
Under review as a conference paper at ICLR 2024

EVOLMPNN: PREDICTING MUTATIONAL EFFECT ON
HOMOLOGOUS PROTEINS BY EVOLUTION ENCODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Predicting protein properties is paramount for biological and medical advance-
ments. Current protein engineering mutates on a typical protein, called the wild-
type, to construct a family of homologous proteins and study their properties. Yet,
existing methods easily neglect subtle mutations, failing to capture the effect on
the protein properties. To this end, we propose EVOLMPNN, Evolution-aware
Message Passing Neural Network, to learn evolution-aware protein embeddings.
EVOLMPNN samples sets of anchor proteins, computes evolutionary informa-
tion by means of residues and employs a differentiable evolution-aware aggre-
gation scheme over these sampled anchors. This way EVOLMPNN can capture
the mutation effect on proteins with respect to the anchor proteins. Afterwards,
the aggregated evolution-aware embeddings are integrated with sequence embed-
dings to generate final comprehensive protein embeddings. Our model shows up
to 6.4% better than state-of-the-art methods and attains 36× inference speedup in
comparison with large pre-trained models. The code and models are available at
https://anonymous.4open.science/r/EvolMPNN.

1 INTRODUCTION

Can we predict important properties of a protein by directly observing only the effect of a few
mutations on such properties? This basic biological question (Wells, 1990; Fowler & Fields, 2014)
has recently engaged the machine learning community due to the current availability of benchmark
data (Rao et al., 2019; Dallago et al., 2021; Xu et al., 2022). Proteins are sequences of amino-
acids (residues), which are the cornerstone of life and influence a number of metabolic processes,
including diseases (Pauling et al., 1951; Ideker & Sharan, 2008). For this reason, protein engineering
stands at the forefront of modern biotechnology, offering a remarkable toolkit to manipulate and
optimise existing proteins for a wide range of applications, from drug development to personalised
therapy (Ulmer, 1983; Carter, 2011; Alley et al., 2019).

One fundamental process in protein engineering progressively mutates an initial protein, called the
wild-type, to study the effect on the protein’s properties (Siezen et al., 1991). These mutations form
a family of homologous proteins as in Figure 1. This process is appealing due to its cheaper cost
compared to other methods and reduced time and risk (Wang et al., 2012; Engqvist & Rabe, 2019).

Yet, the way mutations affect the protein’s properties is not completely understood (Bryant et al.,
2021; Sarkisyan et al., 2016; Wu et al., 2016), as it depends on a number of chemical reactions
and bonds among residues. For this reason, machine learning offers a viable alternative to model
complex interactions among residues. Initial approaches employed feature engineering to capture
protein’s evolution (Saravanan & Gautham, 2015; Feng & Zhang, 2000); yet, a manual approach is
expensive and does not offer enough versatility. Advances in NLP and CV inspired the design of
deep protein sequence encoders (Hochreiter & Schmidhuber, 1997; Yu et al., 2017; Vaswani et al.,
2017) and general purpose Protein Language Models (PLMs) that are pre-trained on large scale
datasets of sequences. Notable PLMs include ProtBert (Brandes et al., 2022), AlphaFold (Jumper
et al., 2021), TAPE Transformer (Rao et al., 2019) and ESM (Rives et al., 2021). These mod-
els mainly rely on Multiple Sequence Alignments (MSAs) (Meier et al., 2021) to search on large
databases of protein evolution. Nevertheless, this search process is insensitive to subtle yet crucial
mutations and introduces additional computational burdens (Pearson, 2013; Chatzou et al., 2016).

1

https://anonymous.4open.science/r/EvolMPNN

Under review as a conference paper at ICLR 2024

To overcome the limitations of previous models, we propose EVOLMPNN, Evolution-aware
Message Passing Neural Network, to predict the mutational effect on homologous proteins. Our
fundamental assumption is that there are inherent correlations between protein properties and the
sequence differences among them, as shown in Figure 1-(b). EVOLMPNN integrates both protein
sequence and evolutionary information by identifying where and which mutations occur on the tar-
get protein sequence, compared with known protein sequences and predicts the mutational effect on
the target protein property. To avoid the costly quadratic pairwise comparison among proteins, we
devise a theoretically grounded (see Section 4.6) linear sampling strategy to compute differences
only among the proteins and a fixed number of anchor proteins (Section 4.2). We additionally intro-
duce two extensions of our model, EVOLGNN and EVOLFORMER, to include available data on the
relation among proteins (Section 4.5). The theoretical computation complexity of proposed meth-
ods are provided to guarantee their efficiency and practicality. We apply the proposed methods to
three benchmark homologous protein property prediction datasets with nine splits. Empirical eval-
uation results (Section 5.1) show up to 6.7% Spearman’s ρ correlation improvement over the best
performing baseline models, reducing the inference time by 36× compared with pre-trained PLMs.

: Wild-type protein

: Nearby known mutants
with a few mutations

: Further unknown mutants
with more mutations

(𝑝!, 𝑚!)

(𝑝", 𝑚")

(𝑝#, 𝑚#)

(𝑝!, 𝑚!)

(𝑝", 𝑚")

(𝑝#, 𝑚#)

𝐘! = 𝑓 𝐘", (𝑝!, 𝑚! , (𝑝#, 𝑚#))

𝐘# = 𝑓 𝐘", (𝑝!, 𝑚! , (𝑝$, 𝑚$))

𝐘$ = 𝑓 𝐘", (𝑝#, 𝑚# , (𝑝$, 𝑚$))

)𝐘% = 𝑓 𝐘", (𝑝!, 𝑚!), (𝑝#, 𝑚# , (𝑝$, 𝑚$)) ?
✅

✅

✅

(b)(a)

𝐘!	

𝐘"	

𝐘#	𝐘$	

#𝐘%

Figure 1: Protein property prediction on homologous protein family. (a) An example homologous
protein family with labelled nearby mutants with few mutations. The task is to predict the label of
unknown mutants with more mutations. (b) The evolutionary pattern for (a); (p1,m1) indicates the
mutation m1 at the p1-th position of the protein sequence.

2 PRELIMINARY AND PROBLEM

In the protein engineering process, we first receive a set of proteinsM = {Pi}i=1,2,...,M in which
each protein can be associated with a label vector Yi ∈ Rθ that describes its biomedical properties,
e.g., fitness, stability, fluorescence, solubility, etc. Each protein Pi is a linear chain of amino-acids
Pi = {rj}j=1,2,...,N . While a protein sequence folds into specific 3D conformation to perform
some biomedical functions, each amino-acid is considered as a residue. Residues are connected to
one another by peptide bonds and can interact with each other by different chemical bounds (Pauling
et al., 1951). In short, the function of a protein is mainly determined by the chemical interactions
between residues. Since the 3D structure is missing in benchmark datasets (Rao et al., 2019; Dallago
et al., 2021; Xu et al., 2022), we assume no 3D protein information in this paper.

Homologous Protein Family. A set of protein sequences (M) is a homologous protein family if
there exists an ancestral protein PWT, called wild-type, such that any Pi ∈ M is obtained by mu-
tating PWT through substitution, deletion, insertion and truncation of residues (Ochoterena et al.,
2019). As shown in Figure 1-(a), a homologous protein family can be organised together by repre-
senting their evolutionary relationships and Figure 1-(b) illustrates the detailed evolutionary patterns.

Research Problem. Protein engineering based on homologous proteins is a promising and essen-
tial direction for designing novel proteins of desired properties (Huang et al., 2014; Langan et al.,
2019). Understanding the relation between protein sequence and property is one essential step.
Practically, biologists perform experiments in the lab to label the property YTRAIN of a set of protein
MTRAIN ⊂ M and the follow-up task is predicting ŶTEST of the rest proteinsMTEST ⊂ M. How-
ever, homologous proteins typically have similarities in their amino-acid sequences, structures, and
functions due to their shared ancestry. Accurately predicting the homologous protein property by
distinguishing these subtle yet crucial differences is still an open challenge.

2

Under review as a conference paper at ICLR 2024

3 RELATED WORK

Feature Engineering. Besides conducting manual experiments in labs to measure protein proper-
ties, the basic solution is to design different feature engineering methods based on relevant biological
knowledge, to extract useful information from protein sequence (Klein et al., 1985; Feng & Zhang,
2000; Wang et al., 2017). Dallago et al. (2021) introduce using Levenshtein distance (Li & Liu,
2007) and BLOSUM62-score (Eddy, 2004) relative to wild-type to design protein sequence fea-
tures. In another benchmark work, Xu et al. (2022) adopt another two typical protein sequence
feature descriptors, i.e., Dipeptide Deviation from Expected Mean (DDE) (Saravanan & Gautham,
2015) and Moran correlation (Moran) (Feng & Zhang, 2000). For more engineering methods, refer
to the comprehensive review (Lee et al., 2007).

Protein Representation Learning. In the last decades, empowered by the outstanding achieve-
ments of machine learning and deep learning, protein representation learning has revolutionised pro-
tein property prediction research. Early work along this line adopts the idea of word2vec (Mikolov
et al., 2013) to protein sequences (Xu et al., 2018; Mejı́a-Guerra & Buckler, 2019). To increase
model capacity, deeper protein sequence encoders were proposed by the Computer Vision (CV)
and Nature Language Processing (NLP) communities (Hochreiter & Schmidhuber, 1997; Yu et al.,
2017; Vaswani et al., 2017). The latest works develop Protein Language Models (PLMs), which
focus on employing deep sequence encoder models for protein sequences and are pre-trained on
million- or billion-scale sequences. Well-known works include ProtBert (Brandes et al., 2022), Al-
phaFold (Jumper et al., 2021), TAPE Transformer (Rao et al., 2019) and ESM (Rives et al., 2021).
However, most existing work does not pay enough attention to these subtle yet crucial differences in
homologous proteins. Rives et al. (2021); Jumper et al. (2021) explore protein Multiple Sequence
Alignments (MSAs) (Rao et al., 2021a; Meier et al., 2021) to capture the mutational effect. Nev-
ertheless, the MSA searching process introduces additional computational burden and is insensitive
to subtle but crucial sequence differences (Pearson, 2013). Chatzou et al. (2016) indicate the short-
comings of MSAs on easily neglecting the presence of minor mutations, which can propagate errors
to downstream protein sequence representation learning tasks. This paper also lies in this direction,
we propose a novel solution for the challenging homologous protein property prediction tasks.

4 FRAMEWORK

𝑆!

𝑆"

𝑆#

𝒫! ?

Residue
Encoder Combine

{𝑆!, 𝑆", 𝑆#}

Residue embedding

Position embedding

Protein sequence
….G A S P M M F R….

Protein
Encoder

⊕

Contact map

!𝐘&

𝐇! =

𝐑𝟏 =

*𝐗! =

𝐑𝟏 𝐑𝑺!

𝐑𝟏 𝐑𝑺"

𝐑𝟏 𝐑𝑺"

𝐇𝑺!

𝐇𝑺𝟐

𝐇𝑺𝟑

*𝐇!

Concat(𝐇!, *𝐇!)

F%&''()&(,)

F%&''()&(,)

F%&''()&(,)

𝐙!"

𝐙!#

Figure 2: Our EVOLMPNN framework encodes protein mutations via a sapient combination of
residue evolution and sequence encoding.

EVOLMPNN is a novel framework that integrates both protein sequence information and evolution
information by means of residues. As a result, EVOLMPNN accurately predicts the mutational ef-
fect on homologous protein families. First, in Section 4.1, we introduce embedding initialisation for
protein sequence and residues and the update module for residue embedding (Section 4.2). The evo-
lution encoding in Section 4.3 is the cornerstone of the model that ameliorates protein embeddings.

3

Under review as a conference paper at ICLR 2024

We conclude in Section 4.4 with the generation of final proteins embeddings and model optimi-
sation. We complement our model with a theoretical analysis to motivate our methodology and a
discussion of the computation complexity (Section 4.6). We additionally propose extended versions
of EVOLMPNN that deal with available protein-protein interactions (Section 4.5).

4.1 EMBEDDING INITIALISATION

Protein Sequence Embedding. Given a set of proteins M = {Pi}i=1,2,...,M , we first adopt a
(parameter-frozen) PLM model (Rao et al., 2021b; Meier et al., 2021)1 as protein sequence encoder
to initialise the protein sequence embedding (H) for every protein Pi, which include macro (i.e.,
protein sequence) level information as the primary embedding.

H = PLMENCODER({Pi}i=1,2,...,M), (1)

where the obtained protein embedding H ∈ RM×d and Hi corresponds to each proteinPi. Different
encoders can extract information on various aspects, however, existing PLM models that rely on
MSAs are not sensitive enough to capture the evolution pattern information in homologous protein
families (Pearson, 2013). Chatzou et al. (2016) systematically indicate the shortcomings of MSAs
on easily neglecting the presence of minor mutations, which can propagate errors to downstream
protein sequence representation learning tasks.

Residue Embedding. In order to properly capture the evolution information in homologous pro-
teins, we delve into the residue level for micro clues. We adopt two residue embedding initialisation
approaches, i.e., one-hot encoding (ΦOH) and pre-trained PLM encoder (ΦPLM), to generate pro-
tein’s initial residue embeddings Xi = {xi

j}j=1,2,...,N , where xi
j ∈ Rd. In particular, ΦOH assigns

each protein residue2 with a binary feature vector xi
j , where xi

jb = 1 indicates the appearance of
the b-th residue at Pi’s j-th position. By stacking N residues’ feature vectors into a matrix, we
can obtain Xi ∈ RN×d. On the other hand, following the benchmark implementations (Zhu et al.,
2022), PLMENCODER can export residue embeddings similar to Eq. 1. Formally, ΦPLM initialises
protein residue embeddings as Xi = PLMENCODER({rj}j=1,2,...,N).

Position Embedding. Another essential component of existing PLM is the positional encoding,
which was first proposed by Vaswani et al. (2017). This positional encoding effectively captures the
relative structural information between entities and integrates it with the model (Ying et al., 2021).
In our case, correctly recording the position of each residue in the protein sequence plays an essential
role in identifying each protein’s corresponding mutations. Because the same mutation that occurs at
different positions may lead to disparate influences on protein property. Therefore, after initialising
residue embeddings, we further apply positional embedding on each protein’s residues. We adopt
a methodology that reminisces (Ruoss et al., 2023) that demonstrates the paramount importance of
assigning each residue with a unique position embedding. As such, we randomly initialise a set of
d position embeddings ΦPOS ∈ RN×d. We denote the residue embedding empowered by position
embedding as X̂i = Xi ⊙ ΦPOS.

4.2 RESIDUE EMBEDDING UPDATE

The 3D protein folding depends on the strength of different chemical bonds between residues to
maintain a stable 3D structure. Previous studies carefully designed residue contact maps to model
the residue-residue interactions to learn effective residue embeddings (Rao et al., 2021b; Gao et al.,
2023). In this paper, we adopt the residue-residue interaction to update residue embeddings but
eschew the requirement of manually designing the contact map. Instead, we assume the existence of
an implicit fully connected residue contact map of each protein Pi and implement the Transformer
model (Vaswani et al., 2017; Wu et al., 2022) to adaptively update residue embeddings. Denote R(ℓ)

i

as the input to the (ℓ + 1)-th layer, with the first R(0)
i = X̂i be the input encoding. The (ℓ + 1)-th

1We do not fine-tune PLM in this paper for efficiency consideration.
2There are 20 different amino-acid residues commonly found in proteins

4

Under review as a conference paper at ICLR 2024

layer of residue embedding update module can be formally defined as follows:

Atthi (R
(ℓ)
i) = SOFTMAX(

R
(ℓ)
i Wℓ,h

Q (R
(ℓ)
i Wℓ,h

K)T

√
d

),

R̂
(ℓ)
i = R

(ℓ)
i +

H∑
h=1

Atthi (R
(ℓ)
i)R

(ℓ)
i Wℓ,h

V Wℓ,h
O ,

R
(ℓ+1)
i = R̂

(ℓ)
i + ELU(R̂

(ℓ)
i Wℓ

1)W
ℓ
2,

(2)

where Wℓ,h
O ∈ RdH×d, Wl,h

Q , Wl,h
K , Wl,h

V ∈ Rd×dH , Wℓ
1 ∈ Rd×r, Wℓ

2 ∈ Rdt×d, H is the
number of attention heads, dH is the dimension of each head, dt is the dimension of the hidden
layer, ELU (Clevert et al., 2015) is an activation function, and Atthi (R

(ℓ)
i) refers to as the attention

matrix. After each Transformer layer, we add a normalisation layer i.e., LayerNorm (Ba et al., 2016),
to reduce the over-fitting problem proposed by Vaswani et al. (2017). After stacking Lr layers, we
obtain the final residue embeddings as Ri = R

(Lr)
i .

4.3 EVOLUTION ENCODING

In homologous protein families, all proteins are mutants derived from a common wild-type pro-
tein PWT with different numbers and types of mutations. In this paper, we propose to capture the
evolutionary information via the following assumption.
Assumption 1 (Protein Property Relevance). Assume there is a homologous protein familyM and
a function FDIFF can accurately distinguish the mutations on mutant Pi compared with any Pj as
FDIFF(Pi,Pj). For any target protein Pi, its property Yi can be predicted by considering 1) its
sequence information Pi; 2) FDIFF(Pi,Pj) and the property of Pj , i.e., Yj . Shortly, we assume
there exists a function f that maps Yi ← f(FDIFF(Pi,Pj),Yj).

Motivated by Assumption 1, we take both protein sequence and the mutants difference FDIFF(Pi,Pj)
to accurately predict the protein property. To encode the protein sequence, we employ established
tools described in Section 4.1. Here instead, we describe the evolution encoding to realise the
function of FDIFF(Pi,Pj).

The naı̈ve solution to extract evolutionary patterns in a homologous family is constructing a complete
phylogenetic tree (Fitch & Margoliash, 1967) based on the mutation distance between each protein
pair. Yet, finding the most parsimonious phylogenetic tree is NP-hard (Sankoff, 1975).

To address the aforementioned problems, we propose an anchor-based protein evolution encoding
method. Specifically, denote H

(ℓ)
i as the input to the (ℓ + 1)-th block and define H

(0)
i = Hi. The

evolution localisation encoding of the (ℓ+ 1)-th layer contains the following key components: (i) k
anchor protein {PSi}i=1,2,...,k selection. (ii) Evolutionary information encoding function FDIFF that
computes the difference between residues of each protein and those of the anchor protein, and target
protein’s evolutionary information is generated by summarising the obtained differences:

dij = COMBINE(Ri −RSj), (3)

where COMBINE can be implemented as differentiable operators, such as, CONCATENATE, MAX
POOL MEAN POOL and SUM POOL; here we use the MEAN POOL to obtain dij ∈ Rd. (iii)
Message computation function FMESSAGE that combines protein sequence feature information of two
proteins with their evolutionary differences. We empirically find that the simple element-wise prod-
uct between H

(ℓ)
j and dij attains good results

FMESSAGE(i, j,H
(ℓ)
j ,dij) = H

(ℓ)
j ⊙ dij , (4)

(iv) Aggregate messages from k anchors and combine them with protein’s embedding as follow:

Ĥ
(ℓ)
i = COMBINE({FMESSAGE(i, j,H

(ℓ)
j ,dij)}j=1,2,...,k), (5)

H
(ℓ+1)
i = CONCAT(H

(ℓ)
i , Ĥ

(ℓ)
i)Wℓ, (6)

where Wℓ ∈ R2d×d transform concatenated vectors to the hidden dimension. After stacking Lp

layers, we obtain the final protein sequence embedding ZP
i = H

(Lp)
i .

5

Under review as a conference paper at ICLR 2024

4.4 FINAL EMBEDDING AND OPTIMISATION

After obtaining protein Pi’s residue embeddings Ri and sequence embedding ZP
i , we summarise its

residue embeddings as a vector ZR
i = MEAN POOL(Ri). The final protein embedding summarises

the protein sequence information and evolution information as the comprehensive embedding Zi =

CONCAT(ZP
i ,Z

R
i) and the final prediction is computed as Ŷi = ZiW

FINAL where WFINAL ∈ Rd×θ,
θ is the number of properties to predict. Afterwards, we adopt a simple and common strategy,
similar to (Xu et al., 2022), to solve the protein property prediction tasks. Specifically, we adopt the
MSELoss (L) to measure the correctness of model predictions on training samples against ground
truth labels. The objective of learning the target task is to optimise model parameters to minimise the
loss L on this task. The framework of EVOLMPNN is summarised in Algorithm 1 in Appendix A.

4.5 EXTENSIONS ON OBSERVED GRAPH

EVOLMPNN does not leverage any information from explicit geometry among proteins, where
each protein only communicates with randomly sampled anchors (Section 4.3). However, it is often
possible to have useful structured data G = (M,A) that represents the relation between protein-
protein by incorporating specific domain knowledge (Zhong et al., 2023).3 Therefore, here we
introduce EVOLGNN, an extension of EVOLMPNN on the possibly observed protein interactions.

EVOLGNN. We compute the evolution information as Eq. 3. The evolution information can be
easily integrated into the pipeline of message-passing neural networks, as an additional structural
coefficient (Wijesinghe & Wang, 2022):

m(ℓ)
a = AGGREGATEN ({Aij , dij︸︷︷︸

Evol. info.

,H
(ℓ−1)
j | j ∈ N (i)}),

m
(ℓ)
i = AGGREGATEI({Aij , dij︸︷︷︸

Evol. info.

| j ∈ N (i)})H(ℓ−1)
i ,

H
(ℓ)
i = COMBINE(m(ℓ)

a ,m
(ℓ)
i),

(7)

where AGGREGATEN (·) and AGGREGATEI(·) are two parameterised functions. m(ℓ)
a is a message

aggregated from the neighbours N (i) of protein Pi and their structure (Aij) and evolution (dij)
coefficients. m(ℓ)

i is an updated message from protein Pi after performing an element-wise multi-
plication between AGGREGATEI(·) and H

(ℓ−1)
i to account for structural and evolution effects from

its neighbours. After, m(ℓ)
a and m

(ℓ)
i are combined together to obtain the update embedding H

(ℓ)
i .

EVOLFORMER. Another extension relies on pure Transformer structure, which means the evolution
information of M can be captured by every protein. The evolution information can be integrated
into the pipeline of Transformer, as additional information to compute the attention matrix:

Atth(H(ℓ)) = SOFTMAX(
H(ℓ)Wℓ,h

Q (H(ℓ)Wℓ,h
K)T

√
d

+ MEAN POOL({Ri}i=1,2,...,M)︸ ︷︷ ︸
Evol. info.

), (8)

Other follow-up information aggregation and feature vector update operations are the same as the
basic Transformer pipeline, as described in Eq. 2.

4.6 THEORETICAL ANALYSIS

Anchor Selection. Inspired by (You et al., 2019), we adopt Bourgain’s Theorem (Bourgain, 1985) to
guide the random anchor number (k) of the evolution encoding layer. Briefly, support by a construc-
tive proof (Theorem 2 (Linial et al., 1995)) of Bourgain Theorem (Theorem 1), only k = O(log2 M)
anchors are needed to ensure the resulting embeddings are guaranteed to have low distortion (Def-
inition 1), in a given metric space (M,FDIST). EVOLMPNN can be viewed as a generalisation of
the embedding method of Theorem 2, where FDIST(·) is generalised via message passing functions

3Available contact map describes residue-residue interactions can be easily integrated as relational bias of
Transformer (Wu et al., 2022) as we used in Section 4.2.

6

Under review as a conference paper at ICLR 2024

(Eq 3-Eq. 6). Therefore, Theorem 2 offers a theoretical guide that O(log2 M) anchors are needed
to guarantee low distortion embedding. Following this principle, EVOLMPNN choose k = log2 M
random anchors, denoted as {Sj}j=1,2,...,log2 M , and we sample each protein inM independently
with probability 1

2j . Detailed discussion and proof refer to Appendix B.

Complexity Analysis. The computation costs of EVOLMPNN, EVOLGNN, and EVOLFORMER
come from residue encoding and evolution encoding, since the protein sequence and residue fea-
ture initialisation have no trainable parameters. The residue encoder introduces the complexity of
O(MN) following an efficient implementation of NodeFormer (Wu et al., 2022). In the evolu-
tion encoding, EVOLMPNN performs communication between each protein and log2 M anchors,
which introduces the complexity of O(M log2 M); EVOLGNN performs communication between
each protein and K neighbours with O(KM) complexity; EVOLFORMER performs communica-
tion between all protein pairs, which introduces the complexity of O(M), following the efficient
implement, NodeFormer. In the end, we obtain the total computation complexity of EVOLMPNN -
O((N + log2 M)M), EVOLGNN - O((N +K)M) and EVOLFORMER - O((N + 1)M).

5 EXPERIMENTAL STUDY

In this section, we empirically study the performance of EVOLMPNN. We validate our model on
three benchmark homologous protein family datasets and evaluate the methods on nine data splits to
consider comprehensive practical use cases. Our experiments comprise a comprehensive set of state-
of-the-art methods from different categories. We additionally demonstrate the effectiveness of two
extensions of our model, EVOLGNN and EVOLFORMER, with different input features. We conclude
our analysis studying the influence of some hyper-parameters and investigating the performance of
EVOLMPNN on high mutational mutants.
Table 1: Datasets splits, and corresponding statistics; if the split comes from a benchmark paper,
we report the corresponding citation.

Landscape Split # Total #Train #Valid #Test
AAV (Bryant et al., 2021) 2-VS-REST (Dallago et al., 2021) 82,583 28,626 3,181 50,776

7-VS-REST (Dallago et al., 2021) 82,583 63,001 7,001 12,581
LOW-VS-HIGH (Dallago et al., 2021) 82,583 42,791 4,755 35,037

GB1 (Wu et al., 2016) 2-VS-REST (Dallago et al., 2021) 8,733 381 43 8,309
3-VS-REST (Dallago et al., 2021) 8,733 2,691 299 5,743
LOW-VS-HIGH (Dallago et al., 2021) 8,733 4,580 509 3,644

Fluorescence (Sarkisyan et al., 2016) 2-VS-REST 54,025 12,712 1,413 39,900
3-VS-REST (Xu et al., 2022) 54,025 21,446 5,362 27,217
LOW-VS-HIGH 54,025 44,082 4,899 5,044

Datasets and Splits. We perform experiments on benchmark datasets of several important protein
engineering tasks, including AAV, GB1 and Fluorescence, and generate three splits on each
dataset. Data statistics are summarised in Table 1. The split λ-VS-REST indicates that we train
models on wild-type protein and mutants of no more than λ mutations, while the rest are assigned to
test. The split LOW-VS-HIGH indicates that we train models on sequences with target value scores
equal to or below wild-type, while the rest are assigned to test. For more details refer to Appendix C.

Baselines. As baseline models, we consider methods in four categories. First, we selected four fea-
ture engineer methods, i.e., Levenshtein (Dallago et al., 2021), BLOSUM62 (Dallago et al., 2021),
DDE (Saravanan & Gautham, 2015) and Moran (Feng & Zhang, 2000). Second, we select four pro-
tein sequence encoder models, i.e., LSTM (Hochreiter & Schmidhuber, 1997), Transformer (Rao
et al., 2019), CNN (Rao et al., 2019) and ResNet (Yu et al., 2017). Third, we select four pre-trained
PLM models, i.e., ProtBert (Elnaggar et al., 2022), ESM-1b (Rives et al., 2021), ESM-1v (Meier
et al., 2021) and ESM-2 (Lin et al., 2023). In the end, we select four GNN-based methods which can
utilise available graph structure, i.e., GCN (Kipf & Welling, 2017), GAT (Velickovic et al., 2018),
GraphTransformer (Shi et al., 2021) and NodeFormer (Wu et al., 2022).

Implementation. We follow the PEER benchmark settings4, including train and test pipeline, model
optimisation and evaluation method (evaluation is Spearman’s ρ metric), adopted in (Xu et al., 2022)
to make sure the comparison fairness. For the baselines, including feature engineer, protein sequence

4https://github.com/DeepGraphLearning/PEER_Benchmark

7

https://github.com/DeepGraphLearning/PEER_Benchmark

Under review as a conference paper at ICLR 2024

encoder and pre-trained PLM, we adopt the implementation provided by benchmark Torchdrug (Zhu
et al., 2022) and the configurations reported in (Xu et al., 2022). For the GNN-based baselines,
which require predefined graph structure and protein features, we construct K-NN graphs (Eppstein
et al., 1997), with K = {5, 10, 15}, and report the best performance. As features, we use the trained
sequence encoder, which achieves better performance, used also in our method. In addition, we
adopt ESM-1b as the residue encoder on GB1 dataset and adopt One-Hot encoding on AAV and
Fluorescence datasets to speed up the training process. All experiments are conducted on two
NVIDIA GeForce RTX 3090 GPUs with 24 GB memory, and we report the mean performance of
three runs with different random seeds. We present more details in Appendix D. Note that we do not
report results that take more than 48 hours due to our limited computation resources.

5.1 EFFECTIVENESS

Table 2: Quality in terms Spearman’s ρ correlation with target value. NA indicates a non-applicable
setting. * Used as a feature extractor with pre-trained weights frozen. † Results reported in (Dallago
et al., 2021; Xu et al., 2022). - Can not complete the training process within 48 hours on our devices.
Top-2 performances of each split are marked as bold and underline.

Category Model
Dataset

AAV GB1 Fluorescence
2-VS-R. 7-VS-R. L.-VS-H. 2-VS-R. 3-VS-R. L.-VS-H. 2-VS-R. 7-VS-R. L.-VS-H.

Feature
Engineer

Levenshtein 0.578 0.550 0.251 0.156 -0.069 -0.108 0.466 0.054 0.011
BLOSUM62 NA NA NA 0.128 0.005 -0.127 NA NA NA
DDE 0.649† 0.636 0.158 0.445† 0.816 0.306 0.690 0.638† 0.159
Moran 0.437† 0.398 0.069 0.069† 0.589 0.193 0.445 0.400† 0.046

Protein Seq.
Encoder

LSTM 0.125† 0.608 0.308 -0.002† -0.002 -0.007 0.256 0.494† 0.207
Transformer 0.681† 0.748 0.304 0.271† 0.877 0.474 0.250 0.643† 0.161
CNN 0.746† 0.730 0.406 0.502† 0.857 0.515 0.805 0.682† 0.249
ResNet 0.739† 0.733 0.223 0.133† 0.542 0.396 0.594 0.636† 0.243

Pre-trained
PLM

ProtBert 0.794† - - 0.634† 0.866 0.308 0.451 0.679† -
ProtBert* 0.209† 0.507 0.277 0.123† 0.619 0.164 0.403 0.339† 0.161
ESM-1b 0.821† - - 0.704† 0.878 0.386 0.804 0.679† -
ESM-1b* 0.454† 0.573 0.241 0.337† 0.605 0.178 0.528 0.430† 0.091
ESM-1v* 0.533 0.580 0.171 0.359 0.632 0.180 0.562 0.563 0.070
ESM-2* 0.475 0.581 0.199 0.422 0.632 0.189 0.501 0.511 0.084

GNN-based
Methods

GCN 0.824 0.730 0.361 0.745 0.865 0.466 0.755 0.677 0.198
GAT 0.821 0.741 0.369 0.757 0.873 0.508 0.768 0.667 0.208
GraphTransf. 0.827 0.749 0.389 0.753 0.876 0.548 0.780 0.678 0.231
NodeFormer 0.827 0.741 0.393 0.757 0.877 0.543 0.794 0.677 0.213

Ours EVOLMPNN 0.835 0.757 0.433 0.768 0.881 0.584 0.809 0.684 0.228

EVOLMPNN outperforms all baselines on 8 of 9 splits. Table 2 summarises performance com-
parison on AAV, GB1 and Fluorescence datasets. EVOLMPNN achieves new state-of-the-art
performance on most splits of three datasets, with up to 6.7% improvements to baseline methods.
This result vindicates the effectiveness of our proposed design to capture evolution information for
homologous protein property prediction. Notably, GNN-based methods that utilise manually con-
structed graph structure do not enter top-2 on 9 splits and two Transformer structure models, i.e.,
GraphTransformer and NodeFormer, often outperform such methods. It can be understood since
homology graph construction is a challenging biomedical task (Pearson, 2013), the simple K-NN
graph construction is not an effective solution.

Large-scale PLM models are dominated by simple models. Surprisingly, we find that smaller
models, such as CNN and ResNet, can outperfoerm large ESM variaants pre-trained on million- and
billion-scale sequences. For instance, ESM-1v has about 650 million parameters and is pre-trained
on around 138 million UniRef90 sequences (Meier et al., 2021). Yet, CNN outperforms ESM-1v on
three splits of Fluorescence dataset. This indicates the necessity of designs targeting specifically
the crucial homologous protein engineering task.

Our proposed extension models outperform all baselines on GB1 dataset. We performed ad-
ditional experiments on GB1 datasets to investigate the performance of two extended models, i.e.,
EVOLGNN and EVOLFORMER and study the influence of different residue embedding initialisa-
tion methods. The results summarised in Table 3 evince that EVOLMPNN outperforms the other
two variants in three splits, and all our proposed models outperform the best baseline. This result
confirms the effectiveness of encoding evolution information for homologous protein property pre-
diction. Besides, the models adopting the PLM encoding ΦPLM achieve better performance than

8

Under review as a conference paper at ICLR 2024

Table 3: Results on GB1 datasets (metric: Spearman’s ρ) of our proposed methods, with different
residue embeddings. Top-2 performances of each split marked as bold and underline.

Model Split
2-VS-R. 3-VS-R. L.-VS-H.

Best Baseline 0.757 0.878 0.548
EVOLMPNN (ΦOH) 0.766 0.877 0.553
EVOLGNN (ΦOH) 0.764 0.866 0.536
EVOLFORMER (ΦOH) 0.764 0.868 0.537
EVOLMPNN (ΦPLM) 0.768 0.881 0.584
EVOLGNN (ΦPLM) 0.767 0.879 0.581
EVOLFORMER (ΦPLM) 0.766 0.879 0.575

those using the one-hot encoding ΦOH. From this experiment, we conclude that residue information
provided by PLM helps to capture protein’s evolution information.

5.2 ANALYSIS OF PERFORMANCE

Inference time: ~3 mins

Inference time: ~4 secs

Inference time: ~5 secs

Figure 3: Performance on pro-
tein groups of different numbers
of mutations, with the LOW-VS-
HIGH split and avg. epoch infer-
ence time on GB1 dataset.

(a) #Attention Heads & #Embedding Dimension (b) Residue & Evolution Encoder #Layers
Embedding dim

ensio
n

Evolutio
n encoder la

yer

Residue encoder layer
Attention head

Spearm
an correlation

Spearm
an correlation

Figure 4: EVOLMPNN performance on AAV’s 2-VS-REST (a)
and LOW-VS-HIGH (b) splits, with different hyper-parameters.

The performance of EVOLMPNN comes from its superior predictions on high mutational
mutants. For the LOW-VS-HIGH split of GB1 dataset, we group the test proteins into 4 groups
depending on their number of mutations. Next, we compute three models, including EVOLMPNN,
ESM-1b (fine-tuned PLM model) and CNN (best baseline), prediction performances on each protein
group and present the results in Figure 3. EVOLMPNN outperforms two baselines in all 4 protein
groups. Notably, by demonstrating EVOLMPNN’s clear edge in groups of no less than 3 mutations,
we confirm the generalisation effectiveness from low mutational mutants to high mutational mutants.
As per inference time, EVOLMPNN and CNN require similar inference time (≈ 5 secs), 36× faster
than ESM-1b (≈ 3 mins).

Influence of hyper-parameter settings on EVOLMPNN. We present in Figure 4 a group of ex-
periments to study the influence of some hyper-parameters on EVOLMPNN, including the number
of attention heads, embedding dimension and the number of layers of residue encoder and evolution
encoder. EVOLMPNN exhibits stable performance on different hyper-parameter settings.

6 CONCLUSION AND FUTURE WORK

We propose Evolution-aware Message Passing Neural Network (EVOLMPNN), that integrates both
protein sequence information and evolution information by means of residues to predict the muta-
tional effect on homologous proteins. Empirical and theoretical studies show that EVOLMPNN and
its extended variants (EVOLGNN and EVOLFORMER) achieve outstanding performance on several
benchmark datasets while retaining reasonable computation complexity. In future work, we intend to
incorporate 3D protein structure information towards general-purpose homologous protein models.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ethan C Alley, Grigory Khimulya, Surojit Biswas, Mohammed AlQuraishi, and George M Church.
Unified rational protein engineering with sequence-based deep representation learning. Nature
methods, 16(12):1315–1322, 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016.

Christopher Barnes, Olivia Scheideler, and David Schaffer. Engineering the aav capsid to evade
immune responses. Current opinion in biotechnology, 60:99–103, 2019.

Jean Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal of
Mathematics, 52:46–52, 1985.

Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. Proteinbert: a universal
deep-learning model of protein sequence and function. Bioinformatics, 38(8):2102–2110, 2022.

Drew H Bryant, Ali Bashir, Sam Sinai, Nina K Jain, Pierce J Ogden, Patrick F Riley, George M
Church, Lucy J Colwell, and Eric D Kelsic. Deep diversification of an aav capsid protein by
machine learning. Nature Biotechnology, 39(6):691–696, 2021.

Hildegard Büning, Anke Huber, Liang Zhang, Nadja Meumann, and Ulrich Hacker. Engineering the
aav capsid to optimize vector–host-interactions. Current Opinion in Pharmacology, 24:94–104,
2015.

Paul J Carter. Introduction to current and future protein therapeutics: a protein engineering perspec-
tive. Experimental cell research, 317(9):1261–1269, 2011.

Maria Chatzou, Cedrik Magis, Jia-Ming Chang, Carsten Kemena, Giovanni Bussotti, Ionas Erb, and
Cedric Notredame. Multiple sequence alignment modeling: methods and applications. Briefings
in Bioinformatics, 17(6):1009–1023, 2016.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). CoRR, abs/1511.07289, 2015.

Christian Dallago, Jody Mou, Kadina E. Johnston, Bruce J. Wittmann, Nicholas Bhattacharya,
Samuel Goldman, Ali Madani, and Kevin Yang. FLIP: benchmark tasks in fitness landscape
inference for proteins. In Proceedings of the 2021 Annual Conference on Neural Information
Processing Systems (NeurIPS), 2021.

Sean R Eddy. Where did the blosum62 alignment score matrix come from? Nature Biotechnology,
22(8):1035–1036, 2004.

Ahmed Elnaggar, Michael Heinzinger, Christian Dallago, Ghalia Rehawi, Yu Wang, Llion Jones,
Tom Gibbs, Tamas Feher, Christoph Angerer, Martin Steinegger, Debsindhu Bhowmik, and
Burkhard Rost. Prottrans: Toward understanding the language of life through self-supervised
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 44(10):
7112–7127, 2022.

Martin KM Engqvist and Kersten S Rabe. Applications of protein engineering and directed evolution
in plant research. Plant Physiology, 179(3):907–917, 2019.

David Eppstein, Michael S Paterson, and F Frances Yao. On nearest-neighbor graphs. Discrete &
Computational Geometry, 17:263–282, 1997.

Zhi-Ping Feng and Chun-Ting Zhang. Prediction of membrane protein types based on the hydropho-
bic index of amino acids. Journal of Protein Chemistry, 19:269–275, 2000.

Walter M Fitch and Emanuel Margoliash. Construction of phylogenetic trees: a method based on
mutation distances as estimated from cytochrome c sequences is of general applicability. Science,
155(3760):279–284, 1967.

Douglas M Fowler and Stanley Fields. Deep mutational scanning: a new style of protein science.
Nature methods, 11(8):801–807, 2014.

10

Under review as a conference paper at ICLR 2024

Ziqi Gao, Chenran Jiang, Jiawen Zhang, Xiaosen Jiang, Lanqing Li, Peilin Zhao, Huanming Yang,
Yong Huang, and Jia Li. Hierarchical graph learning for protein–protein interaction. Nature
Communications, 14(1):1093, 2023.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 1997.

Po-Ssu Huang, Gustav Oberdorfer, Chunfu Xu, Xue Y Pei, Brent L Nannenga, Joseph M Rogers,
Frank DiMaio, Tamir Gonen, Ben Luisi, and David Baker. High thermodynamic stability of
parametrically designed helical bundles. science, 346(6208):481–485, 2014.

Trey Ideker and Roded Sharan. Protein networks in disease. Genome Research, 18(4):644–652,
2008.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Proceedings of the 2017 International Conference on Learning Representations (ICLR),
2017.

Petr Klein, Minoru Kanehisa, and Charles DeLisi. The detection and classification of membrane-
spanning proteins. Biochimica et Biophysica Acta (BBA)-Biomembranes, 815(3):468–476, 1985.

Robert A Langan, Scott E Boyken, Andrew H Ng, Jennifer A Samson, Galen Dods, Alexandra M
Westbrook, Taylor H Nguyen, Marc J Lajoie, Zibo Chen, Stephanie Berger, et al. De novo design
of bioactive protein switches. Nature, 572(7768):205–210, 2019.

David Lee, Oliver Redfern, and Christine Orengo. Predicting protein function from sequence and
structure. Nature Reviews Molecular Cell Biology, 8(12):995–1005, 2007.

Yujian Li and Bi Liu. A normalized levenshtein distance metric. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 29(6):1091–1095, 2007.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algo-
rithmic applications. Combinatorica, 15:215–245, 1995.

Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu, and Alexander Rives. Language
models enable zero-shot prediction of the effects of mutations on protein function. In Proceedings
of the 2021 Annual Conference on Neural Information Processing Systems (NeurIPS), pp. 29287–
29303, 2021.

Marı́a Katherine Mejı́a-Guerra and Edward S Buckler. A k-mer grammar analysis to uncover maize
regulatory architecture. BMC Plant Biology, 19(1):1–17, 2019.

Tomás Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed
representations of words and phrases and their compositionality. In Proceedings of the 2013
Annual Conference on Neural Information Processing Systems (NIPS), pp. 3111–3119, 2013.

Helga Ochoterena, Alexander Vrijdaghs, Erik Smets, and Regine Claßen-Bockhoff. The search for
common origin: homology revisited. Systematic Biology, 68(5):767–780, 2019.

Linus Pauling, Robert B Corey, and Herman R Branson. The structure of proteins: two hydrogen-
bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of
Sciences, 37(4):205–211, 1951.

William R Pearson. An introduction to sequence similarity (“homology”) searching. Current Pro-
tocols in Bioinformatics, 42(1):3–1, 2013.

11

Under review as a conference paper at ICLR 2024

Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John F. Canny, Pieter
Abbeel, and Yun S. Song. Evaluating protein transfer learning with TAPE. In Proceedings of
the 2019 Annual Conference on Neural Information Processing Systems (NeurIPS), pp. 9686–
9698, 2019.

Roshan Rao, Jason Liu, Robert Verkuil, Joshua Meier, John F. Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. MSA transformer. In Proceedings of the 2021 International Conference on
Machine Learning (ICML), volume 139, pp. 8844–8856. PMLR, 2021a.

Roshan Rao, Joshua Meier, Tom Sercu, Sergey Ovchinnikov, and Alexander Rives. Transformer
protein language models are unsupervised structure learners. In Proceedings of the 2021 Interna-
tional Conference on Learning Representations (ICLR), 2021b.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15):e2016239118, 2021.

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Róbert Csordás, Mehdi Ben-
nani, Shane Legg, and Joel Veness. Randomized positional encodings boost length generalization
of transformers. In Proceedings of the 2023 Annual Meeting of the Association for Computational
Linguistics (ACL), pp. 1889–1903. ACL, 2023.

David Sankoff. Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics, 28
(1):35–42, 1975.

Vijayakumar Saravanan and Namasivayam Gautham. Harnessing computational biology for exact
linear b-cell epitope prediction: a novel amino acid composition-based feature descriptor. Omics:
a journal of integrative biology, 19(10):648–658, 2015.

Karen S Sarkisyan, Dmitry A Bolotin, Margarita V Meer, Dinara R Usmanova, Alexander S Mishin,
George V Sharonov, Dmitry N Ivankov, Nina G Bozhanova, Mikhail S Baranov, Onuralp Soyle-
mez, et al. Local fitness landscape of the green fluorescent protein. Nature, 533(7603):397–401,
2016.

A Elisabeth Sauer-Eriksson, Gerard J Kleywegt, Mathias Uhlén, and T Alwyn Jones. Crystal struc-
ture of the c2 fragment of streptococcal protein g in complex with the fc domain of human igg.
Structure, 3(3):265–278, 1995.

Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjing Wang, and Yu Sun. Masked label
prediction: Unified message passing model for semi-supervised classification. In Proceedings of
the 2021 International Joint Conferences on Artifical Intelligence (IJCAI), pp. 1548–1554, 2021.

Roland J Siezen, William M de Vos, Jack AM Leunissen, and Bauke W Dijkstra. Homology
modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine pro-
teinases. Protein Engineering, Design and Selection, 4(7):719–737, 1991.

U Sjöbring, L Björck, and W Kastern. Streptococcal protein g. gene structure and protein binding
properties. Journal of Biological Chemistry, 266(1):399–405, 1991.

Roger Y Tsien. The green fluorescent protein. Annual Review of Biochemistry, 67(1):509–544,
1998.

Kevin M Ulmer. Protein engineering. Science, 219(4585):666–671, 1983.

LH Vandenberghe, JM Wilson, and G Gao. Tailoring the aav vector capsid for gene therapy. Gene
Therapy, 16(3):311–319, 2009.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the 2017
Annual Conference on Neural Information Processing Systems (NIPS), pp. 5998–6008, 2017.

12

Under review as a conference paper at ICLR 2024

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In Proceedings of the 2018 International Conference on
Learning Representations (ICLR), 2018.

Jiawei Wang, Bingjiao Yang, Jerico Revote, Andre Leier, Tatiana T Marquez-Lago, Geoffrey Webb,
Jiangning Song, Kuo-Chen Chou, and Trevor Lithgow. Possum: a bioinformatics toolkit for
generating numerical sequence feature descriptors based on pssm profiles. Bioinformatics, 33
(17):2756–2758, 2017.

Meng Wang, Tong Si, and Huimin Zhao. Biocatalyst development by directed evolution. Biore-
source Technology, 115:117–125, 2012.

James A Wells. Additivity of mutational effects in proteins. Biochemistry, 29(37):8509–8517, 1990.

Asiri Wijesinghe and Qing Wang. A new perspective on ”how graph neural networks go beyond
weisfeiler-lehman?”. In Proceedings of the 2022 International Conference on Learning Repre-
sentations (ICLR), 2022.

Nicholas C Wu, Lei Dai, C Anders Olson, James O Lloyd-Smith, and Ren Sun. Adaptation in
protein fitness landscapes is facilitated by indirect paths. Elife, 5:e16965, 2016.

Qitian Wu, Wentao Zhao, Zenan Li, David P. Wipf, and Junchi Yan. Nodeformer: A scalable
graph structure learning transformer for node classification. In Proceedings of the 2022 Annual
Conference on Neural Information Processing Systems (NeurIPS), pp. 27387–27401, 2022.

Minghao Xu, Zuobai Zhang, Jiarui Lu, Zhaocheng Zhu, Yangtian Zhang, Chang Ma, Runcheng
Liu, and Jian Tang. PEER: A comprehensive and multi-task benchmark for protein sequence
understanding. In Proceedings of the 2022 Annual Conference on Neural Information Processing
Systems (NeurIPS), 2022.

Ying Xu, Jiangning Song, Campbell Wilson, and James C Whisstock. Phoscontext2vec: a dis-
tributed representation of residue-level sequence contexts and its application to general and
kinase-specific phosphorylation site prediction. Scientific Reports, 8(1):8240, 2018.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Graph random neural networks for semi-supervised learning on graphs. In Proceed-
ings of the 2021 Annual Conference on Neural Information Processing Systems (NeurIPS), pp.
28877–28888, 2021.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks. In Proceedings
of the 2019 International Conference on Machine Learning (ICML), volume 97, pp. 7134–7143.
PMLR, 2019.

Fisher Yu, Vladlen Koltun, and Thomas A. Funkhouser. Dilated residual networks. In Proceedings
of the 2017 Conference on Computer Vision and Pattern Recognition (CVPR), pp. 636–644. IEEE,
2017.

Zhiqiang Zhong, Anastasia Barkova, and Davide Mottin. Knowledge-augmented graph machine
learning for drug discovery: A survey from precision to interpretability. CoRR, abs/2302.08261,
2023.

Zhaocheng Zhu, Chence Shi, Zuobai Zhang, Shengchao Liu, Minghao Xu, Xinyu Yuan, Yangtian
Zhang, Junkun Chen, Huiyu Cai, Jiarui Lu, Chang Ma, Runcheng Liu, Louis-Pascal A. C. Xhon-
neux, Meng Qu, and Jian Tang. Torchdrug: A powerful and flexible machine learning platform
for drug discovery. CoRR, abs/2202.08320, 2022.

13

Under review as a conference paper at ICLR 2024

A ALGORITHM

Algorithm 1: The framework of EVOLMPNN
Input: Protein setM = {Pi}i=1,2,...,M and each protein sequence Pi contains a residue set

{rj}j=1,2,...,N ; Message computation function FMESSAGE that outputs an d dimensional
message; COMBINE(·) and CONCAT(·) operators.

Output: Protein embeddings {Zi}i=1,2,...,M

1 Hi ← PLMENCODER(Pi)

2 Xi ← ΦOH({rj}j=1,2,...,N) / ΦPLM({rj}j=1,2,...,N)

3 X̂i ← Xi ⊙ ΦPOS

4 R
(0)
i ← X̂i

5 for ℓ = 1, 2, . . . , Lr do
6 for i = 1, 2, . . . , N do
7 R

(ℓ)
i ← NODEFORMER(R

(ℓ−1)
i)

8 end
9 end

10 Ri ← R
(Lr)
i

11 H
(0)
i ← Hi

12 for ℓ = 1, 2, . . . , Lp do
13 {Sj}j=1,2,...,k ∼M
14 for i = 1, 2, . . . ,M do
15 for j = 1, 2, . . . , k do
16 dij = COMBINE(Ri −RSj)
17 end
18 Ĥ

(ℓ)
i = COMBINE({FMESSAGE(i, j,H

(ℓ)
j ,dij)}j=1,2,...,k)

H
(ℓ+1)
i = CONCAT(H

(ℓ)
i , Ĥ

(ℓ)
i)Wℓ

19 end
20 end
21 ZP

i = H
(Lp)
i

22 ZR
i = MEAN POOL(Ri)

23 Zi = CONCAT(ZP
i ,Z

R
i)

We summarise the process of Evolution-aware Message Passing Neural Network (EVOLMPNN) in
Algorithm 1. Given a protein set M = {Pi}i=1,2,...,M and each protein sequence Pi contains a
residue set {rj}j=1,2,...,N . For each protein Pi, we first initialise protein sequence (Hi) and residue
embeddings (Xi) (line 1-2). After, the residue embeddings are empowered with positional encoding
(ΦPOS) to get X̂i (line 3). Such a design will help us to record the position of a mutation occurring
in the protein sequence in the following steps. Then, we update residue embedding based on a
contact map, which records the chemical reactions between residues after folding into a 3D structure
(line 4-10). Furthermore, we aggregate evolution-aware embeddings by means of updated residue
embeddings (line 11- line 17) and integrate them with protein sequence embeddings to empower
them with evolution-aware semantics (line 18-21). Finally, we merge protein sequence and residue
embeddings as the final protein embeddings, which contain comprehensive information and make
predictions based on them (line 22- line 23).

B THEORETICAL ANALYSIS

Inspired by (You et al., 2019), we adopt Bourgain’s Theorem (Bourgain, 1985) to guide the random
anchor number (k) of the evolution encoding layer, such that the resulting embeddings are guar-
anteed to have low distortion. Specifically, distortion measures the faithfulness of the embeddings
in preserving distances (in our case, is the differences between protein sequences on a homology
network) when mapping from one metric space to another metric space, which can be defined as:

14

Under review as a conference paper at ICLR 2024

Definition 1 (Distortion). Given two metric space (M,FDIST) and (Z,F′
DIST) and a function f :

M→ Z , f is said to have distortion α, if ∀Pi,Pj ∈M, 1
αFDIST(Pi,Pj) ≤ F′

DIST(f(Pi), f(Pj)) ≤
FDIST(Pi,Pj).

Theorem 1 (Bourgain Theorem). Given any finite metric space (M,FDIST), with | M |= M , there
exists an embedding of (M,FDIST) into Rk under any lp metric, where k = O(log2 M), and the
distortion of the embedding is O(logM).

Theorem 1 states the Bourgain Theorem (Bourgain, 1985), which shows the existence of a low
distortion embedding that maps from any metric space to the lp metric space.
Theorem 2 (Constructive Proof of Bourgain Theorem). For metric space (M,FDIST), given
k = log2 M random sets {Sj}j=1,2,...,log2 M ⊂ M, Sj is chosen by including each point in M
independently with probability 1

2j . An embedding method for Pi ∈M is defined as:

f(Pi) = (
FDIST(Pi, S1)

k
,
FDIST(Pi, S2)

k
, . . . ,

FDIST(Pi, Slog2 M)

k
), (9)

Then, f is an embedding method that satisfies Theorem 1.

Anchor Selection. EVOLMPNN can be viewed as a generalisation of the embedding method of
Theorem 2 (Linial et al., 1995), where FDIST(·) is generalised via message passing functions (Eq 3-
Eq. 6). Therefore, Theorem 2 offers a theoretical guide that O(log2 M) anchors are needed to
guarantee low distortion embedding. Following this principle, EVOLMPNN choose k = log2 M
random anchors, denoted as {Sj}j=1,2,...,log2 M , and we sample each protein inM independently
with probability 1

2j .

C DATASETS

Adeno-associated virus (AAV) capsid proteins are responsible for helping the virus carrying viral
DNA into a target cell (Vandenberghe et al., 2009); there is great interest in engineering versions of
these proteins for gene therapy (Bryant et al., 2021; Büning et al., 2015; Barnes et al., 2019). (Bryant
et al., 2021) produces mutants on a 28 amino-acid window from position 561 to 588 of VP-1 and
measures the fitness of resulting variants with between 1 and 39 mutations. We adopt three splits
from the benchmark (Dallago et al., 2021), including 2-VS-REST, 7-VS-REST and LOW-VS-HIGH.

GB1 is the binding domain of protein G, an immunoglobulin binding protein found in Streptococcal
bacteria (Sauer-Eriksson et al., 1995; Sjöbring et al., 1991). Wu et al. (2016) measure the fitness
of generated mutations. We adopt three splits from the benchmark (Dallago et al., 2021), including
2-VS-REST, 3-VS-REST and LOW-VS-HIGH.

The green fluorescent protein is an important marker protein, enabling scientists to see the presence
of the particular protein in an organic structure by its green fluorescence (Tsien, 1998). Sarkisyan
et al. (2016) assess the fitness of green fluorescent protein mutants. We adopt one available split,
3-VS-REST, from the benchmark (Xu et al., 2022). Besides, in order to evaluate the models’ effec-
tiveness, we add two splits, 2-VS-REST and LOW-VS-HIGH, in this paper.

D BASELINES

We present details about our baseline and proposed models in Table 4.

15

Under review as a conference paper at ICLR 2024

Table 4: Description and implementation of baseline methods.
Method Descriotion Encoder Pooling Output layer

Levenshtein Levenshtein distance to wild
-type. - - -

BLOSUM62 BLOSUM62-score relative
to wild-type. - - -

DDE ipeptide Deviation from
Expected Mean 2-layer MLP - -

Moran Moran correlation 2-layer MLP - -
LSTM Simple LSTM model 3-layer LSTM Weighted sum pool 2-layer MLP

Transformer Simple Transformer model 4-layer Transformer,
4 attention heads - 2-layer MLP

CNN Simple convolutional model 2-layer CNN Max pool 2-layer MLP

ResNet Classic framework of skip co-
nnections and residual blocks 8-layer ResNet Attentive weighted sum 2-layer MLP

ProtBert 750M param transformer
pre-trained on Uniref 50

30-layer BERT
16 attention heads Linear pool 2-layer MLP

ESM-1b 650M param transformer
pre-trained on Uniref 50 - Mean pool 2-layer MLP

ESM-1v 650M param transformer
pre-trained on Uniref 90 - Mean pool 2-layer MLP

ESM-2 3B param transformer
pre-trained on Uniref 50 - Mean pool 2-layer MLP

GCN Graph convolutional network 2/3-layer GCN encoder - 2-layer MLP
GAT Graph attention network 2/3-layer GAT encoder - 2-layer MLP

GraphTransf. Transformer model designed
for graphs

2/3-layer GraphTransf.
encoder - 1-layer MLP

Nodeformer Efficient Transformer variant
design for graphs

2/3/4-layer Nodeformer
encoder - 1-layer MLP

EVOLMPNN - 2/3-layer Residue encoder
and Evolution encoder - 1-layer MLP

EVOLGNN - 2/3-layer Residue encoder
and Evolution encoder - 1-layer MLP

EVOLFORMER - 2/3-layer Residue encoder
and Evolution encoder - 1-layer MLP

16

	Introduction
	Preliminary and Problem
	Related Work
	Framework
	Embedding Initialisation
	Residue Embedding Update
	Evolution Encoding
	Final Embedding and Optimisation
	Extensions on Observed Graph
	Theoretical Analysis

	Experimental Study
	Effectiveness
	Analysis of Performance

	Conclusion and Future Work
	Algorithm
	Theoretical Analysis
	Datasets
	Baselines

