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Abstract

A bottleneck for long-context LLM inference is the linearly growing KV cache.
Recent work has proposed CARTRIDGES, an approach which leverages offline
compute to train a much smaller KV cache than is typically required for a full
document (up to 40x less memory usage at inference time). In this paper, we
present the first mechanistic exploration of the learned CARTRIDGE key-value
cache structure. In particular, we propose that (1) CARTRIDGE keys act as stable,
shareable retrieval routers for the compressed corpora and (2) most of the learned
compression occurs within the CARTRIDGE value vectors. We present empirical
evidence of our routing theory across tasks, model families, and model sizes; for
example, we can ablate the learned CARTRIDGE key vectors between tasks with
little performance loss. Finally, we propose a slight improvement in initialization
called Sampled Chunk Initialization (SCI). We suggest that SCI can lead to faster
CARTRIDGE convergence than previously demonstrated in the literature. Our
findings lay the groundwork for broader empirical study of CARTRIDGE training
optimization which may be crucial for further scaling.’

1 Introduction

As context windows grow for large language models (LLMs), users expect to process larger corpora.
Common use-cases are large code bases [18], financial filings and market data [10], legislature [8],
or personal files [1]. The most common solution is in-context learning (ICL) wherein we provide
the full context to the downstream model; however, ICL-based inference relies on a key-value (KV)
cache that grows linearly with context window utilization [4]. Because the cache grows linearly,
we need to consider (1) the memory consumption of storing context for ICL and (2) the resulting
reduction in throughput due to increased pressure on-device bandwidth and compute [6]. This leaves
users with an undesirable tradeoff between convenience and inference cost.

Recent work tackling long-context inference have primarily focused on server-level optimizations.
Server-level approaches most notably include prompt (or prefix) caching, prefix-sharing (cascade
and bifurcated attention, Hydragen [12][23][2]), and distributed approaches like ring attention.[17]
However, these methods do not directly address compute and bandwidth pressures. In response, a
growing roster of cache slimming protocols has emerged and we can divide them into two classes:
token reducers and key-value compressors. Token reducers rely on summarization, chunking, or
filtering to reduce corpora directly via heuristics or natural language [11][3]. Key-value compressors
directly leverage sparsity or query oracles to project KV caches into lower rank spaces [7][21].

While these approaches are promising, they typically come with a quality tradeoff. A more recent
key-value compression method proposes a two-stage pipeline [5]:

' Anonymized code is available. Otherwise, we use the publicly available code from the original paper.
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Figure 1: (Left) CARTRIDGES learn to compress long-context documents by first generating synthetic
conversations about the corpus and then training a small KV cache using the synthetic traces. This
process is called SELF-STUDY. Leveraging a context distillation objective, we back-propagate SELF-
STUDY traces into trainable KV caches while keeping the rest of the model frozen. (Right) Here
we plot the layer-wise mean singular value spectra of a LLAMA 3.1 8B CARTRIDGE’s KV vectors
before and after training. The resulting key vectors are stable while the learned value vectors increase
in singular value, representing a more efficient use of representation space due to compression.

1. Self-Study: Exhaustively chunk the corpus and prompt a model to quiz itself on the content.
These synthetic rollouts can be massively parallel and help build a diverse training dataset.

2. Context Distillation: Once we have our conversational traces, we initialize the model with
a fixed-size key-value cache of length p < d¢ where C is our Corpus. Then, we can train
on a context distillation objective to align our CARTRIDGE-initialized model’s next token
distribution with the SELF-STUDY synthetic traces.

The synthetic trace generation process is SELF-STUDY and the final context-distilled cache is called
a CARTRIDGE. CARTRIDGES exhibit interesting properties, including composability, high recall
accuracy on benchmarks, and a tensor structure that is ideal for high throughput prefix-sharing
inference engines e.g. Tokasaurus [13].

In this paper, we contribute a preliminary investigation into the mechanisms of a trained CARTRIDGE.
In particular, we study the structure of the learned CARTRIDGE key and value vectors across model
families, scale, and corpora. We can summarize our results as follows:

* We observe that keys barely change during CARTRIDGE training whereas values change
significantly. We use singular value analysis to summarize this trend and argue that value
vectors learn to use their representation dimensionality more effectively to maximize com-
pression. This result likely explains why random initialization failed to converge in the
original CARTRIDGES paper.

* We ran an ablation experiment where we train two CARTRIDGES with shared initializers
on different tasks and then swap the learned key vectors but not the values. We note that
responses remain coherent and the resulting performance loss is mild, which aligns with our
first observation.

* We investigate a simple but effective initialization scheme for our CARTRIDGE. Rather than
using the first p tokens of our corpus to initialize the CARTRIDGE (the main method used in
the original paper), we randomly sample chunks throughout the full corpus to maximize
structural diversity. This approach leads to statistically significant improvements for training
convergence.

2 Preliminaries

In this section, we position CARTRIDGES as a new parameter efficient fine-tuning (PeFT) technique
that borrows directly from prefix-tuning. We briefly summarize prior work on PeFT mechanistic
interpretability, highlighting the lack of related work to prefix-tuning based PeFT methods. Next,
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we provide more details on CARTRIDGES with a focus on the relevant experimental parameters
and notation for our downstream experiments. Finally, we briefly cover the relevant datasets and
benchmarks to reduce friction when framing our analyses in Sections 3 and 4.

2.1 Related Work

There is a significant body of work exploring task-specific LLM specialization. Common PeFT
techniques are low-rank adapters (LoRA) and prefix-tuning, with the former being the most popular
method [9][16]. CARTRIDGES primarily borrow from prefix-tuning: both methods prepend a learned
representation to the input sequence and rely on the model to treat the trained prefix as real tokens.
However, despite the widespread popularity of PeFT, there is comparatively little research focused on
interpreting how LoRAs or prefix-tuning change models at a mechanistic level.

Interpreting LoRA Recent interpretability work focuses on LoRA-driven mechanistic changes
when tuning for narrowly scoped tasks. For example, Lee ef al. studied sparse neural activations
during LoRA for nuclear safety applications, while Nijasure et al. found that middle layers (5-15)
and specific MLP projections drive ranking performance [15][19]. These works focus on neuron-
level changes and layer contributions, whereas our analysis examines the geometric structure and
transferability of learned representations.

Interpreting Prefix-Tuning Prefix-tuning, which is much less popular than LoRA in practice, has
even less relevant interpretability work. However, Petrov et al. provide a theoretical analysis of when
prefix-tuning works well [20]. They theoretically argue that prefix-tuning "cannot change the relative
attention pattern over the content" and we find that this theory aligns strongly with our experimental
findings. More concretely, they argue that key vectors have fixed directional biases established during
pre-training; our ablation experiments (Figure 3) support this claim directly on real downstream tasks.

2.2 Relevant CARTRIDGES Notation

We choose to preserve notation from the original CARTRIDGES paper to make cross-referencing easier
for the reader. Taking that into consideration, we provide a brief overview of relevant definitions.

LLMs For an LLM F we define the output distribution pmeder(-) = F(+|x) which is a categorical
distribution over the model’s vocabulary V. Given a corpus C and queries ¢, we can define in-context
learning (ICL) decoding of our queries as F(-|C & q).

CARTRIDGE A CARTRIDGE is a KV cache of size p < n¢ which aims to augment an LLM F such
that the LLM behaves as if a Corpus C of length ne were fully within context. Throughout the paper,
we call this CARTRIDGE Z € REXPXdwwx2 and define the augmented F as F. Given I € [1, L],
where [ indexes our model layers, we can summarize the difference between traditional ICL and
Cartridges as:

ICL KV Cache:  (k[1],Vv[1]),..., (k[nc], v[re]), (k[ne + 1], v[ne + 1)), . ..

KV pairs for C KV pairs for ¢
. o @ o
CARTRIDGE KV Cache:  (z1,2,}),- .-, (z),2{")), (K[1],v[1]),...
—_—
Trainable pairs in Z KV pairs for g

During CARTRIDGE training, only the parameters composing our CARTRIDGE Z of sequence length
p are trainable while the rest of F remains frozen.

2.3 Datasets and Benchmarks

For consistency, we re-use or reproduce the core datasets from the original CARTRIDGES paper.

LONGHEALTH is a question answering benchmark containing 20 fictional patients’ detailed medical
records. Each record is composed of multiple cases and each case is approximately 5,500 words long.
For the LONGHEALTH corpus CpongHealth, €ach prompt g is a multiple choice question with 5 options.
In accordance with the original paper, we use 10 full patient records concatenated to form a 100k+
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Figure 2: (Left) We reproduced a LONGHEALTH CARTRIDGE from the original paper. To do
so, we trained a LLAMA 3.2 3B CARTRIDGE with length p = 2048 for 3072 optimizer updates
(batch_size=64, sequence_length=1024). We checkpointed the CARTRIDGE every 96 optimizer steps
and, for all layers [ € [1, L], plotted the key and value vector rotation between each checkpoint.
Notably, value rotations are often a full order of magnitude larger than key rotations and they continue
late into the training process. (Right) We trained two CARTRIDGES on separate tasks: GENCONVO
and LONGHEALTH from the original paper. Afterwards, we plotted the layer-wise cosine similarity
between the two fully trained CARTRIDGES and note that their learned key vectors are highly similar.
We explore this further in Figure 3 where we show that we can swap these key vectors with minimal
downstream performance loss. On the other hand, the learned value vectors differ the most within the
layers that experience the most vector rotations throughout learning.

token context corpus with 200 questions to measure accuracy. This formulation is different from the
original LONGHEALTH paper’s evaluation setting which evaluates each patient independently. We
prefer the CARTRIDGES formulation because it showcases longer-context reasoning and requires that
the model delineate between different patient cases.’

GENCONVO is a synthetic conversational dataset based on FINANCEBENCH’s 2022 AMD 10-K
corpus. Our GENCONVO conversations are based on four different Q&A prompts that encourage
structural, multi-hop, mathematical, and factual retrieval reasoning (Appendix C.2). We reproduce
GENCONVO with Claude Sonnet 4.0 instead of 3.7 due to changes in rate limits between these
models. To maximize throughput and balance API rate limit loads, we use inference-time scaling
library VERDICT for GENCONVO synthesis [14]. Throughout the paper, we rely on GENCONVO
perplexity to measure a CARTRIDGE’s ability to compress financial reasoning. While the original
GENCONVO produces 16 answers per question, we opted to generate 50 manually validated answers
per question for our evaluation set.

ARXIYV is the tutorial SELF-STUDY dataset from the CARTRIDGES GitHub. The ARXIV corpus is
the source . tex file for the original CARTRIDGES paper (40k tokens and 64k SELF-STUDY rollouts).
We only use ARXIV to train QWEN3’s ABLATIONCARTRIDGE model used in Figure 3. We do not
run evaluations using ARXIV.

3 What representation does a CARTRIDGE learn?

In this section, we’ll explore the evolution of the CARTRIDGE key and value vectors throughout train-
ing. First, we’ll analyze the geometric restructuring of the CARTRIDGE KV cache from initialization
to convergence (Figure 2). Next, we’ll formalize our singular value analysis and argue that it provides
a summary of training dynamics. Finally, we’ll run an ablation experiment to show that CARTRIDGE
key vectors can be swapped between learned tasks with minimal performance loss (Figure 3).

2In LONGHEALTH, inter-patient differences can be subtle. For example, patient_01 might receive an
ibuprofen prescription that’s only 50mg different from patient_02. By mixing the corpus, we require the
model to perform multi-hop reasoning beyond memorizing just one ibuprofen dosage.
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3.1 Observed Training Dynamics

Let’s briefly refresh the SELF-STUDY context distillation objective. First, we build a teacher dis-
tribution Prescher (-) = F(-|C € q) over the synthetic conversations derived from the corpus we want
to compress. In our case, we borrow the same conversation "seed prompts" from the original paper
(Appendix C.1). We then train our student pgugent(-) = Fz(+|¢) to minimize

L= E(C,q)NDsymh [KL(pteacher”pstudem)]

where Dgyn, is the synthetic conversation dataset from SELF-STUDY, and we optimize only the
@

v,

trainable parameters Z = {(zl((lz, z, )}, across all layers. For convenience, we say a CARTRIDGE

7’s size is p.’

During this distillation, we note that our trainable key vectors rarely change whereas our value vectors
change often; in particular, we measure these changes via the cosine similarity between CARTRIDGE
checkpoints (Figure 2) e.g. cos(Z M.z (”1)). Our hypothesis is that the key vectors rotate minimally
enough that given two CARTRIDGES initialized via the same method, we could swap their key vectors
arbitrarily. If this is true, it implies that CARTRIDGE key vectors act as stable routers to compressed
value payloads. The magnitude difference in rotations reflects this division of labor: while values
require continuous refinement for compression, keys stabilize once effective routing is established.

3.2 Singular Value Analysis

Algorithm 1 Singular Value Analysis for Trained CARTRIDGE

1: Initialize: S < {} > Spectral collections
2: for vector € {KEYS, VALUES} do

3: S|vector] «

4: for/ =1to L do > Each layer
5: T® < EXTRACT(C, I, vector) B> RXP X dhead
6: X « RESHAPE(TW, [h - p, dpead]) > Flatten heads
7 o+ SVD_VaLs(X®) > Singular values
8: 50 cr(l)/orgl) > Normalize by largest
9: S|[vector] < S[vector] U {5()[: k] > Fetch the top k values
10: end for
11: end for

12: return {MEDIAN(S[KEYS]), MEDIAN(S[VALUES])}

While informative, we found the cosine similarity heatmaps too busy to establish a scalable, cross-
model trend. As a response, we designed an analysis which runs a layer-wise singular value
decomposition and then normalizes those values (Algorithm 1). In addition to reporting the median
trend line, we also provide inter-quartile range bands (IQR) at the 25th and 75th percentile. Here’s
what we observed:

Trends Across Scale We found the high-level trend of stable routing keys and compressed value
payloads consistent across model sizes (Appendix B). It seems that the model’s pretrained prior is
strong enough that it’s more effective to focus on value re-alignment and compression than finding a
more effective key structure (Figure 3).

Differences Between Model Families In Figure 3, we leverage our singular value analysis to explore
why QWEN3 responds differently to our ablation than LLAMA (-7% vs -4-5% performance drop).
We observe that QWEN3 key vectors are more heterogeneous across layers than LLAMA (via the IQR
bands). The wider IQR bands directly correspond to QWEN3’s larger performance drop, suggesting
layer-wise key specialization reduces transferability.

3The most intuitive analog for p is to think of a CARTRIDGE as a KV cache composed of p tokens. Therefore,
the context distillation objective is to compress the SELF-STUDY corpora into that KV cache such that p is much
smaller than the original corpus.
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Figure 3: (Left) We present three LONGHEALTH evaluation settings: a baseline with no CARTRIDGE
(red), a model with a LONGHEALTH-trained CARTRIDGE (blue), and a model where we swap its
LONGHEALTH-trained CARTRIDGE key vectors with keys from a different task (orange). We call
the latter an ABLATIONCARTRIDGE. For the LLAMA models, we swap in key vectors trained on
GENCONVO and for QWEN3 we use key vectors trained on ARXIV data. While the vector swap leads
to a slight performance loss, the ABLATTONCARTRIDGE still outperforms both a random choice
baseline and the model’s baseline performance. (Right) We reran our KV cache singular value
analysis on QWEN3. First, we noticed that QWEN3 exhibits the same training-time value vector
singular increase of the LLAMA family. Second, QWEN?3’s key vector singular values are higher
variance than LLAMA which might explain the larger performance loss during ablation.

Furthermore, based on how little CARTRIDGE key vectors drift throughout training we recognize
that initialization might play a larger role in SELF-STUDY-based distillation than we thought. We
explore this more in (Figure 4) where we show statistically significant faster convergence by randomly
sampling the corpus to initialize our CARTRIDGE.

3.3 Key Vector Ablations

Informed by our CARTRIDGE KV cache singular value analysis, we decided to run an ablation
experiment on the LONGHEALTH benchmark used in the original paper (Figure 3). For two trained
CARTRIDGES Z4 = {(z;,z)}1_, and Zp = {(z;,25,)}}_, from different tasks {A, B}, we
construct the ABLATIONCARTRIDGE:

A
Zag = {(Z]?ia zv,i) f:l

In comparison to the CARTRIDGE-enabled LLMs F(Z4) and F(Zag), we also define a baseline
model F(Zy) which has no CARTRIDGE. We call z{}; and z; transferable if ACC(F(Zxg)) >
ACC(F(Zp)) and the answer overlap between F(Z4) and F(Zap) is statistically significant (see:
Table 1).

For our ablation experiments, we train all models for 512 optimizer steps with a batch size of 128 and
a packed sequence length of 1024. For all experiments, we train Z4 on LONGHEALTH and Zp on
either GENCONVO or ARXIV. The CARTRIDGE sequence length p is held consistent at 2048 and the

Table 1: We ran a hypergeometric statistical test (N = 200) on the Q&A correctness overlap between
trained and ablated CARTRIDGES. We confirm that the overlap is statistically significant compared
to random chance in 5-question multiple choice Q&A. Notably, despite experiencing the largest
performance loss due to ablation, QWEN3-4B has the most overlap of the three models we tested.

Model Titrain ~ Mablated  Toverlap p-value
Llama 3.1 8B 76 68 34 0.0156*
Llama 3.2 3B 60 57 28 0.0003*
Qwen-3 4B 71 57 40 <0.0001*
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Figure 4: (Left) We plot the perplexity for 10 LLAMA-1B GENCONVO training runs with both
Sampled Chunk Initialization (SCI) and the original paper’s First k£ Tokens Initialization. Additionally,
we include a random vector initialization run for comparison. For all our SCI experiments, we chose
chunksize=64 because it was the midpoint in our n-gram diversity vs. context length analysis
(Appendix A). (Right) A different view on the perplexity graph, we can visualize convergence speed
over our runs as a box plot. Setting a target threshold of perplexity = 1.10 to define convergence, we
can run a paired ¢-test to confirm that SCI converges at a statistically faster rate (p < 0.05) than the
original paper’s First-£ Token Initialization scheme.

initializing document is the default initializer from the CARTRIDGES repository (gradients.txt, the
Wikipedia article for gradients). Surprisingly, we find that keys from First &£ Token Initialization are
transferable for LLAMA 3.2 3B, LLAMA 3.1 8B, and QWEN3.

4 The importance of good initialization

In this section, we propose and briefly benchmark an improved initialization scheme for CAR-
TRIDGES. Inspired by our observation of training dynamics and KV cache geometry, we suggest that
CARTRIDGE initialization benefits from the structural diversity of random sampling.

4.1 Known Initialization Schemes

The original CARTRIDGES paper explored a few approaches for CARTRIDGE initialization:

* Random Vector Initialization: random vector initialization (RVI) for prefix tuning is known
to be unstable from prior literature.[16] In the original CARTRIDGES paper, the authors
note that random vector initialization fails to converge and performs poorly compared to
other methods. In hindsight, it’s clear why: instead of focusing on value compression, a
randomly initialized prefix is burdened with a joint optimization problem of both routing
and compression.

¢ First-k Token Initialization: using the first £ tokens from the target corpus C' is a natural
first-pass approach and is the initialization scheme used by the original paper. By sampling
from real text, we are leveraging structures the model is already comfortable working with.

* Summary-Based Initialization: alternatively, we could use a lighter-weight summarization
model to initialize a CARTRIDGE. While attractive, we de-prioritized this approach to avoid
explicitly stacking models which can introduce further uncertainty when benchmarking
performance.

4.2 Sampled Chunk Initialization

We present Sampled Chunk Initialization (SCI) (Algorithm 2), a principled alternative to the original
paper’s First-k Token Initialization. In Figure 4 we show that SCI converges faster than both First-k
Token Initialization and random initialization. In (Appendix B.4), we present further singular value
analyses of the three initialization methods in (Figure 4). We note that our trained CARTRIDGES using
RVI hardly deviate from their spectra at initialization-time. Notably, the initialization spectra stays
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Algorithm 2 Sampled Chunk Initialization (SCI)

Require: Corpus C with nyyy, tokens
Require: Target cache size p, chunk size ¢
1: x + TOKENIZE(C) > Full corpus tokenization
Nchunks $— U?/CJ
s ~ Uniform({0, 1, ..., Nt — €}, Nchunks)
Xinit < []
fori=1to M chunks do
chunk; + x[s; : s; + ]
Xinit — Xinit & chunk;
end for
Xinit — Xinit[: D] > Truncate to target size
return FORWARDPASS(F, Xinit)

SYRrIansRN

—

close to 1, aligning with random matrix theory which observes that randomly sampled orthogonal
vectors maintain singular values close to one [22]. This differs significantly from the spectra from
token-based initialization methods which decay in a consistent, structured manner.

To confirm that SCI is better than First-k Token Initialization, we run a simple paired-t statistical
test. Let p represent the mean steps to reach perplexity threshold 1.10. Then if we can reject the
null hypothesis {Hy : psc1 = stk } against the alternative {H; : pscr < firsek f We can claim
statistically significant better convergence. In Figure 4 we reject Hy with p < 0.05, confirming faster
convergence.

5 Limitations and Future Work

5.1 Limitations

Scale We ran all experiments on single A10G, A100, and H100 spot instances. Future work should
explore larger models and train for longer periods of time. Except for our pure 1:1 reproduction
of the original paper in Figure 2, the rest of our models are approximately 4-6x optimizer steps
under-trained compared to the best performing models from the original paper. In the appendix, we
show that our singular value analysis holds for the 1:1 reproduced model (Appendix B.3).

Baselines When testing initialization schemes, we had to decide between method diversity and
statistical significance. Future work could explore more initialization techniques, including more
robust baselines e.g. summary-based initializations. Additionally, it would be insightful to test
convergence on multiple tasks instead of just GENCONVO.

5.2 Future Work

Training and Serving Given that keys change little throughout training, it might be worth training
CARTRIDGES with fully frozen key vectors. Beyond being an easy win for training efficiency, there
might be desirable properties of frozen keys at inference-time. Suppose we only need trainable
values for corpora compression: can we imagine a serving engine that exploits this to hot-swap
CARTRIDGE value vectors at inference time while maintaining fixed key vectors? This may be a
promising direction given the rise of prefix-sharing optimized serving engines like Tokasaurus [13].

Further research may also explore if there exists key vector initialization structures that are particularly
good for certain tasks; or, even better, key vector initializations that are universally well-performing.

Implications for Prefix-Tuning While we focused on CARTRIDGES, mechanistic interpretability
work for prefix-tuning remains sparse. Our findings provide a strong experimental foundation to
support Petrov et al.’s theoretical arguments regarding the limitations of prefix-tuning. Further
mechanistic work could explore the overlap between CARTRIDGE training dynamics and prefix-
tuning; for example, do prefix-tuned key vectors also exhibit stability? Or, can they learn significantly
novel attention patterns?
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Beyond supporting existing theory, our work raises questions about which tasks are appropriate for
CARTRIDGES. Future work could explore counter-examples to the patterns we observed during
our experiments. Does there exist some task where keys must significantly reroute to perform well
and does this delay convergence? Counter-examples could help formalize a boundary between
compression-friendly CARTRIDGE tasks and tasks better suited for prefix-tuning or LoRA.

6 Conclusion

In this paper, we present the first mechanistic study of CARTRIDGES, a prefix-tuning based method
for compressing long-context corpora prior to inference. Our analyses showed that CARTRIDGE key
vectors act as a stable routing mechanism throughout training whereas the value vectors absorb most
of the representational load required for compression. Based on this observation, we ran a set of key
vector ablation experiments that confirmed that CARTRIDGE key vectors are shareable across tasks.
Building on our mechanistic study of key vector structure, we introduce a simple sampled-chunk
initialization scheme (SCI) and showed that it accelerates convergence.

Collectively, these findings provide experimental validation of Petrov et al.’s theoretical constraints
on prefix-tuning, suggesting that there is a fundamental division of labor between keys and value
vectors during prefix-tuning. Rather than being limitations, we suggest that these constraints could
inform further training- and inference-time optimizations for CARTRIDGES and other prefix-tuning
methods.

By presenting an empirical study of CARTRIDGES’ learned structure, we hope to invite further
mechanistic research and discussion for understanding PeFT methods more broadly.
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23 A N-Gram Diversity of Initialization Methods
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Figure 5: Here we plot the N-gram diversity of Sampled Chunk Initialization (SCI) vs. the First
k Token Initialization baseline. We note that 26 is approximately the midway point when trading
diversity for chunk length, so we chose 64 as the chunksize when running our experiments in Figure 4.

B Additional Singular Value Analyses

Here we present additional supporting singular value analysis prompts to support our observations
across scale, model families, and training regimes.

B.1 LLAMA Across Scales

Singular Value Spectra (Llama 3.2 1B) Singular Value Spectra (Llama 3.2 3B)
1.0 1.0
o o o P
2 =2 I e e
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Figure 6: Here we have the singular value spectra for both LLAMA 1B and LLAMA 3B. We observe
the same trends from the main paper: keys remain stable and values generally shift up in singular value.
Both these models were trained on LONGHEALTH with the paper’s First & Token Initialization
scheme. However, they are relatively undertrained at only 512 optimizer updates with a batch size of
64 and packed sequence length of 1024. In Appendix B.3, we note that training further reduces the
IQR band variance for LLAMA 3.2 3B.
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B.2 QWEN3 Across Scales

Singular Value Spectra (Qwen3 0.6B) Singular Value Spectra (Qwen3 1.7B)
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Figure 7: We present the singular value spectra for QWEN3 0.6B and QWEN3 1.7B on LONGHEALTH.
Notably, we see the higher IQR badnd variance from Figure 3 repeated for the other QWEN3
models. Considering the results from LLAMA, it’s possible that further training could reduce this
variance given that these models are under-trained at only around 320 optimizer steps. Despite this
undertraining, we still see a general upward singular value trend for the CARTRIDGE value vectors;
however, we cannot claim statistical significance for the smaller QWEN3 models without more data.

B.3 LLAMA Strict Replication

Singular Value Spectra (Llama 3B Full Reproduction)
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Figure 8: This is the singular value spectra of a LLAMA 3B model trained for 3072 steps on
LONGHEALTH. We see the trend holds at scale; notably, given more optimizer steps the value vectors
rose in singular value more than the under-trained LLAMA 3B from Appendix B.1.

B.4 Across Different Initializations
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Figure 9: We compare two initialization methods against First £ Tokens Initialization (Left) Here
the singular value spectra of random vector initialization (RVI) is remarkably different from our
token-based approaches. Notably, both RVI keys and vectors stay close to the random orthogonal
vector baseline. This suggests that keys fail to learn an effective routing structure for downstream
tasks. (Right) Here is the singular value spectra for SCI. It looks more like what we expect to see
from a successfully trained CARTRIDGE: stable keys and shifted values due to compression.

C Prompts

C.1 SELF-STUDY Prompts

We use the same SELF-STUDY prompts from the Cartridges GitHub.

def structuring_
DATA_FORMATS
"JSON" s
IIYAMLII .
IITOMLH .
IIINIII s
IIXMLH ,
"plain t

data_format

EXAMPLES = [
(

seed_prompt (**kwargs) :

- L

ext",

= random.choice (DATA_FORMATS)

"Can you structure the information in {{subsection}} of {{document}}

—

related to {{something specific}} "

f"in the following format: {data_format}? "
"Be sure to include precise information like any dates, times, names,

—

and numerical values.'"

"Can you structure the information in {{subsection}} of {{documentl}} "
f"in the following format: {data_format}? "
"Be sure to include precise information like any dates, times, names,

—

),

example =

return (

and numerical values.'"

random. choice (EXAMPLES)

f'"Please generate a single chat message instructing an LLM to structure the

<, information in {data_format}.

n

"Output only the chat message itself and absolutely nothing else. "

"Make sure it is clear what section and document you are asking about.
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43
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47
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49
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53
54
55

56

57

58
59
60

61

62

63
64
65
66
67

68
69
70
71
72
73
74

76
77

78

f"The message can follow the following template, filling in details from the

—

corpus: \n\n'{examplel}'"

def summarization_seed_prompt (**kwargs) :
prompts = [

(

)}
]
prompt
return

"Please generate a single chat message instructing an LLM to summarize
— part of the corpus. "

"Make sure the instruction is very explicit about the section of the
— corpus that you want to summarize. "

"Include details (ids, names, titles, dates, etc.) that make it clear
— what you are asking about. "

"Please generate a single chat message instructing an LLM to summarize a
— section. "

"Make sure the instruction is explicit about the section that should be
— summarized and the document it is from."

random. choice (prompts)

prompt

def question_seed_prompt (**kwargs) :

prompts

(

),
]
prompt
return

- L

"Generate a question for an LLM that will test its knowledge of the

— information in the corpus above. "

"In your question be sure to include details (ids, names, titles, dates,
< etc.) that make it clear what you are asking about. "

"Output only a single question. Do NOT include any other text or

— explanation other than the question."

"Generate a message for an LLM that will test its knowledge of the
— information in the corpus above."

"Be sure to include details (ids, names, titles, dates, etc.) in the
— question so that it can be answered without access to the corpus
— (i.e. closed-book setting). "

"Output only a single question. Do NOT include any other text or

— explanation other than the question."

"You are helping to quiz a user about the information in the corpus. "
"Please generate a question about the subsection of the corpus above. "
"Be sure to include details (ids, names, titles, dates, etc.) in the

— question to make it clear what you are asking about. "

"Answer only with the question, do not include any other text."

random. choice (prompts)

prompt

def use_case_seed_prompt (**xkwargs) :

prompt

(

"You are working to train a language model on the information in the

—

following corpus. "

"Your primary goal is to think about practical, real-world tasks or

—

— within this corpus.

applications that someone could achieve using the knowledge contained
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88
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90
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92
93
94
95
96
97
98
99
100

101

334

335
336
337

338

339

340

"Consider how a user might want to apply this information, not just recall
— it. "

"After considering potential use cases, your task will be to generate a

— sample question that reflects one of these downstream applications. "
"This question/instruction/task should be something a user, who has access
— to this corpus, might ask when trying to accomplish their specific goal.
[N n

"Output only a single question. Do NOT include any other text or explanation
— other than the question."

)

return prompt

def creative_seed_prompt (**kwargs) :
prompt = [
(
"You are having a creative conversation inspired by the information in
— the corpus. "
"Please generate a question for your conversation partner to start off
— the discussion. "
"Answer only with the question, do not include any other text."
)}
]

return random.choice(prompt)

def generic_seed_prompt (x*kwargs) :
return (
f"Please generate a single chat message to begin a conversation about the
— information in the corpus. Ask a question about the corpus or make a
— request."

C.2 GENCONVO Prompts

We use modifications of the original GENCONVO prompts from the CARTRIDGES paper. These
prompts yield similar Q&A pairs but encourage better instruction following from the generating
model.

Factual Prompt Template

Generate a factual recall question about a specific entity, date, or name from
the document.

Format: "Who/What/When [specific question]?"

Answer: Must be an exact entity name, date, or proper noun from the document
(2-4 words max).

The answer should be unambiguous and directly stated in the document.

f
\

Reasoning Prompt Template

Generate a mathematical reasoning question requiring calculation over document

values.

Format: "What is the [percentage/ratio/difference] of [specific calculation]?"
Answer: Must be a precise number with units (e.g., "12.5%", "$2.3M", "1.8x").

Question should require combining 2+ values from different parts of the
document .

Counting Prompt Template

Generate a counting question about document structure or content frequency.

Format: "How many [items] are [condition]?"
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342

Answer: Must be a single integer (e.g., "7", "23").

Focus on countable elements like sections, tables, mentions of specific terms,
or occurrences.

S J

Synthesis Prompt Template

Generate a multiple choice question testing document comprehension.
Format: Question with 5 options (A/B/C/D/E).

Answer: Single letter (A, B, C, D, or E). E always means "There is not enough
information to answer the question".

Question should require understanding main themes, risks, or business model
elements.
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