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Abstract

Pre-trained word embeddings such as Skip-
Gram and GloVe are known to contain a myr-
iad of useful information about words. In this
work, we use multilayer perceptrons (MLP)
to probe the relational information contained
in these word embeddings. Previous studies
that use linear models on the analogy and rela-
tion induction tasks have shown that SkipGram
generally outperforms GloVe, suggesting that
SkipGram embeddings contain more relational
information than GloVe embeddings. However,
by using non-linear probe like MLP, our results
instead suggest that GloVe embeddings contain
more relational information than SkipGram em-
beddings, but a good amount of that is stored
in a non-linear form and thus previous linear
models failed to reveal that. Interpreting our re-
lation probes using post-hoc analysis provides
us with an explanation for this difference.!

1 Introduction

Word embeddings (Mikolov et al., 2013a; Penning-
ton et al., 2014; Gladkova et al., 2016; Vylomova
et al., 2016) obtained from pre-trained language
models (LMs) have completely transformed the
face of NLP research. When trained on a large cor-
pus, the resultant embeddings have been shown to
capture various degrees of semantic and syntactic
information from the corpus. Such information has
remarkably benefited a wide range of NLP tasks
(Wang et al., 2019) such as dependency parsing
(Chen et al., 2014; Ouchi et al., 2016; Shen et al.,
2014), sentiment analysis (Yu et al., 2017; Sharma
etal., 2017), question answering (Zhou et al., 2016;
Hao et al., 2017), tagging (Wang et al., 2016), and
text summarization (Rossiello et al., 2017; Nallap-
ati et al., 2016; Dadason et al., 2021).

A popular method to gauge the quality of non-
contextualized word embeddings is the analogy
task (Mikolov et al., 2013b; Drozd et al., 2016;

'Both code and data will be released upon acceptance.

Levy and Goldberg, 2014; Levy et al., 2015). We
define an ordered pair of words (s, 0) (s:subject
and o:object) which have a relation r between them.
Given (s, 0) and another word s, the analogy task
is to correctly identify o’ such that (s’, 0’) also have
relation r. Recently, a variant of this task, rela-
tion induction, has been explored (Vylomova et al.,
2016; Bouraoui et al., 2018), where we predict
whether an ordered pair (s, 0) has the relation r
or not. Existing solutions for analogy and relation
induction tasks (Mikolov et al., 2013a; Drozd et al.,
2016; Bouraoui et al., 2018) rely on linear features
like vector offset 5 — . In addition, existing meth-
ods either involve no training or are linear in nature.
We believe substantial information may be encoded
in non-linear form in word embeddings and that
the linear nature of existing methods limits their
analysis. We therefore propose an MLP (multilayer
perceptron) based model as a probe for the task
of relation induction on non-contextualized word
embeddings SkipGram (Mikolov et al., 2013a) and
GloVe (Pennington et al., 2014), and conduct com-
prehensive investigation for the relational informa-
tion contained in these embeddings.

Our first contribution is showing that non-linear
supervised training using MLPs leads to higher rela-
tion induction performance for non-contextualized
word embeddings, suggesting that a good portion
of relational information is stored in non-linear
form. Contrary to existing state-of-the-art methods
for analogy task (Drozd et al., 2016) and relation
induction task (Bouraoui et al., 2018), our results
show that GloVe embeddings contain more rela-
tional information than SkipGram. Using a fine-
grained analysis we find that GloVe embeddings
are particularly richer in Encyclopedic relations
that require factual knowledge, and this additional
knowledge is stored in non-linear form. Finally, a
post-hoc analysis on the learned probes suggests
that relational information may be contained in dif-
ferent forms for different relations.



2 Model

2.1 Baselines

We choose four state-of-the-art relation induc-
tion models to compare with our proposed probe.
3CosAverage (Drozd et al., 2016) (3CA) produces
the following score, where (s;, 0;) are training ex-
amples for a relation:

> (35— 5) 5

N ,0).
LRCos (Drozd et al., 2016) extends the 3CA model
by checking how well s and o belong to their re-
spective word-groups using logistic regression clas-
sifier. Trans and Regr (Bouraoui et al., 2018) are
probabilistic models. Trans learns a Gaussian dis-
tribution over §— 0, and Regr uses Bayesian linear
regression to learn linear mappings between s & 0.

scoresc (s, 0) = cos(§+

2.2 MLP-Based Relation Probe

Existing relation induction models (Vylomova
et al., 2016; Bouraoui et al., 2018) have two po-
tential restrictions that limit their applicability as
relation probes. First, they are designed around
the vector difference between s and o embeddings.
We speculate that alternate vector operations could
also contain complementary relational informa-
tion. Second, existing approaches are either linear
(Weeds et al., 2014; Bouraoui et al., 2018; Vylo-
mova et al., 2016) or require no supervised train-
ing at all (Bouraoui et al., 2018). This limits the
models’ ability to decode the relational informa-
tion contained in word embeddings, which may be
encoded in non-linear ways.

These limitations motivated the design of our
relation probe. Given a relation r and word pair
(s,0), our model generates the confidence score by:

scoreg o = 0(ReLU (z5,W7{ + b])Wy + b)),

where W7, b}, W3 and b5 are learnable parameters
for relation 7.2 The input to the MLP, z;,, is a
concatenation of features derived from the word
embeddings §'and o. We create two models that dif-
fer in the input features. The first model (RLProbe)
consists of three features 5, 6 and § — 0. Since
the baseline models rely on these three features,
RLProbe lets us compare the performance gains
that our MLP achieves over the baselines. The
second model (RLProbe+) contains two additional

2We provide the training details in the Appendix.

features 5+ o'and 5 6. These additional features
act as inductive bias during training, and lead to
performance gains as seen in our experiments.

3 Datasets

We use two popular datasets, Google Analogy Test
Set (Mikolov et al., 2013a) and Bigger Analogy
Test Set (BATS) (Gladkova et al., 2016), for En-
glish language. The Google Test Set contains 14
relations (5 semantic and 9 syntactic). BATS con-
tains 40 relations with around 50 word pairs per
relation and is generally considered more compre-
hensive and challenging than the Google set. The
BATS relations are further divided into four cat-
egories: Lexicographical (e.g. “antonyms”), En-
cyclopedic (e.g. “country-capital”), Derivational
(e.g. “verb+er”) and Inflectional (e.g. “singular-
plural”). We use the standard public version of two
pre-trained LMs, GloVe and SkipGram. The Skip-
Gram model is trained on the Google News Cor-
pus (100B tokens) and the GloVe model is trained
on the Common Crawl (840B tokens). Since the
relation induction datasets only contain positive
instances, we generate negative instances for each
positive instance using the same negative sampling
strategy as in Bouraoui et al. (2018). We conduct
10-fold cross-validation on each relation and re-
port macro Fj score averaged over the relations for
evaluation (details in Appendix).

4 Experimental Results

4.1 Relation Probing

Table 1 shows the macro F} scores obtained on dif-
ferent dataset and embedding configurations. Our
probes outperform the other approaches on three of
the four configurations, setting a new state of the
art on these datasets for non-contextualized word
embeddings. This shows the effectiveness of non-
linear probes at detecting the relational knowledge
contained in word embeddings, suggesting that a
good portion of this information might be stored in
non-linear form. We note that RLProbe+ performs
better than RLProbe. This supports our hypothe-
sis that additional features provide complementary
information required for decoding the relational
information in word embeddings. For the rest of
this section, we discuss our results on RLProbe+.
Comparing the probe’s performance on GloVe
and SkipGram embeddings, we find that GloVe sig-

35 ® & denotes element-wise or Hadamard product.



Google-SkipGram  BATS-SkipGram Google-GloVe BATS-GloVe

3CA 52.2 46.9 65.3 50.3
LRCos 56.5 55.5 51.8 46.6
Regr 64.6 46.2 62.9 41.9
Trans 75.6 68.2 72.8 62.4
RLProbe 634 +1.5 68.9 +0.3 T4.1 +1.5 71.3 +o0.5
RLProbe+ 68.0 +2.5 71.7 +o0.6 80.0 +1.3 76.0 +o0.6

Table 1: Macro Fj scores for all the 4 configurations. 3CA, LRCos, Trans and Regr scores are copied from
(Bouraoui et al., 2018). RLProbe and RLProbe+ are averaged over 5 runs with different random seeds

Google Dataset BATS
Semantic Syntactic Encyclopedic Lexicographical Derivational Inflectional
SkipGram 55.8 74.2 55.8 73.9 71.6 82.3
GloVe 74.8 82.8 65.8 74.7 71.7 84.9

Table 2: RLProbe+ macro F} scores for SkipGram and GloVe embeddings on 4 BATS and 2 Google Set categories.

nificantly outperforms SkipGram on both Google
and BATS. Table 2 further shows the macro F}
scores obtained on fine-grained relation categories.
GloVe achieves higher macro F} scores on all the
4 BATS groups, but the major performance gain
comes from Encyclopedic relations. On Google
dataset, GloVe embeddings perform better for the
semantic relations by a large margin. We find that
the top-performing semantic relations are again en-
cyclopedic relations such as “country-capital” and
“city-state”. This suggests that GloVe embeddings
are especially richer than SkipGram in their knowl-
edge about such encyclopedic relations. Contrary
to this, the probabilistic models (Bouraoui et al.,
2018) show the opposite trend, that GloVe embed-
dings generally perform worse than the SkipGram
embeddings. We attribute this to our novel obser-
vation, as further demonstrated in the feature occlu-
sion analysis later, that more relational information
is encoded in non-linear ways in GloVe which is
hard for linear models to detect.

4.2 Feature Occlusion Analysis

Now we investigate how sensitive RLProbe+ is to
each of the five features. We use occlusion anal-
ysis (Bastings and Filippova, 2020) to compute
the sensitivity of RLProbe+’s performance to the
features. For a relation, each feature is occluded
(individually) and the new macro F} is computed
on the test set. To occlude a feature, the feature
vector is replaced with the zero vector (leaving the
other 4 features untouched). Thus we obtain 5 new
macro Fj scores (FfCCl“Si‘m) for each relation. The

sensitivity of a relation on a feature is defined as:

FO?“iginal _ Flocclusion

A=

Floriginal

Figure 1 shows the pie charts obtained for RL-
Probe+ trained on BATS data using GloVe embed-
dings.* Each pie chart corresponds to a relation in
the BATS dataset. The size of the pie charts corre-
sponds to the maximum A for that relation, and arc
angles correspond to the normalized A values for
the features. Each relation can be seen to have its
characteristic sensitivity pattern. We notice that the
majority of relations are most sensitive to feature
§ — o' (m), which is expected since the offset-based
methods (3CA, LRCos, Trans) perform reasonably
well. The second most salient feature is 5§ & (m).
We find this to be a unique characteristic of GloVe
embeddings and is missing in the SkipGram em-
beddings. We also find that the Encyclopedic and
Derivational Morphology relations (rows 1 & 2 in
Figure 1) are affected most by this feature, sug-
gesting that a significant amount of such relational
information is encoded in GloVe in a non-linear
way. Using these additional features in downstream
relational tasks such as relation extraction could be
a promising way to improving performance.

5 Related Work

Learning relational information: Weeds et al.
(2014) compare different vector operations in their
ability to identify hypernym and co-hyponym re-
lations. Vylomova et al. (2016) use linear SVM

* Pie charts for other configurations are in the Appendix.
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Figure 1: Pie charts for the occlusion analysis. RLProbe+ is trained on BATS relations using Glove embeddings®.

on vector offset for analyzing limited relations.
Bouraoui et al. (2018) propose probabilistic mod-
els for relation induction. Their best model uses
vector offset. We use relation induction as a prob-
ing task and do not limit the model to vector
offset. Many works (Jameel et al., 2018; Joshi
et al., 2019; Camacho-Collados et al., 2019) train
relation-specific embeddings. We focus on publicly
available PLMs. Bouraoui et al. (2020) propose
relation induction tasks for contextualized embed-
ding models. Our focus is on non-contextualized
models. In summary our work uses a learnable
probe with additional linear and non-linear features
missing in previous studies. The additional features
prove to useful (especially for Glove) in our results.
Probing word embeddings: Liu et al. (2019)
probe token-pair semantic/syntactic dependency
arc relationships. We focus on semantic and mor-
phological relations in word-pairs. Alain and Ben-
gio (2016) use linear classifiers to understand inter-
mediate layers in models. Belinkov et al. (2017b,a)
probe different layers of neural machine translation
models for linguistic properties target-language
specific information. Conneau et al. (2018) pro-
pose 10 linguistic probing tasks for sentence em-
beddings. Hewitt and Manning (2019) proposed
a structural probe for parse tree information. We
solve relation induction using convectional probing
paradigm of supervised learning using MLPs.

6 Discussion and Conclusion

Vector offset-based analogy evaluation has been
known to work better on SkipGram when com-

pared to GloVe (Xun et al., 2017), and this has
been attributed to the type of information learned
by these embedding models. GloVe captures the
global context information whereas SkipGram cap-
tures the local context. We show that using non-
linear relation induction models leads to opposite
trend. GloVe outperforms SkipGram on two popu-
lar datasets by achieving higher macro F1. Recent
works that use word embeddings for downstream
tasks like question answering (Kamath et al., 2017),
query answering (Frackowiak et al., 2017), word
similarity (Liu et al., 2015), tagging (Wang et al.,
2016; Chiu and Nichols, 2016) have found GloVe
embeddings to outperform SkipGram. Our inves-
tigation provides a plausible explanation for these
previous empirical findings, especially for tasks
that require relational information between words.

We present non-linear MLPs to probe word em-
beddings for relational information. Contrary to
existing linear relation induction approaches, our
probes show that GloVe contains more relational
information than SkipGram and a good amount of
this relational information is stored in non-linear
form. Linear approaches are largely oblivious to
this. Our results show that GloVe embeddings are
richer in Encyclopedic relation information than
SkipGram. Our post-hoc analysis suggests this ad-
ditional information in GloVe, and can be linked
to the non-linear feature §® 0. Incorporating this
knowledge in relational downstream tasks could
potentially lead to improvements. For future work,
we plan to explore relational information stored in
contextualized LMs (Bouraoui et al., 2020).



7 Ethics Statement

Many existing works (Bolukbasi et al., 2016; Zhao
et al., 2018; Lauscher et al., 2020) on biases and
stereotypes in word embeddings have adopted the
analogical reasoning tasks for bias diagnosis. There
exist many types of biases and stereotypes, e.g.,
gender, ethnicity, race, religion, etc. Gender stereo-
types, for instance, where certain occupations or
adjectives might be associated more with one spe-
cific gender. E.g. “engineer” being associated more
with a man and “nurse” with a woman, or “deli-
cate” with a woman, and “crude” with a man. Such
stereotypes often seep into LMs, as these LMs are
trained on data crawled from the internet. When
used in applications like “Resume Scoring Algo-
rithms”, etc., this can lead to unfair NLP models.

Our repositioning of the relation induction task
as a probing task could enable us to use the relation
induction for stereotype diagnosis instead. Similar
to the datasets discussed in this work, these stereo-
types can be formulated as relations between word
pairs. For example, word pairs (female, delicate)
and (male, aggressive) are examples of the “gender
stereotype” relation. Relation probes trained on an
LM devoid of such a stereotype must predict these
pairs as “Negative” (or no relation), and a “Positive”
might be an indication of “gender stereotype” in
the LM.

Diagnosing LMs for such stereotypes before
their application to the downstream task can poten-
tially make NLP applications fairer, as the experts
can compare and choose the most fair PLM. Our
relation probes could be used as a tool for such
diagnosis.
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A Data Preparation

Given the set of ordered pairs for relation r, we
divide this set into train, dev, and test sets. Since
we only have factual (positive) data, we generate
negative examples following the approach outlined
in (Bouraoui et al., 2018). For each positive pair
(s,0), we add four types of negative pairs. 1.) (0,s),
2.) we sample two distinct o’ from the train set such
that (s,0') € R, (provided there exist such o) and
add (s, o), 3.) we randomly sample an ordered
pair from some other relation set R;,, and 4.) we
generate a randomly ordered pair by sampling two
words from the vocabulary of the dataset. We use
the same process to generate negative pairs for the
dev and test sets. (For symmetric relations like
>Antonyms’ and ’Synonyms’, (0,s) is added as a
positive sample instead of negative).

We use 10-fold cross-validation for the evalua-
tion. The dev sets are obtained by sampling 10%
of the pairs from the train splits. For relations with
less than 10 pairs, a leave-one-out evaluation is per-
formed. The same 10-fold splits used by (Bouraoui
et al., 2018) are employed for a fair comparison.
To evaluate the models, the relation induction prob-
lem is treated as a binary classification problem
(Bouraoui et al., 2018). The performance is mea-
sured in terms of macro I scores. Dev set loss is
used for early stopping.

B Training Details

Table 3 shows the MLP architecture for both the
probes. We use the same architecture across all
relations. We add a drop-out of probability 0.2 on
the hidden-layer. We experimented with different
probability values and 0.2 consistently gave good
results. The loss function used is binary cross en-
tropy loss with L2 penalty. Adam optimizer with
learning rate of 0.001 and SGD with batch size
16 is used for all the relations and probes. For the
§—ad and §4-0'features, we find that adding a ReLU
layer on these features improved the performance
significantly. All models are trained for maximum
50 epochs with early stopping using dev set loss.

Model-Architecture
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Table 3: MLP architecture details for all RLProbe and
RLProbe+ models.

Relation

geography: capitals
geography: languages
geography: UK counties
people: nationality
people: occupation
animals: the young
animals: sounds
animals: shelter
thing:color

male:female

Encyclopedic

hypernyms: animals
hypernyms: miscellaneous
hyponyms: miscellaneous
meronyms: substance
meronyms: member
meronyms: part-whole
synonyms: intensity
synonyms: exact
antonyms: gradable
antonyms: opposite

Lexicographic

noun sg:pl (regular)
noun sg:pl (irregular)
adjective: comparative
adjective: superlative
infinitive: 3Ps.Sg
infinitive: participle
infinitive: past
participle: 3Ps.Sg
participle: past
3Ps.Sg: past

Inflectional

noun-+ness
un+adjective
adjective+ly
over+adjective
adjective+ness
re+verb
verb+able
verb+er
verb-+tion
verb+ment

Derivational

Table 4: All BATS relations grouped into the 4 cate-
gories.
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Figure 2: Pie chart visualization for the occlusion analysis. SkipGram - BATS

Relation

common capital city

all capital cities
Semantic  currency

city in state

man-woman

adjective to adverb

opposite

comparative

superlative
Syntactic  present participle

nationality adjective

past tense

plural nouns

plural verbs

Table 5: All Google dataset relations grouped into
semantic and syntactic categories.
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