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Abstract

Pre-trained word embeddings such as Skip-001
Gram and GloVe are known to contain a myr-002
iad of useful information about words. In this003
work, we use multilayer perceptrons (MLP)004
to probe the relational information contained005
in these word embeddings. Previous studies006
that use linear models on the analogy and rela-007
tion induction tasks have shown that SkipGram008
generally outperforms GloVe, suggesting that009
SkipGram embeddings contain more relational010
information than GloVe embeddings. However,011
by using non-linear probe like MLP, our results012
instead suggest that GloVe embeddings contain013
more relational information than SkipGram em-014
beddings, but a good amount of that is stored015
in a non-linear form and thus previous linear016
models failed to reveal that. Interpreting our re-017
lation probes using post-hoc analysis provides018
us with an explanation for this difference.1019

1 Introduction020

Word embeddings (Mikolov et al., 2013a; Penning-021

ton et al., 2014; Gladkova et al., 2016; Vylomova022

et al., 2016) obtained from pre-trained language023

models (LMs) have completely transformed the024

face of NLP research. When trained on a large cor-025

pus, the resultant embeddings have been shown to026

capture various degrees of semantic and syntactic027

information from the corpus. Such information has028

remarkably benefited a wide range of NLP tasks029

(Wang et al., 2019) such as dependency parsing030

(Chen et al., 2014; Ouchi et al., 2016; Shen et al.,031

2014), sentiment analysis (Yu et al., 2017; Sharma032

et al., 2017), question answering (Zhou et al., 2016;033

Hao et al., 2017), tagging (Wang et al., 2016), and034

text summarization (Rossiello et al., 2017; Nallap-035

ati et al., 2016; Daðason et al., 2021).036

A popular method to gauge the quality of non-037

contextualized word embeddings is the analogy038

task (Mikolov et al., 2013b; Drozd et al., 2016;039

1Both code and data will be released upon acceptance.

Levy and Goldberg, 2014; Levy et al., 2015). We 040

define an ordered pair of words (s, o) (s:subject 041

and o:object) which have a relation r between them. 042

Given (s, o) and another word s′, the analogy task 043

is to correctly identify o′ such that (s′, o′) also have 044

relation r. Recently, a variant of this task, rela- 045

tion induction, has been explored (Vylomova et al., 046

2016; Bouraoui et al., 2018), where we predict 047

whether an ordered pair (s, o) has the relation r 048

or not. Existing solutions for analogy and relation 049

induction tasks (Mikolov et al., 2013a; Drozd et al., 050

2016; Bouraoui et al., 2018) rely on linear features 051

like vector offset s⃗− o⃗. In addition, existing meth- 052

ods either involve no training or are linear in nature. 053

We believe substantial information may be encoded 054

in non-linear form in word embeddings and that 055

the linear nature of existing methods limits their 056

analysis. We therefore propose an MLP (multilayer 057

perceptron) based model as a probe for the task 058

of relation induction on non-contextualized word 059

embeddings SkipGram (Mikolov et al., 2013a) and 060

GloVe (Pennington et al., 2014), and conduct com- 061

prehensive investigation for the relational informa- 062

tion contained in these embeddings. 063

Our first contribution is showing that non-linear 064

supervised training using MLPs leads to higher rela- 065

tion induction performance for non-contextualized 066

word embeddings, suggesting that a good portion 067

of relational information is stored in non-linear 068

form. Contrary to existing state-of-the-art methods 069

for analogy task (Drozd et al., 2016) and relation 070

induction task (Bouraoui et al., 2018), our results 071

show that GloVe embeddings contain more rela- 072

tional information than SkipGram. Using a fine- 073

grained analysis we find that GloVe embeddings 074

are particularly richer in Encyclopedic relations 075

that require factual knowledge, and this additional 076

knowledge is stored in non-linear form. Finally, a 077

post-hoc analysis on the learned probes suggests 078

that relational information may be contained in dif- 079

ferent forms for different relations. 080
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2 Model081

2.1 Baselines082

We choose four state-of-the-art relation induc-083

tion models to compare with our proposed probe.084

3CosAverage (Drozd et al., 2016) (3CA) produces085

the following score, where (si, oi) are training ex-086

amples for a relation:087

score3CA(s, o) = cos(s⃗+

∑N
i=1(o⃗i − s⃗i)

N
, o⃗).

LRCos (Drozd et al., 2016) extends the 3CA model088

by checking how well s and o belong to their re-089

spective word-groups using logistic regression clas-090

sifier. Trans and Regr (Bouraoui et al., 2018) are091

probabilistic models. Trans learns a Gaussian dis-092

tribution over s⃗− o⃗, and Regr uses Bayesian linear093

regression to learn linear mappings between s⃗ & o⃗.094

2.2 MLP-Based Relation Probe095

Existing relation induction models (Vylomova096

et al., 2016; Bouraoui et al., 2018) have two po-097

tential restrictions that limit their applicability as098

relation probes. First, they are designed around099

the vector difference between s and o embeddings.100

We speculate that alternate vector operations could101

also contain complementary relational informa-102

tion. Second, existing approaches are either linear103

(Weeds et al., 2014; Bouraoui et al., 2018; Vylo-104

mova et al., 2016) or require no supervised train-105

ing at all (Bouraoui et al., 2018). This limits the106

models’ ability to decode the relational informa-107

tion contained in word embeddings, which may be108

encoded in non-linear ways.109

These limitations motivated the design of our110

relation probe. Given a relation r and word pair111

(s,o), our model generates the confidence score by:112

scores,o,r = σ(ReLU(xs,oW
r
1 + br1)W

r
2 + br2),

where W r
1 , br1, W r

2 and br2 are learnable parameters113

for relation r.2 The input to the MLP, xs,o, is a114

concatenation of features derived from the word115

embeddings s⃗ and o⃗. We create two models that dif-116

fer in the input features. The first model (RLProbe)117

consists of three features s⃗, o⃗ and s⃗ − o⃗. Since118

the baseline models rely on these three features,119

RLProbe lets us compare the performance gains120

that our MLP achieves over the baselines. The121

second model (RLProbe+) contains two additional122

2We provide the training details in the Appendix.

features s⃗+ o⃗ and s⃗⊙ o⃗.3 These additional features 123

act as inductive bias during training, and lead to 124

performance gains as seen in our experiments. 125

3 Datasets 126

We use two popular datasets, Google Analogy Test 127

Set (Mikolov et al., 2013a) and Bigger Analogy 128

Test Set (BATS) (Gladkova et al., 2016), for En- 129

glish language. The Google Test Set contains 14 130

relations (5 semantic and 9 syntactic). BATS con- 131

tains 40 relations with around 50 word pairs per 132

relation and is generally considered more compre- 133

hensive and challenging than the Google set. The 134

BATS relations are further divided into four cat- 135

egories: Lexicographical (e.g. “antonyms”), En- 136

cyclopedic (e.g. “country-capital”), Derivational 137

(e.g. “verb+er”) and Inflectional (e.g. “singular- 138

plural”). We use the standard public version of two 139

pre-trained LMs, GloVe and SkipGram. The Skip- 140

Gram model is trained on the Google News Cor- 141

pus (100B tokens) and the GloVe model is trained 142

on the Common Crawl (840B tokens). Since the 143

relation induction datasets only contain positive 144

instances, we generate negative instances for each 145

positive instance using the same negative sampling 146

strategy as in Bouraoui et al. (2018). We conduct 147

10-fold cross-validation on each relation and re- 148

port macro F1 score averaged over the relations for 149

evaluation (details in Appendix). 150

4 Experimental Results 151

4.1 Relation Probing 152

Table 1 shows the macro F1 scores obtained on dif- 153

ferent dataset and embedding configurations. Our 154

probes outperform the other approaches on three of 155

the four configurations, setting a new state of the 156

art on these datasets for non-contextualized word 157

embeddings. This shows the effectiveness of non- 158

linear probes at detecting the relational knowledge 159

contained in word embeddings, suggesting that a 160

good portion of this information might be stored in 161

non-linear form. We note that RLProbe+ performs 162

better than RLProbe. This supports our hypothe- 163

sis that additional features provide complementary 164

information required for decoding the relational 165

information in word embeddings. For the rest of 166

this section, we discuss our results on RLProbe+. 167

Comparing the probe’s performance on GloVe 168

and SkipGram embeddings, we find that GloVe sig- 169

3s⃗⊙ o⃗ denotes element-wise or Hadamard product.
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Google-SkipGram BATS-SkipGram Google-GloVe BATS-GloVe

3CA 52.2 46.9 65.3 50.3
LRCos 56.5 55.5 51.8 46.6
Regr 64.6 46.2 62.9 41.9
Trans 75.6 68.2 72.8 62.4

RLProbe 63.4 ±1.5 68.9 ±0.3 74.1 ±1.5 71.3 ±0.5

RLProbe+ 68.0 ±2.5 71.7 ±0.6 80.0 ±1.3 76.0 ±0.6

Table 1: Macro F1 scores for all the 4 configurations. 3CA, LRCos, Trans and Regr scores are copied from
(Bouraoui et al., 2018). RLProbe and RLProbe+ are averaged over 5 runs with different random seeds

.

Google Dataset BATS

Semantic Syntactic Encyclopedic Lexicographical Derivational Inflectional

SkipGram 55.8 74.2 55.8 73.9 71.6 82.3
GloVe 74.8 82.8 65.8 74.7 77.7 84.9

Table 2: RLProbe+ macro F1 scores for SkipGram and GloVe embeddings on 4 BATS and 2 Google Set categories.

nificantly outperforms SkipGram on both Google170

and BATS. Table 2 further shows the macro F1171

scores obtained on fine-grained relation categories.172

GloVe achieves higher macro F1 scores on all the173

4 BATS groups, but the major performance gain174

comes from Encyclopedic relations. On Google175

dataset, GloVe embeddings perform better for the176

semantic relations by a large margin. We find that177

the top-performing semantic relations are again en-178

cyclopedic relations such as “country-capital” and179

“city-state”. This suggests that GloVe embeddings180

are especially richer than SkipGram in their knowl-181

edge about such encyclopedic relations. Contrary182

to this, the probabilistic models (Bouraoui et al.,183

2018) show the opposite trend, that GloVe embed-184

dings generally perform worse than the SkipGram185

embeddings. We attribute this to our novel obser-186

vation, as further demonstrated in the feature occlu-187

sion analysis later, that more relational information188

is encoded in non-linear ways in GloVe which is189

hard for linear models to detect.190

4.2 Feature Occlusion Analysis191

Now we investigate how sensitive RLProbe+ is to
each of the five features. We use occlusion anal-
ysis (Bastings and Filippova, 2020) to compute
the sensitivity of RLProbe+’s performance to the
features. For a relation, each feature is occluded
(individually) and the new macro F1 is computed
on the test set. To occlude a feature, the feature
vector is replaced with the zero vector (leaving the
other 4 features untouched). Thus we obtain 5 new
macro F1 scores (F occlusion

1 ) for each relation. The

sensitivity of a relation on a feature is defined as:

∆ =
F original
1 − F occlusion

1

F original
1

.

Figure 1 shows the pie charts obtained for RL- 192

Probe+ trained on BATS data using GloVe embed- 193

dings.4 Each pie chart corresponds to a relation in 194

the BATS dataset. The size of the pie charts corre- 195

sponds to the maximum ∆ for that relation, and arc 196

angles correspond to the normalized ∆ values for 197

the features. Each relation can be seen to have its 198

characteristic sensitivity pattern. We notice that the 199

majority of relations are most sensitive to feature 200

s⃗− o⃗ ( ), which is expected since the offset-based 201

methods (3CA, LRCos, Trans) perform reasonably 202

well. The second most salient feature is s⃗⊙ o⃗ ( ). 203

We find this to be a unique characteristic of GloVe 204

embeddings and is missing in the SkipGram em- 205

beddings. We also find that the Encyclopedic and 206

Derivational Morphology relations (rows 1 & 2 in 207

Figure 1) are affected most by this feature, sug- 208

gesting that a significant amount of such relational 209

information is encoded in GloVe in a non-linear 210

way. Using these additional features in downstream 211

relational tasks such as relation extraction could be 212

a promising way to improving performance. 213

5 Related Work 214

Learning relational information: Weeds et al. 215

(2014) compare different vector operations in their 216

ability to identify hypernym and co-hyponym re- 217

lations. Vylomova et al. (2016) use linear SVM 218

4 Pie charts for other configurations are in the Appendix.
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Figure 1: Pie charts for the occlusion analysis. RLProbe+ is trained on BATS relations using Glove embeddings4.

on vector offset for analyzing limited relations.219

Bouraoui et al. (2018) propose probabilistic mod-220

els for relation induction. Their best model uses221

vector offset. We use relation induction as a prob-222

ing task and do not limit the model to vector223

offset. Many works (Jameel et al., 2018; Joshi224

et al., 2019; Camacho-Collados et al., 2019) train225

relation-specific embeddings. We focus on publicly226

available PLMs. Bouraoui et al. (2020) propose227

relation induction tasks for contextualized embed-228

ding models. Our focus is on non-contextualized229

models. In summary our work uses a learnable230

probe with additional linear and non-linear features231

missing in previous studies. The additional features232

prove to useful (especially for Glove) in our results.233

Probing word embeddings: Liu et al. (2019)234

probe token-pair semantic/syntactic dependency235

arc relationships. We focus on semantic and mor-236

phological relations in word-pairs. Alain and Ben-237

gio (2016) use linear classifiers to understand inter-238

mediate layers in models. Belinkov et al. (2017b,a)239

probe different layers of neural machine translation240

models for linguistic properties target-language241

specific information. Conneau et al. (2018) pro-242

pose 10 linguistic probing tasks for sentence em-243

beddings. Hewitt and Manning (2019) proposed244

a structural probe for parse tree information. We245

solve relation induction using convectional probing246

paradigm of supervised learning using MLPs.247

6 Discussion and Conclusion248

Vector offset-based analogy evaluation has been249

known to work better on SkipGram when com-250

pared to GloVe (Xun et al., 2017), and this has 251

been attributed to the type of information learned 252

by these embedding models. GloVe captures the 253

global context information whereas SkipGram cap- 254

tures the local context. We show that using non- 255

linear relation induction models leads to opposite 256

trend. GloVe outperforms SkipGram on two popu- 257

lar datasets by achieving higher macro F1. Recent 258

works that use word embeddings for downstream 259

tasks like question answering (Kamath et al., 2017), 260

query answering (Frąckowiak et al., 2017), word 261

similarity (Liu et al., 2015), tagging (Wang et al., 262

2016; Chiu and Nichols, 2016) have found GloVe 263

embeddings to outperform SkipGram. Our inves- 264

tigation provides a plausible explanation for these 265

previous empirical findings, especially for tasks 266

that require relational information between words. 267

We present non-linear MLPs to probe word em- 268

beddings for relational information. Contrary to 269

existing linear relation induction approaches, our 270

probes show that GloVe contains more relational 271

information than SkipGram and a good amount of 272

this relational information is stored in non-linear 273

form. Linear approaches are largely oblivious to 274

this. Our results show that GloVe embeddings are 275

richer in Encyclopedic relation information than 276

SkipGram. Our post-hoc analysis suggests this ad- 277

ditional information in GloVe, and can be linked 278

to the non-linear feature s⃗⊙ o⃗. Incorporating this 279

knowledge in relational downstream tasks could 280

potentially lead to improvements. For future work, 281

we plan to explore relational information stored in 282

contextualized LMs (Bouraoui et al., 2020). 283
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7 Ethics Statement284

Many existing works (Bolukbasi et al., 2016; Zhao285

et al., 2018; Lauscher et al., 2020) on biases and286

stereotypes in word embeddings have adopted the287

analogical reasoning tasks for bias diagnosis. There288

exist many types of biases and stereotypes, e.g.,289

gender, ethnicity, race, religion, etc. Gender stereo-290

types, for instance, where certain occupations or291

adjectives might be associated more with one spe-292

cific gender. E.g. “engineer” being associated more293

with a man and “nurse” with a woman, or “deli-294

cate” with a woman, and “crude” with a man. Such295

stereotypes often seep into LMs, as these LMs are296

trained on data crawled from the internet. When297

used in applications like “Resume Scoring Algo-298

rithms”, etc., this can lead to unfair NLP models.299

Our repositioning of the relation induction task300

as a probing task could enable us to use the relation301

induction for stereotype diagnosis instead. Similar302

to the datasets discussed in this work, these stereo-303

types can be formulated as relations between word304

pairs. For example, word pairs (female, delicate)305

and (male, aggressive) are examples of the “gender306

stereotype” relation. Relation probes trained on an307

LM devoid of such a stereotype must predict these308

pairs as “Negative” (or no relation), and a “Positive”309

might be an indication of “gender stereotype” in310

the LM.311

Diagnosing LMs for such stereotypes before312

their application to the downstream task can poten-313

tially make NLP applications fairer, as the experts314

can compare and choose the most fair PLM. Our315

relation probes could be used as a tool for such316

diagnosis.317
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A Data Preparation557

Given the set of ordered pairs for relation r, we558

divide this set into train, dev, and test sets. Since559

we only have factual (positive) data, we generate560

negative examples following the approach outlined561

in (Bouraoui et al., 2018). For each positive pair562

(s,o), we add four types of negative pairs. 1.) (o,s),563

2.) we sample two distinct o’ from the train set such564

that (s, o′) ̸∈ Rr (provided there exist such o′) and565

add (s, o′), 3.) we randomly sample an ordered566

pair from some other relation set R
′
r, and 4.) we567

generate a randomly ordered pair by sampling two568

words from the vocabulary of the dataset. We use569

the same process to generate negative pairs for the570

dev and test sets. (For symmetric relations like571

’Antonyms’ and ’Synonyms’, (o,s) is added as a572

positive sample instead of negative).573

We use 10-fold cross-validation for the evalua-574

tion. The dev sets are obtained by sampling 10%575

of the pairs from the train splits. For relations with576

less than 10 pairs, a leave-one-out evaluation is per-577

formed. The same 10-fold splits used by (Bouraoui578

et al., 2018) are employed for a fair comparison.579

To evaluate the models, the relation induction prob-580

lem is treated as a binary classification problem581

(Bouraoui et al., 2018). The performance is mea-582

sured in terms of macro F1 scores. Dev set loss is583

used for early stopping.584

B Training Details585

Table 3 shows the MLP architecture for both the586

probes. We use the same architecture across all587

relations. We add a drop-out of probability 0.2 on588

the hidden-layer. We experimented with different589

probability values and 0.2 consistently gave good590

results. The loss function used is binary cross en-591

tropy loss with L2 penalty. Adam optimizer with592

learning rate of 0.001 and SGD with batch size593

16 is used for all the relations and probes. For the594

s⃗−o⃗ and s⃗+o⃗ features, we find that adding a ReLU595

layer on these features improved the performance596

significantly. All models are trained for maximum597

50 epochs with early stopping using dev set loss.598

Model-Architecture

RLProbe W 1
r : R900×75

b1r : R75

W 2
r : R75×1

b2r : R

RLProbe+ W 1
r : R1500×75

b1r : R75

W 2
r : R75×1

b2r : R

Table 3: MLP architecture details for all RLProbe and
RLProbe+ models.

.

Relation

geography: capitals
geography: languages
geography: UK counties
people: nationality

Encyclopedic people: occupation
animals: the young
animals: sounds
animals: shelter
thing:color
male:female

hypernyms: animals
hypernyms: miscellaneous
hyponyms: miscellaneous
meronyms: substance

Lexicographic meronyms: member
meronyms: part-whole
synonyms: intensity
synonyms: exact
antonyms: gradable
antonyms: opposite

noun sg:pl (regular)
noun sg:pl (irregular)
adjective: comparative
adjective: superlative

Inflectional infinitive: 3Ps.Sg
infinitive: participle
infinitive: past
participle: 3Ps.Sg
participle: past
3Ps.Sg: past

noun+ness
un+adjective
adjective+ly
over+adjective

Derivational adjective+ness
re+verb
verb+able
verb+er
verb+tion
verb+ment

Table 4: All BATS relations grouped into the 4 cate-
gories.

.
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Figure 2: Pie chart visualization for the occlusion analysis. SkipGram - BATS

Relation

common capital city
all capital cities

Semantic currency
city in state
man-woman

adjective to adverb
opposite
comparative
superlative

Syntactic present participle
nationality adjective
past tense
plural nouns
plural verbs

Table 5: All Google dataset relations grouped into
semantic and syntactic categories.
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Figure 3: Pie chart visualization for the occlusion analysis. GloVe - Google dataset.

Figure 4: Pie chart visualization for the occlusion analysis. SkipGram - Google dataset.
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