c⊤i )(W

(0) +
η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((

M ′∑
i=1

λj,iµ
⊤
i ,0

⊤) + c1)
⊤

=

M ′∑
i=1

λ2
j,i((µ

⊤
i ,y

⊤
i ) + c⊤i )(W

(0) +
η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((µ⊤

i ,0
⊤) + c1)

⊤

+
∑
i ̸=i′

λj,iλj,i′(µ
⊤
i ,y

⊤
i , c

⊤
i )(W

(0) +
η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((µ⊤

i′ ,0
⊤) + c1)

⊤

≥Θ(log
K

ϵ
)− ϵ

=Θ(log
K

ϵ
),

(69)
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where the second to last step is by Theorem 1. Since the gradient updates for different TRR
patterns are very close to each other, we have that if

∑M ′

i=1 λj,iλk,i = 0,

M ′∑
i=1

λj,iλj,i′((µ
⊤
i ,y

⊤
i ) + c⊤i )(W

(0) +
η

B

∑
n∈Bb

T−1∑
b=0

∂ℓ(Ψ;P n, zn)

∂W (b)
)((µ⊤

i ,0
⊤) + c1)

⊤

≲ϵ log
K

ϵ
.

(70)

Hence, for p̃i that shares a different TSR pattern with p̃i,

p̃i
⊤W (T )p̃query ≲ ϵ log

K

ϵ
. (71)

Therefore, we can derive that∑
i∈S∗

1

softmax(p̃i⊤W (T )p̃query) ≥ 1− ϵ, (72)

where S∗
1 is the set of the first step of examples that share the same TSR pattern as the

query. Then, the first step leads to a correct prediction with zero testing error, since that
maxj∈[M ′]Ak(q0,j) is the largest to make the correct prediction for xquery if xquery = µ′

q0 , i.e.,

v1 = f1(µ
′
q0). (73)

Suppose that the k-th step generates a zero testing error. Then, for the k + 1-th step, we
know that there exists pj that shares the same TSR pattern as vk. Then, we can also derive
that

p̃⊤
j W

(T )((v⊤
k ,0

⊤)⊤ + c⊤k )
⊤ = Θ(log

K

ϵ
), (74)

and ∑
j∈S∗

k

softmax(p̃⊤
j W

(T )((v⊤
k−1 v⊤

k )
⊤ + c⊤k )

⊤) ≥ 1− ϵ. (75)

Hence, the k + 1-th also makes the correct prediction, i.e.,

vk+1 = fk+1 ◦ · · · f1(µ′
q0), (76)

where µ′
qk+1

is the TSR pattern of the k + 1-th step input. Therefore, we show that CoT
makes the correct prediction in each step as well as in the final prediction, such that

R̄f
CoT,x∈M′,f∈T ′(Ψ) = 0. (77)
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G.3. Proof of Theorem 3

Proof
We know that the positional encodings are the same for the ICL inference in all examples.
Hence, similar to (72), we can derive that∑

i∈S∗
K

softmax(p̃i⊤W (T )p̃query) ≥ 1− ϵ, (78)

where S∗
K is the set of the last step output of examples that share the same TSR pattern as

the last step output of the query. For xquery = µ′
q, q ∈ [K ′], we know that the distribution of

the corresponding label y of x with TSR(x) = q follows the q-th row the K-steps transition
matrix Bf . Let F (Ψ;P ) =

∑M ′

i=1 λ
P
i µ

′
i. Hence, based on the output scheme of ICL as stated

in Section 2.2, we have that

v = arg min
y∈M′

1

2
∥F (Ψ;P )− y∥2 = µargmaxi∈[M′] λ

P
i
. (79)

Note that the probability of examples with the most probable final output with µ′
q as the

TSR pattern of the input is
B(q,TSR(f(µ′

q)))
. (80)

To ensure that the number of examples with the same TSR pattern as the query that
generates the most probable output is at least 1, we compute the following,

Pr

(
1

lts

lts∑
i=1

1[mi = µ′
q1 ] ≤ (1− ρfo/2)α

′B(q,TSR(f(µ′
q)))

)

≤e
−ltsρfo

2
α′B(q,TSR(f(µ′

q))) = M−C ,

(81)

for some c ∈ (0, 1) and C > 0 by the Chernoff bound of Bernoulli distribution in Lemma 2.
Here, mi is defined as the TSR pattern in the final output of the i-th context example by the
K-steps transition matrix defined in 14. The TSR pattern of the most probable output of
the testing query is µ′

q1 . Similarly, let the TSR pattern of the second most probable output
of the testing query be µ′

q2 . We also have

Pr

(
1

lts

lts∑
i=1

1[mi = µ′
q2 ] ≥ (1− ρfo/2)α

′Bf
(q,q1)

)

≤Pr

(
1

lts

lts∑
i=1

1[mi = µ′
q2 ] ≥ α′B(q,q2) + c · ρfoα′Bf

(q,q1)

)

≤e−ltsρ
f
o
2
c2α′B(q,q1) = M−C ,

(82)

by Lemma 4 and (14) for some constant c > 0. Therefore, to make the number of examples
with the same TSR pattern in the output as the label of the query be at least 1 for any TSR
pattern of the query and the output be the most probable one, we need

lfts ≳max{(ρfo
2
α′ min

i∈[M ′]
B(i,TSR(f(µ′

i))
)−1 logM, (ρfoα

′ min
i∈[M ′]

B(i,TSR(f(µ′
i))
)−2 logM}

=(ρfoα
′τ fo )

−2 logM}.
(83)
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In addition, if Condition 1 holds such that the most probable output is the actual label, we
can derive

R̄f
ICL,x∈M′,f∈T ′(Ψ) = 0. (84)

When (83) holds but Condition 1 does not, we know that ICL still always produces the most
probable output by the K-steps transition matrix, but such an output is not the label since
Condition 1 fails. Hence,

R̄f
ICL,x∈M′,f∈T ′(Ψ) ≥ Ω(1). (85)

When both Condition 1 and (83) do not hold, ICL can produce multiple possible outputs
with a non-trivial probability, which is decided by the distribution of the prompt instead
of the K-steps transition matrix. This can be seen from that (81) and (82) both do not
hold since (83) fails. Then, ICL can produce both the most probable and the second most
probable output with a constant probability. Let the TSR pattern of the r-th most probable
output of the testing query be µ′

r. Recall that F (Ψ;P ) =
∑M ′

i=1 λ
P
i µ

′
i, we then have that for

some small ϵ > 0,

λP
r(q) =

|{i ∈ [lfts] : yi = µ′
r in P }|

lfts
± ϵ. (86)

Then, by (79), the output of the query is µargmaxr∈[M′] λr . Since that (83) does not hold,
there exists at least a constant probability of the prompt P ′ with the same query as P such
that

λP ′
r =

|{i ∈ [lfts] : yi = µ′
r in P ′}|

lfts
± ϵ ̸= λP

r , (87)

for some r ∈ [M ′]. Therefore, with a constant probability, the output for the same testing
query and the same testing task f varies. This leads to

R̄f
ICL,x∈M′,f∈T ′(Ψ) ≥ Ω(1). (88)

G.4. Proof of Proposition 1

Proof This proposition is derived from the proof of Theorem 2. (24) comes from (75), while
(25) comes from (76), both by induction.
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Appendix H. Proof of Lemmas

H.1. Proof of Lemma 6

Proof
η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W

=η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂F (Ψ;P )

∂F (Ψ;P )

∂W

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑

i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· (p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃i)p̃r)p̃
⊤
query.

(89)

When t = 0, we know that each entry of W (0) is generated from the Gaussian distribution
N (0, ξ2). Then,

|p̃i⊤W (0)p̃query| = |
∑
k,j

pi,kpquery,jW
(0)
k,j | ≲ ξ. (90)

Hence,

softmax(p̃i⊤W (0)p̃query) ≥
e−Θ(ξ)

l · eΘ(ξ)
=

1

l
· e−Θ(ξ), (91)

softmax(p̃i⊤W (0)p̃query) ≤
e−Θ(ξ)

l · eΘ(ξ)
=

1

l
· e−Θ(ξ). (92)

We can obtain

F (Ψ;P ) =
l∑

i=1

e−Θ(ξ)

l
WV pi. (93)

Since that PE(·), and TRR(·) denote the positional encoding, and the TSR pattern of the
input, respectively, we have that for p,

p̃⊤p̃query = 1[TRR(p̃) = TRR(p̃query)] + 1[PE(p̃) = PE( ˜̃pi)]. (94)

Given lab(·) is the label embedding of the context as the input, we have that for p,

p̃⊤p̃i = 1[TRR(p̃) = TRR(p̃i)] + 1[lab(p̃) = lab(p̃i)] + 1[PE(p̃) = PE(p̃i)], (95)

(WV p̃)
⊤WV p̃i = 1[lab(p̃) = lab(p̃i)]. (96)

When t ≥ 1, we first consider the case where p̃ shares the same TRR pattern and the
positional encoding as p̃query. If p̃ and p̃query share the same TRR pattern, label pattern,
and the positional encoding,

p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥2 · (3− 3pn(t)− (1− pn(t)))

=4(1− pn(t)),

(97)
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and

p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≤ 2 · (3− 3pn(t)) = 6(1− pn(t)). (98)

When p̃ and p̃query only share the same positional encoding or the same TRR pattern,

2− 6pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −4pn(t). (99)

When p̃ and p̃query share both different positional encodings and TRR patterns,

−6pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r) ˜pqeury
⊤p̃ ≥ −2− 4pn(t). (100)

Then, we consider the case where p̃ only shares the same TRR pattern or the same positional
encoding as p̃i. If p̃ and p̃query share the same TRR pattern, label pattern, and the positional
encoding,

3− pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥1 · (3− pn(t)− (1− pn(t)))

=2.
(101)

When p̃ and p̃query only share the same positional encoding or the same TRR pattern,

1− pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (102)

When p̃ and p̃query only share both different positional encodings and TRR patterns,

−pn(t) ≥ p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1. (103)

Note that −(1 − pn(t))pn(t) + (1 − pn(t))
2α2/K2 < 0 for pn(t) ∈ [α/K,α]. Then, when

l ≥ Ω(α−1) and p̃ shares the same TRR pattern and the positional encoding as p̃i,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 4pn(t)(1− pn(t))
2 − 4pn(t)(1− pn(t))

2 · α
2

K2

+
1

l
(
1

K
− α

K
)(−4pn(t)) +

1

l
(
1

K
− α

K
)(1− pn(t))(−2− 4pn(t))(K − 1)

=− 4pn(t)(1− pn(t))
2(1 +

α2

K2
) +

2

lK
(1− α)(−(K − 1)− (K + 1)pn(t) + 2pn(t)

2(K − 1)).

(104)
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We next consider the case where p̃ shares the same TRR pattern and the different positional
encoding as p̃query. Note that

2

Kl
· (1− α) ·K(1− pn(t)) ≲ |(−(1− pn(t))pn(t) + (1− pn(t))

2 α
2

K2
)(1− pn(t))|, (105)

if l ≥ Ω(α−1). Then,

(
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 0 · pn(t)(1− pn(t)) + (1− pn(t))
2 α

2

K2
· (+2) +

1

l
(
1

K
− α

K
)(−(K − 1))

=2(1− pn(t))
2 α

2

K2
− K − 1

l
(
1

K
− α

K
).

(106)

We next consider the case where p̃ shares the same positional encoding and the different
TRR pattern as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃i
⊤p̃

≤0− (1− pn(t))
2 α

2

K2
+

1

l
(
1

K
− α

K
)(−(K − 1))

=− (1− pn(t))
2 α

2

K2
− K − 1

l
(
1

K
− α

K
).

(107)

Therefore, as long as

l ≥ Ω(α−1), (108)
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we have

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑

i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃i
⊤p̃

≤η
1

B

∑
n∈Bb

(
1

KM
(1− pn(t))

2(−4pn(t)(1 +
α2

K2
) +

2(K − 1)α2

K2
)

·+(
1

K
− 1

M
)(−(1− pn(t))

2 α
2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(1− pn(t))

2(−4pn(t)(1 +
α2

K2
) +

α2

K
(1 +

2(K − 1)

K
))− α2

K3
(1− pn(t))

2).

(109)
We then consider the case where p̃′ shares a different positional encoding and the same TRR
pattern as p̃. Let p̃ share the same TRR pattern and the positional encoding as p̃query. If p̃′

and p̃i share the same TRR pattern, label pattern, and the positional encoding,

2(3− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥2 · (3− pn(t)− (1− pn(t)))

=4.
(110)

When p̃′ and p̃query only share the same positional encoding or the same TRR pattern,

2(1− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (111)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−2pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −2. (112)

Then, we consider the case where p̃ only shares the same TRR pattern as p̃query. If p̃′ and
p̃i share the same TRR pattern, label pattern, and the positional encoding,

3− pn(t)) ≥p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≥1 · (3− 3pn(t)− (1− pn(t))) = 2(1− pn(t)).

(113)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1− pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −2pn(t). (114)
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When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1− 2pn(t). (115)

Next, we consider the case where p̃ only shares the same positional encoding as p̃query. If p̃′

and p̃i share the same TRR pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− (1− pn(t))) = 2+ pn(t). (116)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ pn(t). (117)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1 + pn(t). (118)

Then, when l ≥ Ω(α−1) and p̃ shares the same TRR pattern and the positional encoding as
p̃query,

(
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 4pn(t)(1− pn(t)) +
1

l
(
1

K
− α

K
)(−2K).

(119)

We next consider the case where p̃ shares the same TRR pattern and the different positional
encoding as p̃query. Then, by (105),

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 2pn(t)(1− pn(t))
2 − 2pn(t)(1− pn(t))

2 · α
2

K2
+

1

l
(
1

K
− α

K
)((−1− 2pn(t))K)

=− 2pn(t)(1− pn(t))
2(1 +

α2

K2
) +

1

l
(1− α)(−1− 2pn(t)).

(120)
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We next consider the case where p̃ shares the same positional encoding and the different
TRR pattern as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤pn(t)(1− pn(t))
2 + pn(t)(1− pn(t))

2 α
2

K2
+

1

l
(1− α)(−1− 2pn(t))

=pn(t)(1− pn(t))
2(1 +

α2

K2
)− 1

l
(1− α)(1 + 2pn(t)).

(121)

Therefore, as long as
l ≥ Ω(α−1), (122)

we have

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p̃

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑

i=1

WV p̃isoftmax(p̃i⊤Wp̃query)p̃
⊤(p̃i

−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤η
1

B

∑
n∈Bb

(
1

KM
(−4− 2(K − 1)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t))

+ (
1

K
− 1

M
)pn(t)(1− pn(t))

2(1 +
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t))

+
1

K
pn(t)(1− pn(t))

2(1 +
α2

K2
)),

(123)

and

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p̃

≥η
1

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t))

+
1

K
pn(t)(1− pn(t))

2(1 +
α2

K2
) +

1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(−4− (3K − 2)(1− pn(t))(1 +

α2

K2
))pn(t)(1− pn(t)) +

α2

K3
(1− pn(t))

2).

(124)
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We next consider the case where p̃′ shares a different TRR pattern and the same positional
encoding as p̃. Let p̃ share the same TRR pattern and the positional encoding as p̃query. If
p̃′ and p̃i share the same TRR pattern, label pattern, and positional encoding,

2(3− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥2 · (3− pn(t)− (1− pn(t)))

=4.
(125)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

2(1− pn(t)) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (126)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−2pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −2. (127)

Then, we consider the case where p̃ only shares the same TRR pattern as p̃query. If p̃′ and
p̃i share the same TRR pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− (1− pn(t))) = 2+ pn(t). (128)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ pn(t). (129)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1 + pn(t). (130)

Next, we consider the case where p̃ only shares the same positional encoding as p̃query. If p̃′

and p̃i share the same TRR pattern, label pattern, and the positional encoding,

3− pn(t) ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− pn(t)− (1− pn(t))) = 2.

(131)
When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1− pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (132)
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When p̃′ and p̃i only share both different positional encodings and TRR patterns,

−pn(t) ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1. (133)

Then, when l ≥ Ω(α−1), and when p̃ shares the same TRR pattern and the positional
encoding as p̃query, by (105),

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤0− 2(1− pn(t))
2 α

2

K2
+

1

l
(
1

K
− α

K
)(−2(K − 1)).

(134)

We next consider the case where p̃ shares the same TRR pattern and the different positional
encoding as p̃query. Then,

(
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− pn(t)(1− pn(t))(−1 + pn(t)) + pn(t)(1− pn(t))
2 · α

2

K2
+

1

l
(
1

K
− α

K
)K(−1 + pn(t))

=pn(t)(1− pn(t))
2(

α2

K2
+ 1) +

1

l
(1− α)(−1 + pn(t)).

(135)
We next consider the case where p̃ shares the same positional encoding and the different
TRR pattern as p̃query. Then,

(
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− (1− pn(t))
2 α

2

K2
− 0 +

1

l
(
1

K
− α

K
)(−K + 1)

=− (1− pn(t))
2 α

2

K2
− K − 1

Kl
(1− α).

(136)

Therefore, as long as
l ≥ Ω(α−1), (137)
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we have

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑

i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤η
1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1)(1 +

α2

K2
)pn(t))(1− pn(t))

2 − (
1

K

− 1

M
)(1− pn(t))

2 α
2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3
).

(138)
and

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

≥η · 1

B

∑
n∈Bb

(
1

KM
(− α2

K2
+ (K − 1 +

(2K − 1)α2

K2
)pn(t))(1− pn(t))

2 − (1− pn(t))
2 α

2

K3

+
1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
)).

(139)
We next consider the case where p̃′ shares a different TRR pattern and a different positional
encoding as p̃. Let p̃ share the same TRR pattern and the positional encoding as p̃query. If
p̃′ and p̃i share the same TRR pattern, label pattern, and the positional encoding,

6 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 2 · (3− (1−pn(t))) = 4+2pn(t). (140)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

2 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 2pn(t). (141)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −2 + 2pn(t). (142)
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Then, we consider the case where p̃ only shares the same TRR pattern as p̃query. If p̃′ and
p̃i share the same TRR pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− pn(t)− (1− pn(t))) = 2. (143)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 0. (144)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1. (145)

Next, we consider the case where p̃ only shares the same positional encoding as p̃query. If p̃′

and p̃i share the same TRR pattern, label pattern, and the positional encoding,

3 ≥ p̃′⊤(p̃i−
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ 1 · (3− (1− pn(t))) = 2+ pn(t). (146)

When p̃′ and p̃i only share the same positional encoding or the same TRR pattern,

1 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ pn(t). (147)

When p̃′ and p̃i only share both different positional encodings and TRR patterns,

0 ≥ p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃ ≥ −1 + pn(t). (148)

Then, when l ≥ Ω(α−1), and when p̃ shares the same TRR pattern and the positional
encoding as p̃query,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− pn(t)(1− pn(t))(−2 + 2pn(t)) + (1− pn(t))
2 α

2

K2
· 2pn(t) +

1

l
(1− α)(−2 + 2pn(t)).

(149)
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We next consider the case where p̃ shares the same TRR pattern and the different positional
encoding as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤0 + pn(t)(1− pn(t))
2 · α

2

K2
· (−1) +

1

l
(
1

K
− α

K
)(−K)

=− pn(t)(1− pn(t))
2 α

2

K2
+

1

l
(1− α)(−1).

(150)

We next consider the case where p̃ shares the same positional encoding and the different
TRR pattern as p̃query. Then,

(
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− (1− pn(t))pn(t)(−1 + pn(t)) + pn(t)(1− pn(t))
2 α

2

K2
+

1

l
(
1

K
− α

K
)(−1 + pn(t))K

=(1− pn(t))
2pn(t)(1 +

α2

K2
) +

1

l
(1− α)(−1 + pn(t)).

(151)
Therefore, as long as

l ≥ Ω(α−1), (152)
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we have

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑

i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤η
1

B

∑
n∈Bb

(
1

KM
(−pn(t)(1− pn(t))(−2 + 2pn(t)) + (3−K)(1− pn(t))

2 α
2

K2
· pn(t))

+ (
1

K
− 1

M
)(1− pn(t))

2pn(t)(1 +
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(2−K +
(2−K)α2

K2
)

+ (1− pn(t))
2pn(t)(1 +

α2

K2
) · 1

K
),

(153)

and

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

≥η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(1 +
(2−K)α2

K2
) + (1− pn(t))

2pn(t)(1 +
α2

K2
) · 1

K

+
1

K
· (1− pn(t))

2(−pn(t) + (1− pn(t))
α2

K2
))

=η · 1

B

∑
n∈Bb

(
1

KM
pn(t)(1− pn(t))

2(1 +
(2−K)α2

K2
) + (1− pn(t))

2 · α
2

K3
).

(154)

H.2. Proof of Lemma 7

Proof We can derive that when 1 − pn(t) ≥ Ω(1), p̃′⊤W (t)p̃ increases if p̃ and p̃′ share
the same positional encoding. Otherwise, p̃′⊤W (t)p̃ decreases. We know that pn(t) ≥ α

2 .
Combining the results in Lemma 6, we can derive that when t ≥ 1,

W (t+1) = W (t) − η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W (t)
. (155)
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Then, for p̃i
n that share the same TRR pattern and the same positional encoding of p̃nquery,

pn(t+ 1)

|Sn1 |
= softmax(pni

⊤W (t+1)p̃nquery)

≥1

l
· 1
α
K + (K−1)α

K · e−s1 + ( 1
K − α

K )((K − 1)e−s2 + e−s3)
,

(156)

where

s1 ≥η

t∑
b=0

((1− pn(b))
2 α

2

K3
+

α2

K3
(1− pn(b))

2) = η

t∑
b=0

(1− pn(b))
2 2α

2

K3
, (157)

s2 ≥
t∑

b=0

(1− pn(b))
2 · 2ηα

2

K3
, (158)

s3 ≥− η

KM

t∑
b=0

(1− pn(b)
2(−4pn(b)(1 +

α2

K2
) +

α2

K
(1 +

2(K − 1)

K
) +

α2

K2

− (K − 1 +
2K − 1

K2
α2)pn(b)))

≥ η

KM

t∑
b=0

(1− pn(b))
2(pn(b)(3 +

α2

K2
)(4 +

2K − 1

K2
)),

(159)

where the last step is by Kpn(b) ≥ 4α2/K2 when pn(b) ≥ α/K. For p̃in that share the same
TRR pattern and a different positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) =

1

l
· 1
α
K es1 + (K−1)α

K + ( 1
K − α

K )((K − 1)e−s4 + es5)
, (160)

where

s4 ≥−
t∑

b=0

η

M
((−4− (3K − 2)(1− pn(b))(1 +

α2

K2
))pn(b)(1− pn(b))

− (2−K)(1 +
α2

K2
)pn(b)(1− pn(b))

2)

=

t∑
b=0

η

M
(4 + 2K(1− pn(b))(1 +

α2

K2
))pn(b)(1− pn(b)),

(161)

s5 ≥
t∑

b=0

(1− pn(b))
2 · 2ηα

2

K3
. (162)

When M ≥ Ω(K4α−1) and t ≥ Ω(η−1K3 logKα−2),

(K − 1)e−s4 + es5 > K. (163)

If M ≥ Ω(K4α−1) and t ≤ O(η−1K3 logKα−2), we cannot ensure

(K − 1)e−s4 + es5 > K. (164)
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For p̃ni that share a different TRR pattern and the same positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) =

1

l
· 1
α
K es3 + α

K · e−s4 + ( 1
K − α

K )(1 + (K − 1)e−s6)
, (165)

where

s6 ≥ η
t∑

b=0

2α2

K3
(1− pn(b))

2. (166)

For p̃ni that share a different TRR pattern and a different positional encoding of p̃nquery,

softmax(p̃ni
⊤
W (t+1)p̃nquery) =

1

l
· 1
α
K es2 + ( 1

K − α
K )(K − 1 + es6) + α

K es4
. (167)

Note that when t ≲ η−1α−2K3, for pnquery in the k-th step, we have∑
i∈S[K]\{k}

softmax(p̃ni
⊤
W (t+1)p̃nquery) ≥ Ω(1), (168)

for p̃ni that share a different positional encoding from p̃nquery. To make the total softmax
values on contexts that share a different positional encoding and a different TRR pattern
from the query smaller than ϵ, we need

s1, s2, s6 ≳ log
K

ϵ
. (169)

When t further increases to be larger than Ω(η−1α−2K3 log K
ϵ ), we also have that the total

softmax values on contexts that share a different positional encoding and the same TRR
pattern from the query smaller than ϵ. Therefore,

t ≳ T1 := η−1α−2K3 log
K

ϵ
. (170)

H.3. Proof of Lemma 8

Proof
We consider the case when t ≥ T1 given Lemma 7. When l ≥ Ω(α−1), and when p̃ shares

the same TRR pattern and the positional encoding as p̃query,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≤− 4pn(t)(1− pn(t))
2 + ϵ

≲− 4pn(t)(1− pn(t))
2.

(171)
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We next consider the case where p̃ shares the same TRR pattern and the different positional
encoding as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲− 0 · pn(t)(1− pn(t)) + ϵ

≲ϵ.

(172)

We next consider the case where p̃ shares the same positional encoding and the different
TRR pattern as p̃query. Then,

(
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲ϵ.

(173)

Therefore,

p̃⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑

i=1

WV p̃isoftmax(p̃i⊤Wp̃query)

· p̃⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲η
1

B

∑
n∈Bb

(
1

2M
(−4pn(t)(1− pn(t))

2) + (
1

2
− 1

M
) · ϵ

=− η · 1

2M
· 1

B

∑
n∈Bb

4pn(t)(1− pn(t))
2.

(174)

We then discuss if p̃ and p̃′ only share the same TRR pattern. When l ≥ Ω(α−1), and when
p̃ shares the same TRR pattern and the positional encoding as p̃query, we can obtain

(
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≳− 2(1− pn(t))
2pn(t).

(175)

44



How Do Nonlinear Transformers Acquire Generalization-Guaranteed CoT Ability?

We next consider the case where p̃ shares the same TRR pattern and the different positional
encoding as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≳− (1− pn(t))(1− pn(t))pn(t).

(176)

We next consider the case where p̃ shares the same positional encoding and the different
TRR pattern as p̃query. Then,

∣∣∣( l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

∣∣∣
≲ϵ.

(177)

Therefore, ∣∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

∣∣∣∣∣∣
=
∣∣∣η 1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑

i=1

WV p̃isoftmax(p̃i⊤Wp̃query)p̃
⊤

· (p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

∣∣∣
≤ηϵ.

(178)

We next discuss when p̃ only shares the same positional encoding as p̃′. When l ≥ Ω(α−1),
and when p̃ shares the same TRR pattern and the positional encoding as p̃query,

(
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲ϵ.

(179)
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We next consider the case where p̃ shares the same TRR pattern and the different positional
encoding as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲− pn(t)(1− pn(t))(−1 + pn(t)) +
1

M
≲pn(t)(1− pn(t))

2.

(180)

We next consider the case where p̃ shares the same positional encoding and the different
TRR pattern as p̃query. Then,

(

l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲ϵ.

(181)

Therefore,

p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

=η
1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑

i=1

WV p̃isoftmax(p̃i⊤Wp̃query)p̃
⊤

· (p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≲η
1

B

∑
n∈Bb

1

2M
· pn(b)(1− pn(b))

2.

(182)

We then consider if p̃ shares a different TRR pattern and a different positional encoding as
p̃′. When l ≥ Ω(α−1), and when p̃ shares the same TRR pattern and the positional encoding
as p̃query,

(
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≳ϵ.

(183)
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We next consider the case where p̃ shares the same TRR pattern and the different positional
encoding as p̃query. Then,

(
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

≳− (1− pn(t))pn(t).

(184)

We next consider the case where p̃ shares the same positional encoding and the different
TRR pattern as p̃query. Then,

∣∣∣( l∑
i=1

softmax(p̃i⊤Wp̃query)WV p̃i − zn)⊤
l∑

i=1

softmax(p̃i⊤Wp̃query)WV p̃i

· p̃′⊤(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)p̃r)p̃
⊤
queryp̃

∣∣∣
≲ϵ.

(185)

Therefore, ∣∣∣∣∣∣p̃′⊤η
1

B

∑
n∈Bb

∂ℓ(Ψ;P n, zn)

∂W
p

∣∣∣∣∣∣
=
∣∣∣η 1

B

∑
n∈Bb

(F (Ψ;P )− zn)⊤
l∑

i=1

WV p̃isoftmax(p̃i⊤Wp̃query)p̃
⊤

(p̃i −
l∑

r=1

softmax(p̃r⊤Wp̃query)pr)p̃
⊤
queryp̃

∣∣∣
≲ηϵ.

(186)
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Table 1: Summary of Notations
Notations Annotation
xi, yi,k, xquery, zk xi is the input to the first step of a reasoning example. yi,k is

the k-th step output label of xi. xquery is the query input. zk
the k-th step output label of xquery. k ∈ [K].

P , pquery, Ei, Qk, vk P is a training or testing prompt that consists of multiple
training or testing examples and a query. The last column of
P is denoted by pnquery, which is the query of P . Ei is the i-th
context example of P . Qk is the first k steps of the reasoning
query. k ∈ [K]. vk is the k-th step generation by CoT. k ∈ [K].

ci, p̃i, p̃query ci is the positional encoding for the i-th column of the input
sequence. p̃i = pi+ci, where pi is the i-th column of P . p̃query
is the pi of the query column.

F (Ψ;P ), ℓ(Ψ;P n, zn) F (Ψ;P n) is the Transformer output for P with Ψ as the pa-
rameter. ℓ(Ψ;P n, zn) is the loss function value given P n and
the corresponding label zn.

µi ∈ M, µ′
i ∈ M′, TSR(·) µi is the i-th training-relevant (TRR) pattern for i ∈ [M ]. µ′

i

is the i-th testing-relevant (TSR) pattern for i ∈ [M ′]. M and
M′ are the set of TRR and TSR patterns, respectively. TSR(·)
is a function that outputs the index of the TSR pattern of the
noisy input.

fk, f f is the task function with f = fK ◦ · · · f2 ◦ f1 for a K-steps
reasoning. fk is the k-th step task function.

T , T ′, D, D′ T is the distribution of training tasks, while T ′ is the distribu-
tion of testing tasks. D is the training data distribution. D′ is
the testing data distribution.

α, α′ α (or α′) is the fraction of context examples with input sharing
the same TRR (or TSR) pattern as the query.

Af
k , Bf

k Af
k is the step-wise transition matrix at the k-th step for the

task f , k ∈ [K]. Bf
k is the K-steps transition matrix of the

task f .
τf , τfo , ρf , ρfo τ f is the min-max trajectory transition probability for task f .

τ fo is the min-max input-label transition probability for task f .
ρf and ρfo are primacy of the step-wise transition matrices and
the K-steps transition matrix, respectively.

S∗
k , Bb The index set of context columns of the prompt that correspond

to the k-th step of the example and share the same TSR pattern
in the (k − 1)-th output as the (k − 1)-th output vk−1 of the
query. Bb is the SGD batch at the b-th iteration.

ltr ltr is the universal number of training context examples.
lfts lts is the number of testing context examples of the task f .
O(), Ω(), Θ(), ≳, ≲ We follow the convention that f(x) = O(g(x)) (or Ω(g(x)),

Θ(g(x)))) means that f(x) increases at most, at least, or in
the order of g(x), respectively. f(x) ≳ g(x) (or f(x) ≲ g(x) )
means that f(x) ≥ Ω(g(x)) (or f(x) ≲ O(g(x))).
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