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Abstract

A bottleneck for long-context LLM inference is the linearly growing KV cache.1

Recent work has proposed CARTRIDGES, an approach which leverages offline2

compute to train a much smaller KV cache than is typically required for a full3

document (up to 40x less memory usage at inference time). In this paper, we4

present the first mechanistic exploration of the learned CARTRIDGE key-value5

cache structure. In particular, we propose that (1) CARTRIDGE keys act as stable,6

shareable retrieval routers for the compressed corpora and (2) most of the learned7

compression occurs within the CARTRIDGE value vectors. We present empirical8

evidence of our routing theory across tasks, model families, and model sizes; for9

example, we can ablate the learned CARTRIDGE key vectors between tasks with10

little performance loss. Finally, we propose a slight improvement in initialization11

called Sampled Chunk Initialization (SCI). We suggest that SCI can lead to faster12

CARTRIDGE convergence than previously demonstrated in the literature. Our13

findings lay the groundwork for broader empirical study of CARTRIDGE training14

optimization which may be crucial for further scaling.115

1 Introduction16

As context windows grow for large language models (LLMs), users expect to process larger corpora.17

Common use-cases are large code bases [18], financial filings and market data [10], legislature [8],18

or personal files [1]. The most common solution is in-context learning (ICL) wherein we provide19

the full context to the downstream model; however, ICL-based inference relies on a key-value (KV)20

cache that grows linearly with context window utilization [4]. Because the cache grows linearly,21

we need to consider (1) the memory consumption of storing context for ICL and (2) the resulting22

reduction in throughput due to increased pressure on-device bandwidth and compute [6]. This leaves23

users with an undesirable tradeoff between convenience and inference cost.24

Recent work tackling long-context inference have primarily focused on server-level optimizations.25

Server-level approaches most notably include prompt (or prefix) caching, prefix-sharing (cascade26

and bifurcated attention, Hydragen [12][23][2]), and distributed approaches like ring attention.[17]27

However, these methods do not directly address compute and bandwidth pressures. In response, a28

growing roster of cache slimming protocols has emerged and we can divide them into two classes:29

token reducers and key-value compressors. Token reducers rely on summarization, chunking, or30

filtering to reduce corpora directly via heuristics or natural language [11][3]. Key-value compressors31

directly leverage sparsity or query oracles to project KV caches into lower rank spaces [7][21].32

While these approaches are promising, they typically come with a quality tradeoff. A more recent33

key-value compression method proposes a two-stage pipeline [5]:34

1Anonymized code is available. Otherwise, we use the publicly available code from the original paper.
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Figure 1: (Left) CARTRIDGES learn to compress long-context documents by first generating synthetic
conversations about the corpus and then training a small KV cache using the synthetic traces. This
process is called SELF-STUDY. Leveraging a context distillation objective, we back-propagate SELF-
STUDY traces into trainable KV caches while keeping the rest of the model frozen. (Right) Here
we plot the layer-wise mean singular value spectra of a LLAMA 3.1 8B CARTRIDGE’s KV vectors
before and after training. The resulting key vectors are stable while the learned value vectors increase
in singular value, representing a more efficient use of representation space due to compression.

1. Self-Study: Exhaustively chunk the corpus and prompt a model to quiz itself on the content.35

These synthetic rollouts can be massively parallel and help build a diverse training dataset.36

2. Context Distillation: Once we have our conversational traces, we initialize the model with37

a fixed-size key-value cache of length p≪ dC where C is our Corpus. Then, we can train38

on a context distillation objective to align our CARTRIDGE-initialized model’s next token39

distribution with the SELF-STUDY synthetic traces.40

The synthetic trace generation process is SELF-STUDY and the final context-distilled cache is called41

a CARTRIDGE. CARTRIDGES exhibit interesting properties, including composability, high recall42

accuracy on benchmarks, and a tensor structure that is ideal for high throughput prefix-sharing43

inference engines e.g. Tokasaurus [13].44

In this paper, we contribute a preliminary investigation into the mechanisms of a trained CARTRIDGE.45

In particular, we study the structure of the learned CARTRIDGE key and value vectors across model46

families, scale, and corpora. We can summarize our results as follows:47

• We observe that keys barely change during CARTRIDGE training whereas values change48

significantly. We use singular value analysis to summarize this trend and argue that value49

vectors learn to use their representation dimensionality more effectively to maximize com-50

pression. This result likely explains why random initialization failed to converge in the51

original CARTRIDGES paper.52

• We ran an ablation experiment where we train two CARTRIDGES with shared initializers53

on different tasks and then swap the learned key vectors but not the values. We note that54

responses remain coherent and the resulting performance loss is mild, which aligns with our55

first observation.56

• We investigate a simple but effective initialization scheme for our CARTRIDGE. Rather than57

using the first p tokens of our corpus to initialize the CARTRIDGE (the main method used in58

the original paper), we randomly sample chunks throughout the full corpus to maximize59

structural diversity. This approach leads to statistically significant improvements for training60

convergence.61

2 Preliminaries62

In this section, we position CARTRIDGES as a new parameter efficient fine-tuning (PeFT) technique63

that borrows directly from prefix-tuning. We briefly summarize prior work on PeFT mechanistic64

interpretability, highlighting the lack of related work to prefix-tuning based PeFT methods. Next,65
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we provide more details on CARTRIDGES with a focus on the relevant experimental parameters66

and notation for our downstream experiments. Finally, we briefly cover the relevant datasets and67

benchmarks to reduce friction when framing our analyses in Sections 3 and 4.68

2.1 Related Work69

There is a significant body of work exploring task-specific LLM specialization. Common PeFT70

techniques are low-rank adapters (LoRA) and prefix-tuning, with the former being the most popular71

method [9][16]. CARTRIDGES primarily borrow from prefix-tuning: both methods prepend a learned72

representation to the input sequence and rely on the model to treat the trained prefix as real tokens.73

However, despite the widespread popularity of PeFT, there is comparatively little research focused on74

interpreting how LoRAs or prefix-tuning change models at a mechanistic level.75

Interpreting LoRA Recent interpretability work focuses on LoRA-driven mechanistic changes76

when tuning for narrowly scoped tasks. For example, Lee et al. studied sparse neural activations77

during LoRA for nuclear safety applications, while Nijasure et al. found that middle layers (5-15)78

and specific MLP projections drive ranking performance [15][19]. These works focus on neuron-79

level changes and layer contributions, whereas our analysis examines the geometric structure and80

transferability of learned representations.81

Interpreting Prefix-Tuning Prefix-tuning, which is much less popular than LoRA in practice, has82

even less relevant interpretability work. However, Petrov et al. provide a theoretical analysis of when83

prefix-tuning works well [20]. They theoretically argue that prefix-tuning "cannot change the relative84

attention pattern over the content" and we find that this theory aligns strongly with our experimental85

findings. More concretely, they argue that key vectors have fixed directional biases established during86

pre-training; our ablation experiments (Figure 3) support this claim directly on real downstream tasks.87

2.2 Relevant CARTRIDGES Notation88

We choose to preserve notation from the original CARTRIDGES paper to make cross-referencing easier89

for the reader. Taking that into consideration, we provide a brief overview of relevant definitions.90

LLMs For an LLM F we define the output distribution pmodel(·) = F(·|x) which is a categorical91

distribution over the model’s vocabulary V . Given a corpus C and queries q, we can define in-context92

learning (ICL) decoding of our queries as F(·|C ⊕ q).93

CARTRIDGE A CARTRIDGE is a KV cache of size p≪ nC which aims to augment an LLM F such94

that the LLM behaves as if a Corpus C of length nC were fully within context. Throughout the paper,95

we call this CARTRIDGE Z ∈ RL×p×dhead×2 and define the augmented F as FZ . Given l ∈ [1, L],96

where l indexes our model layers, we can summarize the difference between traditional ICL and97

Cartridges as:98

ICL KV Cache: (k[1],v[1]), . . . , (k[nC ],v[nC ])︸ ︷︷ ︸
KV pairs for C

, (k[nC + 1],v[nC + 1]), . . .︸ ︷︷ ︸
KV pairs for q

CARTRIDGE KV Cache: (z
(l)
k,1, z

(l)
v,1), . . . , (z

(l)
k,p, z

(l)
v,p)︸ ︷︷ ︸

Trainable pairs in Z

, (k[1],v[1]), . . .︸ ︷︷ ︸
KV pairs for q

During CARTRIDGE training, only the parameters composing our CARTRIDGE Z of sequence length99

p are trainable while the rest of F remains frozen.100

2.3 Datasets and Benchmarks101

For consistency, we re-use or reproduce the core datasets from the original CARTRIDGES paper.102

LONGHEALTH is a question answering benchmark containing 20 fictional patients’ detailed medical103

records. Each record is composed of multiple cases and each case is approximately 5,500 words long.104

For the LONGHEALTH corpus CLongHealth, each prompt q is a multiple choice question with 5 options.105

In accordance with the original paper, we use 10 full patient records concatenated to form a 100k+106
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Figure 2: (Left) We reproduced a LONGHEALTH CARTRIDGE from the original paper. To do
so, we trained a LLAMA 3.2 3B CARTRIDGE with length p = 2048 for 3072 optimizer updates
(batch_size=64, sequence_length=1024). We checkpointed the CARTRIDGE every 96 optimizer steps
and, for all layers l ∈ [1, L], plotted the key and value vector rotation between each checkpoint.
Notably, value rotations are often a full order of magnitude larger than key rotations and they continue
late into the training process. (Right) We trained two CARTRIDGES on separate tasks: GENCONVO
and LONGHEALTH from the original paper. Afterwards, we plotted the layer-wise cosine similarity
between the two fully trained CARTRIDGES and note that their learned key vectors are highly similar.
We explore this further in Figure 3 where we show that we can swap these key vectors with minimal
downstream performance loss. On the other hand, the learned value vectors differ the most within the
layers that experience the most vector rotations throughout learning.

token context corpus with 200 questions to measure accuracy. This formulation is different from the107

original LONGHEALTH paper’s evaluation setting which evaluates each patient independently. We108

prefer the CARTRIDGES formulation because it showcases longer-context reasoning and requires that109

the model delineate between different patient cases.2110

GENCONVO is a synthetic conversational dataset based on FINANCEBENCH’s 2022 AMD 10-K111

corpus. Our GENCONVO conversations are based on four different Q&A prompts that encourage112

structural, multi-hop, mathematical, and factual retrieval reasoning (Appendix C.2). We reproduce113

GENCONVO with Claude Sonnet 4.0 instead of 3.7 due to changes in rate limits between these114

models. To maximize throughput and balance API rate limit loads, we use inference-time scaling115

library VERDICT for GENCONVO synthesis [14]. Throughout the paper, we rely on GENCONVO116

perplexity to measure a CARTRIDGE’s ability to compress financial reasoning. While the original117

GENCONVO produces 16 answers per question, we opted to generate 50 manually validated answers118

per question for our evaluation set.119

ARXIV is the tutorial SELF-STUDY dataset from the CARTRIDGES GitHub. The ARXIV corpus is120

the source .tex file for the original CARTRIDGES paper (40k tokens and 64k SELF-STUDY rollouts).121

We only use ARXIV to train QWEN3’s ABLATIONCARTRIDGE model used in Figure 3. We do not122

run evaluations using ARXIV.123

3 What representation does a CARTRIDGE learn?124

In this section, we’ll explore the evolution of the CARTRIDGE key and value vectors throughout train-125

ing. First, we’ll analyze the geometric restructuring of the CARTRIDGE KV cache from initialization126

to convergence (Figure 2). Next, we’ll formalize our singular value analysis and argue that it provides127

a summary of training dynamics. Finally, we’ll run an ablation experiment to show that CARTRIDGE128

key vectors can be swapped between learned tasks with minimal performance loss (Figure 3).129

2In LONGHEALTH, inter-patient differences can be subtle. For example, patient_01 might receive an
ibuprofen prescription that’s only 50mg different from patient_02. By mixing the corpus, we require the
model to perform multi-hop reasoning beyond memorizing just one ibuprofen dosage.
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3.1 Observed Training Dynamics130

Let’s briefly refresh the SELF-STUDY context distillation objective. First, we build a teacher dis-131

tribution pteacher(·) = F(·|C ⊕ q) over the synthetic conversations derived from the corpus we want132

to compress. In our case, we borrow the same conversation "seed prompts" from the original paper133

(Appendix C.1). We then train our student pstudent(·) = FZ(·|q) to minimize134

L = E(C,q)∼Dsynth [KL(pteacher∥pstudent)]

where Dsynth is the synthetic conversation dataset from SELF-STUDY, and we optimize only the135

trainable parameters Z = {(z(l)k,i, z
(l)
v,i)}Ll=1 across all layers. For convenience, we say a CARTRIDGE136

Z’s size is p.3137

During this distillation, we note that our trainable key vectors rarely change whereas our value vectors138

change often; in particular, we measure these changes via the cosine similarity between CARTRIDGE139

checkpoints (Figure 2) e.g. cos(Z(t), Z(t+1)). Our hypothesis is that the key vectors rotate minimally140

enough that given two CARTRIDGES initialized via the same method, we could swap their key vectors141

arbitrarily. If this is true, it implies that CARTRIDGE key vectors act as stable routers to compressed142

value payloads. The magnitude difference in rotations reflects this division of labor: while values143

require continuous refinement for compression, keys stabilize once effective routing is established.144

3.2 Singular Value Analysis145

Algorithm 1 Singular Value Analysis for Trained CARTRIDGE

1: Initialize: S ← {} ▷ Spectral collections
2: for vector ∈ {KEYS,VALUES} do
3: S[vector]← ∅
4: for l = 1 to L do ▷ Each layer
5: T (l) ← EXTRACT(C, l, vector) ▷ Rh×p×dhead

6: X(l) ← RESHAPE(T (l), [h · p, dhead]) ▷ Flatten heads
7: σ(l) ← SVD_VALS(X(l)) ▷ Singular values
8: σ̃(l) ← σ(l)/σ

(l)
1 ▷ Normalize by largest

9: S[vector]← S[vector] ∪ {σ̃(l)[: k] ▷ Fetch the top k values
10: end for
11: end for
12: return {MEDIAN(S[KEYS]), MEDIAN(S[VALUES])}

While informative, we found the cosine similarity heatmaps too busy to establish a scalable, cross-146

model trend. As a response, we designed an analysis which runs a layer-wise singular value147

decomposition and then normalizes those values (Algorithm 1). In addition to reporting the median148

trend line, we also provide inter-quartile range bands (IQR) at the 25th and 75th percentile. Here’s149

what we observed:150

Trends Across Scale We found the high-level trend of stable routing keys and compressed value151

payloads consistent across model sizes (Appendix B). It seems that the model’s pretrained prior is152

strong enough that it’s more effective to focus on value re-alignment and compression than finding a153

more effective key structure (Figure 3).154

Differences Between Model Families In Figure 3, we leverage our singular value analysis to explore155

why QWEN3 responds differently to our ablation than LLAMA (-7% vs -4-5% performance drop).156

We observe that QWEN3 key vectors are more heterogeneous across layers than LLAMA (via the IQR157

bands). The wider IQR bands directly correspond to QWEN3’s larger performance drop, suggesting158

layer-wise key specialization reduces transferability.159

3The most intuitive analog for p is to think of a CARTRIDGE as a KV cache composed of p tokens. Therefore,
the context distillation objective is to compress the SELF-STUDY corpora into that KV cache such that p is much
smaller than the original corpus.

5



N
o
r
m
a
l
i
z
e
d sin

g
u
l
a
r va

l
u
e

0.2

0.1

-

1.0

0.5

ㅏ

Key vs. Value Singular Value Spectra (Qwen3 4B)
-

--.

Init Keys
Init Values

Learned Keys
Learned Values

20 40 60

Singular value index

80 100 120

A
c
c
u
r
a
c
y (

%)

Cartridge Swap Performance Across Models

40 38.0

34.0

30.0

30 28.5

Trained Cartridge

Ablation Cartridge

Baseline (No Cartridge)
35.5

28.5

20.5

20

10

이

18.0

Llama 3.1 8B Llama 3.2 3B Qwen-3 4B

12.0

Figure 3: (Left) We present three LONGHEALTH evaluation settings: a baseline with no CARTRIDGE
(red), a model with a LONGHEALTH-trained CARTRIDGE (blue), and a model where we swap its
LONGHEALTH-trained CARTRIDGE key vectors with keys from a different task (orange). We call
the latter an ABLATIONCARTRIDGE. For the LLAMA models, we swap in key vectors trained on
GENCONVO and for QWEN3 we use key vectors trained on ARXIV data. While the vector swap leads
to a slight performance loss, the ABLATIONCARTRIDGE still outperforms both a random choice
baseline and the model’s baseline performance. (Right) We reran our KV cache singular value
analysis on QWEN3. First, we noticed that QWEN3 exhibits the same training-time value vector
singular increase of the LLAMA family. Second, QWEN3’s key vector singular values are higher
variance than LLAMA which might explain the larger performance loss during ablation.

Furthermore, based on how little CARTRIDGE key vectors drift throughout training we recognize160

that initialization might play a larger role in SELF-STUDY-based distillation than we thought. We161

explore this more in (Figure 4) where we show statistically significant faster convergence by randomly162

sampling the corpus to initialize our CARTRIDGE.163

3.3 Key Vector Ablations164

Informed by our CARTRIDGE KV cache singular value analysis, we decided to run an ablation165

experiment on the LONGHEALTH benchmark used in the original paper (Figure 3). For two trained166

CARTRIDGES ZA = {(zAk,i, zAv,i)}
p
i=1 and ZB = {(zBk,i, zBv,i)}

p
i=1 from different tasks {A,B}, we167

construct the ABLATIONCARTRIDGE:168

ZAB = {(zBk,i, zAv,i)}
p
i=1

In comparison to the CARTRIDGE-enabled LLMs F(ZA) and F(ZAB), we also define a baseline169

model F(Z∅) which has no CARTRIDGE. We call zAk,i and zBk,i transferable if ACC(F(ZAB)) >170

ACC(F(Z∅)) and the answer overlap between F(ZA) and F(ZAB) is statistically significant (see:171

Table 1).172

For our ablation experiments, we train all models for 512 optimizer steps with a batch size of 128 and173

a packed sequence length of 1024. For all experiments, we train ZA on LONGHEALTH and ZB on174

either GENCONVO or ARXIV. The CARTRIDGE sequence length p is held consistent at 2048 and the175

Table 1: We ran a hypergeometric statistical test (N = 200) on the Q&A correctness overlap between
trained and ablated CARTRIDGES. We confirm that the overlap is statistically significant compared
to random chance in 5-question multiple choice Q&A. Notably, despite experiencing the largest
performance loss due to ablation, QWEN3-4B has the most overlap of the three models we tested.

Model ntrain nablated noverlap p-value

Llama 3.1 8B 76 68 34 0.0156∗
Llama 3.2 3B 60 57 28 0.0003∗
Qwen-3 4B 71 57 40 <0.0001∗
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Figure 4: (Left) We plot the perplexity for 10 LLAMA-1B GENCONVO training runs with both
Sampled Chunk Initialization (SCI) and the original paper’s First k Tokens Initialization. Additionally,
we include a random vector initialization run for comparison. For all our SCI experiments, we chose
chunksize=64 because it was the midpoint in our n-gram diversity vs. context length analysis
(Appendix A). (Right) A different view on the perplexity graph, we can visualize convergence speed
over our runs as a box plot. Setting a target threshold of perplexity = 1.10 to define convergence, we
can run a paired t-test to confirm that SCI converges at a statistically faster rate (p < 0.05) than the
original paper’s First-k Token Initialization scheme.

initializing document is the default initializer from the CARTRIDGES repository (gradients.txt, the176

Wikipedia article for gradients). Surprisingly, we find that keys from First k Token Initialization are177

transferable for LLAMA 3.2 3B, LLAMA 3.1 8B, and QWEN3.178

4 The importance of good initialization179

In this section, we propose and briefly benchmark an improved initialization scheme for CAR-180

TRIDGES. Inspired by our observation of training dynamics and KV cache geometry, we suggest that181

CARTRIDGE initialization benefits from the structural diversity of random sampling.182

4.1 Known Initialization Schemes183

The original CARTRIDGES paper explored a few approaches for CARTRIDGE initialization:184

• Random Vector Initialization: random vector initialization (RVI) for prefix tuning is known185

to be unstable from prior literature.[16] In the original CARTRIDGES paper, the authors186

note that random vector initialization fails to converge and performs poorly compared to187

other methods. In hindsight, it’s clear why: instead of focusing on value compression, a188

randomly initialized prefix is burdened with a joint optimization problem of both routing189

and compression.190

• First-k Token Initialization: using the first k tokens from the target corpus C is a natural191

first-pass approach and is the initialization scheme used by the original paper. By sampling192

from real text, we are leveraging structures the model is already comfortable working with.193

• Summary-Based Initialization: alternatively, we could use a lighter-weight summarization194

model to initialize a CARTRIDGE. While attractive, we de-prioritized this approach to avoid195

explicitly stacking models which can introduce further uncertainty when benchmarking196

performance.197

4.2 Sampled Chunk Initialization198

We present Sampled Chunk Initialization (SCI) (Algorithm 2), a principled alternative to the original199

paper’s First-k Token Initialization. In Figure 4 we show that SCI converges faster than both First-k200

Token Initialization and random initialization. In (Appendix B.4), we present further singular value201

analyses of the three initialization methods in (Figure 4). We note that our trained CARTRIDGES using202

RVI hardly deviate from their spectra at initialization-time. Notably, the initialization spectra stays203
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Algorithm 2 Sampled Chunk Initialization (SCI)

Require: Corpus C with ntotal tokens
Require: Target cache size p, chunk size c

1: x← TOKENIZE(C) ▷ Full corpus tokenization
2: nchunks ← ⌊p/c⌋
3: s ∼ Uniform({0, 1, . . . , ntotal − c}, nchunks)
4: xinit ← []
5: for i = 1 to nchunks do
6: chunki ← x[si : si + c]
7: xinit ← xinit ⊕ chunki

8: end for
9: xinit ← xinit[: p] ▷ Truncate to target size

10: return FORWARDPASS(F ,xinit)

close to 1, aligning with random matrix theory which observes that randomly sampled orthogonal204

vectors maintain singular values close to one [22]. This differs significantly from the spectra from205

token-based initialization methods which decay in a consistent, structured manner.206

To confirm that SCI is better than First-k Token Initialization, we run a simple paired-t statistical207

test. Let µ represent the mean steps to reach perplexity threshold 1.10. Then if we can reject the208

null hypothesis {H0 : µSCI = µfirst-k} against the alternative {H1 : µSCI < µfirst-k} we can claim209

statistically significant better convergence. In Figure 4 we reject H0 with p < 0.05, confirming faster210

convergence.211

5 Limitations and Future Work212

5.1 Limitations213

Scale We ran all experiments on single A10G, A100, and H100 spot instances. Future work should214

explore larger models and train for longer periods of time. Except for our pure 1:1 reproduction215

of the original paper in Figure 2, the rest of our models are approximately 4-6x optimizer steps216

under-trained compared to the best performing models from the original paper. In the appendix, we217

show that our singular value analysis holds for the 1:1 reproduced model (Appendix B.3).218

Baselines When testing initialization schemes, we had to decide between method diversity and219

statistical significance. Future work could explore more initialization techniques, including more220

robust baselines e.g. summary-based initializations. Additionally, it would be insightful to test221

convergence on multiple tasks instead of just GENCONVO.222

5.2 Future Work223

Training and Serving Given that keys change little throughout training, it might be worth training224

CARTRIDGES with fully frozen key vectors. Beyond being an easy win for training efficiency, there225

might be desirable properties of frozen keys at inference-time. Suppose we only need trainable226

values for corpora compression: can we imagine a serving engine that exploits this to hot-swap227

CARTRIDGE value vectors at inference time while maintaining fixed key vectors? This may be a228

promising direction given the rise of prefix-sharing optimized serving engines like Tokasaurus [13].229

Further research may also explore if there exists key vector initialization structures that are particularly230

good for certain tasks; or, even better, key vector initializations that are universally well-performing.231

Implications for Prefix-Tuning While we focused on CARTRIDGES, mechanistic interpretability232

work for prefix-tuning remains sparse. Our findings provide a strong experimental foundation to233

support Petrov et al.’s theoretical arguments regarding the limitations of prefix-tuning. Further234

mechanistic work could explore the overlap between CARTRIDGE training dynamics and prefix-235

tuning; for example, do prefix-tuned key vectors also exhibit stability? Or, can they learn significantly236

novel attention patterns?237
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Beyond supporting existing theory, our work raises questions about which tasks are appropriate for238

CARTRIDGES. Future work could explore counter-examples to the patterns we observed during239

our experiments. Does there exist some task where keys must significantly reroute to perform well240

and does this delay convergence? Counter-examples could help formalize a boundary between241

compression-friendly CARTRIDGE tasks and tasks better suited for prefix-tuning or LoRA.242

6 Conclusion243

In this paper, we present the first mechanistic study of CARTRIDGES, a prefix-tuning based method244

for compressing long-context corpora prior to inference. Our analyses showed that CARTRIDGE key245

vectors act as a stable routing mechanism throughout training whereas the value vectors absorb most246

of the representational load required for compression. Based on this observation, we ran a set of key247

vector ablation experiments that confirmed that CARTRIDGE key vectors are shareable across tasks.248

Building on our mechanistic study of key vector structure, we introduce a simple sampled-chunk249

initialization scheme (SCI) and showed that it accelerates convergence.250

Collectively, these findings provide experimental validation of Petrov et al.’s theoretical constraints251

on prefix-tuning, suggesting that there is a fundamental division of labor between keys and value252

vectors during prefix-tuning. Rather than being limitations, we suggest that these constraints could253

inform further training- and inference-time optimizations for CARTRIDGES and other prefix-tuning254

methods.255

By presenting an empirical study of CARTRIDGES’ learned structure, we hope to invite further256

mechanistic research and discussion for understanding PeFT methods more broadly.257
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A N-Gram Diversity of Initialization Methods323

Figure 5: Here we plot the N-gram diversity of Sampled Chunk Initialization (SCI) vs. the First
k Token Initialization baseline. We note that 26 is approximately the midway point when trading
diversity for chunk length, so we chose 64 as the chunksize when running our experiments in Figure 4.

B Additional Singular Value Analyses324

Here we present additional supporting singular value analysis prompts to support our observations325

across scale, model families, and training regimes.326

B.1 LLAMA Across Scales327
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Figure 6: Here we have the singular value spectra for both LLAMA 1B and LLAMA 3B. We observe
the same trends from the main paper: keys remain stable and values generally shift up in singular value.
Both these models were trained on LONGHEALTH with the paper’s First k Token Initialization
scheme. However, they are relatively undertrained at only 512 optimizer updates with a batch size of
64 and packed sequence length of 1024. In Appendix B.3, we note that training further reduces the
IQR band variance for LLAMA 3.2 3B.
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B.2 QWEN3 Across Scales328
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Figure 7: We present the singular value spectra for QWEN3 0.6B and QWEN3 1.7B on LONGHEALTH.
Notably, we see the higher IQR badnd variance from Figure 3 repeated for the other QWEN3
models. Considering the results from LLAMA, it’s possible that further training could reduce this
variance given that these models are under-trained at only around 320 optimizer steps. Despite this
undertraining, we still see a general upward singular value trend for the CARTRIDGE value vectors;
however, we cannot claim statistical significance for the smaller QWEN3 models without more data.

B.3 LLAMA Strict Replication329
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Figure 8: This is the singular value spectra of a LLAMA 3B model trained for 3072 steps on
LONGHEALTH. We see the trend holds at scale; notably, given more optimizer steps the value vectors
rose in singular value more than the under-trained LLAMA 3B from Appendix B.1.

B.4 Across Different Initializations330
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Figure 9: We compare two initialization methods against First k Tokens Initialization (Left) Here
the singular value spectra of random vector initialization (RVI) is remarkably different from our
token-based approaches. Notably, both RVI keys and vectors stay close to the random orthogonal
vector baseline. This suggests that keys fail to learn an effective routing structure for downstream
tasks. (Right) Here is the singular value spectra for SCI. It looks more like what we expect to see
from a successfully trained CARTRIDGE: stable keys and shifted values due to compression.

C Prompts331

C.1 SELF-STUDY Prompts332

We use the same SELF-STUDY prompts from the Cartridges GitHub.333

1 def structuring_seed_prompt(**kwargs):
2 DATA_FORMATS = [
3 "JSON",
4 "YAML",
5 "TOML",
6 "INI",
7 "XML",
8 "plain text",
9 ]

10

11 data_format = random.choice(DATA_FORMATS)
12

13 EXAMPLES = [
14 (
15 "Can you structure the information in {{subsection}} of {{document}}

related to {{something specific}} "↪→
16 f"in the following format: {data_format}? "
17 "Be sure to include precise information like any dates, times, names,

and numerical values.'"↪→
18 ),
19 (
20 "Can you structure the information in {{subsection}} of {{document}} "
21 f"in the following format: {data_format}? "
22 "Be sure to include precise information like any dates, times, names,

and numerical values.'"↪→
23 ),
24 ]
25

26 example = random.choice(EXAMPLES)
27

28 return (
29 f"Please generate a single chat message instructing an LLM to structure the

information in {data_format}. "↪→
30 "Output only the chat message itself and absolutely nothing else. "
31 "Make sure it is clear what section and document you are asking about. "

13
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32 f"The message can follow the following template, filling in details from the
corpus: \n\n'{example}'"↪→

33 )
34

35

36 def summarization_seed_prompt(**kwargs):
37 prompts = [
38 (
39 "Please generate a single chat message instructing an LLM to summarize

part of the corpus. "↪→
40 "Make sure the instruction is very explicit about the section of the

corpus that you want to summarize. "↪→
41 "Include details (ids, names, titles, dates, etc.) that make it clear

what you are asking about. "↪→
42 ),
43 (
44 "Please generate a single chat message instructing an LLM to summarize a

section. "↪→
45 "Make sure the instruction is explicit about the section that should be

summarized and the document it is from."↪→
46 ),
47 ]
48 prompt = random.choice(prompts)
49 return prompt
50

51

52 def question_seed_prompt(**kwargs):
53 prompts = [
54 (
55 "Generate a question for an LLM that will test its knowledge of the

information in the corpus above. "↪→
56 "In your question be sure to include details (ids, names, titles, dates,

etc.) that make it clear what you are asking about. "↪→
57 "Output only a single question. Do NOT include any other text or

explanation other than the question."↪→
58 ),
59 (
60 "Generate a message for an LLM that will test its knowledge of the

information in the corpus above."↪→
61 "Be sure to include details (ids, names, titles, dates, etc.) in the

question so that it can be answered without access to the corpus
(i.e. closed-book setting). "

↪→
↪→

62 "Output only a single question. Do NOT include any other text or
explanation other than the question."↪→

63 ),
64 (
65 "You are helping to quiz a user about the information in the corpus. "
66 "Please generate a question about the subsection of the corpus above. "
67 "Be sure to include details (ids, names, titles, dates, etc.) in the

question to make it clear what you are asking about. "↪→
68 "Answer only with the question, do not include any other text."
69 ),
70 ]
71 prompt = random.choice(prompts)
72 return prompt
73

74

75 def use_case_seed_prompt(**kwargs):
76 prompt = (
77 "You are working to train a language model on the information in the

following corpus. "↪→
78 "Your primary goal is to think about practical, real-world tasks or

applications that someone could achieve using the knowledge contained
within this corpus. "

↪→
↪→
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79 "Consider how a user might want to apply this information, not just recall
it. "↪→

80 "After considering potential use cases, your task will be to generate a
sample question that reflects one of these downstream applications. "↪→

81 "This question/instruction/task should be something a user, who has access
to this corpus, might ask when trying to accomplish their specific goal.
"

↪→
↪→

82 "Output only a single question. Do NOT include any other text or explanation
other than the question."↪→

83 )
84 return prompt
85

86

87 def creative_seed_prompt(**kwargs):
88 prompt = [
89 (
90 "You are having a creative conversation inspired by the information in

the corpus. "↪→
91 "Please generate a question for your conversation partner to start off

the discussion. "↪→
92 "Answer only with the question, do not include any other text."
93 ),
94 ]
95 return random.choice(prompt)
96

97

98 def generic_seed_prompt(**kwargs):
99 return (

100 f"Please generate a single chat message to begin a conversation about the
information in the corpus. Ask a question about the corpus or make a
request."

↪→
↪→

101 )

C.2 GENCONVO Prompts334

We use modifications of the original GENCONVO prompts from the CARTRIDGES paper. These335

prompts yield similar Q&A pairs but encourage better instruction following from the generating336

model.337

Factual Prompt Template

Generate a factual recall question about a specific entity, date, or name from
the document.
Format: "Who/What/When [specific question]?"
Answer: Must be an exact entity name, date, or proper noun from the document
(2–4 words max).
The answer should be unambiguous and directly stated in the document.

338

Reasoning Prompt Template

Generate a mathematical reasoning question requiring calculation over document
values.
Format: "What is the [percentage/ratio/difference] of [specific calculation]?"
Answer: Must be a precise number with units (e.g., "12.5%", "$2.3M", "1.8x").
Question should require combining 2+ values from different parts of the
document.

339

Counting Prompt Template

Generate a counting question about document structure or content frequency.
Format: "How many [items] are [condition]?"

340
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Answer: Must be a single integer (e.g., "7", "23").
Focus on countable elements like sections, tables, mentions of specific terms,
or occurrences.

341

Synthesis Prompt Template

Generate a multiple choice question testing document comprehension.
Format: Question with 5 options (A/B/C/D/E).
Answer: Single letter (A, B, C, D, or E). E always means "There is not enough
information to answer the question".
Question should require understanding main themes, risks, or business model
elements.

342
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