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Abstract

Existing prompt-tuning methods have demonstrated impressive performances in
continual learning (CL), by selecting and updating relevant prompts in the vision-
transformer models. On the contrary, this paper aims to learn each task by tuning
the prompts in the direction orthogonal to the subspace spanned by previous tasks’
features, so as to ensure no interference on tasks that have been learned to overcome
catastrophic forgetting in CL. However, different from the orthogonal projection in
the traditional CNN architecture, the prompt gradient orthogonal projection in the
ViT architecture shows completely different and greater challenges, i.e., 1) the high-
order and non-linear self-attention operation; 2) the drift of prompt distribution
brought by the LayerNorm in the transformer block. Theoretically, we have finally
deduced two consistency conditions to achieve the prompt gradient orthogonal
projection, which provide a theoretical guarantee of eliminating interference on
previously learned knowledge via the self-attention mechanism in visual prompt
tuning. In practice, an effective null-space-based approximation solution has been
proposed to implement the prompt gradient orthogonal projection. Extensive
experimental results demonstrate the effectiveness of anti-forgetting on four class-
incremental benchmarks with diverse pre-trained baseline models, and our approach
achieves superior performances to state-of-the-art methods. Our code is available
at https://github.com/zugexiaodui/VPTinNSforCL .

1 Introduction

Continual learning (CL) is crucial for AI models to adapt to the ever-changing environment by learning
sequentially arrived data, where the catastrophic forgetting is the key challenge [21, 28]. Recently,
prompt tuning-based continual learning methods [40, 32, 34, 44, 10, 22, 38, 46, 20, 12, 18] have been
attracting increasing attention due to their impressive performances in the CL field. Existing prompt
tuning-based works tackle the downstream continual learning problem by selecting and updating
relevant prompts, which is encoded with full task-specific knowledge while exploiting the general
knowledge of the pre-trained ViTs [40, 39].

On the contrary, this paper aims to learn each task by tuning the prompts in the direction orthogonal
to the subspace spanned by previous tasks’ features, so as to ensure no interference with tasks that
have been learned to overcome catastrophic forgetting in CL. It is worth noting that forgetting can
be theoretically resolved by gradient orthogonal projection methods [43, 31, 36, 45], which have
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been extensively explored especially when adapting CNN models. Nevertheless, it remains a huge
gap to introduce the orthogonal projection-based methods of CNNs to visual prompt tuning due to
the following challenges: 1) the high-order and non-linear self-attention operation; 2) the drift of
prompt distribution brought by the LayerNorm in the transformer block. For the linear operation
in convolution or fully-connected layers, the output features of old tasks can remain unchanged by
updating the weights in the orthogonal subspace of previous input features. While for self-attention,
three linear transformations are employed on input tokens, followed by high-order and non-linear
operations for the self-attention interaction of tokens. It makes the relationship between the update of
prompts and the output image tokens much more complex, far exceeding mere linearity.

In this work, we theoretically deduced two consistency conditions to achieve the prompt gradient
orthogonal projection, which provide a theoretical guarantee of eliminating interference on previously
learned knowledge via the self-attention mechanism in visual prompt tuning. To be concrete, we
firstly take the full self-attention and LayerNorm into consideration and derive a strict condition
for eliminating the interference through a comprehensive analysis of the forward propagation of
the ViT layer. Then we further propose to convert the condition of self-attention into its two
sufficient conditions, which enables us to address the challenge of high order and nonlinearity.
Thirdly, we propose a constraint of invariant prompt distribution that removes the obstacle to the final
simplification of the conditions brought by the LayerNorm. The consistency conditions reveal that if
the prompt update can be orthogonal to (1) the normalized previous input image tokens projected
with the second-order qkv-transformation matrices of the pre-trained model, and (2) the activated
attention map generated by image queries and prompt keys, the interference in visual prompt tuning
can be eliminated theoretically.

In practice, based on the proposed consistency conditions, an effective null-space-based approxi-
mation solution [36] has been proposed to implement the prompt gradient orthogonal projection,
while the invariant prompt distribution constraint is implemented by incorporating a loss function
which penalizes the drifting of prompt distribution over sequential tasks. We validate our Null-Space
Projection for Prompts (NSP2) approach on extensive class-incremental benchmarks: 10- and 20-split
CIFAR-100, 10-split ImageNet-R [39] and 10-split DomainNet [38], with the sequential fine-tuning
VPT and CLIP models as baselines. Our approach brings 4%∼10% improvements in accuracy, and
reduces 9%∼17% forgetting, which is superior to state-of-the-art methods.

Our contributions are summarized as follows: (1) We introduce the orthogonal projection into the
visual prompt tuning for continual learning, which comprehensively considers the full operations of
a transformer layer on the interference problem. (2) Two sufficient consistency conditions for the
self-attention and an invariant prompt distribution constraint for LayerNorm are theoretically deduced,
based on which an effective null-space-based approximation solution is introduced to implement the
prompt gradient orthogonal projection for visual prompt tuning. (3) Extensive experimental results
demonstrate the effectiveness of anti-forgetting on four class-incremental benchmarks with diverse
pre-trained baseline models, and our approach achieves superior performances to state-of-the-art
methods.

2 Related Work

Prompting-Based Approaches: Most of the prompting-based approaches adopt a two-stage frame-
work [37, 39, 14, 15, 32, 42, 34, 35, 11, 18, 19]: querying a group of prompts for an individual
sample and using them to prompt the pre-trained models. For example, L2P [40] first selects a
group of prompts from a prompt pool and then feeds them into the ViT. CPrompt [11] proposes
to mitigate the gap between training and testing stages to enhance prediction robustness and boost
prompt selection accuracy. These approaches essentially focus on acquisition of task-specific prompts
tailored to individual samples. There are also several one-stage methods [2, 22, 38, 44, 20] based on
prompt tuning. (1) Slowly updating trainable parameters [10, 44]: e.g., LAE [10] updates an offline
expert with a large momentum to reduce the change of features. (2) Expandable backbones [46, 20]:
e.g., EASE [46] trains a distinct lightweight adapter module for each new task, and designs a se-
mantic mapping to complement the drift of old class prototypes. (3) Enhancing classifiers rather
than focusing on learning features [38, 22, 12]: e.g., ESN [38] proposes an anchor-based classifier
alignment approach based on energy-based models. As introduced above, these works still lack of a
theoretical solution to the interference problem for visual prompt tuning. In our work, we conduct a
deep analysis of this problem and provide a theoretical guidance on eliminating the interference.
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Orthogonal Projection-Based Approaches: Orthogonal projection-based approaches [43, 4, 8, 31,
36, 17, 45] can theoretically eliminate the interference of new tasks on old tasks for linear layers.
OWM [43] constructs a projector to find the direction orthogonal to the input space. GPM [31] first
projects new gradients to the subspace important to the old tasks and then subtracts the projected
components for updating parameters. Adam-NSCL [36] projects the parameter updates to the
approximate null space of previous inputs. However, due to the different relationships between
parameter updates and outputs in the linear operation and self-attention, the consistency condition
used in CNNs is not directly applicable to the prompt tuning in ViTs. In our work, we derive the
consistency conditions for the visual prompt tuning, enabling the application of orthogonal projection-
based approaches to it, where the null-space projection [36] is adopted in our approach to get an
approximate solution efficiently. We notice that a recently emerged work PGP [26] implements
GPM [31] to prompt-based frameworks. However, it obtains the same conclusion as that of the linear
operation under a simplified attention, which limits its application and performance as compared in
the appendix D .

3 Preliminaries

Continual Learning: In the setting of continual learning, a network f(·|Θ) with parameters Θ is
sequentially trained on a stream of disjoint tasks {T1, T2, · · · , TT }, where task Tt is associated with
paired data {(X<i>

t , y<i>
t )

|Tt|
i=1} of size |Tt|. When a task Tt arrives, the model f(·|Θ) would be

trained for the current task, while the data from previous tasks is unreachable.

Forward Propagation of Visual Prompt Tuning in ViT Layers: We describe the forward propaga-
tion process of the ViT layer for visual prompt tuning, as illustrated in Figure 1 . Let X ∈ RN×D

and P ∈ RM×D denote the N input image tokens of a sample (including the pre-trained class
token if available) and M prompts, respectively, where D is the dimension of each token. In the
ViT layer, only the prompts P are trainable parameters. The remaining parameters in LayerNorm,
qkv-transformations and subsequent MLP introduced below are pre-trained and kept frozen. We
use Z = [X;P] ∈ R(N+M)×D to denote the concatenated input tokens. First, they undergo the
LayerNorm [1] operation LN(·):

LN(Z) =
Z− µZ

σZ
⊙α+ β, (1)

where µZ,σZ ∈ RN+M , α,β ∈ RD. The ⊙ and division here denote the element-wise (Hadamard)
product and division, respectively. Note that the vectors µZ, σZ, α and β are broadcasted to match
the matrices of dimensions (N +M)×D, enabling them to carry out operations with Z. Then the
normalized tokens are fed into the qkv-transformations:

QZ = LN(Z)Wq + bq, KZ = LN(Z)Wk + bk, VZ = LN(Z)Wv + bv, (2)

where W{q,k,v} ∈ RD×D. The vector b{q,k,v} ∈ RD is broadcasted to a matrix of dimensions
(N +M)×D to facilitate the addition operation. Next is the self-attention:

FZ = fSA(Z) = softmax(
QXK⊤

Z√
D

)VZ, (3)

where QX denotes the image tokens serving as queries. Eq. (3) can be expanded as Affinity, softmax
(on rows) and Aggregation operations:

AZ = faff(QX,KZ) =
QXK⊤

Z√
D

=
QX

[
K⊤

X K⊤
P

]
√
D

∈ RN×(N+M),

SZ = softmax(AZ) = softmax(
[
AX ∈ RN×N AP ∈ RN×M

]
) = [SX SP] ,

FZ = fagg(SZ,VZ) = SZVZ = [SX SP]

[
VX

VP

]
∈ RN×D.

(4)

(5)

(6)

It is worth noting that the rows of the attention map where the prompts serve as queries (i.e., QP) do
not need to be computed, as formulated in Eq. (4) and illustrated in Figure 1 . The reason is that in
VPT-Deep [13], the output prompts of this ViT layer will be replaced with new trainable prompts in
the subsequent layer. Omitting QP has no impact on the output image tokens of the ViT layer, as

3



Figure 1: Illustration of the forward propagation in a ViT layer. Residual connections are omitted.
The red crosses indicate the rows of attention map or the output prompts can be neglected.

the subsequent Aggregation, LayerNorm and MLP operations are performed independently for each
token. If no new prompts are added in the next layer, the output prompts can be just discarded as well.

After the self-attention, operations consist of another LayerNorm and the MLP layer are applied
individually to each token, without any interaction among the tokens. Finally, the output fine-tuned
image tokens are fed into the next ViT layer.

Orthogonal Projection in Convolutional Layers: A convolutional operation is actually a linear
operation. For a convolutional layer fconv(·|Θt) in task Tt, we use Θt ∈ RDin×Dout to denote its
unrolled convolutional kernel matrix [5]. Here, Din represents the number of pixels within a kernel,
and Dout corresponds to the number of kernels. Each convolutional patch from the input feature
map is flattened into a row vector with a dimension of Din. These row vectors of totaling np patches
compose the input feature matrix Xt ∈ Rnp×Din . The output feature for Xt in task Tt is expected to
remain unchanged (referred to as consistent) in the next task Tt+1 to prevent forgetting:

fconv(Xt|Θt) = fconv(Xt|Θt+1). (7)

By substituting Θt+1 = Θt+∆Θ, with ∆Θ ̸= 0 denoting the weight update in Tt+1, the consistency
condition for the convolutional layer is established as follows:

XtΘt = Xt(Θt +∆Θ), (8)

which can be further simplified as:
Xt∆Θ = 0. (9)

Eq. (9) suggests that if the weight update ∆Θ is orthogonal to the previous input feature Xt during
training in the new task, the corresponding output feature will remain unchanged. Thereby, the
interference of the new task on the old task is eliminated. This can be realized by projecting the
candidate weight update ΘG into the orthogonal subspace of Xt: ∆Θ = PΘG , whereP ∈ RDin×Din

is an orthogonal projection matrix [43, 36, 31].

Similarly, for the prompt tuning which fine-tunes the prompts Pt in a ViT layer fvit(Xt|Pt), we also
aim to satisfy the following consistency objective for the purpose of anti-forgetting:

fvit(Xt|Pt) = fvit(Xt|Pt+1). (10)

However, the consistency condition in Eq. (9) does not hold for Eq. (10), since fvit(Xt|Pt) ̸= XtPt

in prompt tuning. Instead, all the tokens Xt and Pt first undergo a LayerNorm and then interact via
the self-attention mechanism, as previously described. The complicated forward propagation within
the ViT layer brings huge challenge to analyzing the consistency conditions in relation to the prompt
update ∆P. In the next section, we will tackle this challenge and derive the consistency conditions
for visual prompt tuning.

4 Method

We use Zt = [Xt;Pt] and Zt+1 = [Xt;Pt+1] to denote the input tokens before and after updating
the prompts, respectively, where Pt+1 = Pt +∆P,∆P ̸= 0. Our goal is to analyze how to satisfy
Eq. (10) and derive one or more conditions expressed in terms of the prompt update ∆P. These
conditions will subsequently guide the application of orthogonal projection to ∆P.
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4.1 Analysis of Consistency Conditions

As can be seen in Figure 1, those outputs of LayerNorm and qkv-transformations corresponding to
the image tokens remain unaffected by the updates to the prompts. Hence, the essence of attaining the
consistency objective Eq. (10) can be turned into analyzing how to keep the output of self-attention
in Eq. (3) unchanged as the prompts are updated, i.e., satisfying:

FZt
= FZt+1

. (11)

However, the nonlinear operation (i.e., softmax) and the potential higher-order term W⊤
k Z

⊤ZWv

arising from K⊤
ZVZ in Eq. (3) complicate the direct resolution of this objective. Specifically, the

non-injection property of the softmax function causes non-unique solutions. The multiplication
between KZ⊤

t+1
VZt+1

derives a quadratic term LN(Pt + ∆P)⊤LN(Pt + ∆P), which result in
difficult optimization for ∆P.

To address this issue, we propose two sufficient conditions consisting solely of linear operations.
Specifically, we split the process of self-attention into two primary stages, i.e., the Affinity described
by Eq. (4) and the Aggregation outlined in Eq. (6). We can achieve Eq. (11) by ensuring the
consistency of each stage: {

faff(QXt
,KZt

) = faff(QXt
,KZt+1

),

fagg(SZt ,VZt) = fagg(SZt+1 ,VZt+1).

(12)
(13)

We first analyze the consistency objective of Affinity, i.e., Eq. (12), for Zt and Zt+1:
faff(QXt ,KZt) = QXt

[
K⊤

Xt
K⊤

Pt

]
=

[
QXt

K⊤
Xt

QXt
[LN(Pt)Wk + bk]

⊤
]
,

faff(QXt ,KZt+1) =
[
QXt

K⊤
Xt

QXt
[LN(Pt+1)Wk + bk]

⊤
]
,

(14)

(15)

where
√
D is omitted for simplicity. Upon fulfilling Eq. (12), we can obtain SZt = SZt+1 , corre-

sponding to the output of Eq. (5). Subsequently, we analyze the consistency objective of Aggregation
in Eq. (13), yielding results for Zt and Zt+1 as:{

fagg(SZt
,VZt

) = SXt
VXt

+ SPt
VPt

= SXt
VXt

+ SPt
[LN(Pt)Wv + bv] ,

fagg(SZt+1
,VZt+1

) = fagg(SZt
,VZt+1

) = SXt
VXt

+ SPt
[LN(Pt+1)Wv + bv] .

(16)
(17)

Based on Eq. (12−17), we are able to derive the following two equations, respectively:{
QXtW

⊤
k LN(Pt)

⊤ = QXtW
⊤
k LN(Pt+1)

⊤ = QXtW
⊤
k LN(Pt +∆P)⊤,

SPtLN(Pt)Wv = SPtLN(Pt+1)Wv = SPtLN(Pt +∆P)Wv.

(18)
(19)

Note that we expect to further deduce Eq. (18) and Eq. (19) to obtain equations among LN(Pt),
LN(Pt + ∆P) and ∆P. However, due to the square root and quadratic terms in the expressions
of the standard deviations σPt

and σPt+∆P, it is difficult to express σPt+∆P in terms of σPt
and

σ∆P. Consequently, it is challenging to derive a straightforward equation that relates LN(Pt) and
LN(Pt +∆P) through ∆P.

To simplify the problem, we introduce an additional constraint on the distribution of prompts.
Concretely, we require that the updated prompts Pt +∆P retain the same distribution as Pt, i.e.,
meeting the following assumption: {

µPt+∆P = µPt
,

σPt+∆P = σPt .
(20)

In this way, we can establish a straightforward mathematical relationship connecting LN(Pt +∆P),
LN(Pt) and ∆P:

LN(Pt+∆P) =
Pt +∆P− µPt+∆P

σPt+∆P
⊙α+β =

Pt − µPt
+∆P

σPt

⊙α+β = LN(Pt)+
∆P

σPt

⊙α.

(21)
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Consequently, we can apply Eq. (21) to simplify Eq. (18) and (19) as:{
QXtW

⊤
k LN(Pt)

⊤ = QXtW
⊤
k LN(Pt)

⊤ +QXtW
⊤
k ∆P⊤/σ⊤

Pt
⊙α⊤,

SPt
LN(Pt)Wv = SPt

LN(Pt)Wv + SPt
∆PWv/σPt

⊙α.

(22)

(23)

It should be noted that in Eq. 22 and Eq. 23 , Wk, Wv and α are pre-trained parameters kept frozen
throughout the continual learning process. QXt

and SPt
are two matrices derived from the input

Xt. As our objective is to ensure that the above two equations remain valid for the variables QXt

and SPt
, it is sufficient to meet the following conditions, in which Wv can be ignored whereas Wk

remains crucial: {
QXt

W⊤
k ∆P⊤ = 0

SPt
∆P = 0

(24)
(25)

Now we have obtained the simplified formulas expressed by ∆P in Eq. (24) and (25).

To sum up, we convert the overall consistency equation Eq. (11) into two sufficient conditions Eq. (12)
and (13) for Affinity and Aggregation, respectively. Consequently, we derive two corresponding
consistency conditions Eq. (24) and (25) expressed by the prompt update ∆P, under the constraint
of invariant prompt distribution formulated in Eq. (20). The deduced conditions can satisfy the
consistency objective in Eq. (10), thereby achieving the goal of eliminating the interference of the
new task on the old task for visual prompt tuning.

As QXt = LN(Xt)Wq + bq , Eq. (24) implies that if the (transposed) prompt update can be orthogo-
nal to the normalized previous input image tokens Xt projected with a second-order transformation
matrices WqW

⊤
k of the pre-trained ViT, the consistency for Affinity can be guaranteed. When we ig-

nore the normalization and the bias term in QXt , Eq. (24) can be simplified as XtWqW
⊤
k ∆P⊤ = 0.

The simplified condition is still essentially different from the consistency condition of linear layers
(i.e., Eq. (9)) and that deduced in [26] (i.e., Xt∆P⊤ = 0). It indicates the interaction between the
image tokens and prompts within ViT layers is fundamentally distinct, leading to a unique consistency
condition related to the second-order transformation matrices WqW

⊤
k of the pre-trained model.

Moreover, Eq. (25) is also an essential condition served as one of the sufficient conditions for the
consistency of the whole ViT layer. It implies that if the prompt update can be orthogonal to the
activated attention map generated by the image queries (QX) and prompt keys (KP), the consistency
of Aggregation can be achieved.

4.2 Optimization of Consistency Conditions

To jointly optimize Eq. (24) and (25), we need to solve ∆P that can meet both equations concurrently.
Here, we employ a separate optimization approach to get an approximate solution efficiently. Initially,
it ensures ∆P⊤ is orthogonal to the subspace spanned by QXt

W⊤
k to satisfy Eq. (24). Subsequently,

it makes ∆P orthogonal to the subspace spanned by SPt
to satisfy Eq. (25).

Specifically, we use PG to denote the candidate parameter update generated by the optimizer for the
prompts. We aim to obtain a projection matrix B such that ∆P = BPG . Following the previously
mentioned separate optimization strategy, we first ensure ∆P⊤ is orthogonal to QXt

W⊤
k by the

projection matrix B1: ∆P⊤ = B1P⊤
G . Then ∆P is made orthogonal to SPt

by another projection
matrix B2: ∆P = B2PG . Therefore, the objective of the optimization turns into obtaining the two
projection matrices B1 and B2 to satisfy Eq. (24) and (25). Inspired by the null-space projection
method [36], the bases of B1 and B2 correspond to the null-space bases of QXt

W⊤
k and SPt

,
respectively. We use U1,0 ∈ RD×R1 and U2,0 × RM×R2 to denote the bases of the null spaces for
QXt

W⊤
k and SPt

, where R1 and R2 indicate their nullities. U1,0 and U2,0 can be obtained from the
right singular vectors associated with the zero singular values, through the process of singular value
decomposition (SVD) applied by SVD((QXt

W⊤
k )

⊤QXt
W⊤

k ) and SVD(S⊤
Pt
SPt

), respectively. In
this way, we get the projection matrices B1 = U1,0U

⊤
1,0 ∈ RD×D and B2 = U2,0U

⊤
2,0 ∈ RM×M ,

which are the solutions enabling ∆P to jointly satisfy Eq. (24) and (25):

∆P = B2PGB1 = (U2,0U
⊤
2,0)PG(U1,0U

⊤
1,0). (26)

For the constraint Eq. (20), we incorporate an additional loss function aimed at penalizing the drift of
prompt distribution, hence realizing a relaxed version of this constraint:

LLN = ∥µPt+1
− µPt

∥1 + ∥σPt+1
− σPt

∥1. (27)
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Table 1: Comparison with the baselines ("-Seq") on four benchmarks using two types of models. The
upper-bound means jointly training all the classes in the dataset.

Method 10S-CIFAR-100 20S-CIFAR-100 10S-ImageNet-R 10S-DomainNet

Acc. ↑ Forgetting ↓ Acc. ↑ Forgetting ↓ Acc. ↑ Forgetting ↓ Acc. ↑ Forgetting ↓
VPT-Seq 87.27 12.33 82.36 17.36 72.46 19.41 73.28 25.65
VPT-NSP2 91.74 3.28 89.89 4.91 78.88 5.06 83.54 8.54
Upper-bound 93.87 - 93.87 - 84.60 - 89.25 -

CLIP-Seq 72.91 15.13 71.37 17.89 75.69 19.21 67.73 35.60
CLIP-NSP2 80.96 12.45 79.83 13.77 82.17 6.42 77.04 18.33
Upper-bound 84.52 - 84.52 - 84.86 - 81.65 -

In Eq. (27), µPt
and σPt represent the target prompt distribution obtained in task Tt, while µPt+1

and σPt+1 denote the distribution to be optimized in task Tt+1.

To sum up, we use Eq. (26) to realize Eq. (24) and (25), and use Eq. (27) to meet Eq. (20), thereby
achieving the consistency objective Eq. (10) for anti-forgetting. We provide a full algorithm of our
approach in the appendix A .

4.3 Extension to Multi-Heads

We further extend the consistency conditions Eq. (24) and (25) to multi-head self-attention, a common
feature in current transformer-based models. Suppose there are H heads and d = D/H represents
the dimension of each token in a head. We use QXt.h ∈ RN×d, Wk.h ∈ RD×d and SPt.h ∈ RN×M

to denote the corresponding matrices in Eq. (24) and (25) for the h-th head, respectively. The
objective is to ensure these conditions are met across all heads, i.e., QXt.hW

⊤
k.h∆P⊤ = 0 and

SPt.h∆P = 0, ∀h ∈ {1, 2, · · · , H}. Let Ω1,t = [QXt.1W
⊤
k.1; · · · ;QXt.HW⊤

k.H ] ∈ RHN×D and
Ω2,t = [SPt.1; · · · ;SPt.H ] ∈ RHN×M represent the concatenated matrices from all the heads,
respectively. Based on block matrix properties, those two sets of conditions can be formulated as
Ω1,t∆P⊤ = 0 and Ω2,t∆P = 0. To sum up, The main difference between single-head and multi-
heads is that the parameter update should be orthogonal to the subspace spanned by the concatenation
matrices from all heads for multi-heads self-attention. Therefore, for the multi-heads variant, only an
additional step of concatenation of the matrices from all heads is required in our algorithm.

5 Experiments

5.1 Experimental Setups

In our experiments, we mainly utilize the VPT [13] with a ViT-B/16 backbone [9] pre-trained on
ImageNet-21k. Additionally, we validate the effectiveness on the CLIP [27] model, wherein the
visual prompts are inserted into the image encoder. Our experiments are conducted across 4 class-
incremental benchmarks: 10- and 20-split CIFAR-100, 10-split ImageNet-R and 10-split DomainNet.
We report the mean values of the final average accuracy and final average forgetting over 3 runs
with different random seeds. Given that the null spaces of QXtW

⊤
k and SPt may not always exist

in practice, we compute the approximate null spaces and determine the nullities R1 and R2 in an
adaptive manner, rather than the way suggested in [36]. For more detailed information regarding the
experimental setups, please refer to Appendix B .

5.2 Main Results

Validation of Effectiveness: The comparison between our approach and the sequential fine-tuning
VPT and CLIP baselines is shown in Table 1 . For the VPT model, the proposed NSP2 achieves
4.47%∼10.26% improvements in accuracy on the 4 benchmarks. Meanwhile, it reduces the forgetting
by 9.05%∼17.11%. As to the CLIP model, the NSP2 improves the accuracy by 6.48%∼9.31%,
and reduces the forgetting by 2.68%∼17.27%. We calculate the accuracy across all previously
encountered tasks after completing training on each task. The accuracy curves of VPT-Seq and VPT-
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Figure 2: Task-by-task accuracy changing curves of VPT-Seq and VPT-NSP2 on two benchmarks.

Figure 3: Results of utilizing different pre-training datasets and paradigms. The blue and yellow bars
represent accuracy and forgetting, respectively. The upward arrows indicate the accuracy increasing
from VPT-Seq to VPT-NSP2, whereas the downward arrows denote the reduction in forgetting.

NSP2 on 10-split CIFAR-100 and 10-split ImageNet-R are displayed in Figure 2. They demonstrate
our approach consistently outperforms the baseline throughout the sequential learning of tasks.

We conduct additional experiments with the VPT model, utilizing the weights pre-trained on different
datasets as well as different paradigms, as shown in Figure 3 . The pre-training paradigms and
datasets include: naive classification on ImageNet-1k [30], DINO [3] on ImageNet-1k, MIIL [29]
on ImageNet21k-P and CLIP on LAION-2B [6] (we only use its image encoder). As can be seen
from the figure, our approach not only significantly enhances accuracy but also markedly mitigates
forgetting. These results further demonstrate the generalizability of the proposed approach.

Comparison with Existing Methods: We compare our method with existing methods in Table 2,
where the competitors include many recent works. The proposed VPT-NSP2 achieves state-of-the-art
performance on the four benchmarks, with surpassing the second best approach by an average of
1.49% in accuracy. The forgetting of our approach is not the lowest, which is reasonable since
our approach sacrifices some stability for a better trade-off between stability and plasticity. The
outperforming accuracy can demonstrate the superiority of our method.

Ablation Study: The two consistency conditions Eq. (24) and (25), along with the constraint Eq. (20),
constitute the main components of our approach. They correspond to B1, B2 in Eq. (26), and LLN

in Eq. (27). We study their effects on the four benchmarks using VPT-NSP2, with results presented
in Table 3. We can see that the projection for Affinity (B1) plays a crucial role, which brings
3.31%∼9.03% improvement in accuracy and 5.42%∼14.76% decline in forgetting. Furthermore, the
projection for Aggregation (B2) and the loss LLN for invariant prompt distribution are indispensable
as well for minimizing forgetting. Optimal accuracy is achieved when all three conditions are applied.

Model Analysis: We analyze the evolution of training losses on the 10-split CIFAR-100 and 10-split
ImageNet-R benchmarks, as shown in Figure 4 . Each point on the curve represents the training loss
of the data in T1/T2 after the model has been trained on subsequent tasks. As can be seen, the losses
of VPT-NSP2 on previous tasks can be almost retained, confirming that our approach can effectively
mitigate the interference of new tasks on old tasks.

Trade-off between Stability and Plasticity: We first adaptively determine the nullities R1 and
R2 for B1 and B2 to achieve near-minimum forgetting. Based on this, we assign two weights η1
and η2 to the projection matrices to control the trade-off between stability and plasticity: ∆P =
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Table 2: Comparison with existing methods that use the pre-trained ViT-B/16 on ImageNet-21k. The
standard deviations are also reported if available. Missing results in the corresponding papers are
denoted as "-". The results marked with † and ‡ are implemented by [11] and [10], respectively. The
highest accuracies are in bold, and the second highest accuracies are underlined.

Method Venue 10S-CIFAR-100 20S-CIFAR-100 10S-ImageNet-R 10S-DomainNet

Acc. Forgetting Acc. Forgetting Acc. Forgetting Acc. Forgetting

L2P [40] CVPR’22 83.83±0.04 7.63±0.30 80.10±0.72
‡ - 61.57±0.66 9.73±0.47 81.17±0.83

† 8.98±1.25
DualPrompt [39] ECCV’22 86.51±0.33 5.16±0.09 82.02±0.32

‡ - 68.13±0.49 4.68±0.20 81.70±0.78
† 8.04±0.31

CODA-P [32] CVPR’23 86.25±0.74 1.67±0.26 - - 75.45±0.56 1.64±0.10 80.04±0.79
† 10.16±0.35

ESN [38] AAAI’23 86.34±0.52 4.76±0.14 80.56±0.94
‡ - 62.61±0.96

‡ - 79.22±2.04
† 10.62±2.12

APG [33] ICCV’23 89.35 6.01 88.64 6.51 73.27 8.59 - -
LAE [10] ICCV’23 85.59±0.46 - 83.93±0.28 - 72.66±0.63 - - -
DualP-LGCL [15] ICCV’23 87.23±0.21 5.10±0.15 - - 69.46±0.04 4.20±0.06 - -
C-LN [23] ICCVW’2386.95±0.37 6.98±0.43 - - 76.36±0.51 8.31±1.28 - -
EvoPrompt [18] AAAI’24 87.97±0.30 2.60±0.42 84.64±0.14 3.98±0.24 76.83±0.08 2.78±0.06 79.50±0.29 3.81±0.36
OVOR-Deep [12] ICLR’24 85.99±0.89 6.42±2.03 84.13±0.75 6.81±0.77 76.11±0.21 7.16±0.34 79.61±0.86 4.77±0.94
DualP-PGP [26] ICLR’24 86.92±0.05 5.35±0.19 83.74±0.01 7.91±0.15 69.34±0.05 4.53±0.04 80.41±0.25 8.39±0.18
InfLoRA [20] CVPR’24 87.06±0.25 6.22±0.39 81.42±0.54 6.42±0.33 75.65±0.14 5.73±0.44 81.45±0.68 5.35±0.52
EASE [46] CVPR’24 87.76 5.94 85.80 7.19 76.17 7.82 78.89 7.89
CPrompt [11] CVPR’24 87.82±0.21 5.06±0.50 83.97±0.31 6.85±0.43 77.14±0.11 5.97±0.68 82.97±0.34 7.45±0.93

VPT-NSP2 This work 91.74±0.63 3.28±0.45 89.89±0.72 4.91±0.59 78.88±0.50 5.06±0.26 83.54±0.77 8.54±0.48

Table 3: Ablation studies of each component in our approach on the four benchmarks.

B1 B2 LLN
10S-CIFAR-100 20S-CIFAR-100 10S-ImageNet-R 10S-DomainNet

Acc. ↑ Forgetting ↓ Acc. ↑ Forgetting ↓ Acc. ↑ Forgetting ↓ Acc. ↑ Forgetting ↓
87.27 12.33 82.36 17.36 72.46 19.41 73.28 25.65√
90.58 6.91 88.13 10.27 78.05 8.14 82.31 10.89√
88.74 10.85 83.32 16.48 74.71 14.69 78.87 17.81√ √
91.33 4.22 88.96 6.42 78.37 6.25 83.17 8.95√ √
91.42 3.94 88.46 8.64 78.30 6.31 83.13 9.32√ √
89.36 9.32 86.67 11.59 75.27 13.35 79.45 16.50√ √ √
91.74 3.28 89.89 4.91 78.88 5.06 83.54 8.54

Figure 4: Training loss curves of VPT-NSP2 and VPT-Seq on tasks T1 and T2 when the models are
trained on sequential tasks.

[η2B2 + (1− η2)I]PG [η1B1 + (1− η1)I], where I denotes the identity matrix. The effects of η1
and η2 which are set to a same value η̄ is shown in Figure 5 . As the weight decreases, the accuracy
increases first owing to better plasticity, and then decreases due to worse stability caused by the
forgetting. It implies that a trade-off can be achieved by the two weights of projections.

Long-sequence Continual Learning We experiment on 5 benchmarks under the protocols of 50 tasks
and 100 tasks to validate that our approach remains effective even within the context of long-sequence
continual learning. The results are presented in Table 4. Despite lacking plasticity enhancement,
VPT-NSP2 can outperform existing state-of-the-art approaches and especially surpasses L2P by a
large margin. This demonstrates that forgetting is still the predominant factor affecting performance
in long sequence of tasks. With the plasticity enhancement, VPT-NSP2 achieves significant increase
in accuracy (by 1.1%∼2.9%). This demonstrates that our plasticity enhancement is effective in
learning new knowledge in long-sequence continual learning.
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Figure 5: Effect of the projection matrix weight η̄ on the accuracy and forgetting for the stability-
plasticity trade-off on the four benchmarks.

Table 4: Results for 50 tasks and 100 tasks on CIFAR-100, ImageNet-R and DomainNet datasets.
† indicates no plasticity enhancement, and ‡ indicates using the balanced plasticity enhancement
where η̄ is the default value less than 1. Our approach still outperforms other methods in long
sequences of tasks.

Method 50S-CIFAR100 50S-ImageNet-R50S-DomainNet100S-ImageNet-R100S-DomainNet

Acc. Forgetting Acc. Forgetting Acc. Forgetting Acc. Forgetting Acc. Forgetting

L2P 76.19 12.06 48.53 12.99 59.45 11.53 38.87 15.26 50.52 17.66
EvoPrompt 76.60 13.86 68.53 10.03 67.68 10.41 61.84 15.84 56.35 21.39
OVOR 65.69 14.28 60.08 5.86 66.27 7.43 40.49 8.12 47.65 8.91
InfLoRA 61.49 13.68 59.02 11.02 69.96 9.51 38.16 15.11 44.32 17.85
EASE 74.47 9.31 68.17 7.76 61.20 10.01 47.55 8.22 33.08 32.14
CPrompt 74.97 7.45 68.47 8.16 67.87 9.36 56.95 10.20 53.73 12.14

VPT-Seq 70.47 29.21 56.38 37.91 58.39 44.79 49.72 45.53 46.39 49.34
VPT-NSP2† 81.92 6.56 67.32 6.35 70.13 9.92 59.97 10.07 54.44 11.04
VPT-NSP2‡ 82.98 6.66 69.48 6.51 71.28 11.36 62.23 12.13 57.35 13.82

6 Conclusion

In this paper, we study the interference problem of visual prompt tuning in ViTs, and propose two
consistency conditions which can eliminate the interference in theory under the constraint of invariant
prompt distribution. They guarantee the consistency of Affinity, Aggregation and distribution of
prompts in LayerNorm, respectively, which jointly achieve the consistency objective of the whole ViT
layer. We adopt the null-space projection to implement the two conditions and utilize an extra loss to
satisfy the constraint. Our experiments on various benchmarks demonstrate the effectiveness of the
proposed conditions for anti-forgetting, and our approach achieves state-of-the-art performances.

Limitation Discussion: To simplify the derivation of our consistency conditions, we introduce a
constraint of invariant prompt distribution. Although the superior results show that it may not be a
very strong assumption, it is not an exact solution.
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Appendix: Visual Prompt Tuning in Null Space for Continual Learning

A Algorithm

An overview and algorithm of our approach are provided in Figure 6 and Algorithm 1 , respectively.
We first initialize the overall uncentered covariance matrices [36] C1 and C2, as well as the null-space
projection matrices B1 and B2. During training, the cross-entropy loss for classification and the loss
of prompt distribution LLN are jointly utilized for optimization. Subsequently, we get the candidate
prompt updates PG computed by the optimizer. Then PG is projected by the null-space projection
matrices B1 and B2 for updating the prompts. After the convergence, we obtain the matrices J1 and
J2 to temporarily store QXt

W⊤
k and SPt

for the data of the current task. Then they are used to
update the uncentered covariance matrices C1 and C2 by addition. Finally, we update the null-space
projection matrices using the uncentered covariance matrices, which will be used in the next task.

Algorithm 2 shows the process of computing a null-space projection matrix. First, an input uncentered
covariance matrix C is decomposed by SVD, from which we can get the singular values and right
singular vectors. Next, we determine the nullity R (i.e., the dimension of null space) of C according
to the maximum second derivative, which is introduced in Section C . Then we select R right singular
vectors corresponding to the R smallest singular values considered close to 0 as the bases of null
space. Finally, we compute the normalized projection matrix, which provides an upper bound for the
scale of the projected gradients and prevents excessive gradient magnitudes. In our implementation,
the null-space projection matrix is added by an identity matrix with a weight η (specifically η1 for B1
and η2 for B2). η is a hyper-parameter for the trade-off between stability and plasticity, which is also
introduced in Section C

B Experimental Setups and Implementation Details

Models: We validate our approach on the Vision Transformer (ViT) [9] and CLIP [27] models in the
experiments, whose backbones are both ViT-Base/16 [9]. The ViT is pre-trained on ImageNet-21k,
and we insert 4 prompts into each of the 12 layers for fine-tuning, which is referred to as "VPT" [13].
The classifiers are dependently trained in each task and the orthogonal projection is not applicable to
them. All the classifiers from the available tasks are concatenated to make prediction during inference.
For the CLIP model pre-trained on the WebImageText, we insert 4 prompts into each of the first 3
layers of the image encoder, while the text encoder is kept frozen. The logit scale that serves as a
learnable scalar parameter to scale the cosine similarities between image features and text features is
also set to trainable. We observed a serious cross-task confusion among the tasks in the CLIP model.
Hence, we follow [44] to utilize the class-wise mean and covariance of previous features extracted
before the embedding projection head (i.e., the last linear layer of the image encoder) to refine the
projection head, after the prompt tuning stage in each task.

Figure 6: Illustration of our algorithm. The input image tokens with prompts are fed into the ViT
layer for forward propagation. During optimization, the gradients of the prompts will be projected
into the orthogonal direction to the subspace of the previous task Tt−1. The projected prompt update
will be used to update the prompts for anti-forgetting.
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Algorithm 1 NSP2 for Visual Prompt Tuning

Inputs: Datasets Dt = {(X<i>
t , y<i>

t )}|Tt|
i=1 for task Tt ∈ {T1, T2, · · · }, ViT model fmodel(·|Pt)

with the prompts Pt to be optimized (the classifier is omitted for simplicity), uncentered covari-
ance matrices C1 and C2, projection matrices B1 and B2

Outputs: The optimized prompts Pt

1: Initialization: Randomly initialize Pt; C1 = 0, C2 = 0, B1 = I, B2 = I
2: for task Tt ∈ {T1, T2, · · · } do
3: repeat
4: Sample a mini-batch X t,yt ∼ Dt

5: Obtain prediction by ŷt ← fmodel(X t|Pt)
6: Compute the classification loss Ltotal ← CrossEntropy(ŷt,yt)
7: if t > 1 then
8: Compute the loss of prompt distribution LLN by Eq. (27)
9: Accumulate the losses Ltotal ← Ltotal + LLN

10: end if
11: Get the candidate prompt update PG from the optimizer by the loss Ltotal

12: if t > 1 then
13: Compute the prompt update ∆P← B2PGB1 by the null-space projection Eq. (26)
14: else
15: Directly adopt the candidate prompt update ∆P← PG
16: end if
17: Update the prompts by Pt ← Pt − learning_rate×∆P
18: until convergence
19: Initialize two temporary matrices J1 = [ ] and J2 = [ ]
20: for X<i>

t ∈ Dt do
21: Get the matrices (QXtW

⊤
k )

<i> and S<i>
Pt

by the forward propagation fmodel(X<i>
t |Pt)

22: Update J1 and J2 by concatenating (QXt
W⊤

k )
<i> and J1, S<i>

Pt
and J2, respectively

23: end for
24: Update the uncentered covariance matrices C1 ← C1 + J⊤

1 J1 and C2 ← C2 + J⊤
2 J2

25: Compute the null-space projection matrices B1 and B2 by Algorithm 2 using C1 and C2

26: end for

Algorithm 2 Computing Null-Space Projection Matrix
Inputs: Uncentered covariance matrix C, hyper-parameter η ∈ [0, 1] for the trade-off between

stability and plasticity (mentioned in Section C)
Outputs: Null-space projection matrix B

1: Get the singular values Λ in descending order and the corresponding right singular vectors U by
singular value decomposition Λ,U⊤ ← SVD(C), where the left singular vectors are omitted

2: Calculate the nullity R by the maximum second derivative as introduced in Eq. (28)
3: Select the right singular vectors of the R smallest singular values in U as U0 ← U[D−R:D]

4: Compute the projection matrix B ← U0U
⊤
0

∥U0U⊤
0 ∥F

5: Update B with the weight η by B ← ηB + (1− η)I (corresponding to Eq. (29))

Benchmarks: We conduct experiments under the class-incremental learning protocol, where the
classes in each task are disjoint, and task identity is unknown during inference. Four class-incremental
benchmarks with three widely used datasets are adopted: 10- and 20-split CIFAR-100, 10-split
ImageNet-R [39] and 10-split DomainNet [25, 38]. For the CIFAR-100 dataset, the total of 100
classes are randomly split into 10 or 20 tasks, which can evaluate the ability to handle different
numbers of tasks. We follow [39] to randomly split the 200 classes in ImageNet-R into 10 tasks,
which forms the 10-split ImageNet-R benchmark. For the 10-split DomainNet, we follow the same
dataset protocol adopted in [38] and [11] to select the top 200 classes with the most images from
the original DomainNet [25], and randomly split them into 10 tasks with 20 classes per task. 25%
samples of the training data in each dataset are picked as a validation set for searching optimal
hyper-parameters.
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Metrics: Formally, the final average accuracy and final average forgetting are defined as:

Final average accuracy =
1

T

T∑
i=1

aT,i,

Final average forgetting =
1

T − 1

T−1∑
i=1

max
j∈{1,2,··· ,T−1}

(aj,i − aT,i),

where T is the number of tasks, aT,i is the accuracy of the T -th model on the i-th task samples, and
aj,i is the accuracy of the j-th model on the i-th task samples.

Higher accuracy means the model performs better, while lower forgetting means stronger stability
(i.e., the ability to retain old knowledge). However, lower forgetting does not always generate higher
accuracy since the accuracy is also affected by plasticity (i.e., the ability to learn new knowledge).
The accuracy is the main metric we should focus on as it reflects the precision of classification in
practice.

Implementations Details: For all the datasets and models, the images fed into the models are resized
to 224× 224 pixels and augmented by AutoAugment [7] during training. For the VPT-based models,
we use the Adam optimizer [16] with β1 = 0.9, β2 = 0.999 and a weight decay of 5 × 10−5 to
train 100 epochs with an initial learning rate of 0.01 and a batch size of 256 on all benchmarks. The
learning rate is scaled by a factor of 0.1 at the 50-th and 80-th epoch. Our training losses consist of
the cross-entropy loss for classification and the loss LLN in Eq. (27) whose coefficient is set to 1.
Through cross validation on the validation set, we set the temperatures in the cross-entropy loss to
28, 25, 30 and 30 for the 10-split CIFAR100, 20-split CIFAR100, 10-split ImageNet-R and 10-split
DomainNet benchmarks. There are two hyper-parameters η1 and η2 used for the trade-off between
stability and plasticity in null-space projection as introduced in Section C , and we set both of them to
be 0.97, 0.95, 0.94 and 0.95 for the four benchmarks by cross validation.

As to the CLIP-based models, the differences in training settings are as follows. We train them for 20
epochs with the batch size of 220 and the learning rate 0.001 which decays at the 10-th and 16-th
epoch. The temperatures are all set to 1 since the logit scale is trainable. η1 and η2 are set to 0.98
which is a proper value for all the benchmarks. We refine the embedding projection head for 50
epochs using the SGD optimizer with a learning rate of 0.001, a momentum of 0.9 and a weight decay
of 1× 10−4.

We implement our approach in PyTorch [24] with the timm library [41]. The experiments are
performed on a server with 128 GB RAM and four NVIDIA RTX 4090 GPUs. Each of the experiment
can be finished in three hours.

C Trade-off between Stability and Plasticity

Given that the null space of covariance matrix does not always exist in practice, Wang et al. [36]
suggest approximating it by selecting the bases whose associated singular values approach zero,
where the singular values smaller than a specified multiple (denoted as γ in our paper) of the smallest
one are selected. However, we experimentally find this strategy and the experience for selecting γ
are not suitable for prompt tuning in ViTs to determine the nullities R1 and R2 for the uncentered
covariance matrices C1 and C2 in Algorithm 1 , which will be introduced afterwards. To solve this
problem, we propose an adaptive nullity strategy to determine the nullities in an adaptive manner.
Utilizing the characteristic that the curve of descending singular values forms an "L" shape, we divide
the curve into two parts by the point where the gradient changes fastest to cover most of the small
singular values. It is realized by calculating the maximum second derivative of the points:

R1 = D − argmax
j
{λj−1 − 2λj + λj+1}D−1

j=2 ,

R2 = M − argmax
j
{λj−1 − 2λj + λj+1}M−1

j=2 ,
(28)

where λj denotes the j-th singular value. We find it reaches near-minimum forgetting in our
experiments which also means reaching near-optimal stability. Furthermore, to enhance the plasticity,
we fuse the projection matrices with identity matrices by the weights η1 ∈ [0, 1] and η2 ∈ [0, 1]
which should be close to 1:

∆P = [η2B2 + (1− η2)I]PG [η1B1 + (1− η1)I] . (29)
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In this way, we can make a trade-off between stability and plasticity by enhancing the plasticity based
on near-optimal stability, and η1 and η2 are the hyper-parameters to control the trade-off.

D Comparison with PGP

D.1 Difference in Methods

The main difference between our method and PGP [26] are summarized as follows. (1) We derive
a different consistency condition for Affinity even if we ignore the LayerNorm operation and the
bias terms in the qkv-transformation. Specifically, our simplified consistency condition for Affinity
is XtWqW

⊤
k ∆P⊤ = 0, contrasted with Xt∆P⊤ = 0 in PGP. (2) We analyze the consistency

conditions for the complete self-attention, i.e., softmax(
QXK⊤

Z√
D

)VZ which contains the Aggregation
operation. However, PGP does not account for the Aggregation. (3) We take the LayerNorm before
self-attention into consideration and propose an invariant prompt distribution constraint, while it is
ignored in PGP.

In conclusion, we conduct a comprehensive analysis of prompt tuning for the consistency objective,
which provides a complete guarantee to eliminate the interference of new tasks on previous tasks. As
demonstrated in our ablation study in the Experiment section, the consistency of Aggregation and
LayerNorm also contribute to reducing forgetting, and thereby they should not be ignored. We make
a comparison of the performance between PGP and our approach in the next subsection.

D.2 Performance Comparison

We compare with PGP [26] using the VPT-Seq and L2P [40] baselines on the four benchmarks in
our experiments. The results are shown in Table 5 . We implement PGP to VPT (i.e. VPT-PGP)
under the same training settings as VPT-NSP2 for a fair comparison. For the L2P-based methods, we
insert prompts into the first three layers instead of only the first layer in the original implementation
[40]. An orthogonal projection is also applied to the prompt pool which is essentially a linear layer
in L2P-based models. We follow the training setting of PGP to train the L2P-based methods. The
results in Table 5 demonstrate that our full approach can achieve more improvements in accuracy
and reduce more forgetting than PGP. Even when applying only the projection matrix B1 for the
Affinity operation, our approach also performs better than PGP, demonstrating the effectiveness of
our proposed method for mitigating the interference problem.

Table 5: Comparison with PGP on four benchmarks and two continual learning baselines. "-B1"
indicates only the projection matrix B1 is used in our approach

Method 10S-CIFAR-100 20S-CIFAR-100 10S-ImageNet-R 10S-DomainNet

Acc.↑ Forgetting↓ Acc.↑ Forgetting↓ Acc.↑ Forgetting↓ Acc.↑ Forgetting↓
VPT-Seq 87.27 12.33 82.36 17.36 72.46 19.41 73.28 25.65
VPT-PGP 87.76 11.98 82.71 16.85 73.12 18.92 73.98 25.15
VPT-NSP2-B1 90.58 6.91 88.13 10.27 78.05 8.14 82.31 10.89
VPT-NSP2 91.74 3.28 89.89 4.91 78.88 5.06 83.54 8.54

L2P 84.12 6.36 81.46 8.69 61.25 9.32 65.73 10.19
L2P-PGP 84.70 5.96 82.04 8.11 62.01 8.55 66.31 9.63
L2P-NSP2-B1 86.39 4.60 82.99 7.34 64.10 7.17 67.48 8.21
L2P-NSP2 86.78 4.22 83.37 6.93 64.66 6.84 68.14 7.79
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state the claims in our abstract: we derive two consistency con-
ditions of eliminating the interference problem under the invariant prompt distribution
assumption for visual prompt tuning in the filed of continual learning. We implement them
by the null-space projection method, and we validate the effectiveness and generalizability
of our method. Our contributions are elaborated in the last paragraph of the Introduction
section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation of our approach is discussed in the Conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The formulas used to derive our proposed conditions are numbered or cross-
referenced.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the algorithm of our approach, experimental settings and hyper-
parameters adopted in our experiments in the Experimental Setups and Implementation
Details section of the appendix. Our code is also available in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is available in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed experimental settings, including the data splits, hyper-
parameters, optimizer and other settings in the experimental setups of appendix. We also
provide the code in the supplemental material for a thorough reference.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the mean results over three runs in our experiments, and we report
the standard deviations in the subsection of comparison with existing methods.

Guidelines:

• The answer NA means that the paper does not include experiments.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the information of our compute resources in the experimental
setups of appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and make sure our research
conforms the ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: As a fundamental research in machine learning, the potential societal impact is
not obvious at this stage.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No new pre-trained models or datasets are released in this work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We explicitly cite the used assets in our papers, including the ViT model, timm
library, DomainNet dataset, etc., and respect their license and terms during usage.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our code is provided in the supplemental material. A documentation for
running the experiments is contained in the code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

23

paperswithcode.com/datasets


• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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