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Abstract

Recently, a simple but powerful language for expressing and learning general
policies and problem decompositions (sketches) has been introduced, which is
based on collections of rules defined on a set of Boolean and numerical features.
In this work, we consider extensions of this basic language aimed at making
policies and sketches more flexible and reusable. For this, three basic extensions
are considered: 1) internal memory states, as in finite state controllers, 2) indexical
features, whose values are a function of the state and a number of internal registers
that can be loaded with objects, and 3) modules that wrap up policies and sketches
and allow them to call each other by passing parameters. In addition, unlike
previously defined policies that select actions indirectly by the selection of state
transitions, the new language allows for the selection of actions directly. The
expressive power of the resulting language for recombining policies and sketches
is illustrated through examples. The problem of learning policies and sketches in
the new language is left for future work.

1 Introduction

Classical planners solve problems over large state spaces by exploiting problem structure. Domain-
independent methods assume, for example, that subgoals are independent when deriving heuristics
[6, 28], or that subproblems have low width [34, 35]. Domain-dependent methods, on the other hand,
make problem structure explicit in the form of hierarchies that express how tasks decompose into
subtasks [18, 26, 5].

An alternative language for representing problem structure explicitly has been introduced recently in
the form of sketches [8, 9]. Sketches are collections of rules of the form C 7→ E defined over a set of
Boolean and numerical domain features Φ, where C expresses Boolean conditions on the features,
and E expresses qualitative changes in their values. Each sketch rule captures a subproblem: the
problem of going from a state s whose feature values satisfy the condition C, to a state s′ where the
feature values change with respect to s in agreement with E. The language of sketches is powerful as
it can encode everything from simple goal serializations to full general policies. The width of a sketch
for a class of problems bounds the complexity of solving the resulting subproblems [8]. For example,
a sketch of width k decomposes problems into subproblems that are solved by the IW algorithm in
time exponential in k [34]. Sketches provide a direct generalization of policies, which are sketches of
width 0 that result in subproblems that can be solved in a single step [9].

The Delivery domain is a simple variation of the Taxi domain used in RL [15] that is useful for
illustrating these notions. In Delivery, packages spread in a grid are to be picked, one by one, and
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delivered to a designated target cell. A sketch of width 2 decomposes the problem of delivering
multiple packages into subproblems of delivering just one package. This is expressed with a simple
sketch rule {n> 0} 7→ {n↓} that involves a single feature n that tracks the number of undelivered
packages, and asks for the value of this feature to be decreased. The sketch of width 1 replaces this rule
by two rules {¬H,n> 0} 7→ {H} and {H} 7→ {¬H,n↓} where the additional Boolean feature H is
true when the agent holds a package. The first rule requires getting hold of a package, if there are still
undelivered packages; the second rule requires delivering the package being held. Finally, a sketch of
width 0, which expresses a full policy, instructs the agent to decrease the distance p to the nearest
package, to pick it up when this distance is 0, to decrease the distance t to the target, and to drop
it there when this distance is 0. This policy corresponds to the four rules {¬H, p> 0} 7→ {p↓, t?},
{¬H, p= 0} 7→ {H}, {H, t> 0} 7→ {t↓}, and {H, t= 0} 7→ {¬H,n↓, p?}. The sketches and policy
are fully general for the domain as they can be used for solving instances of any grid size, any number
of packages, any initial configuration of the packages, and any target location for them.

A method for learning sketches is developed in [16] where both the rules and its features are obtained
by solving a combinatorial optimization problem that accepts three inputs: an upper bound on the
width of the sketch to be learned, a small number of domain instances, and a pool of features defined
from the domain predicates in a domain-independent manner. The learning method does not guarantee
that the learned sketches are general and correct, and hence split the infinite collection Q of target
problems P into subproblems of width no greater than the bound, yet the sketches learned for a
number of benchmark domains have been shown to be correct in this sense.

In this work, we consider extensions of the basic language of sketches and policies (i.e., sketches of
width 0) that render them more flexible and reusable. For this, three basic extensions are introduced:
memory states, as in finite state controllers, indexical features, whose values are a function of the
state and a number of internal registers that can be loaded with objects, and modules, that package
policies and sketches in a way that they can be reused by other policies or sketches.1 For example, an
existing policy π1 for getting hold of the object in register r can be reused by a policy π for delivering
some package to the target cell.

The current language of policies and sketches does not support the reuse of existing policies and
sketches, and assumes instead that the top goals are set up externally.2 For reusing policies, the policy
and sketch language must allow goals to be set up internally as well; e.g., for reusing a policy πon
that manages to achieve an atom on(x, y) for any pair of blocks x and y in a policy πt for building
any tower, it is necessary for the policy πt to invoke policy πon on suitable pairs of arguments x and
y. The registers, and the indexical features and concepts that use them, provide the right interface for
recombining policies and sketches in this way.

The paper is structured as follows. Sections 2 and 3 cover related work and review planning and
sketches. Section 4 introduces two of the proposed extensions, Section 5 presents their formal syntax
and semantics, and Section 6 defines modules, call rules, and action calls.

2 Related Work

General policies. The paper builds on a research thread that introduced the notions of width,
generalized rule-based policies and sketches of bounded width, as well as methods for learning them
[34, 7–9, 24, 16, 17]. The problem of representing and learning general policies has a long history
[32, 38, 21], and general plans have also been formulated in terms of first-order logic [44, 30], derived
by forms of first-order regression [11, 52, 51, 42], and represented and learned using neural nets
[27, 50, 12, 41, 25, 48]. A limitation of these approaches is the lack of a language to accommodate
policies that may call other policies by passing parameters; a limitation that is addressed in this work.

Deictic representations. The use of registers to store objects in the formal language of sketches
is closely related to the use of indices and visual markers in deictic or indexical representations
[13, 1, 4]. The computational value of such representations, however, has not been clear, and more
recent work has shown that certain deictic representations in RL actually harm performance [22].

1An implementation of all three extensions into the Mimir planning system [47] is available online [10].
2For each predicate p appearing in the goal, a new predicate pG is introduced with the same arity as p. The

atom p(c) in the state s means that p(c) is true in s, while pG(c) true in s means that that p(c) must be true in
the goal.
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Algorithm 1: SIWR search given sketch R

1: Input: Sketch R (set of rules) over features in Φ that defines the relation ≺R

2: Input: Planning problem P with initial state s0 in which the features in Φ are well defined
3: Set state s← s0
4: While the state s is not a goal in P :
5: Do IW search from s to find s′ that is either a goal state in P , or s′ ≺R s
6: If s′ is not found, return FAILURE Subproblem P [s] is unsolvable
7: Set s← s′

8: Return path from s0 to the goal state s

Figure 1: SIWR: sketch R used to decompose problem into subproblems, each solved with IW.

In our setting, indices (registers) make policies (and sketches) parametric and more expressive, as
(sub)policies can be reused by setting and resetting the values of registers in a suitable way.

Hierarchical and goal-conditioned RL. Hierarchical structures have been used in RL in the form
of options [49], hierarchies of machines [40] and MaxQ hierarchies [15], among others. While this
“control knowledge” is often provided by hand, a vast literature has explored methods for learning
them based on “bottleneck states” [39], “eigenpurposes” of the matrix dynamics [37], and informal
width-based considerations [31, 2]. The use of states extended with a goal encoding is common in
goal-conditioned RL [36] and some hierarchical RL approaches [33], yet the invocation of subpolicies
is usually assumed to involve no parameters at all.

Intrinsic rewards and reward machines. Subgoal structure in RL has also been represented by
means of intrinsic rewards [43, 54] and reward machines [29, 14], which are closely related to
sketches. Three differences are that sketches are defined in terms of state features, not additional
variables, so there is no need for cross-products; sketches have a theory of width that tells us where
problems have to be split into subproblems; and finally, sketches have a notion of termination that
ensures that subgoaling does not result in cycles [9].

3 Planning Problems and Sketches

A planning problem refers to a classical planning problem P = 〈D, I〉 where D is the planning
domain and I contains information about the instance; namely, the objects in the instance, the initial
situation, and the goal. A class Q of planning problems is a set of instances over the same domain
D. A sketch for a class of problems Q is a set of rules of the form C 7→ E based on features
over the domain D which can be Boolean or numerical, with non-negative integer values [8, 9]. The
condition C is a conjunction of expressions like p and ¬p for Boolean features p, and n> 0 and n= 0
for numerical features n, while the effect E is a conjunction of expressions like p, ¬p, and p?, and
n↓, n↑ and n? for Boolean and numerical features p and n, respectively. A state pair (s, s′) over an
instance P in Q is compatible with a rule r if the state s satisfies the condition C, and the change of
value for the features from s to s′ is consistent with E. This is written as s′ ≺r s and s′ ≺R s if R is
a set of rules that contains r.

A sketch R for a class Q splits the problems P in Q into subproblems P [s] that are like P but with
initial state s (where s is a reachable state in P ), and goal states s′ that are either goal states of P , or
states s′ such that s′ ≺R s. The algorithm SIWR shown in Fig 1 uses this problem decomposition for
solving problems P in Q by solving subproblems P [s] via the IW algorithm [34]. If the sketch has
bounded serialized width over Q and is terminating, SIWR solves any problem P in Q in polynomial
time [8, 9, 46].

3.1 Serialized Width, Acyclicity, and Termination

The width of a planning problem P provides a complexity measure for finding an optimal plan for
P . If P has N ground atoms and its width is bounded by k, written w(P ) ≤ k, an optimal plan
for P can be found in O(N2k−1) time and O(Nk) space by running the algorithm IW(k), which is
a simple breadth-first search where newly generated states are pruned if they do not make a tuple
(set) of k atoms or less true for the first time in the search [34]. If the width of P is bounded but
the value of the bound k is not known, a plan (not necessarily optimal) can be found by running the
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algorithm IW with the same complexity bounds. IW calls IW(i) iteratively with i = 0, . . . , k, until P
is solved [34]. If P has no solution, its width is defined as w(P )

.
=∞, and if it has a plan of length

one, as w(P )
.
= 0. The width notion extends to classes Q of problems: w(Q) ≤ k iff w(P ) ≤ k for

each problem P in Q. If w(Q) ≤ k holds for class Q, then any problem P in Q can be solved in
polynomial time as k is independent of the size of P .

A sketch R has serialized width bounded by k on a class Q, denoted as wR(Q) ≤ k, if for any P in
Q, the resulting subproblems P [s] have all width bounded by k. In such a case, every subproblem
P [s] that arises when running the SIWR algorithm on P can be solved in polynomial time.

Finally, a sketch R is acyclic in P if there is no state sequence s0, s1, . . . , sn in P such that si+1 ≺R

si, for 0 ≤ i < n, and sn = s0. R is acyclic in Q if it is acyclic in each problem P in Q. The SIEVE
algorithm [46] can check whether a sketch R is terminating, and hence acyclic, by just considering
the rules in R and the graph that they define [9]. For a terminating sketch R with a bounded serialized
width over Q, SIWR is guaranteed to find a solution to any problem P in Q in polynomial time [8].

Example 1 defines an acyclic sketch of width 2 for achieving the atom on(x, y) for two blocks x and
y in any Blocks world instance.

Example 1: Sketch for class Qon of width 2

A sketch R for the classQon of all Blocksworld problems with atomic goal on(x, y) for two blocks x and
y can be defined by means of a numerical feature D that counts the number of blocks above x or y, and a
feature On that represents whether x is on y. The set of features is thus Φ = {On,D}, and the rules in R are:

{D> 0} 7→ {D↓} Put away a block from above x or y
{D = 0,¬On} 7→ {On,D?} Put the block x on top of block y

The first rule says that in states where D is positive, the states where D is lower are possible subgoals; the
second rule, that in states where D is zero, the subgoal is to make the feature On true. The first subproblems
have width 2, while the second subproblem has width 1.

4 Extended Sketches

The first two extensions of sketches are introduced.

4.1 Finite Memory

The first language extension adds memory in the form of a finite number of memory states m:
Definition 1 (Sketches with memory). A sketch with finite memory is a tuple 〈M,Φ,m0, R〉 where
M is a finite set of memory states, Φ is a set of features, m0 ∈M is the initial memory state, and R
is a set of rules extended with memory states. Such rules have the form (m,C) 7→ (E,m′) where
C 7→ E is a standard sketch rule, and m and m′ are memory states in M .

When the current memory state is m, only rules of the form (m,C) 7→ (E,m′) apply. If the current
state and memory are s andm respectively, and s′ is a state reachable from s such that the pair (s, s′) is
compatible with the rule C 7→ E, then moving to state s′ and setting the memory to m′ is compatible
with the extended rule (m,C) 7→ (E,m′). In certain cases, a rule like (m,C) 7→ (true,m′), where
true is a feature that is true in all states, allows a transition in the memory state from m to m′ without
involving also a transition from a state s into a different state s′. These rules are abbreviated as
(m,C) 7→ ({},m′).

4.2 Parametric Features, Concepts, Roles, and Registers

The second extension introduces internal memory in the form of registers. Registers store objects,
which can be referred to in features that become indexical or parametric, as their value changes when
the object in the register changes; e.g., the number of blocks above the block in register zero. The
objects that can be placed into the registers R = {r0, r1, . . .} are selected by means of two new classes
of features called concepts and roles that denote sets of objects and set of object pairs, respectively.
There is no need to commit to a specific language to describe concepts and roles, yet such languages,
often based on description logics [3], are common in planning [38, 20, 53, 7, 23, 24, 19, 16]. Concept
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features or simply concepts are denoted in sans-serif font such as ‘C’, and in a state s, they denote
the set of objects in the problem P that satisfy the unary predicate ‘C’ in s. Role features or simply
roles are also denoted in sans-serif font such as ‘R’, and in a state s, they denote the set of object
pairs in the problem P that satisfy the binary relation ‘R’. Concept and role features are also used
as numerical features, e.g., as conditions ‘C> 0’ or effects ‘R↓’, with the understanding that the
numerical feature is given by the cardinality of the concept C or role R in the state; namely, the
number of objects and object pairs in their denotation.

While a plain feature is a function of the problem state, an indexical or parametric feature is a function
of the problem state and the value of the registers; like “the distance of the agent to the object stored
in r0”. When the value of a register r changes, the change may affect the denotation of indexical
features that depend on the value of the register. We denote by Φ(r) the subset of features in Φ
that refer to (i.e., depend on the value of) register r. The set of features Φ is assumed to contain a
(parametric) concept for each register r, whose denotation is the singleton that contains the object in
r, and that is also denoted by r.

The extended sketch language provides load effects of the form Load(C, r) for updating the value or
registers for a concept C and register r; an expression that indicates that the content of the register r
is to be set to any object in the (current) denotation of C, a choice which is non-deterministic. A
rule with effect Load(C, r) has the condition C> 0 to ensure that C contains some object. Likewise,
since a load may change the denotation of features, the effect of a load rule on register r is assumed
to contain also the extra effects φ? for the features φ in Φ(r), and no other effects.

Rules with a load effect are called internal rules, as they capture changes in the internal memory
only, while the other rules are called external rules. For simplicity, it is assumed, that each load rule
contains a single load effect, and that load rules have their own memory state, meaning that no external
rule can be applied in the same memory where a load rule is applied. Rules (m,C) 7→ (true,m′),
abbreviated (m,C) 7→ ({},m′), are also internal rules. Memory states associated with internal rules
are referred to as internal memory; others, as external memory.

Example 2 defines a general indexical policy for clearing multiple blocks. The set of blocks to be
cleared is expressed with the concept C, while N ⊆ C is the set of blocks in C that are not clear in the
current state. The policy can be understood as putting a “mark” r0 in a block in N, and a second mark
r1 in the topmost block above the one in r0. The block marked in r1 is then put away and the “mark”
r1 is updated. When the block marked in r0 becomes clear, the process repeats until the counter N
is decreased to zero. It is important to notice that the standard language for representing policies
can express a policy for this task using a non-indexical numerical feature that counts the number of
blocks above any block in C, but it cannot express this particular policy.

Example 2: General indexical policy for the class Qclear∗

The classQclear∗ contains Blocksworld problems whose goal is a conjunction of clear(x) atoms. For an
instance of this class, let C be the concept that contains all blocks that need to be cleared. A general policy
πclear∗ for Qclear∗ can be obtained with five memory states, the registers r0 and r1, the concept N for the
blocks in C that are not clear, the indexical concept T for the topmost block above the block in r0, the
Boolean H that is true iff a block is being held, and the Boolean A that is true if the block in r1 is above
some block in C. The set of features is Φ = {H,A,N,T}, the initial memory state is m0, and the rules are:

% External rules
m0 ‖ {H} 7→ {¬H,N?} ‖m1 If holding, put block away, move to m1

m0 ‖ {¬H} 7→ {} ‖m1 Else, skip to m1

% Internal rules
m1 ‖ {N> 0} 7→ {Load(N, r0),T?} ‖m2 Put a block to be cleared into register r0
m2 ‖ {T> 0} 7→ {Load(T, r1), A?} ‖m3 Put topmost block above r0 into register r1
m2 ‖ {T = 0} 7→ {} ‖m1 If block in r0 clear, go to m1 to select another one

% External rules
m3 ‖ {¬H,A} 7→ {H,¬A,N?,T?} ‖m4 Pick (the block in) r1
m4 ‖ {H} 7→ {¬H} ‖m2 Put r1 away from the blocks in C
m4 ‖ {H} 7→ {¬H,N↓} ‖m2 Put r1 (which is in N) away from the blocks in C
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5 Syntax and Semantics of Extended Sketches

A feature φ for a problem P is a state function that assigns a value to each reachable state in P . The
feature is Boolean if it returns a truth value, numerical if it returns a non-negative integer, concept
if it returns a set of objects, and a role if it returns a set of object pairs. A concept feature C (resp. role
feature R) may be used in rules as a numerical feature, in which case, C = 0 or C> 0 (resp. R = 0 or
R> 0) refers to whether its denotation is empty, and C↓ and C↑ (resp. R↓ and R↑) refer to changes in
the size of its denotation.

A feature is parametric if it refers to a register; i.e., if its value in a state depends on the value of a
register. A parametric feature may be Boolean, numerical, a concept, or a role.

Definition 2 (Extended rules). An extended rule over the features Φ and memory M has the form
(m,C) 7→ (E,m′) where m and m′ are memory states, C is a set of conditions of the form p, ¬p,
n= 0, and n> 0 for Boolean and numerical features p and n in Φ, and E is a set of effects of the
form p, ¬p, p? for Boolean p, n↓, n↑, and n? for numerical n, or it has a single load effect of form
Load(C, r) for some concept C and register r. If E contains a Load(C, r), it also contains φ? for the
features φ in Φ(r), but no other effect. In such a case, the memory m must be internal, and the rule is
called a load or internal rule. If m is external memory, r is called an external rule.

Definition 3 (Extended sketch). An extended sketch is a tuple 〈M,R,Φ,m0, R〉 where M and R
are finite sets of memory states and registers, respectively, Φ is a set of features, m0 ∈ M is the
initial memory state, and R is a set of extended Φ-rules over memory M . An extended sketch is well
defined on a classQ if its set of features Φ is well defined onQ. If m is a memory state, R(m) denote
the subset of rules in R of form (m,C) 7→ (E,m′).

Definition 4 (Augmented states). An augmented state for a problem P given an extended sketch
〈M,R,Φ,m0, R〉 is a tuple s̄ = (s,m,v) where s is a reachable state in P , m is in M , and v is a
vector of objects in Obj(P )R that tells the content of each register r, denoted as v[r].

Features φ are evaluated over pairs (s,v) made up of a state s and a value v for the registers. The
value for φ at such a pair is denoted by φ(s,v).

Definition 5. Let r be an external Φ-rule (m,C) 7→ (E,m′), and let v be a valuation for the
registers. A state s satisfies the condition C given v if the feature conditions in C are all true in
(s,v). A state pair (s, s′) satisfies the effect E given v if the values for the features in Φ change
from s to s′ according to E; i.e., the following holds where p is a Boolean feature, n is a numerical,
concept or role feature, and φ is any type of feature,

1. if p (resp. ¬p) is in E, then p(s′,v) = 1 (resp. p(s′,v) = 0),

2. if n↓ (resp. n↑) is in E, then n(s,v) > n(s′,v) (resp. n(s,v) < n(s′,v)), and

3. if φ is not mentioned in E, then φ(s,v) = φ(s′,v).

The pair (s, s′) is compatible with an external rule r = (m,C) 7→ (E,m′) given v, denoted as
s′ ≺r/v s, if given v, s satisfies C and the pair satisfies E. The pair is compatible with a set of rules
R given v, denoted as s′ ≺R/v s, if it is compatible with some external rule in R given v.

Definition 6 (Subproblems). If s̄ = (s,m,v) is an augmented state for P , where m is external
memory, the subproblem P [s̄] is a planning problem like P but with initial state s and goal states s′
that are goal states of P or such that s′ ≺r/v s for some rule r in R(m).

Load (internal) rules do not generate classical subproblems and do not change the planning state s but
they affect the memory state and the register values, and with that, the definition of the subproblems
that follow. The notion of reduction captures how internal rules are processed:

Definition 7 (Reduction). Let 〈M,R,Φ,m0, R〉 be an extended sketch for a planning problem P ,
and let (s,m,v) be an augmented state for P where m is in M . The pair 〈(s,m,v), (s,m′,v′)〉
is a reduction step if there is an internal rule r in R of form (m,C) 7→ (E,m′) such that 1) s
satisfies the condition C given v, and 2) v′ is equal to v, except if Load(C, r) is in E, in which case
v′[r] ∈ C(s,v). A sequence of reduction steps starting at (s,m,v) and ending at (s,m′,v′) where
m′ is external is called a reduction, and it is denoted by (s,m,v)→∗ (s,m′,v′). For convenience,
if m is external, we also write (s,m,v)→∗ (s,m,v).
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An initial augmented state for P is of the form (s0,m,v) where s0 is the initial state in P , and
(s0,m0,v0) →∗ (s0,m,v) for the initial memory m0 and some v0 in Obj(P )R. There may be
different initial augmented states for P that differ in either their memory or the contents of the registers.
Each such initial augmented state defines an initial subproblem P [s0,m,v] per Definition 6.
Definition 8 (Induced subproblems). Let 〈M,R,Φ,m0, R〉 be an extended sketch for a planning
problem P with initial state s0. Let us consider a subproblem P [s̄] for s̄ = (s,m,v) where m is
external, and let s′ be a state reachable from s such that s′ ≺r/v s for some rule r in R(m). Then,

1. subproblem P [s′,m′,v] is induced by subproblem P [s̄] if r = (m,C) 7→ (E,m′) and m′ is
external.

2. Subproblem P [s′,m′′,v′] is induced by subproblem P [s̄] if r= (m,C) 7→ (E,m′), m′ is internal,
and (s′,m′,v)→∗ (s′,m′′,v′).

The collection P ◦ of induced subproblems is the smallest set such that 1) P ◦ contains all the initial
subproblems, and 2) P [s′,m′,v′] is in P ◦ if P [s,m,v] is in P ◦ and the first subproblem is induced
by the second.

By “jumping” over subproblems P [s,m, v] where m is internal, the definition ensures that the
subproblems that make it into P ◦ all have memory states m that are external, and hence represent
classical planning problems. The extended sketch R is said to be reducible in P if for any reachable
augmented state (s,m,v) in P where m is an internal state, there is an augmented state (s,m′,v′)
such that (s,m,v)→∗ (s,m′,v′). A non-reducible sketch is one in which the executions can cycle
or get stuck while performing internal memory operations.
Definition 9 (Sketch width). The width of a reducible sketch R over a planning problem P is
bounded by a non-negative integer k, denoted by wR(P ) ≤ k, if the width of each subproblem in P ◦
is bounded by k. Likewise, the width of a reducible sketch R over a class of problems Q is bounded
by k, denoted by wR(Q) ≤ k, if wR(P ) ≤ k for each problem P in Q.

This serialized width is zero for the indexical sketch in Example 2, as the sketch represents a policy
where each subproblem is solved in a single step.

5.1 Termination for Extended Sketches

Termination is a key property for sketches R as it guarantees that R is acyclic on any problem P
where it defines a polynomial number of subproblems [9]. Termination can be tested in polynomial
time by a suitable adaptation of the SIEVE algorithm [45, 9]. If the extended sketch is reducible,
terminating, and has bounded serialized width over a classQ, then any problem P inQ can be solved
in polynomial time with the algorithm SIW∗R shown in Fig. 2.

For an extended sketch 〈M,R,Φ,m0, R〉, the graph G∗(R) that is processed by SIEVE is a labeled
and directed graph where the vertices are each of the |M | × 2|Φ| pairs (m, ν), where m is a memory
state and ν is a valuation for the conditions p and n= 0 for the Boolean and numerical/concept/role
features p and n in Φ, respectively. The edge set contains edges e = 〈(m, ν), (m′, ν′)〉 if there is a
rule r = (m,C) 7→ (E,m′) in R such that ν is consistent with C and (ν, ν′) is compatible with the
effect E. The edge label `(e) is given by the union of the effects E in such rules Once the graph
G∗(R) is constructed, an slight variant of the SIEVE algorithm is run to either accept or reject G∗(R)
[9]. In the former case, we say that the extended sketch is terminating. Notice that registers and load
effects play no role in determining termination, as indeed, the effect of register updates on indexical
features X is expressed in load rules by means of expressions like X?. A terminating (extended) sketch
R is acyclic on any problem, meaning that there cannot be cyclic sequences of augmented states
complying with the rules of R. In addition, terminating sketches result in a polynomial number of
subproblems [9] from which the following result can be established:
Theorem 10. If the extended sketchR is reducible, terminating, and has a serialized width bounded
by k over the class of problems Q, then SIW∗R finds plans for any problem P in Q in polynomial time.

6 Wrapping Policies and Sketches into Modules for Reuse

For reusing policies and sketches, they are wrapped into modules. A module is a named tuple
〈args, Z,M,R,Φ,m0, R〉 where args = 〈x1, x2, . . . , xn〉 is a tuple of arguments, each one being
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Algorithm 2: SIW∗R search with extended sketch R

1: Input: Extended sketch 〈M,R,Φ,m0, R〉 that defines the relation ≺R/v

2: Input: Planning problem P with initial state s0 inQ on which the features in Φ are well defined
3: Set augmented state s̄← (s,m,v) for s = s0, m = m0, and some v ∈ Obj(P )R

4: While the state s in s̄ is not a goal in P :
5: If m is internal memory:
6: Find internal rule r = (m,C) 7→ (E,m′) such that C is satisfied by s
7: If the is no such rule, return FAILURE (The sketch is not reducible on P )
8: Set v[r]← o for some object o in C(s,v), if Load(C, r) is the load effect in E
9: Set s̄ = (s,m′,v)

10: Else:
11: Do IW search from s to find s′ that is either a goal state in P ,

or s′ ≺r/v s for some (external) rule r = (m,C) 7→ (E,m′)
12: If s′ is not found, return FAILURE (Subproblem P [s,m,v] is unsolvable)
13: Set s̄ = (s′,m′,v)
14: Return path from s0 to the goal state s

Figure 2: SIW∗R solves a problem P by using extended sketch R to decompose P into subproblems
solved with an IW search. Completeness of SIW∗R captured in Theorem 10.

either a static concept or role, Z and Φ are sets of features, M is a set of memory states, R is a
set of registers, m0 ∈ M is the initial memory state, and R is a set of rules. The features in Φ are
the ones mentioned in the sketch rules in R, and their definition may depend on the value of the
arguments and the features in Z. The sketch R in a module can contain two new types of internal
rules, call and do rules, that permit to call other modules, and to directly execute ground actions
of the planning problem, respectively. The value for the arguments in either case are given by the
features in Φ or Z, and the arguments of the module; the difference between Φ and Z is that the rules
in R must track the changes for the features in Φ, while Z can be used to define features in Φ or to
provide values to arguments in call and do rules. If the name of the module is name, we refer to it as
name(x1, x2, . . . , xn).

Call and do rules are of the form (m,C) 7→ (name(v1, v2, . . . , vn),m′) where m is internal memory,
C is a condition, name is a module or action schema name, and each value vi is of an appropriate
type: for do rules, vi must be a concept, while for call rules, vi can be either a concept or a role. The
idea is that if a call rule is used, the sketch associated with the module name is executed until no
rules are applicable, and the control is then returned back to the caller at the memory state m′. For do
rules, an applicable ground action of the form name(o1, o2, . . . , on), where the object oi belongs to
the denotation of concept vi, must be applied at the current state to make a transition to a successor
state, and control is then returned back to the caller at the memory state m′.

The execution model for handling modules involves a stack as described below. Modules call each
other by passing arguments but do not get back any values. The “side effects” of a module are in the
problem state s that must be driven eventually to a goal state.

Example 3 shows the module mclear(C) for the policy in Example 2, and a module on(X,Y) for the
Example 1 that reuses mclear. Example 4 shows the module tower(O,X) for building a given tower
of blocks, expressed by the object pairs in O to put in place on top of the block X. Finally, Example 5
shows a sketch module blocks(O) for solving arbitrary instances of Blocksworld.

Example 3: Modules mclear(C) and on(X,Y)

The module mclear(C) is the tuple 〈〈C〉, Z,M,R,Φ,m0, R〉 where Z = ∅, M = {m0,m1, . . . ,m4},
R = {r0, r1}, Φ = {H,A,N,T}, and R is the set of rules in Example 2.

The module on(X,Y) is the tuple 〈〈X,Y〉, Z,M,R,Φ,m0, R〉 where X and Y are singleton concepts
denoting the block x and y, Z = ∅, M = {m0,m1}, R = ∅, Φ = {On}, and R is the set of rules:

% Module on(X,Y)

m0 ‖ {¬On} 7→ mclear(X ∪ Y) ‖m1 Clear the blocks in X ∪ Y, if not already
m1 ‖ {¬On} 7→ {On} ‖m1 Put the block x on top of block y
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Example 4: Module tower(O,X) for building a single tower of blocks (class Qtower)

The module tower(O,X) is aimed at the class Qtower of problems where blocks are to be stacked in
a single tower on the table by achieving the goals ∧k

i=1on(xi, xi−1) and ontable(x0). The module is
the tuple 〈〈O,X〉, Z,M,R,Φ,m0, R〉 where O is a role argument whose denotation contains the pairs
{(xi, xi−1) | i = 1, ..., k}, and X is a concept argument that denotes the lowest block in the target tower
that is misplaced.a The other elements in the module are Z = ∅, M = {m0,m1, . . . ,m3}, R = {r0}, and
a set of features Φ = {M,W} where M is the indexical concept that contains the block to be placed above
the block in r0 according to O, if any, and, W is the indexical concept that contains the block directly below
the block in r0, if any, also according to the target tower O. The rules in R are:

% Module tower(O,X)

m0 ‖ {X> 0} 7→ {Load(X, r0),M?,W?} ‖m1 Put lowest misplaced block in r0
m1 ‖ {W = 0} 7→ on-table(r0) ‖m2 Call module on-table(r0) to place r0 on the table
m1 ‖ {W> 0} 7→ on(r0,W) ‖m2 Call module on to place r0 on W
m2 ‖ {M> 0} 7→ tower(O,M) ‖m3 Recursive call from block that is to be on r0

aA block x is well-placed in a state s iff x is on y if the pair (x, y) is in O, and recursively, y is well-placed.
A block is misplaced iff it is not well-placed. In the example, it is also assumed that the lowest block of the
target tower must be placed on the table.

Example 5: Module blocks(O) for arbitrary towers (class Qblocks)

The module blocks(O) is aimed at the class Qblocks of problems for building many target towers. The
module takes a single role argument O whose denotation encodes the pairs (x, y) corresponding to the
target on(x, y) atoms as in Example 4. The module is the tuple 〈〈O〉, Z,M,R,Φ,m0, R〉 where Z = ∅,
M = {m0,m1}, R = {r0}, and Φ = {L} where L is the concept that contains the lowest misplaced blocks
in O.

% Module blocks(O)

m0 ‖ {L> 0} 7→ {Load(L, r0)} ‖m1 Load a lowest misplaced block into r0
m1 ‖ {} 7→ tower(O, r0) ‖m0 Build tower starting with block in r0

The module blocks(O) calls the recursive tower(O,X) which also calls on-table(X) for putting
a block on the table (not spelled out), and on(X,Y), which calls mclear(C). The result is not a hier-
archical policy but a hierarchical sketch as the use of the module blocks(O) and its submodules
involves an IW search in the context of a suitable SIWR algorithm (below). The IW search, however,
does not make calls beyond IW(1) as the width of all these modules is bounded by 1; which is the
width of the sketch module on (mclear is a policy module).

6.1 Execution Model: SIWM

The execution model for modules is captured by the SIWM algorithm, shown in Fig. 3, which
uses a stack and a caller/callee protocol, as it is standard in programming languages. It assumes a
collection {mod0, mod1, . . . , modN} of modules where the “entry” module mod0 is assumed to take
no arguments. The execution may involve solving classical planning subproblems, internal operations
on the registers, calls to other modules, or execution of ground actions. The modules do not share
memory states nor registers, but they may all act on the planning states s.

At each time point during the execution, there is a single active module mod` that defines the current
set of rules, and there is a current augmented state (s,m,v). While no call or do rule is selected,
SIWM behaves exactly as SIW∗R. However, if a call rule (m,C) 7→ (modi(x1, x2, . . . , xn),m′) is
chosen, where modi refers to 〈args, Z,M,R,Φ,m0, R, 〉, the following steps are done:

1. Push the context (`,v,m′) where v is the current value for registers,
2. Set the value of the (static) arguments of modi to those given by xi,
3. Set the current memory state to m0 (the initial state of modi),
4. Set the current set of rules to R,
5. [Continue execution of modi until no rules are applicable], and
6. Pop context (`,v,m′), set registers to v, memory to m′, and rules R to those in mod`.
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Algorithm 3. SIWM: Execution Model For Extended Sketches as Modules

1: Input: CollectionM = {mod0, mod1, . . . , modN} of modules with entry module mod0
2: Input: Planning problem P with initial state s0 inQ on which the features in Φ are well defined
3: Initialize stack
4: Let R0, m0

0, and R0 be the set of registers, entry point, and rules of mod0
5: Set `← 0, R← R`, and s̄← (s,m,v) for s = s0, m = m`

0, and v ∈ Obj(P )R
`

6: While the state s in s̄ = (s,m,v) is not a goal in P :
7: If there is no rule r = (m,C) 7→ (E,m′) such that C is satisfied at s:
8: If stack is empty, raise FAILURE (Stalled execution at non-goal state)
9: Pop context (j,v′,m′) from stack

10: Set `← j, R← R`, m← m′ and v ← v′ (Control is back at module modj)
11: Else:
12: Find rule r = (m,C) 7→ (E,m′) such that C is satisfied at s
13: If r = (m,C) 7→ (modj(x1, x2, . . . , xn),m′) is a call rule:
14: Push context (`,v,m′) into stack
15: Set R← Rj and m← mj

0 (Hand over control to module modj)
16: Else if r = (m,C) 7→ (name(x1, x2, . . . , xn),m′) is a do rule:
17: Find ground action a = name(o1, o2, . . . , on) applicable at s such that oi ∈ xi
18: If there is no such action, raise FAILURE (Do rule cannot be fullfilled)
19: Set s̄ = (s′,m′,v) where (s, a, s′) is a transition in P
20: Else if r is a load rule with effect Load(C, r) in E:
21: Set v[r]← o for some object o in C(s,v)
22: Set s̄ = (s,m′,v)
23: Else:
24: Do IW search from s to find s′ that is either a goal state in P ,

or s′ ≺r/v s for some (external) rule r = (m,C) 7→ (E,m′) in R
25: If s′ is not found, raise FAILURE (The width of P [s,m,v] is∞)
26: Set s̄ = (s′,m′,v)
27: Return path from s0 to the goal state s

Figure 3: SIWM uses set of modules M (extended sketches) for solving a problem P via possibly
nested calls, execution of ground actions, and IW searches.

Similarly, a do rule (m,C) 7→ (name(x1, x2, . . . , xn),m′) is chosen, an applicable ground action
name(o1, o2, . . . , on) at the current state s with the object oi in xi, 1 ≤ i ≤ n, is applied and the
memory state is set to m′. We have implemented the procedure SIWM and have run it over all the
modules described in the paper. The code and the examples are available online [10]

7 Discussion

We have introduced three language extensions to make policies and sketches more expressive and
reusable: internal memory states, like in finite state controllers, indexical concepts and features,
whose denotation depends on the value of registers that can be updated, and modules that wrap up
policies and sketches and allow them to call each other by passing parameters. The language of
extended policies and sketches adds an interface for calling policies and sketches from other policies
and sketches, even recursively, as illustrated in some examples, leading to hierarchical policies and
sketches. The resulting language has elements in common with programming languages like memory
states and registers, but there are key differences too. In particular, the augmented states do not
contain just memory states and register values but an external state that is affected by the domain
(external) actions. At the same time, the resulting modules do not have to represent full procedures
or policies; they can also represent sketches where “holes” are filled by a polynomial IW search
when the sketches have bounded width. Provided with this richer language for policies and sketches,
the next step is learning them from small problem instances, adapting the methods developed for
standard sketches [16]. In addition, we want to learn hierarchical policies bottom-up by generating
and reusing policies, instead of learning them top-down as in [17].
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