
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CHAOSEATER: FULLY AUTOMATING CHAOS ENGI-
NEERING WITH LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Chaos Engineering (CE) is an engineering technique aimed at improving the re-
siliency of distributed systems. It involves artificially injecting specific failures
into a distributed system and observing its behavior in response. Based on the ob-
servation, the system can be proactively improved to handle those failures. Recent
CE tools realize the automated execution of predefined CE experiments. However,
defining these experiments and reconfiguring the system after the experiments
still remain manual. To reduce the costs of the manual operations, we propose
CHAOSEATER, a system for automating the entire CE operations with Large Lan-
guage Models (LLMs). It pre-defines the general flow according to the systematic
CE cycle and assigns subdivided operations within the flow to LLMs. We assume
systems based on Infrastructure as Code (IaC), wherein the system configurations
and artificial failures are managed through code. Hence, the LLMs’ operations
in our system correspond to software engineering tasks, including requirement
definition, code generation and debugging, and testing. We validate our system
through case studies on both small and large systems. The results demonstrate
that our system significantly reduces both time and monetary costs while complet-
ing a reasonable CE cycle. Our code is available in the Supplementary Material.

1 INTRODUCTION

Modern software-based services, such as streaming, e-commerce, and conversational AI platforms,
are implemented as distributed systems, where each service is divided into smaller services accord-
ing to specific functionalities. These small services (i.e., functions), along with the communication
network that connects them, constitute the entire service. This design, known as microservice ar-
chitecture (Bucchiarone et al., 2020), enables scalable and continuous deployment while supporting
the integration of heterogeneous technologies. On the other hand, the complex dependencies among
small services can lead to unexpected, chaotic behavior in the entire system from even minor fail-
ures. However, proactively predicting and addressing such complex behavior is challenging.

To address this and improve the resiliency of distributed systems, numerous organizations, including
Netflix, Amazon, and Microsoft, have recently adopted Chaos Engineering (CE) (Basiri et al., 2016;
2019). Its concept is that rather than predicting the chaotic behavior, let’s observe it directly by
artificially injecting the failures into the system. Based on the observation, we can proactively
rebuild a new system that is resilient to the assumed failures. Systematically, CE cycles through four
phases for a system:

1. Hypothesis: Define steady states (i.e., normal behavior) of the system and injected failures.
Then, make a hypothesis that the steady states are maintained in the system even when the
failures occur.

2. (Chaos) Experiment: Inject the failures into the system while logging the system’s response
behavior.

3. Analysis: Analyze the logged data and check if the hypothesis is satisfied. If so, this CE cycle
is finished here. If not, move to (4).

4. Improvement: Reconfigure the system to satisfy the hypothesis. The reconfigured system is
tested again in (2) and (3), i.e., repeat (2) to (4) until the hypothesis is satisfied.

In recent years, several CE tools (Netflix, 2012; Amazon Web Services, 2021; Chaos Mesh, 2021;
Microsoft, 2023) have advanced the automation of chaos-experiment execution. Moreover, monitor-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ing tools (Prometheus, 2012; Grafana Labs, 2021) enable automating metric collection, aggregation,
and threshold-based testing during chaos experiments. Hence, the experiment and analysis phases
have been mostly automated. However, defining a hypothesis in the hypothesis phase, planning a
chaos experiment to test the hypothesis in the experiment phase, and reconfiguring the system in the
improvement phase still remain manual. These manual operations require a complex set of skills,
including domain knowledge in networking and CE, the ability to interpret system configurations,
logs, and error messages, as well as creative problem-solving for requirement definition, planning,
and system reconfiguration. Consequently, while the costs of these operations remain high, their
automation has not been achieved yet with existing algorithmic approaches.

We believe that Large Language Models (LLMs) are the key to overcoming this challenge. LLMs
have recently shown promising capabilities across a wide range of tasks, including natural language
processing, coding, and operations for networking (Zhao et al., 2023; Jiang et al., 2024; Ahmed
et al., 2024; Piovesan et al., 2024). In more recent years, LLMs have also provided promising
performance on software engineering (SE) benchmarks (Yang et al., 2024; Cognition Labs, 2024).
In the context of software-based systems configured by the Infrastructure as Code (IaC) paradigm,
where the system configurations and artificial failures are managed through code, CE operations can
be regarded as SE tasks. The hypothesis phase corresponds to a requirement definition to determine
the resilience required for the system. In the experiment phase, planning an experiment corresponds
to the design of testing, and running the experiment requires coding. The analysis corresponds
to the verification of the tests. Lastly, the improvevment phase corresponds to code debugging.
Considering their general capabilities, domain knowledge in networking, and potential in SE, it is
also expected that the automation of the entire CE cycle can be achieved with LLMs.

Here, we propose CHAOSEATER, a system for automating the entire CE cycle with LLMs. It pre-
defines the general flow according to the systematic CE cycle and assigns subdivided CE operations
within this flow to LLMs. The flow (i.e., CE cycle) then progresses by sequentially performing
subdivided operations using the assigned LLMs, while processing data inputs and outputs through
rule-based algorithms. Our system assumes CE for IaC-based systems, specifically Kubernetes (K8s)
(Kubernetes, 2014) systems. In this paper, we present the flow design, rule-based algorithms, CE
operations performed by LLMs, and the integration of the latter two to achieve the designed flow. In
evaluation, we validate our system through case studies on both a small system and a large system.
The results demonstrate that our system significantly reduces both time and monetary costs while
completing a reasonable CE cycle. Lastly, we discuss the broader impacts, limitations, and future
directions of our system based on this study.

The main contributions of this paper are organized as follows:

• We are the first to propose a system for automating the entire CE cycle with LLMs, which
reduces time and monetary costs in a CE cycle. This proposal would be a starting point
towards the full automation of system resilience improvement.

• We publicly release all code for our system. This release provides development practices for
constructing complex systems that combine LLMs and rule-based algorithms.

• We validate our system through case studies and discuss its broader impacts, limitations, and
future directions. The results demonstrate the new potential of LLMs in CE, while our discus-
sion provides insights for advancing the full automation of CE.

2 PROPOSED SYSTEM: CHAOSEATER

In this section, we describe the technical details of CHAOSEATER. Figure 1 shows its simplified
system diagram. It takes as input instructions for the CE cycle (optional) and a folder containing
K8s manifests (Kubernetes, 2014) and a Skaffold configuration file (Google, 2019). In short, K8s
manifests are system configuration files that define the resources (i.e., small services) that constitute
a system, while a Skaffold configuration file defines the process to automatically deploy those re-
sources in a K8s cluster. It then conducts a CE cycle for those inputs through five divided phases:
pre-processing, hypothesis, experiment, analysis, improvement, and post-processing phases. Finally,
it outputs a summary of the completed CE cycle and a modified folder containing K8s manifests that
have been modified to satisfy the hypothesis defined in the hypothesis phase and their Skaffold con-
figuration file.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: A simplified system diagram of CHAOSEATER and its input and output. CHAOSEATER
autonomously completes the systematic CE cycle using internal agents and IaC tools. Note that
only the representative inputs and outputs of agents are illustrated within the diagram. The two K8s
clusters within the diagram refer to the same one.

To ensure that the LLMs perform as intended, our system fixes the general flow according to the
systematic CE cycle. It then guides LLMs by assigning them subdivided CE operations within this
flow. Hereafter, we define each LLM assigned a CE operation as an agent. Our system prepares
prompt templates for each agent,1 which include placeholders that can be dynamically filled with
text. Therefore, once a user inputs the data, prompts for each agent are dynamically generated ac-
cording to that data, and the internal agents autonomously complete the flow (i.e., CE cycle). To
facilitate data processing within our system, all agents output JSON data. This is achieved by in-
structing agents in their input prompts to output text in JSON format, and then parsing the output text
as JSON data. Our system uses the JSON output instruction and parser of LangChain (LangChain,
2023). Our system has 27 agents, 21 system prompts, 26 user prompts, and two AI prompts.2 In
the following sections, we describe the details of our system’s internal process from input to output,
breaking it down into the five phases. See Appendix B for all our system’s prompt templates.

2.1 PHASE 0: PRE-PROCESSING

Given user inputs, our system first deploys the user’s system to the K8s cluster by running the
Skaffold configuration file. Then, the agents sequentially process the user inputs as follows:

1. Summarize each of the input K8s manifests separately.
2. Identify potential issues for resiliency and redundancy in the K8s manifests.
3. Assume a possible application of the K8s manifests.
4. Summarize user instructions for the CE cycle if provided. At the same time, filter out suspi-

cious prompts, e.g., jailbreak prompts.

This phase is for deploying the user’s system and explicitly filling in the implicit context of the user’s
input. In the subsequent phases, this added context will also be provided as input.

1Instead of simply appending previous data and agent outputs to the conversation history to create the next
agent’s prompt, we create a new conversation for each agent every time and embed the organized previous data
and agent outputs within it. However, the verification loop, which will be discussed later, is an exception.

2As our system uses chat models, prompts with three different roles—system, human, and AI—are required.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 PHASE 1: HYPOTHESIS

The hypothesis phase defines the system’s resiliency for an assumed failure scenario. Following the
principles of CE (Basiri et al., 2016), our system first defines steady states and then defines failure
injections.

Steady-state definition Steady states are the expected, normal behaviors of a system. Each steady
state is defined by a pair of a state value and a threshold, and a steady state is considered satisfied
when the state value meets the threshold. Therefore, the state values must be measurable outputs
of the system, such as the number of active resources, error rates, and response time. Given the
pre-processed user inputs, the agents define steady states as follows:

1. Select measurable states critical to maintaining the system’s application. If any weak config-
urations are identified from the K8s manifests, their related states are preferentially selected.

2. Select tools to inspect the states. K8s API and k6 (Grafana Labs, 2021) are supported. Then,
write the corresponding inspection scripts and inspect the current (normal) values of the states
in the system by running the scripts.

3. Define the thresholds for each state based on the inspected values (steady states must be sat-
isfied under the current condition).

4. Write unit-test scripts to validate whether each steady state is satisfied by adding threshold-
based assertions to the corresponding inspection scripts.

(a) VaC script for K8s API (Python)

1 def check_podcount(label, expected_count, duration):
2 consistent_count = True
3 for i in range(duration):
4 pods = self.v1.list_namespaced_pod(
5 namespace=’default’,
6 label_selector=label)
7 pod_count = len(pods.items)
8 print(f"current pod count: {pod_count}")
9 consistent_count = pod_count == expected_count

10 if not consistent_count:
11 break
12 time.sleep(1)
13 assert consistent_count, "Pod count was inconsistent."
14 ...

(b) VaC script for k6 (Javascript)

1 export const options = {
2 vus: 10,
3 duration: ’10s’,
4 thresholds: {
5 http_req_duration: [’p(95)<500’],
6 },
7 };
8
9 export default function () {

10 const res = http.get(’http://example.com’);
11 check(res, {’status was 200’: (r) =>
12 r.status == 200 });
13 sleep(1);
14 }

Figure 2: Examples of unit-test scripts to validate steady states.

The unit-test scripts are used in the experiment workflow to automatically validate the steady states
during chaos experiments. We here call this unit-test-based validation approach Validation as Code
(VaC). Validating steady states by an LLM taking log data does not guarantee the consistency of the
validation process and may even result in incorrect judgments. On the other hand, with VaC, the val-
idation process becomes fixed once a unit test is written, guaranteeing its consistency. Furthermore,
the explicit definition of the process in code enhances its transparency. Figure 2 shows examples
of VaC scripts for K8s API (Python) and k6 (Javascript). k6 can collect communication metrics
(e.g., response times, error rates, etc) while conducting load tests. In VaC, k6 is used to inspect the
communication metrics, while K8s API is used to inspect the other states of K8s resources. Both
scripts allow for adjusting test durations through command-line arguments. For k6, the script also
sets an appropriate number of virtual users for the load tests.

In steps 2 and 4, scripts are repeatedly debugged until they terminate successfully. In this verification
loop, as an exception, our system simply appends the previous agent’s output and the resulting error
messages to the initial conversation as conversation history, and uses it as the agent’s prompt in the
next loop. The verification loops that appear later are similar.

Failure definition For failure injection, our system employs Chaos Mesh (Chaos Mesh, 2021),
which can manage chaos experiments for K8s through code. Given the pre-processed user inputs
and the steady states, the agents define failures that may occur in the system as follows:

1. Assume a failure scenario (e.g., a surge in access due to a promotional campaign, cyber attack,
etc.) that may occur in the system. Then, define the sequence of failures that simulates the
scenario and may affect the defined steady states. The failures are selected from the failure
types supported in Chaos Mesh.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2. Define detailed parameters for each failure, such as the scope of the failure injection, the
failure sub-type, the failure strength, etc.

In step 1, the agent outputs a 2D list of Chaos Mesh failure type names arranged in the order
of insertion. The inner lists involve concurrent failures, and the outer list represents the injec-
tion order of each concurrent failure set. For example, [[StressChaos, NetworkChaos],
[PodChaos]] represents that PodChaos is injected after simultaneously injecting StressChaos
and NetworkChaos.

PodChaos parameters

1 action: pod-kill
2 mode: one
3 selector:
4 labelSelectors:
5 app: example
6 namespaces:
7 - default

Figure 3: An exam-
ple of detailed pa-
rameters.

In step 2, the agent separately defines the detailed parameters of each failure.
Each failure type requires a different parameter set. Therefore, given a failure
type name, our system dynamically selects the corresponding JSON output
instruction. The agent then outputs the corresponding parameter set. Figure
3 shows an example of the parameter set of PodChaos. There are seven
failure types, the instructions of which are prepared in advance referring to
the Chaos Mesh documentation. The parameter sets are verified through
a verification loop, which repeatedly debugs them until their Chaos Mesh
manifests pass the kubectl apply --dry-run=server command.
The failure injection duration and more detailed injection timing are defined
in chaos experiment planning (see next section), along with the duration and
timing for running the VaC scripts.

At this point, the hypothesis is reinterpreted as all VaC scripts pass, even when failure injections are
performed.

2.3 PHASE 2: (CHAOS) EXPERIMENT

The experiment phase plans a chaos experiment to validate the hypothesis and executes it.

Experiment planning To enable systematic planning, we divide a chaos experiment into three
phases: pre-validation, failure-injection, and post-validation. In the pre-validation phase, VaC
scripts are executed to ensure that the steady states are satisfied under normal conditions. In the
failure-injection phase, fault injections are executed. If a steady state, such as response time, needs
to be validated during fault injections, the corresponding VaC scripts are executed concurrently. In
the post-validation phase, VaC scripts are executed to ensure that steady states have been recovered
after the fault injections. Given the pre-processed user inputs and the hypothesis, the agents plan a
chaos experiment by dividing it into these three phases as follows:

1. Determine the duration of each phase.
2. Determine the VaC scripts and failure injections to be executed in each phase. For each of

them, specify the duration and grace period within a range that does not exceed the duration
of the phase.

3. Summarize the timeline of the chaos experiment (i.e., the order of each node) in detail. This
summary is referred to when analyzing the experiment results.

In step 2, the agent outputs a list of dictionaries (i.e., schedule list) separately for each phase, with
each dictionary containing three keys: name, grace period, and duration. The name is
either a steady state name or a failure type name, and each corresponds one-to-one with the VaC
script and failure injection defined in the hypothesis. The grace period is the waiting time from
the start of each phase until the execution of the VaC script or failure injection, allowing flexible
adjustment of the execution timing. The duration is the execution period after the grace period.

Based on these schedule lists, our system configures the chaos experiment using the Chaos Mesh
workflow. This workflow supports three types of nodes: failure node to execute failure injection,
task node to execute VaC scripts, and suspend node to wait for a specified duration. By grouping
these nodes into a serial or parallel group, the nodes within the group are executed sequentially or in
parallel. Our system configures the schedule by grouping nodes and groups hierarchically as follows
(Figure 4): For each phase, it first creates failure and task nodes according to the schedule
list. Next, it serially groups each node that has a grace period greater than zero with a suspend
node. This suspend node is placed before the grouped node and waits for the duration of the
grace period of that node. It then groups all the serial groups and remaining nodes in parallel in

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 4: Hierarchical grouping for implementing
a complex chaos experiment plan in Chaos Mesh.

Figure 5: Reconfiguration process by the agent
and a file management algorithm.

each phase. Finally, it serially groups the parallel groups of each phase. Its Chaos Mesh workflow
manifest is generated by formatting this hierarchical group.

Experiment replanning (within the improvement loop) Resource types and metadata defined in
the K8s manifests may be changed during the improvement phase. Therefore, replanning inspection
targets in VaC scripts and the scope of failure injections is required between the improvement phase
and the next experiment execution. Given the original and reconfigured K8s manifests, as well as
the previous VaC scripts, the agent adjusts or retains the inspection-target specifications in the VaC
scripts. The inspection targets refer to resource specifications (line 11 and 12 in (a)), the request DNS
(line 13 in (b)), etc., in Figure 2. Given the original and reconfigured K8s manifests, as well as the
previous failure-injection scope, the agent adjusts or retains the scope for the reconfigured manifests.
The scope refers to the selector filed in Figure 3. These adjustments are also debugged through
the verification loop. After the adjustments, our system regenerates a new ChaosMesh workflow
manifest by replacing only the path of VaC scripts of task nodes and the selector field of
failure nodes with adjusted ones. Note that this replanning only makes minor adjustments to
reflect the changes in the K8s manifests, without altering the chaos experiment’s original intent.

Experiment execution After a Chaos Mesh workflow manifest is (re-) generated, our system ap-
plies it to the K8s cluster. Once the workflow is deployed, the workflow (i.e., chaos experiment) will
be executed automatically. Therefore, our system simply waits for the workflow to finish after that
deployment.

2.4 PHASE 3: ANALYSIS

After the chaos experiment is finished, our system mechanically checks whether the VaC scripts have
passed. If all of them have passed, that means the current system configurations (i.e., K8s manifests)
already satisfy the hypothesis. Therefore, our system finishes the current CE cycle at this point and
moves to the extra phase. If at least one has failed, our system moves to the next improvement phase
after analyzing the experiment results. In this analysis, given the K8s manifests, the timeline of the
chaos experiments, and the list of failed scripts with their logs, the agent identifies the cause of the
fails and then generates a report containing the causes and recommended countermeasures.

2.5 PHASE 4: IMPROVEMENT

The improvement phase reconfigures the K8s manifests to satisfy the hypothesis. Given the K8s
manifests, the hypothesis, the experiment plan, and the improvement loop history, the agent recon-
figures the K8s manifests so that all the VaC scripts pass in the chaos experiment. The improvement
loop history stores the history of the experiment results, their analysis reports, and their reconfigu-
rations, within the improvement loop. The history suppresses the repetition of the same reconfigu-
ration. There are three reconfiguration modes: create, delete, and replace. The agent first selects the
reconfiguration mode while specifying the file name, and then writes the reconfigured K8s manifest
only for the create and replace modes. The file manager of our system then edits the folder from
the previous improvement loop (in the first improvement, it corresponds to the user’s input folder)
according to the agent’s output. Figure 5 illustrates these reconfiguration processes. The verification

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

loop is also conducted here: the agent’s output is debugged repeatedly until all the K8s manifests in
the edited folder are correctly applied to the K8s cluster.

Improvement loop After the reconfiguration, our system applies the reconfigured K8s manifests
to the K8s cluster. Then, they will be validated again through the experiment and analysis phases.
That is, as in the systematic CE cycle, our system also repeats the experiment, analysis, improvment
phases until the hypothesis is satisfied. We define this loop as the improvement loop.

2.6 EXTRA PHASE: POST-PROCESSING

After the CE cycle is completed, our system finalizes its entire process by summarizing the com-
pleted CE cycle. The agent summarizes the user’s input and each of the four completed phases.
Finally, our system provides the user with the summary of the completed CE cycle and the folder
containing K8s manifests that have been reconfigured to satisfy the hypothesis defined in the hy-
pothesis phase and their Skaffold configuration file.

3 CASE STUDY

In this section, we validate the entire process of our system through case studies on two different
scale systems: NGINX and SOCKSHOP (Weaveworks, 2023). NGINX is a small-scale system that
consists of two K8s manifests (i.e., two resources): pod.yaml and service.yaml. The for-
mer defines a Pod resource including a Nginx server, and the latter defines Service resource
routing TCP traffic to the Pod. To verify whether our system can improve the system when there
are resiliency issues, we intentionally configure the resource with a non-resilient setting; we set
restartPolicy to Never in Pod.yaml. With this configuration, once the Pod goes down, it
will never restart, resulting in extended service outages. On the other hand, SOCKSHOP is a prac-
tical and large-scale e-commerce system that consists of 29 manifests, which define the resources
and databases for front-end pages, user information, order, payment, shipping, and so on. The num-
ber of replicas of all the Deployment resources is originally set to one. However, this setting
could lead to downtime of the single replica when it goes down. To narrow down this original
resiliency issue to a single point, we increase the replicas for Deployment resources other than
front-end-dep.yaml to two, while keeping a single replica for front-end-dep.yaml.
This RELATIVELY reduces the redundancy/resiliency of the front-end resource. In this case study,
we validate whether our system correctly identifies and addresses these resiliency issues through a
reasonable CE cycle.

Long-term experiments are not required for the resiliency issues here. Therefore, to save time, we
input the following instruction along with the K8s manifests: “Chaos-Engineering experiment must
be completed within 1 minute”. For SOCKSHOP, we additionally instruct on how to access its
web page as follows: “When using k6 in steady-state definition, always select a request URL from
the following options (other requests are invalid): 1. http://front-end.sock-shop.svc.cluster.local/,
2. http://front-end.sock-shop.svc.cluster.local/detail.html?id=ID, ...”. We use gpt-4o-2024-08-06 as
LLMs for our system. To improve the reproducibility of this case study, its temperature is set to
zero with the seed fixed at 42. We run a single CE cycle for each system five times under the same
settings.3 In the following, we first discuss the aggregated results obtained from multiple runs of
single CE cycles: the time and monetary costs, the completion rate, and the reconfiguration rate.
Then, we qualitatively validate the operations within the CE cycles conducted by our system. See
also Appendix C for more details on the inputs and outputs for each system.

Time and monetary costs Table 1 shows our system’s time and monetary costs of single CE
cycles for each system. We first count the input and output tokens using the tokenizer of GPT-4o
(o200k base). We then calculate the monetary costs based on the official OpenAI API pricing
table in September 2024. For NGINX, our system completes single CE cycles in just $0.21 and
11 minutes (including 2 minutes for the chaos experiment execution). Although we do not have
statistical data on the actual working time and labor costs for the same CE cycles performed by

3Due to the non-deterministic nature of GPT-4o, the outputs are not fully reproduced every time even when
the temperature is set to zero and a seed is provided. Therefore, the multiple runs aim to ensure the stability of
our system under such randomness.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Time and monetary costs of single CE cycles conducted by CHAOSEATER. The values for
each phase are averaged across runs that did not skip that phase, while the values for overall are
averaged across runs that involved system reconfiguration.

NGNIX
Metric Overall Pre-process Hypothesis Experiment Analysis Improvement Post-prosess

Input tokens 59k 2.6k 25k 13k 4.4k 5.5k 8.2k
Output tokens 5.9k 0.5k 2.5k 1.7k 0.6k 0.2k 0.4k
API billing ($) 0.21 0.01 0.09 0.05 0.02 0.02 0.02
Time 11m 21s 2.6m 4.4m 50s 12s 21s

SOCKSHOP
Metric Overall Pre-process Hypothesis Experiment Analysis Improvement Post-prosess

Input tokens 284k 30k 150k 57k 14k 15k 18k
Output tokens 13k 5.7k 3.8k 1.8k 0.7k 0.6k 0.5k
API billing ($) 0.84 0.13 0.41 0.16 0.04 0.04 0.05
Time 25m 4.6 4.3m 3.3m 36s 4.3m 21s

human engineers, these total operational time and monetary costs are obviously lower than that. For
SOCKSHOP, the monetary cost increases by approximately four times ($0.84), and the time doubled
(25m). However, these values are still intuitively lower than those of human engineers. Even with
the number of resources increasing by more than ten times compared to NGINX, the cost increase
remains minimal, demonstrating that our system can maintain low costs even for large-scale systems.

Table 2: Completion rate and reconfiguration rate
in five runs of single CE cycles for each system.

System Completion (%) Reconfig (%)

NGINX 100 100
SOCKSHOP 100 80

Completion rate and reconfiguration rate
Table 2 shows the completion rate and recon-
figuration rate. The former refers to the per-
centage of runs where our system successfully
completes the CE cycle without runtime er-
rors (e.g., the verification loop or improvement
loop reaching the maximum limit of three itera-
tions), while the latter represents the percentage
of runs where our system not only completes the
CE cycle without runtime errors but also successfully reconfigures the input system. The 100% com-
pletion rates reported in Table 2 demonstrate the stability of our system across both systems. Our
system also achieves the 100% reconfiguration rate for NGINX; it consistently reconfigures the sys-
tem using a Deployment with multiple replicas, which addresses the resiliency issue of never
restarting policy. For SOCKSHOP, in four out of five runs, our system reconfigures the system by
setting the number of replicas in the front-end Deployment to two or more. This addresses the
downtime issue of the single replica. In other run, our system completes a CE cycle skipping the sys-
tem reconfiguration. In this case, as the steady states are only checked before and after the pod-kill
(i.e., in the pre/post-validation phase), the front-end replica has already recovered by the time of the
check, and the downtime issue is not detected. Although this is not the outcome we expected, it is
still a valid CE cycle that verifies whether the target Pod can recover properly after a certain period
of time. Overall, our system stably completes single CE cycles for both NGINX and SOCKSHOP
without any critical issues.

Qualitative validation on NGINX Here, we pick up one of the five runs for NGINX and qualita-
tively validate its outputs at each representative phase. The top of Figure 6 shows the highlighted
outputs for NGINX. In the hypothesis phase, our system first defines two steady states: 1) “The Pod
should be running at least 90% of the time during the check period”; 2) “Service availability should
be at least 99.9% with a response status of 200”. The VaC scripts shown in Figure 6 correctly im-
plement these steady states. It then defines a failure sequence that injects NetworkChaos (delay)
into the Nginx Pod following PodChaos (pod-kill) to simulate a cyberattack.

In the experiment planning, it plans the following chaos experiment: 1) the two steady states are
sequentially validated in the pre-validation phase; 2) in the failure-injection phase, the two steady

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: The highlighted outputs for NGINX and SOCKSHOP

states are sequentially validated alongside the injection of each failure that may affect them; 3) the
two steady states are validated sequentially once again in the post-validation phase.

The first chaos experiment reveals that the two steady states are currently not satisfied in both the
failure-injection and post-validation phases. Our system successfully identifies the cause as the
Nginx Pod’s never restarting policy and replaces it with a Deployment with three replicas. It then
adjusts the success criteria of the VaC script to ensure that at least one Pod out of three replicas is
running and conducts the chaos experiment for the reconfigured system again. Finally, the additional
chaos experiment confirms that the hypothesis is satisfied in the reconfigured system.

Intuitively, these operations and outputs follow best practices, demonstrating that our system can
complete our expected CE cycle for the small-scale system, NGINX, without explicit user instruc-
tions.

Qualitative validation on SOCKSHOP Similarly, we qualitatively validate the outputs of a run
for SOCKSHOP. The bottom of Figure 6 shows the highlighted outputs for SOCKSHOP. In the
hypothesis phase, our system first defines two steady states: 1) “At least 1 ready replica 100% of
the time and 2 ready replicas at least 80% of the time during the monitoring period” for the carts
Deployment; 2) “At least 1 ready replica must be present 100% of the time during the monitoring
period” for the front-end Deployment. The VaC scripts shown in Figure 6 correctly implement
these steady states.

It then defines a failure sequence that injects StressChaos (CPU) into all the carts-db replicas fol-
lowing PodChaos (pod-kill) that targets the single front-end replica to simulate possible problems
in a black Friday sale.

In the experiment planning, it plans the following chaos experiment: 1) the two steady states are
simultaneously validated in the pre-validation phase; 2) in the failure-injection phase, the two steady
states are sequentially validated alongside the injection of each failure that may affect them; 3) the
two steady states are validated simultaneously once again in the post-validation phase.

The first chaos experiment reveals that the second steady state is currently not satisfied in both the
failure-injection and post-validation phases. Our system successfully identifies the cause as the sin-
gle replica setting of the front-end Deployment and increases the number of replicas to two. It
then conducts the chaos experiment for the reconfigured system again without experiment adjust-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ments (no adjustment is needed as the resource type remains unchanged). Finally, the additional
chaos experiment confirms that the hypothesis is satisfied in the reconfigured system.

This case also broadly follows best practices, demonstrating that our system can complete our ex-
pected CE cycle even for the comparatively large system, SOCKSHOP, without explicit user instruc-
tions.

4 DISCUSSION

Broader impacts Numerous systems, including the increasing number of LLM applications in
recent years, are built in the microservice architecture, and their number is expected to continue to
grow in the future. By fully automating CE, it will be possible for anyone to build resilient systems.
Moreover, it is expected to combine our system with other LLM systems, such as improving the
resiliency of applications created by other LLM systems through our system. Although our system
is not yet at a level that can practically realize that, we believe that our system is a good starting
point toward such use cases. Even at its current level, our system can be sufficiently used as training
materials (including both good and bad practices) for the Chaos Game Day, which is a training
exercise for CE engineers.

Limitations Our system currently has three limitations: 1) Limited deployment environment; al-
though CE should ideally be conducted in actual production environments, our system is currently
only supported in development environments. 2) Limited to GPT-4o only; our system’s prompt tem-
plates are highly tuned only for GPT-4o. Therefore, other LLMs can not currently be used for our
system. 3) Vulnerability discovery; in the case study, our system improved a system with relatively
simple resiliency issues. However, for systems that already possess a certain level of resiliency, our
system fails to find new issues through a CE cycle. Given that this is a challenging task even for
engineers, our system is currently considered to perform at a level comparable to, or lower than, that
of engineers. To find issues in such systems, it is necessary to conduct multiple CE cycles for more
complex systems over extended operational periods.

Future directions Given the current limitations above, we share four future directions for our sys-
tem: 1) Fully automation of long-term multiple CE cycles; By using the system’s output as input for
the next CE cycle, we can automate multiple CE cycles even with our current system. However, we
additionally need to develop techniques to manage the long-term history of completed CE cycles and
continuous learning (if LLMs are fine-tuned). 2) Support for various LLMs; As our system’s prompt
templates are tuned manually, supporting various LLMs significantly increases their management
costs. To address this, automatic prompt tuning is considered an effective solution. 3) Fine-tuning
LLMs specifically for CE; We may leverage our system’s outputs as the instruction-tuning data. 4)
Production deployment and security; if our system is deployed on production environments, fur-
ther research on security will be necessary. This includes controlling the impact range of failures,
preventing our system from becoming a proxy for attacking production services, and proposing
emergency response measures (e.g., a higher-level monitoring system that monitors our system). 5)
Improvement for more complex systems; We need to incorporate the recent advances in LLMs x
graph approaches to extract necessary sub-graphs from large system graphs. This sub-graph extrac-
tion is important to organize the agent’s inputs in each phase.

5 CONCLUSION

In this paper, we proposed CHAOSEATER, a system for automating the entire CE workflow with
LLMs. We presented the technical details of our system and validated it through a case study.
The results demonstrated that our system successfully reduces the time and monetary costs while
completing a reasonable CE cycle. In future work, we will improve our system following the future
directions discussed above. We are also excited that other researchers and developers will propose
related works in the same or different directions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Tasnim Ahmed, Nicola Piovesan, Antonio De Domenico, and Salimur Choudhury. Linguistic intel-
ligence in large language models for telecommunications. 2024.

Peter Alvaro, Kolton Andrus, Chris Sanden, Casey Rosenthal, Ali Basiri, and Lorin Hochstein.
Automating failure testing research at internet scale. In Proceedings of the Seventh ACM Sym-
posium on Cloud Computing, SoCC ’16, pp. 17–28, New York, NY, USA, 2016. Association
for Computing Machinery. ISBN 9781450345255. doi: 10.1145/2987550.2987555. URL
https://doi.org/10.1145/2987550.2987555.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

Lina Bariah, Hang Zou, Qiyang Zhao, Belkacem Mouhouche, Faouzi Bader, and Merouane Debbah.
Understanding telecom language through large language models, 2023.

Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke Kosewski, Justin Reynolds, and
Casey Rosenthal. Chaos engineering. IEEE Software, 33(3):35–41, 2016. doi: 10.1109/MS.2016.
60.

Ali Basiri, Lorin Hochstein, Nora Jones, and Haley Tucker. Automating chaos experiments in pro-
duction. In 2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 31–40, 2019. doi: 10.1109/ICSE-SEIP.2019.00012.

Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Patricia Lago, Manuel Mazzara, Victor
Rivera, and Andrey Sadovykh (eds.). Microservices, Science and Engineering. Springer, 2020.
ISBN 978-3-030-31646-4. doi: 10.1007/978-3-030-31646-4. URL https://doi.org/10.
1007/978-3-030-31646-4.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests, 2022.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021.

Suman De. A study on chaos engineering for improving cloud software quality and reliability. In
2021 International Conference on Disruptive Technologies for Multi-Disciplinary Research and
Applications (CENTCON), volume 1, pp. 289–294, 2021. doi: 10.1109/CENTCON52345.2021.
9688292.

Firefly. Aiac (github repository), 2022. URL https://github.com/gofireflyio/aiac.

Google. Skaffold (github repository), 2019. URL https://github.com/
GoogleContainerTools/skaffold.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming – the rise of code intelligence, 2024.

Yudong Huang, Hongyang Du, Xinyuan Zhang, Dusit Niyato, Jiawen Kang, Zehui Xiong, Shuo
Wang, and Tao Huang. Large language models for networking: Applications, enabling tech-
niques, and challenges. 2023.

11

https://doi.org/10.1145/2987550.2987555
https://doi.org/10.1007/978-3-030-31646-4
https://doi.org/10.1007/978-3-030-31646-4
https://github.com/gofireflyio/aiac
https://github.com/GoogleContainerTools/skaffold
https://github.com/GoogleContainerTools/skaffold

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hiroki Ikeuchi, Akio Watanabe, and Yousuke Takahashi. Coverage based failure injection toward
efficient chaos engineering. In ICC 2023 - IEEE International Conference on Communications,
pp. 4571–4577, 2023. doi: 10.1109/ICC45041.2023.10279387.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation, 2024. URL https://arxiv.org/abs/2406.00515.

Shuyang Jiang, Yuhao Wang, and Yu Wang. Selfevolve: A code evolution framework via large
language models, 2023.

K8sGPT. K8sgpt (github repository), 2023. URL https://github.com/k8sgpt-ai/
k8sgpt.

Imtiaz Karim, Kazi Samin Mubasshir, Mirza Masfiqur Rahman, and Elisa Bertino. SPEC5G:
A dataset for 5G cellular network protocol analysis. In Jong C. Park, Yuki Arase, Baotian
Hu, Wei Lu, Derry Wijaya, Ayu Purwarianti, and Adila Alfa Krisnadhi (eds.), Findings of
the Association for Computational Linguistics: IJCNLP-AACL 2023 (Findings), pp. 20–38,
Nusa Dua, Bali, November 2023. Association for Computational Linguistics. URL https:
//aclanthology.org/2023.findings-ijcnlp.3.

Dominik Kesim, André van Hoorn, Sebastian Frank, and Matthias Haussler. Identifying and prior-
itizing chaos experiments by using established risk analysis techniques. pp. 229–240, 10 2020.
doi: 10.1109/ISSRE5003.2020.00030.

Kubernetes. Kubernetes (github repository), 2014. URL https://github.com/
kubernetes/kubernetes.

LangChain. Langchain (github repository), 2023. URL https://github.com/
langchain-ai/langchain.

Ali Maatouk, Fadhel Ayed, Nicola Piovesan, Antonio De Domenico, Merouane Debbah, and Zhi-
Quan Luo. Teleqna: A benchmark dataset to assess large language models telecommunications
knowledge, 2023.

Yukai Miao, Yu Bai, Li Chen, Dan Li, Haifeng Sun, Xizheng Wang, Ziqiu Luo, Yanyu Ren, Dapeng
Sun, Xiuting Xu, Qi Zhang, Chao Xiang, and Xinchi Li. An empirical study of netops capability
of pre-trained large language models, 2023.

Microsoft. Azure chaos studio (product page), 2023. URL https://azure.microsoft.
com/products/chaos-studio/.

Netflix. Chaos monkey (github repository), 2012. URL https://github.com/Netflix/
chaosmonkey.

Nicola Piovesan, Antonio De Domenico, and Fadhel Ayed. Telecom language models: Must they
be large?, 2024.

Prometheus. Prometheus (github repository), 2012. URL https://github.com/
prometheus/prometheus.

Pulumi. Pulumi ai (github repository), 2023. URL https://github.com/pulumi/
pulumi-ai.

Robusta. Kubernetes chatgpt bot (github repository), 2023. URL https://github.com/
robusta-dev/kubernetes-chatgpt-bot.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Ev-
timov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong,
Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.

Amazon Web Services. Aws fault injection service (product page), 2021. URL https://aws.
amazon.com/fis/.

12

https://arxiv.org/abs/2406.00515
https://github.com/k8sgpt-ai/k8sgpt
https://github.com/k8sgpt-ai/k8sgpt
https://aclanthology.org/2023.findings-ijcnlp.3
https://aclanthology.org/2023.findings-ijcnlp.3
https://github.com/kubernetes/kubernetes
https://github.com/kubernetes/kubernetes
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://azure.microsoft.com/products/chaos-studio/
https://azure.microsoft.com/products/chaos-studio/
https://github.com/Netflix/chaosmonkey
https://github.com/Netflix/chaosmonkey
https://github.com/prometheus/prometheus
https://github.com/prometheus/prometheus
https://github.com/pulumi/pulumi-ai
https://github.com/pulumi/pulumi-ai
https://github.com/robusta-dev/kubernetes-chatgpt-bot
https://github.com/robusta-dev/kubernetes-chatgpt-bot
https://aws.amazon.com/fis/
https://aws.amazon.com/fis/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chaos Mesh. Chaos mesh (github repository), 2021. URL https://github.com/
chaos-mesh/chaos-mesh/.

Cognition Labs. Introducing devin, the first ai software engineer (official blog), 2024. URL https:
//www.cognition.ai/blog/introducing-devin.

Grafana Labs. k6 (github repository), 2021. URL https://github.com/grafana/k6.

Kennedy A. Torkura, Muhammad I.H. Sukmana, Feng Cheng, and Christoph Meinel. Security chaos
engineering for cloud services: Work in progress. In 2019 IEEE 18th International Symposium on
Network Computing and Applications (NCA), pp. 1–3, 2019. doi: 10.1109/NCA.2019.8935046.

Weaveworks. Sock shop (github repository (archived in 2023)), 2023. URL https://github.
com/microservices-demo/microservices-demo.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-
based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models. 2023.

Sertaç Özercan. Kubectl ai (github repository), 2023. URL https://github.com/
sozercan/kubectl-ai.

A RELATED WORK

Chaos Engineering Since the paper (Basiri et al., 2016) introduced its name, CE has gained at-
tention and is now employed in various services (Basiri et al., 2019; De, 2021). Several works have
advanced CE from the perspective of optimization of failure injections (Ikeuchi et al., 2023; Alvaro
et al., 2016), risk analysis (Kesim et al., 2020), and security (Torkura et al., 2019). In application,
various automation tools have been developed from both the open-source (Chaos Mesh, 2021; Net-
flix, 2012) and commercial sectors(Amazon Web Services, 2021; Microsoft, 2023). While partial
automation of CE has progressed, full automation has not yet been explored.

LLMs for software engineering LLMs for coding have been explored from various aspects: Pre-
training models (Chen et al., 2021; Rozière et al., 2024; Guo et al., 2024), prompting (Chen et al.,
2022; Jiang et al., 2023), and evaluation (Austin et al., 2021; Chen et al., 2021). For more general SE
tasks, LLMs that solve issues in a repository have also emerged (Yang et al., 2024; Cognition Labs,
2024; Xia et al., 2024).

LLMs for networking (NW) LLMs for NW have been explored from various aspects in recent
years: Datasets (Bariah et al., 2023; Karim et al., 2023), benchmarks (Maatouk et al., 2023; Miao
et al., 2023), fine-tuned models (Bariah et al., 2023), an agent framework for NW-related tasks
(Huang et al., 2023), and comprehensive evaluation (Ahmed et al., 2024; Piovesan et al., 2024).
These works empirically demonstrate the promise of applying LLMs to the NW domain. In par-
allel with the research side, applications have also been developed, especially for IaC. They range
from LLM-based code generation (Firefly, 2022; Özercan, 2023; Pulumi, 2023) to diagnostic tools
(K8sGPT, 2023; Robusta, 2023).

B IMPLEMENTATION DETAILS

B.1 SYSTEM PROMPTS

In this section, we share all prompt templates for LLM agents of CHAOSEATER. Words enclosed
in blue curly braces {} denote placeholders that change dynamically based on user input. These

13

https://github.com/chaos-mesh/chaos-mesh/
https://github.com/chaos-mesh/chaos-mesh/
https://www.cognition.ai/blog/introducing-devin
https://www.cognition.ai/blog/introducing-devin
https://github.com/grafana/k6
https://github.com/microservices-demo/microservices-demo
https://github.com/microservices-demo/microservices-demo
https://arxiv.org/abs/2407.01489
https://arxiv.org/abs/2405.15793
https://github.com/sozercan/kubectl-ai
https://github.com/sozercan/kubectl-ai

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

enclosed words are variable names, and identical variable names will have the same text embedded.
Examples of the text embedded in each placeholder are also shared under each system prompt. On
the other hand, words enclosed in red curly braces {} denote placeholders that are replaced with
dynamic templates. These pre-defined templates are dynamically retrieved and embedded in the
placeholders according to the situation.

B.1.1 PRE-PROCESSING

0-0: Agent for drafting a steady state

System:
System: You are a professional Kubernetes (k8s) engineer.
Given a K8s manifest, please summarize it according to the following rules:
- The summary must be written in bullet points.
- Summarize the functions of the K8s manifest in a way that is understandable to even
beginners.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"k8s_summary\": {\"title\": \"K8S Summary\", \"description\": \"
Summary of the K8s manifest. Summarize it in bullet points like ’- the 1st line\\n- the
second line...’\", \"type\": \"string\"}}, \"required\": [\"k8s_summary\"]}
‘‘‘

Human:
K8s manifest
{k8s_yaml}

Please summarize the above K8s manifest.

AI:
‘‘‘json
{\"k8s_summary\":

Example text embedded to k8s yaml

‘‘‘nginx/pod.yaml
apiVersion: v1
kind: Pod
metadata:
name: example-pod
labels:

app: example
spec:
restartPolicy: Never
containers:
- name: example-container

image: nginx:1.17.1
ports:
- containerPort: 80

‘‘‘

0-1: Agent for finding potential weaknesses

System:
You are a professional Kubernetes (K8s) engineer.
Given K8s manifests for a system, you will identify their potential issues for
resiliency and redundancy when failures occur in the system.
Always keep the following rules:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

- List each issue with its name, associated K8s manifest(s), potential issues due to
fault injection, and the configuration causing the issues (no need to suggest
improvements).
- If the same issue exists in different manifests, merge them into a single issue,
specifying all the associated manifest names.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"issues\": {\"title\": \"Issues\", \"description\": \"List issues
with its name, potential issues due to fault injection, and manifest configuration
causing the issues (no need to suggest improvements).\", \"type\": \"array\", \"items
\": {\"$ref\": \"#/definitions/K8sIssue\"}}}, \"required\": [\"issues\"], \"definitions
\": {\"K8sIssue\": {\"title\": \"K8sIssue\", \"type\": \"object\", \"properties\": {\"
issue_name\": {\"title\": \"Issue Name\", \"description\": \"Issue name\", \"type\": \"
string\"}, \"issue_details\": {\"title\": \"Issue Details\", \"description\": \"
potential issues due to fault injection\", \"type\": \"string\"}, \"manifests\": {\"
title\": \"Manifests\", \"description\": \"manifest names having the issues\", \"type
\": \"array\", \"items\": {\"type\": \"string\"}}, \"problematic_config\": {\"title\":
\"Problematic Config\", \"description\": \"problematic configuration causing the issues
(no need to suggest improvements).\", \"type\": \"string\"}}, \"required\": [\"
issue_name\", \"issue_details\", \"manifests\", \"problematic_config\"]}}}

Human:
Here are the K8s manifests for my system.
{k8s_yamls}

Please list issues for each K8s manifest.

AI:
‘‘‘json
{\"issues\":

Example text embedded to k8s yamls

‘‘‘nginx/pod.yaml
apiVersion: v1
kind: Pod
metadata:
name: example-pod
labels:

app: example
spec:
restartPolicy: Never
containers:
- name: example-container

image: nginx:1.17.1
ports:
- containerPort: 80

‘‘‘

‘‘‘nginx/service.yaml
apiVersion: v1
kind: Service
metadata:
name: example-service

spec:
selector:

app: example
ports:

- protocol: TCP
port: 80
targetPort: 80

‘‘‘

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0-2: Agent for assuming an application

System:
You are a professional Kubernetes (k8s) engineer.
Given k8s manifests and dependencies between them, please assume a real-world
application (service) of the manifests according to the following rules:
- If the application is explicitly specified in the instructions, assume it.
- You can leverage any given information, including file name, manifests, and
dependencies, to guess the purpose of the manifests.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"thought\": {\"title\": \"Thought\", \"description\": \"Before
assuming an application, reason logically why you assume it for the given manifests. e.
g., from file name, instructions, or other elements?\", \"type\": \"string\"}, \"
k8s_application\": {\"title\": \"K8S Application\", \"description\": \"Specify what the
service (application) offers to users.\", \"type\": \"string\"}}, \"required\": [\"
thought\", \"k8s_application\"]}
‘‘‘

Human:
{user_input}

Please assume a real-world application of the manifests.

AI:
‘‘‘json
{\"thought\":

Example text embedded to user input

K8s manifest:
‘‘‘nginx/pod.yaml
apiVersion: v1
kind: Pod
metadata:
name: example-pod
labels:

app: example
spec:
restartPolicy: Never
containers:
- name: example-container

image: nginx:1.17.1
ports:
- containerPort: 80

‘‘‘
Summary of nginx/pod.yaml:
- This manifest defines a Kubernetes Pod.
- The Pod is named ’example-pod’.
- It includes metadata with a label ’app: example’.
- The Pod’s restart policy is set to ’Never’, meaning it won’t restart automatically if
it fails.
- The Pod contains one container named ’example-container’.
- The container uses the ’nginx:1.17.1’ image.
- The container exposes port 80, which is typically used for HTTP traffic.

K8s manifest:
‘‘‘nginx/service.yaml
apiVersion: v1
kind: Service
metadata:
name: example-service

spec:
selector:

app: example
ports:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

- protocol: TCP
port: 80
targetPort: 80

‘‘‘
Summary of nginx/service.yaml:
- This manifest defines a Kubernetes Service.
- The Service is named ’example-service’.
- It uses the ’v1’ API version.
- The Service selects pods with the label ’app: example’.
- It exposes the Service on port 80 using the TCP protocol.
- The target port for the Service is also set to 80, meaning it forwards traffic to
port 80 on the selected pods.

0-3: Agent for summarizing user instructions

System:
You are a professional Chaos Engineering practitioner.
Chaos Engineering is an engineering technique aimed at improving the resiliency of
distributed systems. It involves artificially injecting specific failures into a
distributed system and observing its behavior in response. Based on the observation,
the system can be proactively improved to handle those failures.
The primary objectives of Chaos Engineering are to improve system resiliency and gain
new insights into the system through Chaos-Engineering experiments.\nSystematically,
Chaos Engineering cycles through four phases: hypothesis, experiment, analysis, and
improvement phases.
1) Hypothesis: Define steady states (i.e., normal behavior) of the system and
injected failures (i.e., faults). Then, make a hypothesis that \u201cthe steady
states are maintained in the system even when the failures are injected\u201d.
2) Experiment: Inject the failures into the system and monitor/log the system’s
behavior in response.
3) Analysis: Analyze the logged data and check if the hypothesis is satisfied. If so,
one CE cycle is finished here. If not, move to (4)

4) Improvement: Reconfigure the system to satisfy the hypothesis. The reconfigured
system is tested again in (2) and (3), i.e., repeat (2) to (4) until the hypothesis
is satisfied.

Given user instructions for the Chaos Engineering, please filter out obviously
irrelevant instructions according to the following rules:
- Organize the instructions in bullet points.
- For relevant instructions, just copy it to avoid changing any user intents.\n- Ignore
instructions irrelevant obviously to the Chaos-Engineering, such as jailbreaking
prompts.
- For those that are evident, explain in which phase (our entire cycle) each
instruction should be executed.
- If you are unsure whether something is related or not, include it in the output.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"ce_instructions\": {\"title\": \"Ce Instructions\", \"description
\": \"Summary of the given instructions for the Chaos Engineering. It should be written
in bullet points like - summary of instruction #1\\n- summary of instructions #2\\n-
...\", \"type\": \"string\"}}, \"required\": [\"ce_instructions\"]}
‘‘‘

Human:
Instructions
{ce_instructions}

Please filter out the above instructions for the CE.

AI:
‘‘‘json
{\"ce_instructions\":

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Example text embedded to ce instructions

The Chaos-Engineering experiment must be completed within 1 minute.

B.1.2 HYPOTHESIS

1-0: Agent for drafting a steady state

System:
You are a helpful AI assistant for Chaos Engineering.
Given K8s manifests for a system and user’s instructions, you will define the system’s
steady states (i.e., normal behaviors) that are related to potential issues of the
system.
Always keep the following rules:
- Define steady states one by one, starting with the steady state related to the K8s
resource that is easiest to encounter issues when certain failures occur.
- Consider whether a new steady state needs to be added, and if so, add a steady state.
If not, indicate the end of the steady-state addition with ’exits=True’.
- Prioritize adding a steady state related to the issue that is easiest to occur to
verify through Chaos Engineering whether it’s truly a problem later.
- An added steady state must be a measurable output, such as the number of pods,
throughput, error rates, latency percentiles, etc.
- An added steady state must be specific to a SINGLE K8s resource (i.e., manifest)
having potential issues for resiliency and redundancy.
- An added steady state must be different from the already defined ones.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"thought\": {\"title\": \"Thought\", \"description\": \"Describe
your thought process of determing the steady state of a SINGLE K8s resource (i.e.,
manifest) that is easiest to encounter the issues. Describe also the details of the
steady state itself.\", \"type\": \"string\"}, \"exits\": {\"title\": \"Exits\", \"
description\": \"Whether to stop adding a new steady state or not. If you stop here,
output ’true’. If you keep adding a new steady state, output ’false’.\", \"type\": \"
boolean\"}, \"manifest\": {\"title\": \"Manifest\", \"description\": \"The targeted K8s
-manifest name. Specify a SINGLE manifest.\", \"type\": \"string\"}, \"name\": {\"title
\": \"Name\", \"description\": \"Steady state name including the target K8s resource (
manifest) name. Please write it using a-z, A-Z, and 0-9.\", \"type\": \"string\"}}, \"
required\": [\"thought\", \"exits\", \"manifest\", \"name\"]}
‘‘‘

Human:
Here is the overview of my system:
{user_input2}

Please follow the instructions below regarding Chaos Engineering:
{ce_instructions}

Steady states already defined are the following:
{predefined_steady_states}

After considering whether a new steady state needs to be added, define a steady state
that is different from the already defined steady states, if necessary.

AI:
‘‘‘json
{\"thought\":

Example text embedded to user input2

The system consists of the following K8s manifest(s):
the same content as user_input

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The resiliency issues/weaknesses in the system are as follows:
Issue #0: Pod Restart Policy
- details: The Pod will not restart automatically if it fails, which can lead to
downtime.
- manifests having the issues: [’nginx/pod.yaml’]
- problematic config: restartPolicy: Never

Issue #1: Single Pod Deployment
- details: Using a single Pod without a controller like Deployment or ReplicaSet can
lead to lack of redundancy and no automatic recovery if the Pod fails.
- manifests having the issues: [’nginx/pod.yaml’]
- problematic config: kind: Pod

The expected type of application on the system (i.e., K8s manifests):
Web server application using Nginx to serve HTTP content.; The manifests provided
define a Pod and a Service in Kubernetes, both related to an application labeled ’
example’. The Pod runs an Nginx container, which is a popular web server and reverse
proxy server. The Service is configured to expose this Pod on port 80, which is the
default port for HTTP traffic. Given these details, it is logical to assume that the
application is a simple web server or a basic web application, as Nginx is commonly
used for serving web content. The file names and the use of Nginx further support this
assumption.

1-1: Agent for defining an inspection strategy

System:
You are a helpful AI assistant for Chaos Engineering.
Given Kubernetes (K8s) manifests for a network system and its state type, you will
inspect the current value of the state type.
Always keep the following rules:
- You can use either K8s API (Python) or k6 (Javascript) to inspect the state.
- Use the K8s API for checking the current state of K8s resources
- Use k6 for checking communication statuses/metrics, such as request sending, response
time, latency, etc.
- If you use K8s API, consider appropriate test duration. If you use k6, consider not
only appropriate test duration but also an appropriate number of virtual users in the
load test.
- Pay attention to namespace specification. If the namespace is specified in the
manifest, it is deployed with the namespace. If not, it is deployed with the ’default’
namespace.
- When sending requests to a K8s resources, use their internal DNS names in the format:
‘‘‘service-name.namespace.svc.cluster.local:port‘‘‘. For the port setting, use the
service port, not the targetPort or nodePort. Ensure that the port matches the service
port defined in the manifest.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"thought\": {\"title\": \"Thought\", \"description\": \"Describe
your thoughts for the tool usage. e.g., the reason why you choose the tool and how to
use.\", \"type\": \"string\"}, \"tool_type\": {\"title\": \"Tool Type\", \"description
\": \"Tool to inspect the steady state. Select from [’k8s’, ’k6’].\", \"enum\": [\"k8s
\", \"k6\"], \"type\": \"string\"}, \"tool\": {\"title\": \"Tool\", \"description\": \"
If tool_tyepe=’k8s’, write here K8sAPI. If tool_tyepe=’k6’, write here K6JS.\", \"anyOf
\": [{\"$ref\": \"#/definitions/K8sAPI\"}, {\"$ref\": \"#/definitions/K6JS\"}]}}, \"
required\": [\"thought\", \"tool_type\", \"tool\"], \"definitions\": {\"K8sAPI\": {\"
title\": \"K8sAPI\", \"type\": \"object\", \"properties\": {\"duration\": {\"title\":
\"Duration\", \"description\": \"Duration of the status check every second in a for
loop. Set appropriate duration to check the current state of the system. The maximum
duration is 5s.\", \"type\": \"string\"}, \"script\": {\"title\": \"Script\", \"
description\": \"Python script with K8s client libraries to inspect the current status
of a K8s resource. Write only the content of the code, and for dictionary values,
enclose them within a pair of single double quotes (\\\"). Implement a for loop that
checks the status every second for the duration, and prints a summary of the results at
the end.\\n- To support docker env, please configure the client as follows: ‘‘‘\\n#
Load Kubernetes configuration based on the environment\\n if os.getenv(’
KUBERNETES_SERVICE_HOST’):\\n config.load_incluster_config()\\n else:\\n

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

config.load_kube_config()\\n‘‘‘\\n- Please add an entry point at the bottom to
allow the test to be run from the command line.\\n- Please add argparse ’--duration’ (
type=int) so that users can specify the loop duration.\", \"type\": \"string\"}}, \"
required\": [\"duration\", \"script\"]}, \"K6JS\": {\"title\": \"K6JS\", \"type\": \"
object\", \"properties\": {\"vus\": {\"title\": \"Vus\", \"description\": \"The number
of virtual users. You can run a load test with the number of virtual users.\", \"type
\": \"integer\"}, \"duration\": {\"title\": \"Duration\", \"description\": \"Duration
of the load test. Set appropriate duration to check the current state of the system.
The maximum duration is 5s.\", \"type\": \"string\"}, \"script\": {\"title\": \"Script
\", \"description\": \"k6 javascript to inspect the current state. Write only the
content of the code, and for dictionary values, enclose them within a pair of single
double quotes (\\\"). In options in the javascript, set the same ’vus’ and ’duration’
options as the above. The interval of status check must be 1s second(s). Set a
threshold that triggers an error when a request failure is clearly occurring.\", \"type
\": \"string\"}}, \"required\": [\"vus\", \"duration\", \"script\"]}}}
‘‘‘

Human:
Here is the overview of my system:
{user_input2}

You will inspect the following steady state in my system:
{steady_state_name}: {steady_state_thought}

Please follow the instructions below regarding Chaos Engineering:
{ce_instructions}

Please define the way to inspect "{steady_state_name}" in the system defined by the
above k8s manifest(s).

AI:
‘‘‘json
{\"thought\":"

----- In the verification loop, the prompts below will be stacked as history -----

AI:
{output}

Human:
Your current inspection script causes errors when conducted.
The error message is as follows:
{error_message}

Please analyze the reason why the errors occur, then fix the errors.
Always keep the following rules:
- NEVER repeat the same fixes that have been made in the past.
- Fix only the parts related to the errors without changing the original content.
- If requests failed, double-check if the service port is correct.
- You can change the tool (k8s -> k6 or k6 -> k8s) if it can keep the original
intention.
- {format_instructions}

AI:
‘‘‘json
{\"thought\":"

Example text embedded to steady state name

example-pod-running-state

Example text embedded to steady state thought

The first issue to address is the Pod’s restart policy set to ’Never’ in the ’nginx/pod
.yaml’ manifest. This is a critical issue because if the Pod fails, it will not restart
automatically, leading to potential downtime. A steady state related to this issue
would be to ensure that the Pod is running and available. This can be measured by
checking the number of running Pods. Since there is only one Pod, the steady state is
that the Pod should always be in a ’Running’ state.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1-2: Agent for defining a threshold

System:
You are a helpful AI assistant for Chaos Engineering.
Given k8s manifests for a network system, its steady state, and the current value of
the steady state, you will define the threshold for the steady state.
Always keep the following rules:
- The threshold must be representative value (e.g., ratio, percentage, ect.), not fixed
absolute value.
- The threshold must include reasonable tolerance that makes the threshold being more
easiliy satisfied to account for some fluctuations.
- The current value of the steady state must satisfy the threshold (including tolerance
) as the currrent value is the normal state and the threshold represents whether the
system remains normal.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"thought\": {\"title\": \"Thought\", \"description\": \"Write your
thought process to determine the threshold of the steady state.\", \"type\": \"string
\"}, \"threshold\": {\"title\": \"Threshold\", \"description\": \"the threshold of the
steady state, which should be satisfied in the current state.\", \"type\": \"string
\"}}, \"required\": [\"thought\", \"threshold\"]}
‘‘‘

Human:
Here is the overview of my system:
{user_input2}

You will determine a reasonable threshold for the following steady state of my system
:
{steady_state_name}: {steady_state_thought}

{inspection_summary}

Please follow the instructions below regarding Chaos Engineering:
{ce_instructions}

Now, please define a reasonable threshold for the steady state according to the above
information.

Example text embedded to inspection summary

The Python code of k8s client libraries to inspect the current state of the steady
state and its result are the following:
Script:
‘‘‘python
import os\nimport time
from kubernetes import client, config
def check_pod_status(namespace, pod_name, duration):

Load Kubernetes configuration based on the environment
if os.getenv(’KUBERNETES_SERVICE_HOST’):

config.load_incluster_config()
else:

config.load_kube_config()

v1 = client.CoreV1Api()
running_count = 0

for _ in range(duration):
try:

pod = v1.read_namespaced_pod(name=pod_name, namespace=namespace)
if pod.status.phase == ’Running’:

running_count += 1
print(f\"Pod status: {pod.status.phase}\")

except client.exceptions.ApiException as e:
print(f\"Exception when calling CoreV1Api->read_namespaced_pod: {e}\")
time.sleep(1)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

print(f\"Pod was running {running_count} out of {duration} seconds.\")

if __name__ == ’__main__’:
import argparse
parser = argparse.ArgumentParser(description=’Check the running state of a Pod.’)
parser.add_argument(’--duration’, type=int, default=5, help=’Duration to check the
Pod status in seconds.’)
args = parser.parse_args()
check_pod_status(namespace=’default’, pod_name=’example-pod’, duration=args.
duration)

‘‘‘

Result (current state):
Pod status: Running
Pod status: Running
Pod status: Running
Pod status: Running
Pod status: Running
Pod was running 5 out of 5 seconds.

1-3-a: Agent for writing VaC script (K8s Python API)

System:
You are a helpful AI assistant for writing unit tests in Python.
Given the steady state, python script to inspect it, and its threshold, please write a
Python unit test (including for-loop for certain duration) to verify if the steady
state satisfies the threshold by adding assertion.
Always keep the following rules:
- Include as many comments as possible in your code so that humans can easily
understand what you did later.
- Use the Kubernetes Python API.
- Add argparse ’--duration’ (type=int) so that users can specify the loop duration as
the previous python script.
- NEVER use "unittest" module to use argparse.
- Create a unit test by inheriting from the ’K8sAPIBase’ class below (available via ‘‘‘
from unittest_base import K8sAPIBase‘‘‘):
‘‘‘python
import os
from kubernetes import client, config

class K8sAPIBase:
def __init__(self):

Load Kubernetes configuration based on the environment
if os.getenv(’KUBERNETES_SERVICE_HOST’):

config.load_incluster_config()
else:

config.load_kube_config()

Create a Kubernetes API client
self.v1 = client.CoreV1Api()

‘‘‘
- Add an entry point at the bottom to allow the test to be run from the command line,
as follows:
‘‘‘
if __name__ == ’__main__’:

main()
‘‘‘
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"thought\": {\"title\": \"Thought\", \"description\": \"Describe how
you add the threshold assertion to the inspection Python script.\", \"type\": \"string
\"}, \"code\": {\"title\": \"Code\", \"description\": \"Python unit test code.
Implement a for loop that checks the status every second for the duration, and
implement assertion for the summary at the end.\\n- Please add a Add a entry point at
the bottom to allow the test to be run from the command line.\\n- Please add argparse
’--duration’ (type=int) so that users can specify the loop duration. Write only the

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

content of the code, and for dictionary values, enclose them within a pair of single
double quotes (\\\").\", \"type\": \"string\"}}, \"required\": [\"thought\", \"code\"]}
‘‘‘

Human:
The steady state:
{steady_state_name}: {steady_state_thought}

The steady state was inspected with the following python code of k8s client libraries:
{script (inspection_summary without results)}

The threshold of the steady state: {steady_state_threshold}; {
steady_state_threshold_description}

Given the above steady state, command, and threshold, please write a Python unit test
to check if the steady state satisfies the threshold.
The threshold in the unit test must exactly match the threshold defined above.
Implement it to support variable durations. Use a representative value (e.g.,
percentage, ratio, etc.) for the threshold. NEVER use any fixed absolute values for the
threshold.

----- In the verification loop, the prompts below will be stacked as history -----

AI:
{output}

User:
Your current unittest cause errors when coducted.
The error message is as follows:
{error_message}

Please analyze the reason why the errors occur, then fix the errors.
Always keep the following rules:
- Ensure that the implementation supports variable durations again.
- NEVER repeat the same fixes that have been made in the past.
- Fix only the parts related to the errors without changing the original content.
- the same format instructions as in the System role

1-3-b: Agent for writing VaC script (K6 Javascript)

System:
You are a helpful AI assistant for writing unit tests in k6.
Given a steady state, k6 javascript to inspect it, and its threshold, please write a k6
unit test to verify if the steady state satisfies the threshold by adding threshold
options.
Always keep the following rules:
- Include as many comments as possible in your code so that humans can easily
understand what you did later.
- Add "thresholds" in "options" section to the given k6 javascript.
- {format_instructions}

Human:
The steady state:
{steady_state_name}: {steady_state_thought}

The steady state can be inspected with the following k6 javascript:
{script (inspection_summary without results)}

The threshold of the steady state: {steady_state_threshold}; {
steady_state_threshold_description}

Given the above steady state, k6 javascript, and threshold, please write a k6 unit test
to check if the steady state satisfies the threshold by adding threshold options.
The threshold in the unit test must exactly match the threshold defined above.

----- In the verification loop, the prompts below will be stacked as history -----

AI:
{output}

User:

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Your current unittest cause errors when coducted.
The error message is as follows:
{error_message}

Please analyze the reason why the errors occur, then fix the errors.
Always keep the following rules:
- Ensure that the implementation supports variable durations again.
- NEVER repeat the same fixes that have been made in the past.
- Fix only the parts related to the errors without changing the original content.
- the same format instructions as in the System role

Example text embedded to steady state threshold

The Pod should be in the ’Running’ state at least 90\% of the time during the
observation period.

Example text embedded to steady state threshold description

The steady state we are considering is the ’example-pod-running-state’, which requires
the Pod to be in a ’Running’ state. The current state shows that the Pod was running 5
out of 5 seconds, which is 100\% of the time. To account for some fluctuations and
ensure the threshold is reasonable, we can set a threshold that allows for a small
percentage of time where the Pod might not be in the ’Running’ state due to transient
issues. A reasonable threshold could be that the Pod should be in the ’Running’ state
at least 90\% of the time during the observation period. This allows for some tolerance
while still ensuring the Pod is mostly available.

1-4: Agent for drafting failure injection

System:
You are a helpful AI assistant for Chaos Engineering.
Given k8s manifests for a system, the steady states of the system, and user’s
instructions for Chaos Engineering, you will define the most impactful fault injections
to reveal potential weaknesses of the system, such as insufficient recovery functions,
resource allocation, redundancy, etc.
Always keep the following rules:
- First, assume a real-world event that may be most impactful in the the system, such
as promotion campaign, cyber attacks, disasters, etc.
- Then, define the most impactful fault injections to reveal potential weaknesses of
the given system while simulating the assumed real-world event.
- Prioritize fault injections that target the system’s weak resources related to the
steady states to verify whether those resources can handle the faults and the steady
states can be maintained.
- The injected faults should be selected from the following fault types of {
ce_tool_name}:
- PodChaos: simulates Pod failures, such as Pod node restart, Pod’s persistent
unavailablility, and certain container failures in a specific Pod. The supported
subtypes include ’pod-failure’, ’pod-kill’, ’container-kill’.
- NetworkChaos: simulates network failures, such as network latency, packet loss,
packet disorder, and network partitions.
- DNSChaos: simulates DNS failures, such as the parsing failure of DNS domain name
and the wrong IP address returned.
- HTTPChaos: simulates HTTP communication failures, such as HTTP communication
latency.
- StressChaos: simulates CPU race or memory race.
- IOChaos: simulates the I/O failure of an application file, such as I/O delays, read
and write failures.

- TimeChaos: simulates the time jump exception.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

‘‘‘
{\"properties\": {\"event\": {\"title\": \"Event\", \"description\": \"Consider a real-
world fault event that may be most impactful of the system, such as promotion campaign,
cyber attacks, disasters, etc.\", \"type\": \"string\"}, \"thought\": {\"title\": \"
Thought\", \"description\": \"Write down your thought process to define a sequence of
fault injections that exploit the system’s weaknesses of while simulating the fault
event: 1) how the system’s weaknesses affect the steady state; 2) how each fault
injection exploit the system’s weaknesses; 3) how the sequence simulates the phenamena
in the fault event (consider carefully the sequence order). Prioritize fault injections
that directly attack the weaknessses of the system, such as insufficient recovery
functions, resource allocation, redundancy, etc.\", \"type\": \"string\"}, \"faults\":
{\"title\": \"Faults\", \"description\": \"Define a sequence of fault injections that
exploit the system’s vulnerabilities to the fullest according to the above thoughts. In
the inner list, a set of simultaneously injected faults are listed, while in the outer
list, the sets are listed in the injection order. For example, [[fault_a], [fault_b,
fault_c]] indicates that fault_a is injected, then fault_b and fault_c are injected
simultaneously.\", \"type\": \"array\", \"items\": {\"type\": \"array\", \"items\": {\"
$ref\": \"#/definitions/Fault\"}}}}, \"required\": [\"event\", \"thought\", \"faults
\"], \"definitions\": {\"Fault\": {\"title\": \"Fault\", \"type\": \"object\", \"
properties\": {\"name\": {\"title\": \"Name\", \"description\": \"Select a fault type
from [\\\"PodChaos\\\", \\\"NetworkChaos\\\", \\\"DNSChaos\\\", \\\"HTTPChaos\\\", \\\"
StressChaos\\\", \\\"IOChaos\\\", \\\"TimeChaos\\\"]\", \"enum\": [\"PodChaos\", \"
NetworkChaos\", \"DNSChaos\", \"HTTPChaos\", \"StressChaos\", \"IOChaos\", \"TimeChaos
\"], \"type\": \"string\"}, \"name_id\": {\"title\": \"Name Id\", \"description\": \"An
identifier to prevent name conflicts when the same Fault appears. Assign numbers
starting from 0 in sequential order to prevent name conflicts.\", \"type\": \"integer
\"}, \"scope\": {\"title\": \"Scope\", \"description\": \"Specify only the fault
injection scope (i.e., the target resource where the fault is injected) in advance here
.\", \"type\": \"object\", \"additionalProperties\": {\"type\": \"string\"}}}, \"
required\": [\"name\", \"name_id\", \"scope\"]}}}
‘‘‘

Human:
Here is the overview of my system:
{user_input2}

Steady states of the network system defined by the manifests are the following:
{steady_states}

Please follow the instructions below regarding Chaos Engineering as necessary:
{ce_instructions}

Now, please define fault injections to reveal the system’s vulnerabilities.

Example text embedded to steady states

Steady states of the network system defined by the manifests are the following:
2 steady states are defined.

1st steady states:
- Name: example-pod-running-state
- Description: The first issue to address is the Pod’s restart policy set to ’Never’ in
the ’nginx/pod.yaml’ manifest. This is a critical issue because if the Pod fails, it
will not restart automatically, leading to potential downtime. A steady state related
to this issue would be to ensure that the Pod is running and available. This can be
measured by checking the number of running Pods. Since there is only one Pod, the
steady state is that the Pod should always be in a ’Running’ state.
- Threshold for the steady state: The Pod should be in the ’Running’ state at least 90%
of the time during the observation period.; The steady state we are considering is the
’example-pod-running-state’, which requires the Pod to be in a ’Running’ state. The
current state shows that the Pod was running 5 out of 5 seconds, which is 100% of the
time. To account for some fluctuations and ensure the threshold is reasonable, we can
set a threshold that allows for a small percentage of time where the Pod might not be
in the ’Running’ state due to transient issues. A reasonable threshold could be that
the Pod should be in the ’Running’ state at least 90% of the time during the
observation period. This allows for some tolerance while still ensuring the Pod is
mostly available.
- Whether the steady state meets the threshold is determined by the following Python
script with K8s API:
‘‘‘
import os
import time
import argparse
from kubernetes import client, config
from unittest_base import K8sAPIBase

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

class TestPodRunningState(K8sAPIBase):
...

if __name__ == ’__main__’:
parser = argparse.ArgumentParser(description=’Test the running state of a Pod.’)
parser.add_argument(’--duration’, type=int, default=5, help=’Duration to check the
Pod status in seconds.’)
args = parser.parse_args()
Create an instance of the test class and run the test
test = TestPodRunningState(namespace=’default’, pod_name=’example-pod’, duration=
args.duration)
test.test_pod_running_state()

‘‘‘

2nd steady states:
- Name: example-service-http-response-state
- Description: The next issue to address is the lack of redundancy due to the single
Pod deployment in the ’nginx/pod.yaml’ manifest. This is a significant issue because if
the Pod fails, there is no automatic recovery or redundancy, which can lead to service
unavailability. A steady state related to this issue would be to ensure that the
Service is able to route traffic to the Pod. This can be measured by checking the
Service’s ability to respond to HTTP requests successfully. Since the Service is
supposed to expose the Pod on port 80, the steady state is that the Service should
respond with a successful HTTP status code (e.g., 200 OK) for a certain percentage of
requests.
- Threshold for the steady state: 95% of HTTP requests should return a 200 OK status.;
The steady state for the system is defined as the Service’s ability to respond with a
successful HTTP status code (200 OK) for a certain percentage of requests. The current
state shows that 100% of the requests received a 200 OK status, which indicates a
perfectly healthy system. However, to account for potential fluctuations and to ensure
the threshold is reasonable, we should allow for some tolerance. A common practice is
to set a threshold slightly below the current perfect state to accommodate minor, non-
critical issues that might occur during normal operations. Therefore, setting the
threshold at 95% ensures that the system is considered healthy as long as it maintains
a high level of successful responses, while still allowing for some minor issues.
- Whether the steady state meets the threshold is determined by the following K6
Javascript:
‘‘‘
import http from ’k6/http’;\nimport { check } from ’k6’;

export const options = {
vus: 5,
duration: ’5s’,
thresholds: {

’http_req_failed’: [’rate<0.05’],
},

};

export default function () {
const res = http.get(’http:\/\/example-service.default.svc.cluster.local:80’);
check(res, {

’is status 200’: (r) => r.status === 200,
});

}
‘‘‘

1-5: Agent for determining detailed failure parameters

System:
You are a helpful AI assistant for Chaos Engineering.
Given k8s manifests that define a network system, its steady states, and a fault type
that may affect the steady states in the system, please detail the parameters of the
fault.
Always keep the following rules:
- Pay attention to namespace specification. If the namespace is specified in the
manifest, it is deployed with the namespace. If not, it is deployed with the ’default’
namespace.
- The parameters follow the format of Chaos Mesh.

Human:
Here is the overview of my system:
{user_input2}

Steady states of my system:
{steady_states}

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

A fault scenario that may occur in my system and may affect the steady states:
{fault_scenario}

Please follow the instructions below regarding Chaos Engineering as necessary:
{ce_instructions}

Now, please detail the parameters of the fault "{refined_fault_type}".
{detailed_param_instructions}

----- In the verification loop, the prompts below will be stacked as history -----

AI:
{output}

Human:
Your current fault parameters cause errors when conducted.
The error message is as follows:
{error_message}

Please analyze the reason why the errors occur, then fix the errors.
Always keep the following rules:
- NEVER repeat the same fixes that have been made in the past.
- Fix only the parts related to the errors without changing the original intent.

Example text embedded to fault scenario

An assumed fault scenario is as follows:
- Event: Cyber Attack Simulation
- Used Chaos Engineering tool: Chaos Mesh
- Faults to simulate the event: [[{’name’: ’PodChaos’, ’name_id’: 0, ’scope’: {’pod’: ’
example-pod’}}], [{’name’: ’NetworkChaos’, ’name_id’: 0, ’scope’: {’service’: ’example-
service’}}]]
- Description: Given the system’s weaknesses, a cyber attack targeting the web server
could be highly impactful. The Pod’s restart policy set to ’Never’ and the single Pod
deployment without redundancy are critical vulnerabilities. If the Pod fails, it will
not restart, leading to downtime, and the lack of redundancy means there is no backup
to handle traffic. To simulate a cyber attack, we can inject faults that exploit these
weaknesses. First, we will use PodChaos to simulate a Pod failure, which will test the
system’s ability to maintain the ’example-pod-running-state’. Since the Pod will not
restart automatically, this will directly impact the steady state. Next, we will use
NetworkChaos to simulate network latency, which will test the system’s ability to
maintain the ’example-service-http-response-state’. This sequence simulates a cyber
attack where the Pod is targeted first, followed by network disruptions, revealing the
system’s vulnerabilities in handling such events.

Example text embedded to refined fault type

NetworkChaos({’service’: ’example-service’})

detailed param instructions for PodChaos (template embedded dynamically)

The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a
list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The
object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{"properties": {"action": {"title": "Action", "description": "Specifies the fault type
from ’pod-failure’, ’pod-kill’, or ’container-kill’. Note that you may select ’pod-
failure’ only when the target Pod’s container has livenessProbe and readinessProbe
defined.", "example": "pod-kill", "enum": ["pod-failure", "pod-kill", "container-kill

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

"], "type": "string"}, "mode": {"title": "Mode", "description": "Specifies the mode of
the experiment. The mode options include ’one’ (selecting a random Pod), ’all’ (
selecting all eligible Pods), ’fixed’ (selecting a specified number of eligible Pods),
’fixed-percent’ (selecting a specified percentage of Pods from the eligible Pods), and
’random-max-percent’ (selecting the maximum percentage of Pods from the eligible Pods)
", "example": "one", "enum": ["one", "all", "fixed", "fixed-percent", "random-max-
percent"], "type": "string"}, "value": {"title": "Value", "description": "Provides
parameters for the mode configuration, depending on mode.For example, when mode is set
to fixed-percent, value specifies the percentage of Pods.", "example": "1", "type": "
string"}, "selector": {"title": "Selector", "description": "Specifies the target Pod.",
"example": null, "allOf": [{"$ref": "#/definitions/Selectors"}]}, "containerNames": {"
title": "Containernames", "description": "When you configure action to container-kill,
this configuration is mandatory to specify the target container name for injecting
faults.", "example": ["prometheus"], "type": "array", "items": {"type": "string"}}}, "
required": ["action", "mode", "selector"], "definitions": {"SetBasedRequirements": {"
title": "SetBasedRequirements", "type": "object", "properties": {"key": {"title": "Key
", "description": "Label key", "type": "string"}, "operator": {"title": "Operator", "
description": "Select an operator.", "enum": ["In", "NotIn", "Exists", "DoesNotExist"],
"type": "string"}, "values": {"title": "Values", "description": "Label values. The
values set must be non-empty in the case of In and NotIn.", "type": "array", "items":
{"type": "string"}}}, "required": ["key", "operator", "values"]}, "Selectors": {"title
": "Selectors", "type": "object", "properties": {"namespaces": {"title": "Namespaces",
"description": "Specifies the namespace of the experiment’s target Pod. If this
selector is None, Chaos Mesh will set it to the namespace of the current Chaos
experiment.", "type": "array", "items": {"type": "string"}}, "labelSelectors": {"title
": "Labelselectors", "description": "Specifies the label-key/value pairs that the
experiment’s target Pod must have. If multiple labels are specified, the experiment
target must have all the labels specified by this selector.", "type": "object", "
additionalProperties": {"type": "string"}}, "expressionSelectors": {"title": "
Expressionselectors", "description": "Specifies a set of expressions that define the
label’s rules to specifiy the experiment’s target Pod.", "example": [{"key": "tier", "
operator": "In", "values": ["cache"]}, {"key": "environment", "operator": "NotIn", "
values": ["dev"]}], "type": "array", "items": {"$ref": "#/definitions/
SetBasedRequirements"}}, "annotationSelectors": {"title": "Annotationselectors", "
description": "Specifies the annotation-key/value pairs that the experiment’s target
Pod must have. If multiple annotations are specified, the experiment target must have
all annotations specified by this selector.", "type": "object", "additionalProperties":
{"type": "string"}}, "fieldSelectors": {"title": "Fieldselectors", "description": "
Specifies the field-key/value pairs of the experiment’s target Pod. If multiple fields
are specified, the experiment target must have all fields set by this selector.", "
example": {"metadata.name": "my-pod", "metadata.namespace": "dafault"}, "type": "object
", "additionalProperties": {"type": "string"}}, "podPhaseSelectors": {"title": "
Podphaseselectors", "description": "Specifies the phase of the experiment’s target Pod.
If this selector is None, the target Pod’s phase is not limited.", "type": "array", "
items": {"enum": ["Pending", "Running", "Succeeded", "Failed", "Unknown"], "type": "
string"}}, "nodeSelectors": {"title": "Nodeselectors", "description": "Specifies the
node-label-key/value pairs to which the experiment’s target Pod belongs.", "type": "
object", "additionalProperties": {"type": "string"}}, "nodes": {"title": "Nodes", "
description": "Specifies the node to which the experiment’s target Pod belongs. The
target Pod can only belong to one node in the configured node list. If multiple node
labels are specified, the node to which the experiment’s target Pod belongs must have
all labels specified by this selector.", "type": "array", "items": {"type": "string"}},
"pods": {"title": "Pods", "description": "Specifies the namespaces and list of the
experiment’s target Pods. If you have specified this selector, Chaos Mesh ignores other
configured selectors.", "example": {"default": ["pod-0", "pod-2"]}, "type": "object",
"additionalProperties": {"type": "array", "items": {"type": "string"}}}}}}}
‘‘‘

detailed param instructions for NetworkChaos (template embedded dynami-
cally)

The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a
list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The
object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{"properties": {"action": {"title": "Action", "description": "Indicates the specific
fault type. Available types include: netem, delay (network delay), loss (packet loss),
duplicate (packet duplicating), corrupt (packet corrupt), partition (network partition)
, and bandwidth (network bandwidth limit). After you specify action field, specify

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

action-related fields for other necessary field configuration.", "example": "Partition
", "enum": ["netem", "delay", "loss", "duplicate", "corrupt", "partition", "bandwidth
"], "type": "string"}, "direction": {"title": "Direction", "description": "Indicates
the direction of target packets. Available vaules include from (the packets from target
), to (the packets to target), and both (the packets from or to target). This parameter
makes Chaos only take effect for a specific direction of packets.", "default": "to", "
example": "both", "enum": ["from", "to", "both"], "type": "string"}, "target": {"title
": "Target", "description": "Used in combination with direction, making Chaos only
effective for some packets. ’from’ and ’both’ direction cannot be used when targets is
empty in netem action.", "allOf": [{"$ref": "#/definitions/Selector"}]}, "mode": {"
title": "Mode", "description": "Specifies the mode of the experiment. The mode options
include one (selecting a random Pod), all (selecting all eligible Pods), fixed (
selecting a specified number of eligible Pods), fixed-percent (selecting a specified
percentage of Pods from the eligible Pods), and random-max-percent (selecting the
maximum percentage of Pods from the eligible Pods)", "example": "one", "enum": ["one",
"all", "fixed", "fixed-percent", "random-max-percent"], "type": "string"}, "value": {"
title": "Value", "description": "Provides parameters for the mode configuration,
depending on mode. For example, when mode is set to fixed-percent, value specifies the
percentage of Pods.", "example": "1", "type": "string"}, "selector": {"title": "
Selector", "description": "Specifies the target Pod.", "allOf": [{"$ref": "#/
definitions/Selectors"}]}, "externalTargets": {"title": "Externaltargets", "description
": "Indicates the network targets except for Kubernetes, which can be IPv4 addresses or
domains. This parameter only works with direction: to.", "example": ["1.1.1.1", "www.
google.com"], "type": "array", "items": {"type": "string"}}, "device": {"title": "
Device", "description": "Specifies the affected network interface", "example": "eth0",
"type": "string"}, "delay": {"title": "Delay", "description": "When setting action to
delay means simulating network delay fault, you also need to configure this parameters
.", "allOf": [{"$ref": "#/definitions/Deplay"}]}, "loss": {"title": "Loss", "
description": "When setting action to loss means simulating packet loss fault, you can
also configure this parameters.", "allOf": [{"$ref": "#/definitions/Loss"}]}, "
duplicated": {"title": "Duplicated", "description": "When setting action to duplicate,
meaning simulating package duplication, you can also set this parameters.", "allOf":
[{"$ref": "#/definitions/Duplicate"}]}, "corrupt": {"title": "Corrupt", "description":
"When setting action to corrupt means simulating package corruption fault, you can also
configure the following parameters.", "allOf": [{"$ref": "#/definitions/Corrupt"}]}, "
rate": {"title": "Rate", "description": "When setting action to rate means simulating
bandwidth rate fault, you also need to configure this parameters. This action is
similar to bandwidth/rate below, however, the key distinction is that this action can
combine with other netem actions listed above. However, if you require more control
over the bandwidth simulation such as limiting the buffer size, select the bandwidth
action.", "allOf": [{"$ref": "#/definitions/Rate"}]}, "bandwidth": {"title": "Bandwidth
", "description": "When setting ’action’ to ’bandwidth’ means simulating bandwidth
limit fault, you also need to configure this parameters. This action is mutually
exclusive with any netem action defined above. If you need to inject bandwidth rate
along with other network failures such as corruption, use the rate action instead.", "
allOf": [{"$ref": "#/definitions/Bandwidth"}]}}, "required": ["action", "mode", "
selector"], "definitions": {"SetBasedRequirements": {"title": "SetBasedRequirements", "
type": "object", "properties": {"key": {"title": "Key", "description": "Label key", "
type": "string"}, "operator": {"title": "Operator", "description": "Select an operator
.", "enum": ["In", "NotIn", "Exists", "DoesNotExist"], "type": "string"}, "values": {"
title": "Values", "description": "Label values. The values set must be non-empty in the
case of In and NotIn.", "type": "array", "items": {"type": "string"}}}, "required": ["
key", "operator", "values"]}, "Selectors": {"title": "Selectors", "type": "object", "
properties": {"namespaces": {"title": "Namespaces", "description": "Specifies the
namespace of the experiment’s target Pod. If this selector is None, Chaos Mesh will set
it to the namespace of the current Chaos experiment.", "type": "array", "items": {"
type": "string"}}, "labelSelectors": {"title": "Labelselectors", "description": "
Specifies the label-key/value pairs that the experiment’s target Pod must have. If
multiple labels are specified, the experiment target must have all the labels specified
by this selector.", "type": "object", "additionalProperties": {"type": "string"}}, "
expressionSelectors": {"title": "Expressionselectors", "description": "Specifies a set
of expressions that define the label’s rules to specifiy the experiment’s target Pod.",
"example": [{"key": "tier", "operator": "In", "values": ["cache"]}, {"key": "
environment", "operator": "NotIn", "values": ["dev"]}], "type": "array", "items": {"
$ref": "#/definitions/SetBasedRequirements"}}, "annotationSelectors": {"title": "
Annotationselectors", "description": "Specifies the annotation-key/value pairs that the
experiment’s target Pod must have. If multiple annotations are specified, the
experiment target must have all annotations specified by this selector.", "type": "
object", "additionalProperties": {"type": "string"}}, "fieldSelectors": {"title": "
Fieldselectors", "description": "Specifies the field-key/value pairs of the experiment’
s target Pod. If multiple fields are specified, the experiment target must have all
fields set by this selector.", "example": {"metadata.name": "my-pod", "metadata.
namespace": "dafault"}, "type": "object", "additionalProperties": {"type": "string"}},
"podPhaseSelectors": {"title": "Podphaseselectors", "description": "Specifies the phase
of the experiment’s target Pod. If this selector is None, the target Pod’s phase is
not limited.", "type": "array", "items": {"enum": ["Pending", "Running", "Succeeded", "
Failed", "Unknown"], "type": "string"}}, "nodeSelectors": {"title": "Nodeselectors", "
description": "Specifies the node-label-key/value pairs to which the experiment’s

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

target Pod belongs.", "type": "object", "additionalProperties": {"type": "string"}}, "
nodes": {"title": "Nodes", "description": "Specifies the node to which the experiment’s
target Pod belongs. The target Pod can only belong to one node in the configured node
list. If multiple node labels are specified, the node to which the experiment’s target
Pod belongs must have all labels specified by this selector.", "type": "array", "items
": {"type": "string"}}, "pods": {"title": "Pods", "description": "Specifies the
namespaces and list of the experiment’s target Pods. If you have specified this
selector, Chaos Mesh ignores other configured selectors.", "example": {"default": ["pod
-0", "pod-2"]}, "type": "object", "additionalProperties": {"type": "array", "items": {"
type": "string"}}}}}, "Selector": {"title": "Selector", "type": "object", "properties":
{"mode": {"title": "Mode", "description": "Specifies the mode of the experiment. The
mode options include one (selecting a random Pod), all (selecting all eligible Pods),
fixed (selecting a specified number of eligible Pods), fixed-percent (selecting a
specified percentage of Pods from the eligible Pods), and random-max-percent (selecting
the maximum percentage of Pods from the eligible Pods)", "example": "one", "enum": ["
one", "all", "fixed", "fixed-percent", "random-max-percent"], "type": "string"}, "
selector": {"title": "Selector", "description": "Specifies the target Pod.", "example":
null, "allOf": [{"$ref": "#/definitions/Selectors"}]}}, "required": ["mode", "selector
"]}, "Reorder": {"title": "Reorder", "type": "object", "properties": {"reorder": {"
title": "Reorder", "description": "Indicates the probability to reorder", "default":
"0", "example": "0.5", "type": "string"}, "correlation": {"title": "Correlation", "
description": "Indicates the correlation between this time’s length of delay time and
the previous time’s length of delay time. Range of value: [0, 100]", "default": "0", "
example": "50", "type": "string"}, "gap": {"title": "Gap", "description": "Indicates
the gap before and after packet reordering", "default": 0, "example": 5, "type": "
integer"}}}, "Deplay": {"title": "Deplay", "type": "object", "properties": {"latency":
{"title": "Latency", "description": "Indicates the network latency", "example": "2ms",
"type": "string"}, "correlation": {"title": "Correlation", "description": "Indicates
the correlation between the current latency and the previous one. Range of value: [0,
100]. Specify only the number. NEVER include any units.", "example": "50", "type": "
string"}, "jitter": {"title": "Jitter", "description": "Indicates the range of the
network latency", "example": "1ms", "type": "string"}, "reorder": {"title": "Reorder",
"description": "Indicates the status of network packet reordering", "allOf": [{"$ref":
"#/definitions/Reorder"}]}}}, "Loss": {"title": "Loss", "type": "object", "properties":
{"loss": {"title": "Loss", "description": "Indicates the probability of packet loss.
Range of value: [0, 100]. Specify only the number. NEVER include any units.", "default
": "0", "example": "50", "type": "string"}, "correlation": {"title": "Correlation", "
description": "Indicates the correlation between the probability of current packet loss
and the previous time’s packet loss. Range of value: [0, 100]. Specify only the number
. NEVER include any units.", "default": "0", "example": "50", "type": "string"}}}, "
Duplicate": {"title": "Duplicate", "type": "object", "properties": {"duplicate": {"
title": "Duplicate", "description": "Indicates the probability of packet duplicating.
Range of value: [0, 100]. Specify only the number. NEVER include any units.", "default
": "0", "example": "50", "type": "string"}, "correlation": {"title": "Correlation", "
description": "Indicates the correlation between the probability of current packet
duplicating and the previous time’s packet duplicating. Range of value: [0, 100].
Specify only the number. NEVER include any units.", "default": "0", "example": "50", "
type": "string"}}}, "Corrupt": {"title": "Corrupt", "type": "object", "properties": {"
corrupt": {"title": "Corrupt", "description": "Indicates the probability of packet
corruption. Range of value: [0, 100]. Specify only the number. NEVER include any units
.", "default": "0", "example": "50", "type": "string"}, "correlation": {"title": "
Correlation", "description": "Indicates the correlation between the probability of
current packet corruption and the previous time’s packet corruption. Range of value:
[0, 100]. Specify only the number. NEVER include any units.", "default": "0", "example
": "50", "type": "string"}}}, "Rate": {"title": "Rate", "type": "object", "properties":
{"rate": {"title": "Rate", "description": "Indicates the rate of bandwidth limit.
Allows bit, kbit, mbit, gbit, tbit, bps, kbps, mbps, gbps, tbps unit. bps means bytes
per second", "example": "1mbps", "type": "string"}}}, "Bandwidth": {"title": "Bandwidth
", "type": "object", "properties": {"rate": {"title": "Rate", "description": "Indicates
the rate of bandwidth limit. Allows bit, kbit, mbit, gbit, tbit, bps, kbps, mbps, gbps
, tbps unit. bps means bytes per second", "example": "1mbps", "type": "string"}, "limit
": {"title": "Limit", "description": "Indicates the number of bytes waiting in queue",
"example": 1, "type": "integer"}, "buffer": {"title": "Buffer", "description": "
Indicates the maximum number of bytes that can be sent instantaneously", "example": 1,
"type": "integer"}, "peakrate": {"title": "Peakrate", "description": "Indicates the
maximum consumption of bucket (usually not set)", "example": 1, "type": "integer"}, "
minburst": {"title": "Minburst", "description": "Indicates the size of peakrate bucket
(usually not set)", "example": 1, "type": "integer"}}}}}
‘‘‘

detailed param instructions for DNSChaos (template embedded dynamically)

The output should be formatted as a JSON instance that conforms to the JSON schema
below.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a
list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The
object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{"properties": {"action": {"title": "Action", "description": "Defines the behavior of
DNS fault from ’random’ or ’error’. When the value is random, DNS service returns a
random IP address; when the value is error, DNS service returns an error.", "example":
"random", "enum": ["random", "error"], "type": "string"}, "mode": {"title": "Mode", "
description": "Specifies the mode of the experiment. The mode options include ’one’ (
selecting a random Pod), ’all’ (selecting all eligible Pods), ’fixed’ (selecting a
specified number of eligible Pods), ’fixed-percent’ (selecting a specified percentage
of Pods from the eligible Pods), and ’random-max-percent’ (selecting the maximum
percentage of Pods from the eligible Pods)", "example": "one", "enum": ["one", "all", "
fixed", "fixed-percent", "random-max-percent"], "type": "string"}, "value": {"title": "
Value", "description": "Provides parameters for the mode configuration, depending on
mode. For example, when mode is set to fixed-percent, value specifies the percentage of
Pods.", "example": "1", "type": "string"}, "patterns": {"title": "Patterns", "
description": "Selects a domain template that matches faults. The fault is applyed to
these domains. Placeholder ? and wildcard * are supported, but the wildcard in patterns
configuration must be at the end of string. For example, chaos-mes*.org. is an invalid
configuration. When patterns is not configured, faults are injected for all domains.",
"example": "google.com, chaos-mesh.org, github.com", "type": "array", "items": {"type
": "string"}}, "selector": {"title": "Selector", "description": "Specifies the target
Pod.", "example": null, "allOf": [{"$ref": "#/definitions/Selectors"}]}}, "required":
["selector"], "definitions": {"SetBasedRequirements": {"title": "SetBasedRequirements",
"type": "object", "properties": {"key": {"title": "Key", "description": "Label key", "
type": "string"}, "operator": {"title": "Operator", "description": "Select an operator
.", "enum": ["In", "NotIn", "Exists", "DoesNotExist"], "type": "string"}, "values": {"
title": "Values", "description": "Label values. The values set must be non-empty in the
case of In and NotIn.", "type": "array", "items": {"type": "string"}}}, "required": ["
key", "operator", "values"]}, "Selectors": {"title": "Selectors", "type": "object", "
properties": {"namespaces": {"title": "Namespaces", "description": "Specifies the
namespace of the experiment’s target Pod. If this selector is None, Chaos Mesh will set
it to the namespace of the current Chaos experiment.", "type": "array", "items": {"
type": "string"}}, "labelSelectors": {"title": "Labelselectors", "description": "
Specifies the label-key/value pairs that the experiment’s target Pod must have. If
multiple labels are specified, the experiment target must have all the labels specified
by this selector.", "type": "object", "additionalProperties": {"type": "string"}}, "
expressionSelectors": {"title": "Expressionselectors", "description": "Specifies a set
of expressions that define the label’s rules to specifiy the experiment’s target Pod.",
"example": [{"key": "tier", "operator": "In", "values": ["cache"]}, {"key": "
environment", "operator": "NotIn", "values": ["dev"]}], "type": "array", "items": {"
$ref": "#/definitions/SetBasedRequirements"}}, "annotationSelectors": {"title": "
Annotationselectors", "description": "Specifies the annotation-key/value pairs that the
experiment’s target Pod must have. If multiple annotations are specified, the
experiment target must have all annotations specified by this selector.", "type": "
object", "additionalProperties": {"type": "string"}}, "fieldSelectors": {"title": "
Fieldselectors", "description": "Specifies the field-key/value pairs of the experiment’
s target Pod. If multiple fields are specified, the experiment target must have all
fields set by this selector.", "example": {"metadata.name": "my-pod", "metadata.
namespace": "dafault"}, "type": "object", "additionalProperties": {"type": "string"}},
"podPhaseSelectors": {"title": "Podphaseselectors", "description": "Specifies the phase
of the experiment’s target Pod. If this selector is None, the target Pod’s phase is
not limited.", "type": "array", "items": {"enum": ["Pending", "Running", "Succeeded", "
Failed", "Unknown"], "type": "string"}}, "nodeSelectors": {"title": "Nodeselectors", "
description": "Specifies the node-label-key/value pairs to which the experiment’s
target Pod belongs.", "type": "object", "additionalProperties": {"type": "string"}}, "
nodes": {"title": "Nodes", "description": "Specifies the node to which the experiment’s
target Pod belongs. The target Pod can only belong to one node in the configured node
list. If multiple node labels are specified, the node to which the experiment’s target
Pod belongs must have all labels specified by this selector.", "type": "array", "items
": {"type": "string"}}, "pods": {"title": "Pods", "description": "Specifies the
namespaces and list of the experiment’s target Pods. If you have specified this
selector, Chaos Mesh ignores other configured selectors.", "example": {"default": ["pod
-0", "pod-2"]}, "type": "object", "additionalProperties": {"type": "array", "items": {"
type": "string"}}}}}}}
‘‘‘

detailed param instructions for HTTPChaos (template embedded dynamically)

The output should be formatted as a JSON instance that conforms to the JSON schema
below.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a
list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The
object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{"properties": {"mode": {"title": "Mode", "description": "Specifies the mode of the
experiment. The mode options include one (selecting a random Pod), all (selecting all
eligible Pods), fixed (selecting a specified number of eligible Pods), fixed-percent (
selecting a specified percentage of Pods from the eligible Pods), and random-max-
percent (selecting the maximum percentage of Pods from the eligible Pods)", "example":
"one", "enum": ["one", "all", "fixed", "fixed-percent", "random-max-percent"], "type":
"string"}, "value": {"title": "Value", "description": "Provides parameters for the mode
configuration, depending on mode. For example, when mode is set to fixed-percent,
value specifies the percentage of Pods.", "example": "1", "type": "string"}, "target":
{"title": "Target", "description": "Specifies whether the target of fault injection is
Request or Response. The target-related fields (replace.path, replace.method, replace.
queries, patch.queries) should be configured at the same time.", "example": "Request",
"enum": ["Request", "Response"], "type": "string"}, "port": {"title": "Port", "
description": "The TCP port that the target service listens on.", "example": 80, "type
": "integer"}, "code": {"title": "Code", "description": "Specifies the status code
responded by target. If not specified, the fault takes effect for all status codes by
default. This configuration is effective only when the ’target’ is set to ’Response’",
"example": 200, "type": "integer"}, "path": {"title": "Path", "description": "Specify
the URI path of the target request. Supports Matching wildcards. If not specified, the
fault takes effect on all paths by default.", "example": "/api/*", "type": "string"}, "
method": {"title": "Method", "description": "Specify the HTTP method of the target
request method. If not specified, the fault takes effect for all methods by default.",
"example": "GET", "type": "string"}, "request_headers": {"title": "Request Headers", "
description": "Matches request headers to target.", "example": {"Content-Type": "
application/json"}, "type": "object", "additionalProperties": {"type": "string"}}, "
abort": {"title": "Abort", "description": "Abort fault. Indicates whether to inject the
fault that interrupts the connection.", "default": false, "example": true, "type": "
boolean"}, "delay": {"title": "Delay", "description": "Deplay fault. Specifies the time
for a latency fault.", "default": "0", "example": "10s", "type": "string"}, "replace":
{"title": "Replace", "description": "Replace fault. Specifies replaced contents.", "
allOf": [{"$ref": "#/definitions/Replace"}]}, "patch": {"title": "Patch", "description
": "Patch fault. Specifies patch contents.", "allOf": [{"$ref": "#/definitions/Patch
"}]}}, "required": ["mode", "target", "port"], "definitions": {"Replace": {"title": "
Replace", "type": "object", "properties": {"headers": {"title": "Headers", "description
": "Specifies the key pair used to replace the request headers or response headers.", "
example": {"Content-Type": "application/xml"}, "type": "object", "additionalProperties
": {"type": "string"}}, "body": {"title": "Body", "description": "Specifies request
body or response body to replace the fault (Base64 encoded).", "example": "
eyJmb28iOiAiYmFyIn0K", "type": "string"}, "path": {"title": "Path", "description": "
Specifies the URI path used to replace content.", "example": "/api/v2", "type": "string
"}, "method": {"title": "Method", "description": "Specifies the replaced content of the
HTTP request method.", "example": "DELETE", "type": "string"}, "queries": {"title": "
Queries", "description": "Specifies the replaced key pair of the URI query.", "type": "
array", "items": {"type": "array", "items": {"type": "string"}}}, "code": {"title": "
Code", "description": "Specifies the replaced content of the response status code. This
configuration is effective only when the ’target’ is set to ’Response’.", "example":
404, "type": "integer"}}}, "PatchBody": {"title": "PatchBody", "type": "object", "
properties": {"type": {"title": "Type", "description": "Specifies the type of patch
faults of the request body or response body. Currently, it only supports JSON.", "
example": "JSON", "type": "string"}, "value": {"title": "Value", "description": "
Specifies the fault of the request body or response body with patch faults.", "example
": "{\"foo\": \"bar\"}", "type": "string"}}}, "Patch": {"title": "Patch", "type": "
object", "properties": {"headers": {"title": "Headers", "description": "Specifies the
attached key pair of the request headers or response headers with patch faults.", "
example": [["Set-Cookie", "one cookie"]], "type": "array", "items": {"type": "array", "
items": {"type": "string"}}}, "body": {"title": "Body", "description": "Patch body.", "
allOf": [{"$ref": "#/definitions/PatchBody"}]}, "queries": {"title": "Queries", "
description": "Specifies the attached key pair of the URI query with patch faults.", "
example": [["foo", "bar"]], "type": "array", "items": {"type": "array", "items": {"type
": "string"}}}}}}}
‘‘‘

detailed param instructions for StressChaos (template embedded dynami-
cally)

The output should be formatted as a JSON instance that conforms to the JSON schema
below.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a
list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The
object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{"properties": {"mode": {"title": "Mode", "description": "Specifies the mode of the
experiment. The mode options include ’one’ (selecting a random Pod), ’all’ (selecting
all eligible Pods), ’fixed’ (selecting a specified number of eligible Pods), ’fixed-
percent’ (selecting a specified percentage of Pods from the eligible Pods), and ’random
-max-percent’ (selecting the maximum percentage of Pods from the eligible Pods)", "
example": "one", "enum": ["one", "all", "fixed", "fixed-percent", "random-max-percent
"], "type": "string"}, "value": {"title": "Value", "description": "Provides parameters
for the mode configuration, depending on mode.For example, when mode is set to fixed-
percent, value specifies the percentage of Pods.", "example": "1", "type": "string"}, "
stressors": {"title": "Stressors", "description": "Specifies the stress of CPU or
memory", "dafault": null, "allOf": [{"$ref": "#/definitions/Stressors"}]}, "
stressngStressors": {"title": "Stressngstressors", "description": "Specifies the stres-
ng parameter to reach richer stress injection", "example": "--clone 2", "type": "string
"}, "containerNames": {"title": "Containernames", "description": "Specifies the name of
the container into which the fault is injected.", "example": ["nginx"], "type": "array
", "items": {"type": "string"}}, "selector": {"title": "Selector", "description": "
Specifies the target Pod.", "allOf": [{"$ref": "#/definitions/Selectors"}]}}, "required
": ["mode", "selector"], "definitions": {"MemoryStressor": {"title": "MemoryStressor",
"type": "object", "properties": {"workers": {"title": "Workers", "description": "
Specifies the number of threads that apply memory stress", "example": 1, "type": "
integer"}, "size": {"title": "Size", "description": "Specifies the memory size to be
occupied or a percentage of the total memory size. The final sum of the occupied memory
size is size.", "example": "256MB", "type": "string"}, "oomScoreAdj": {"title": "
Oomscoreadj", "description": "Specifies the oom_score_adj of the stress process.", "
example": -1000, "type": "integer"}}}, "CPUStressor": {"title": "CPUStressor", "type":
"object", "properties": {"workers": {"title": "Workers", "description": "Specifies the
number of threads that apply CPU stress", "example": 1, "type": "integer"}, "load": {"
title": "Load", "description": "Specifies the percentage of CPU occupied. 0 means that
no additional CPU is added, and 100 refers to full load. The final sum of CPU load is
workers * load.", "example": 50, "type": "integer"}}}, "Stressors": {"title": "
Stressors", "type": "object", "properties": {"memory": {"title": "Memory", "description
": "Specifies the memory stress", "allOf": [{"$ref": "#/definitions/MemoryStressor"}]},
"cpu": {"title": "Cpu", "description": "Specifies the CPU stress", "allOf": [{"$ref":
"#/definitions/CPUStressor"}]}}}, "SetBasedRequirements": {"title": "
SetBasedRequirements", "type": "object", "properties": {"key": {"title": "Key", "
description": "Label key", "type": "string"}, "operator": {"title": "Operator", "
description": "Select an operator.", "enum": ["In", "NotIn", "Exists", "DoesNotExist"],
"type": "string"}, "values": {"title": "Values", "description": "Label values. The
values set must be non-empty in the case of In and NotIn.", "type": "array", "items":
{"type": "string"}}}, "required": ["key", "operator", "values"]}, "Selectors": {"title
": "Selectors", "type": "object", "properties": {"namespaces": {"title": "Namespaces",
"description": "Specifies the namespace of the experiment’s target Pod. If this
selector is None, Chaos Mesh will set it to the namespace of the current Chaos
experiment.", "type": "array", "items": {"type": "string"}}, "labelSelectors": {"title
": "Labelselectors", "description": "Specifies the label-key/value pairs that the
experiment’s target Pod must have. If multiple labels are specified, the experiment
target must have all the labels specified by this selector.", "type": "object", "
additionalProperties": {"type": "string"}}, "expressionSelectors": {"title": "
Expressionselectors", "description": "Specifies a set of expressions that define the
label’s rules to specifiy the experiment’s target Pod.", "example": [{"key": "tier", "
operator": "In", "values": ["cache"]}, {"key": "environment", "operator": "NotIn", "
values": ["dev"]}], "type": "array", "items": {"$ref": "#/definitions/
SetBasedRequirements"}}, "annotationSelectors": {"title": "Annotationselectors", "
description": "Specifies the annotation-key/value pairs that the experiment’s target
Pod must have. If multiple annotations are specified, the experiment target must have
all annotations specified by this selector.", "type": "object", "additionalProperties":
{"type": "string"}}, "fieldSelectors": {"title": "Fieldselectors", "description": "
Specifies the field-key/value pairs of the experiment’s target Pod. If multiple fields
are specified, the experiment target must have all fields set by this selector.", "
example": {"metadata.name": "my-pod", "metadata.namespace": "dafault"}, "type": "object
", "additionalProperties": {"type": "string"}}, "podPhaseSelectors": {"title": "
Podphaseselectors", "description": "Specifies the phase of the experiment’s target Pod.
If this selector is None, the target Pod’s phase is not limited.", "type": "array", "
items": {"enum": ["Pending", "Running", "Succeeded", "Failed", "Unknown"], "type": "
string"}}, "nodeSelectors": {"title": "Nodeselectors", "description": "Specifies the
node-label-key/value pairs to which the experiment’s target Pod belongs.", "type": "
object", "additionalProperties": {"type": "string"}}, "nodes": {"title": "Nodes", "
description": "Specifies the node to which the experiment’s target Pod belongs. The
target Pod can only belong to one node in the configured node list. If multiple node
labels are specified, the node to which the experiment’s target Pod belongs must have

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

all labels specified by this selector.", "type": "array", "items": {"type": "string"}},
"pods": {"title": "Pods", "description": "Specifies the namespaces and list of the
experiment’s target Pods. If you have specified this selector, Chaos Mesh ignores other
configured selectors.", "example": {"default": ["pod-0", "pod-2"]}, "type": "object",
"additionalProperties": {"type": "array", "items": {"type": "string"}}}}}}}
‘‘‘

detailed param instructions for IOChaos (template embedded dynamically)

The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a
list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The
object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{"properties": {"action": {"title": "Action", "description": "Indicates the specific
type of faults. Only latency, fault, attrOverride, and mistake are supported.", "
example": "latency", "enum": ["latency", "fault", "attrOverride", "mistake"], "type": "
string"}, "mode": {"title": "Mode", "description": "Specifies the mode of the
experiment. The mode options include one (selecting a random Pod), all (selecting all
eligible Pods), fixed (selecting a specified number of eligible Pods), fixed-percent (
selecting a specified percentage of Pods from the eligible Pods), and random-max-
percent (selecting the maximum percentage of Pods from the eligible Pods)", "example":
"one", "enum": ["one", "all", "fixed", "fixed-percent", "random-max-percent"], "type":
"string"}, "selector": {"title": "Selector", "description": "Specifies the target Pod
.", "allOf": [{"$ref": "#/definitions/Selectors"}]}, "value": {"title": "Value", "
description": "Provides parameters for the mode configuration, depending on mode. For
example, when mode is set to fixed-percent, value specifies the percentage of Pods.", "
example": "1", "type": "string"}, "volumePath": {"title": "Volumepath", "description":
"The mount point of volume in the target container. Must be the root directory of the
mount.", "example": "/var/run/etcd", "type": "string"}, "path": {"title": "Path", "
description": "The valid range of fault injections, either a wildcard or a single file.
If not specified, the fault is valid for all files by default", "example": "/var/run/
etcd/*/", "type": "string"}, "methods": {"title": "Methods", "description": "Type of
the file system call that requires injecting fault. Supported method types: [’lookup’,
’forget’, ’getattr’, ’setattr’, ’readlink’, ’mknod’, ’mkdir’, ’unlink’, ’rmdir’, ’
symlink’, ’rename’, ’link’, ’open’, ’read’, ’write’, ’flush’, ’release’, ’fsync’, ’
opendir’, ’readdir’, ’releasedir’, ’fsyncdir’, ’statfs’, ’setxattr’, ’getxattr’, ’
listxattr’, ’removexattr’, ’access’, ’create’, ’getlk’, ’setlk’, ’bmap’]. All Types by
default.", "example": ["READ"], "type": "array", "items": {"type": "string"}}, "percent
": {"title": "Percent", "description": "Probability of failure per operation, in %.", "
default": 100, "example": 100, "type": "integer"}, "containerNames": {"title": "
Containernames", "description": "Specifies the name of the container into which the
fault is injected.", "type": "array", "items": {"type": "string"}}, "deplay": {"title":
"Deplay", "description": "Specify when the ’action’ is set to ’latency’. Specific
delay time.", "type": "string"}, "errno": {"title": "Errno", "description": "Specify
when the ’action’ is set to ’fault’. Returned error number: 1: Operation not permitted,
2: No such file or directory, 5: I/O error, 6: No such device or address, 12: Out of
memory, 16: Device or resource busy, 17: File exists, 20: Not a directory, 22: Invalid
argument, 24: Too many open files, 28: No space left on device", "type": "integer"}, "
attr": {"title": "Attr", "description": "Specify when the ’action’ is set to ’
attrOverride’. Specific property override rules.", "allOf": [{"$ref": "#/definitions/
AttrOverrideSpec"}]}, "mistake": {"title": "Mistake", "description": "Specify when the
’action’ is set to ’mistake’. Specific error rules.", "allOf": [{"$ref": "#/definitions
/MistakeSpec"}]}}, "required": ["action", "mode", "volumePath", "attr", "mistake"], "
definitions": {"SetBasedRequirements": {"title": "SetBasedRequirements", "type": "
object", "properties": {"key": {"title": "Key", "description": "Label key", "type": "
string"}, "operator": {"title": "Operator", "description": "Select an operator.", "enum
": ["In", "NotIn", "Exists", "DoesNotExist"], "type": "string"}, "values": {"title": "
Values", "description": "Label values. The values set must be non-empty in the case of
In and NotIn.", "type": "array", "items": {"type": "string"}}}, "required": ["key", "
operator", "values"]}, "Selectors": {"title": "Selectors", "type": "object", "
properties": {"namespaces": {"title": "Namespaces", "description": "Specifies the
namespace of the experiment’s target Pod. If this selector is None, Chaos Mesh will set
it to the namespace of the current Chaos experiment.", "type": "array", "items": {"
type": "string"}}, "labelSelectors": {"title": "Labelselectors", "description": "
Specifies the label-key/value pairs that the experiment’s target Pod must have. If
multiple labels are specified, the experiment target must have all the labels specified
by this selector.", "type": "object", "additionalProperties": {"type": "string"}}, "
expressionSelectors": {"title": "Expressionselectors", "description": "Specifies a set
of expressions that define the label’s rules to specifiy the experiment’s target Pod.",

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

"example": [{"key": "tier", "operator": "In", "values": ["cache"]}, {"key": "
environment", "operator": "NotIn", "values": ["dev"]}], "type": "array", "items": {"
$ref": "#/definitions/SetBasedRequirements"}}, "annotationSelectors": {"title": "
Annotationselectors", "description": "Specifies the annotation-key/value pairs that the
experiment’s target Pod must have. If multiple annotations are specified, the
experiment target must have all annotations specified by this selector.", "type": "
object", "additionalProperties": {"type": "string"}}, "fieldSelectors": {"title": "
Fieldselectors", "description": "Specifies the field-key/value pairs of the experiment’
s target Pod. If multiple fields are specified, the experiment target must have all
fields set by this selector.", "example": {"metadata.name": "my-pod", "metadata.
namespace": "dafault"}, "type": "object", "additionalProperties": {"type": "string"}},
"podPhaseSelectors": {"title": "Podphaseselectors", "description": "Specifies the phase
of the experiment’s target Pod. If this selector is None, the target Pod’s phase is
not limited.", "type": "array", "items": {"enum": ["Pending", "Running", "Succeeded", "
Failed", "Unknown"], "type": "string"}}, "nodeSelectors": {"title": "Nodeselectors", "
description": "Specifies the node-label-key/value pairs to which the experiment’s
target Pod belongs.", "type": "object", "additionalProperties": {"type": "string"}}, "
nodes": {"title": "Nodes", "description": "Specifies the node to which the experiment’s
target Pod belongs. The target Pod can only belong to one node in the configured node
list. If multiple node labels are specified, the node to which the experiment’s target
Pod belongs must have all labels specified by this selector.", "type": "array", "items
": {"type": "string"}}, "pods": {"title": "Pods", "description": "Specifies the
namespaces and list of the experiment’s target Pods. If you have specified this
selector, Chaos Mesh ignores other configured selectors.", "example": {"default": ["pod
-0", "pod-2"]}, "type": "object", "additionalProperties": {"type": "array", "items": {"
type": "string"}}}}}, "TimeSpec": {"title": "TimeSpec", "type": "object", "properties":
{"sec": {"title": "Sec", "description": "Timestamp in seconds. Specify either sec or
nsec.", "type": "integer"}, "nsec": {"title": "Nsec", "description": "Timestamp in
nanoseconds. Specify either sec or nsec.", "type": "integer"}}}, "AttrOverrideSpec": {"
title": "AttrOverrideSpec", "type": "object", "properties": {"ino": {"title": "Ino", "
description": "ino number", "type": "integer"}, "size": {"title": "Size", "description
": "File size", "type": "integer"}, "blocks": {"title": "Blocks", "description": "
Number of blocks that the file uses", "type": "integer"}, "atime": {"title": "Atime", "
description": "Last access time", "allOf": [{"$ref": "#/definitions/TimeSpec"}]}, "
mtime": {"title": "Mtime", "description": "Last modified time", "allOf": [{"$ref": "#/
definitions/TimeSpec"}]}, "ctime": {"title": "Ctime", "description": "Last status
change time", "allOf": [{"$ref": "#/definitions/TimeSpec"}]}, "kind": {"title": "Kind",
"description": "File type, see fuser::FileType", "type": "string"}, "perm": {"title":
"Perm", "description": "File permissions in decimal", "type": "integer"}, "nlink": {"
title": "Nlink", "description": "Number of hard links", "type": "integer"}, "uid": {"
title": "Uid", "description": "User ID of the owner", "type": "integer"}, "gid": {"
title": "Gid", "description": "Group ID of the owner", "type": "integer"}, "rdev": {"
title": "Rdev", "description": "Device ID", "type": "integer"}}}, "MistakeSpec": {"
title": "MistakeSpec", "type": "object", "properties": {"filling": {"title": "Filling",
"description": "The wrong data to be filled. Only zero (fill 0) or random (fill random
bytes) are supported.", "type": "string"}, "maxOccurrences": {"title": "Maxoccurrences
", "description": "Maximum number of errors in each operation.", "example": 1, "type":
"integer"}, "maxLength": {"title": "Maxlength", "description": "Maximum length of each
error (in bytes).", "example": 1, "type": "integer"}}, "required": ["filling", "
maxOccurrences", "maxLength"]}}}
‘‘‘

detailed param instructions for TimeChaos (template embedded dynamically)

The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a
list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The
object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{"properties": {"timeOffset": {"title": "Timeoffset", "description": "Specifies the
length of time offset.", "example": "-5m", "type": "string"}, "clockIds": {"title": "
Clockids", "description": "Specifies the ID of clock that will be offset. See the
clock_gettime documentation for details.", "default": ["CLOCK_REALTIME"], "example": ["
CLOCK_REALTIME", "CLOCK_MONOTONIC"], "type": "array", "items": {"type": "string"}}, "
mode": {"title": "Mode", "description": "Specifies the mode of the experiment. The mode
options include ’one’ (selecting a random Pod), ’all’ (selecting all eligible Pods), ’
fixed’ (selecting a specified number of eligible Pods), ’fixed-percent’ (selecting a
specified percentage of Pods from the eligible Pods), and ’random-max-percent’ (
selecting the maximum percentage of Pods from the eligible Pods)", "example": "one", "
enum": ["one", "all", "fixed", "fixed-percent", "random-max-percent"], "type": "string

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

"}, "value": {"title": "Value", "description": "Provides parameters for the mode
configuration, depending on mode. For example, when mode is set to fixed-percent, value
specifies the percentage of Pods.", "example": "1", "type": "string"}, "containerNames
": {"title": "Containernames", "description": "Specifies the name of the container into
which the fault is injected.", "example": ["nginx"], "type": "array", "items": {"type
": "string"}}, "selector": {"title": "Selector", "description": "Specifies the target
Pod.", "example": null, "allOf": [{"$ref": "#/definitions/Selectors"}]}}, "required":
["timeOffset", "mode", "selector"], "definitions": {"SetBasedRequirements": {"title": "
SetBasedRequirements", "type": "object", "properties": {"key": {"title": "Key", "
description": "Label key", "type": "string"}, "operator": {"title": "Operator", "
description": "Select an operator.", "enum": ["In", "NotIn", "Exists", "DoesNotExist"],
"type": "string"}, "values": {"title": "Values", "description": "Label values. The
values set must be non-empty in the case of In and NotIn.", "type": "array", "items":
{"type": "string"}}}, "required": ["key", "operator", "values"]}, "Selectors": {"title
": "Selectors", "type": "object", "properties": {"namespaces": {"title": "Namespaces",
"description": "Specifies the namespace of the experiment’s target Pod. If this
selector is None, Chaos Mesh will set it to the namespace of the current Chaos
experiment.", "type": "array", "items": {"type": "string"}}, "labelSelectors": {"title
": "Labelselectors", "description": "Specifies the label-key/value pairs that the
experiment’s target Pod must have. If multiple labels are specified, the experiment
target must have all the labels specified by this selector.", "type": "object", "
additionalProperties": {"type": "string"}}, "expressionSelectors": {"title": "
Expressionselectors", "description": "Specifies a set of expressions that define the
label’s rules to specifiy the experiment’s target Pod.", "example": [{"key": "tier", "
operator": "In", "values": ["cache"]}, {"key": "environment", "operator": "NotIn", "
values": ["dev"]}], "type": "array", "items": {"$ref": "#/definitions/
SetBasedRequirements"}}, "annotationSelectors": {"title": "Annotationselectors", "
description": "Specifies the annotation-key/value pairs that the experiment’s target
Pod must have. If multiple annotations are specified, the experiment target must have
all annotations specified by this selector.", "type": "object", "additionalProperties":
{"type": "string"}}, "fieldSelectors": {"title": "Fieldselectors", "description": "
Specifies the field-key/value pairs of the experiment’s target Pod. If multiple fields
are specified, the experiment target must have all fields set by this selector.", "
example": {"metadata.name": "my-pod", "metadata.namespace": "dafault"}, "type": "object
", "additionalProperties": {"type": "string"}}, "podPhaseSelectors": {"title": "
Podphaseselectors", "description": "Specifies the phase of the experiment’s target Pod.
If this selector is None, the target Pod’s phase is not limited.", "type": "array", "
items": {"enum": ["Pending", "Running", "Succeeded", "Failed", "Unknown"], "type": "
string"}}, "nodeSelectors": {"title": "Nodeselectors", "description": "Specifies the
node-label-key/value pairs to which the experiment’s target Pod belongs.", "type": "
object", "additionalProperties": {"type": "string"}}, "nodes": {"title": "Nodes", "
description": "Specifies the node to which the experiment’s target Pod belongs. The
target Pod can only belong to one node in the configured node list. If multiple node
labels are specified, the node to which the experiment’s target Pod belongs must have
all labels specified by this selector.", "type": "array", "items": {"type": "string"}},
"pods": {"title": "Pods", "description": "Specifies the namespaces and list of the
experiment’s target Pods. If you have specified this selector, Chaos Mesh ignores other
configured selectors.", "example": {"default": ["pod-0", "pod-2"]}, "type": "object",
"additionalProperties": {"type": "array", "items": {"type": "string"}}}}}}}
‘‘‘

B.1.3 EXPERIMENT

2-0: Agent for determining time schedule

System:
You are a helpful AI assistant for Chaos Engineering.
Given k8s manifests that define a network system, its steady states, and faults that
may affect the steady states in the system, you will design a Chaos Engineering
experiment for them.
First, you will determine the time schedule for the Chaos Engineering experiment.
Always keep the following rules:
- The experiment is divided into three phases: pre-validation, fault-injection, and
post-validation phases: pre-validation to ensure that the system satisfies the steady
states fault injection; fault-injection to observe the system’s behavior during fault
injection; post-validation to ensure that the system has returned to its steady states
after fault injection.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"thought\": {\"title\": \"Thought\", \"describe\": \"Think about the
total time and the reasonable time allocation for each phase that you are about to
design, and explain your thought process in detail.\", \"type\": \"string\"}, \"
total_time\": {\"title\": \"Total Time\", \"description\": \"Total time of the entire
chaos experiment. total_time should equal to the sum of pre_validation_time,
fault_injection_time, and post_validation_time.\", \"example\": \"10m\", \"type\": \"
string\"}, \"pre_validation_time\": {\"title\": \"Pre Validation Time\", \"description
\": \"Total time of validation before fault injection.\", \"example\": \"2m\", \"type
\": \"string\"}, \"fault_injection_time\": {\"title\": \"Fault Injection Time\", \"
description\": \"Total time of fault injection.\", \"example\": \"6m\", \"type\": \"
string\"}, \"post_validation_time\": {\"title\": \"Post Validation Time\", \"
description\": \"Total time of validation after fault injection.\", \"example\": \"2m
\", \"type\": \"string\"}}, \"required\": [\"thought\", \"total_time\", \"
pre_validation_time\", \"fault_injection_time\", \"post_validation_time\"]}
‘‘‘

Human:
Here is the overview of my system:
{user_input2}

Steady states of my system:
{steady_states}

A fault scenario that may occur in my system and may affect the steady states:
{detailed_fault_scenario}

Please follow the instructions below regarding Chaos Engineering as necessary:
{ce_instructions}

Now, please plan a Chaos Engineering experiment to check the network system’s
resiliency that the steady states are remained during fault injection.

Example text embedded to detailed fault scenario

An assumed fault scenario is as follows:
- Event: Cyber Attack Simulation\n- Used Chaos Engineering tool: Chaos Mesh
- Faults to simulate the event: [[Fault(name=’PodChaos’, name_id=0, params={’action’: ’
pod-kill’, ’mode’: ’one’, ’selector’: {’namespaces’: [’default’], ’labelSelectors’: {’
app’: ’example’}}})], [Fault(name=’NetworkChaos’, name_id=0, params={’action’: ’delay’,
’mode’: ’all’, ’selector’: {’namespaces’: [’default’], ’labelSelectors’: {’app’: ’
example’}}, ’direction’: ’to’, ’delay’: {’latency’: ’100ms’, ’jitter’: ’10ms’}})]]
- Description: Given the system’s weaknesses, a cyber attack targeting the web server
could be highly impactful. The Pod’s restart policy set to ’Never’ and the single Pod
deployment without redundancy are critical vulnerabilities. If the Pod fails, it will
not restart, leading to downtime, and the lack of redundancy means there is no backup
to handle traffic. To simulate a cyber attack, we can inject faults that exploit these
weaknesses. First, we will use PodChaos to simulate a Pod failure, which will test the
system’s ability to maintain the ’example-pod-running-state’. Since the Pod will not
restart automatically, this will directly impact the steady state. Next, we will use
NetworkChaos to simulate network latency, which will test the system’s ability to
maintain the ’example-service-http-response-state’. This sequence simulates a cyber
attack where the Pod is targeted first, followed by network disruptions, revealing the
system’s vulnerabilities in handling such events.

2-1: Agent for scheduling each experiment phase (pre-validation, failure-injection, and
post-validation phases)

System:
You are a helpful AI assistant for Chaos Engineering.
Given k8s manifests that define a network system, its steady states, and faults that
may affect the steady states in the system, you will design a Chaos Engineering
experiment for them.
The experiment is divided into three phases: pre-validation, fault-injection, and post-
validation phases: pre-validation to ensure that the system satisfies the steady states
fault injection; fault-injection to observe the system’s behavior during fault

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

injection; post-validation to ensure that the system has returned to its steady states
after fault injection.
Here, you will detail the {phase_name}.
Always keep the following rules:
- {phase_planning_instructions}

Human:
Here is the overview of my system:
{user_input}

Steady states of my system:
{steady_states}

A fault scenario that may occur in my system and may affect the steady states:
{detailed_fault_scenario}

Please follow the instructions below regarding Chaos Engineering as necessary:
{ce_instructions}

Now, please detail the {phase_name}. Note that the phase’s total time is {
phase_total_time}.

Example text embedded to phase name

pre-validation phase

Example text embedded to phase total time

10s

phase planning instructions for the pre-validation and post-validation phases

The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"thought\": {\"title\": \"Thought\", \"description\": \"Describe in
detail the timeline for when each fault injection and each unit test (for verifying
steady-state) will be executed. For example, explain which fault injections/unit tests
will be executed simultaneously, and whether certain fault injections/unit tests will
be executed at staggered timings. Additionally, explain the thought process that led
you to this approach.\", \"type\": \"string\"}, \"unit_tests\": {\"title\": \"Unit
Tests\", \"description\": \"The list of unit test schedule.\", \"type\": \"array\", \"
items\": {\"$ref\": \"#/definitions/UnitTest\"}}}, \"required\": [\"thought\", \"
unit_tests\"], \"definitions\": {\"UnitTest\": {\"title\": \"UnitTest\", \"type\": \"
object\", \"properties\": {\"name\": {\"title\": \"Name\", \"description\": \"Steady
state name to be verified by a unit test.\", \"type\": \"string\"}, \"grace_period\":
{\"title\": \"Grace Period\", \"description\": \"Time elapsed from the start of the
current phase to the beginning of the unit test.\", \"example\": \"0s\", \"type\": \"
string\"}, \"duration\": {\"title\": \"Duration\", \"description\": \"Duration of the
unit test. (grace_period + duration) should not exceed the current phase’s total time
.\", \"example\": \"2m\", \"type\": \"string\"}}, \"required\": [\"name\", \"
grace_period\", \"duration\"]}}}
‘‘‘

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

phase planning instructions for the fault-injection phases

The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"thought\": {\"title\": \"Thought\", \"description\": \"Describe in
detail the timeline for when each fault injection and each unit test (for verifying
steady-state) will be executed. For example, explain which fault injections/unit tests
will be executed simultaneously, and whether certain fault injections/unit tests will
be executed at staggered timings. Additionally, explain the thought process that led
you to this approach.\", \"type\": \"string\"}, \"fault_injection\": {\"title\": \"
Fault Injection\", \"description\": \"The list of fault injection schedules.\", \"type
\": \"array\", \"items\": {\"$ref\": \"#/definitions/FaultInjection\"}}, \"unit_tests
\": {\"title\": \"Unit Tests\", \"description\": \"The list of unit test schedule.\",
\"type\": \"array\", \"items\": {\"$ref\": \"#/definitions/UnitTest\"}}}, \"required\":
[\"thought\", \"fault_injection\", \"unit_tests\"], \"definitions\": {\"FaultInjection
\": {\"title\": \"FaultInjection\", \"type\": \"object\", \"properties\": {\"name\":
{\"title\": \"Name\", \"description\": \"Select a fault type from [\\\"PodChaos\\\",
\\\"NetworkChaos\\\", \\\"DNSChaos\\\", \\\"HTTPChaos\\\", \\\"StressChaos\\\", \\\"
IOChaos\\\", \\\"TimeChaos\\\"]\", \"enum\": [\"PodChaos\", \"NetworkChaos\", \"
DNSChaos\", \"HTTPChaos\", \"StressChaos\", \"IOChaos\", \"TimeChaos\"], \"type\": \"
string\"}, \"name_id\": {\"title\": \"Name Id\", \"description\": \"An identifier to
prevent name conflicts when the same Fault appears. Assign numbers starting from 0 in
sequential order to prevent name conflicts.\", \"type\": \"integer\"}, \"grace_period
\": {\"title\": \"Grace Period\", \"description\": \"Time elapsed from the start of the
current phase to the beginning of the fault injection.\", \"example\": \"0s\", \"type
\": \"string\"}, \"duration\": {\"title\": \"Duration\", \"description\": \"Duration of
the unit test. (grace_period + duration) should not exceed the current phase’s total
time.\", \"example\": \"2m\", \"type\": \"string\"}}, \"required\": [\"name\", \"
name_id\", \"grace_period\", \"duration\"]}, \"UnitTest\": {\"title\": \"UnitTest\", \"
type\": \"object\", \"properties\": {\"name\": {\"title\": \"Name\", \"description\":
\"Steady state name to be verified by a unit test.\", \"type\": \"string\"}, \"
grace_period\": {\"title\": \"Grace Period\", \"description\": \"Time elapsed from the
start of the current phase to the beginning of the unit test.\", \"example\": \"0s\",
\"type\": \"string\"}, \"duration\": {\"title\": \"Duration\", \"description\": \"
Duration of the unit test. (grace_period + duration) should not exceed the current
phase’s total time.\", \"example\": \"2m\", \"type\": \"string\"}}, \"required\": [\"
name\", \"grace_period\", \"duration\"]}}}
‘‘‘

2-2: Agent for summarizing the planned experiment

System:
You are a helpful AI assistant for Chaos Engineering.
Given a Chaos-Engineering-experiment plan, you will summarize it in detail according to
the following rules:
- In each phase, describe in detail the timeline for when each fault injection/unit
test (for verifying steady-state) will be executed. For example, summarize which fault
injections/unit tests will be executed simultaneously, and whether certain fault
injections/unit tests will be executed at staggered timings.
- Be sure to specify both each fault injection/unit test and their corresponding
workflow names.
- When explaining the timeline, provide a detailed description using specific values
for duration, grace period, etc. Rephrase the specific values in a way that everyone
can easily understand.
- The meanings of each value are as follows:
- Grace Period: Time elapsed from the start of the current phase to the beginning of
the fault injection/unit test.
- Duration: Duration of the fault injection/unit test. (grace_period + duration)
should not exceed the corresponding phase’s total time.

- Never output bullet points.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.
As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"summary\": {\"title\": \"Summary\", \"description\": \"The summary
of the given Chaos-Engineering-experiment plan.\", \"type\": \"string\"}}, \"required
\": [\"summary\"]}
‘‘‘

Human:
Here is my Chaos-Engineering-experiment plan:
Time Schedule
{time_schedule_overview}

Pre-validation Phase
{pre_validation_overview}

Fault-injection Phase
{fault_injection_overview}

Post-validation phase
{post_validation_overview}

Please summarize the above plan.

Example text embedded to time schedule overview

Given the constraints of the experiment needing to be completed within 1 minute, we
need to carefully allocate time to each phase to ensure that we can effectively
validate the system’s steady states before and after the fault injection, as well as
observe the system’s behavior during the fault injection. The pre-validation phase is
crucial to establish a baseline that the system is in its expected steady state before
any faults are introduced. The fault injection phase is where we introduce the chaos to
observe how the system behaves under stress. Finally, the post-validation phase is
necessary to ensure that the system returns to its steady state after the faults are
removed. Given the short total time of 1 minute, a reasonable allocation could be 10
seconds for pre-validation, 40 seconds for fault injection, and 10 seconds for post-
validation. This allocation allows us to have a brief but sufficient observation period
for each phase, ensuring that we can gather meaningful insights from the experiment.

Example text embedded to pre validation overview

In the pre-validation phase, we need to ensure that the system is in its expected
steady states before we proceed with fault injection. Given the constraints, we have 10
seconds to perform these checks. We have two steady states to verify: the ’example-pod
-running-state’ and the ’example-service-http-response-state’.

The ’example-pod-running-state’ requires us to check that the Pod is in the ’Running’
state at least 90% of the time. We will use the provided Python script to verify this.
Since the script checks the Pod status every second, we can run it for 5 seconds to
gather sufficient data for validation.

The ’example-service-http-response-state’ requires us to ensure that 95% of HTTP
requests return a 200 OK status. We will use the K6 script to simulate HTTP requests to
the service. The script is configured to run for 5 seconds with 5 virtual users, which
should provide enough data to validate this steady state.

Both unit tests will be executed simultaneously to maximize the use of the 10-second
window. This approach ensures that we efficiently validate both steady states within
the given time constraint, allowing us to proceed confidently to the fault injection
phase.
- Verified Steady State #0: ‘‘‘example-pod-running-state‘‘‘
- Workflow Name: ‘‘‘pre-unittest-example-pod-running-state‘‘‘
- Grace Period: ‘‘‘0s‘‘‘
- Duration: ‘‘‘5s‘‘‘

- Verified Steady State #1: ‘‘‘example-service-http-response-state‘‘‘
- Workflow Name: ‘‘‘pre-unittest-example-service-http-response-state‘‘‘
- Grace Period: ‘‘‘0s‘‘‘
- Duration: ‘‘‘5s‘‘‘

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Example text embedded to fault injection overview

In this fault-injection phase, we aim to simulate a cyber attack by injecting two types
of faults: PodChaos and NetworkChaos. The goal is to observe how these faults impact
the system’s steady states. Given the 40-second time constraint, we will stagger the
fault injections to maximize the observation of their effects.

First, we will inject the PodChaos fault to simulate a Pod failure. This will directly
test the ’example-pod-running-state’ steady state, as the Pod’s restart policy is set
to ’Never’, meaning it will not automatically recover. We will start this fault
injection immediately at the beginning of the phase and let it run for 20 seconds.

Simultaneously, we will run the unit test for the ’example-pod-running-state’ to verify
the impact of the PodChaos fault on the Pod’s availability.\n\nAfter 20 seconds, we
will inject the NetworkChaos fault to simulate network latency. This will test the ’
example-service-http-response-state’ steady state by introducing delays in HTTP
responses. We will let this fault run for the remaining 20 seconds of the phase.

During the NetworkChaos fault injection, we will also run the unit test for the ’
example-service-http-response-state’ to verify the impact of network latency on the
Service’s ability to respond to HTTP requests.

This staggered approach allows us to isolate the effects of each fault on the
respective steady states, providing clear insights into the system’s vulnerabilities
and resilience.
- Verified Steady State #0: ‘‘‘example-pod-running-state‘‘‘
- Workflow Name: ‘‘‘fault-unittest-example-pod-running-state‘‘‘
- Grace Period: ‘‘‘0s‘‘‘
- Duration: ‘‘‘20s‘‘‘

- Verified Steady State #1: ‘‘‘example-service-http-response-state‘‘‘
- Workflow Name: ‘‘‘fault-unittest-example-service-http-response-state‘‘‘
- Grace Period: ‘‘‘20s‘‘‘
- Duration: ‘‘‘20s‘‘‘

- Injected Faults #0: ‘‘‘PodChaos‘‘‘
- Workflow Name: ‘‘‘fault-podchaos‘‘‘
- Grace Period: ‘‘‘0s‘‘‘
- Duration: ‘‘‘20s‘‘‘

- Injected Faults #1: ‘‘‘NetworkChaos‘‘‘
- Workflow Name: ‘‘‘fault-networkchaos‘‘‘
- Grace Period: ‘‘‘20s‘‘‘
- Duration: ‘‘‘20s‘‘‘

Example text embedded to post validation overview

In the post-validation phase, we need to ensure that the system has returned to its
steady states after the fault injection. Given the 10-second total time for this phase,
we will conduct unit tests to verify each steady state. The tests will be executed
sequentially due to the short duration, ensuring that each steady state is verified
independently. The first test will check the ’example-pod-running-state’, ensuring the
Pod is running. The second test will verify the ’example-service-http-response-state’,
ensuring the Service responds with a 200 OK status. Each test will have a brief grace
period to allow the system to stabilize after the fault injection, followed by a short
duration to perform the checks. This approach ensures that both steady states are
validated within the available time, confirming the system’s recovery.
- Verified Steady State #0: ‘‘‘example-pod-running-state‘‘‘
- Workflow Name: ‘‘‘post-unittest-example-pod-running-state‘‘‘
- Grace Period: ‘‘‘1s‘‘‘
- Duration: ‘‘‘4s‘‘‘

- Verified Steady State #1: ‘‘‘example-service-http-response-state‘‘‘
- Workflow Name: ‘‘‘post-unittest-example-service-http-response-state‘‘‘
- Grace Period: ‘‘‘5s‘‘‘
- Duration: ‘‘‘4s‘‘‘

2-3: Agent for adjusting a failure scope

System:
You are a helpful AI assistant for Chaos Engineering.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Given a previous K8s manifests, a Chaos-Engineering-experiment plan for it, and the
current K8s manifests, you will determine whether we need to adujst the scope of fault
injections for the current K8s manifests.
Always keep the following rules:
- Cosider how you must change or keep the scope (i.e., target) of the fault injecttion
comparing the previous K8s manifests and the current K8s manifests.
- You only make minor adjustments related to resource changes, metadata change, etc, so
NEVER make any scope changes that alter the original goal of the chaos experiment.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"thought\": {\"title\": \"Thought\", \"description\": \"Describe why
you need to change/keep the scope of the fault injection for the current K8s manifests
.\", \"type\": \"string\"}, \"selector\": {\"title\": \"Selector\", \"description\": \"
Adjust the scope (target) of the fault injection comparing the differeneces between the
current and previous manifests. \", \"allOf\": [{\"$ref\": \"#/definitions/Selectors
\"}]}}, \"required\": [\"thought\", \"selector\"], \"definitions\": {\"
SetBasedRequirements\": {\"title\": \"SetBasedRequirements\", \"type\": \"object\", \"
properties\": {\"key\": {\"title\": \"Key\", \"description\": \"Label key\", \"type\":
\"string\"}, \"operator\": {\"title\": \"Operator\", \"description\": \"Select an
operator.\", \"enum\": [\"In\", \"NotIn\", \"Exists\", \"DoesNotExist\"], \"type\": \"
string\"}, \"values\": {\"title\": \"Values\", \"description\": \"Label values. The
values set must be non-empty in the case of In and NotIn.\", \"type\": \"array\", \"
items\": {\"type\": \"string\"}}}, \"required\": [\"key\", \"operator\", \"values\"]},
\"Selectors\": {\"title\": \"Selectors\", \"type\": \"object\", \"properties\": {\"
namespaces\": {\"title\": \"Namespaces\", \"description\": \"Specifies the namespace of
the experiment’s target Pod. If this selector is None, Chaos Mesh will set it to the
namespace of the current Chaos experiment.\", \"type\": \"array\", \"items\": {\"type
\": \"string\"}}, \"labelSelectors\": {\"title\": \"Labelselectors\", \"description\":
\"Specifies the label-key/value pairs that the experiment’s target Pod must have. If
multiple labels are specified, the experiment target must have all the labels specified
by this selector.\", \"type\": \"object\", \"additionalProperties\": {\"type\": \"
string\"}}, \"expressionSelectors\": {\"title\": \"Expressionselectors\", \"description
\": \"Specifies a set of expressions that define the label’s rules to specifiy the
experiment’s target Pod.\", \"example\": [{\"key\": \"tier\", \"operator\": \"In\", \"
values\": [\"cache\"]}, {\"key\": \"environment\", \"operator\": \"NotIn\", \"values\":
[\"dev\"]}], \"type\": \"array\", \"items\": {\"$ref\": \"#/definitions/
SetBasedRequirements\"}}, \"annotationSelectors\": {\"title\": \"Annotationselectors\",
\"description\": \"Specifies the annotation-key/value pairs that the experiment’s
target Pod must have. If multiple annotations are specified, the experiment target must
have all annotations specified by this selector.\", \"type\": \"object\", \"
additionalProperties\": {\"type\": \"string\"}}, \"fieldSelectors\": {\"title\": \"
Fieldselectors\", \"description\": \"Specifies the field-key/value pairs of the
experiment’s target Pod. If multiple fields are specified, the experiment target must
have all fields set by this selector.\", \"example\": {\"metadata.name\": \"my-pod\",
\"metadata.namespace\": \"dafault\"}, \"type\": \"object\", \"additionalProperties\":
{\"type\": \"string\"}}, \"podPhaseSelectors\": {\"title\": \"Podphaseselectors\", \"
description\": \"Specifies the phase of the experiment’s target Pod. If this selector
is None, the target Pod’s phase is not limited.\", \"type\": \"array\", \"items\": {\"
enum\": [\"Pending\", \"Running\", \"Succeeded\", \"Failed\", \"Unknown\"], \"type\":
\"string\"}}, \"nodeSelectors\": {\"title\": \"Nodeselectors\", \"description\": \"
Specifies the node-label-key/value pairs to which the experiment’s target Pod belongs
.\", \"type\": \"object\", \"additionalProperties\": {\"type\": \"string\"}}, \"nodes
\": {\"title\": \"Nodes\", \"description\": \"Specifies the node to which the
experiment’s target Pod belongs. The target Pod can only belong to one node in the
configured node list. If multiple node labels are specified, the node to which the
experiment’s target Pod belongs must have all labels specified by this selector.\", \"
type\": \"array\", \"items\": {\"type\": \"string\"}}, \"pods\": {\"title\": \"Pods\",
\"description\": \"Specifies the namespaces and list of the experiment’s target Pods.
If you have specified this selector, Chaos Mesh ignores other configured selectors.\",
\"example\": {\"default\": [\"pod-0\", \"pod-2\"]}, \"type\": \"object\", \"
additionalProperties\": {\"type\": \"array\", \"items\": {\"type\": \"string\"}}}}}}}\n
‘‘‘

Human:
Here is the previous K8s manifests of my system:
{prev_k8s_yamls}

Here is a planned Chaos Engineering:
{experiment_plan_summary}

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Here is the current K8s menifests of my system:
{curr_k8s_yamls}

Here is the scope of a fault injection for the previous manifests.
{curr_fault_injection}

Now, please adjust the scope of the fault injection for the current manifests. Note
that you here focus on the ’selector’ parameter (i.e., scope).
{format_instructions}

2-4: Agent for adjusting a VaC script

System:
You are a helpful AI assistant for Chaos Engineering.
Given the previous K8s manifests, a previous unit test to verify whether the steady
state satisfies the threshold, and the reconfigured K8s manifests, you will determine
whether the unit test requires adjustment to account for the changes in the
reconfigured manifests, and adjust it as necessary.
Always keep the following rules:
- First, consider which K8s manifest resource is the target of the unit test. If there
are changes to that manifest, update the unit test as necessary. If there are no
changes, the unit test should not require modification.
- You may only make minor adjustments to K8s API, HTTP, or DNS request to account for
changes in resource types, parameter seetings, metadata, etc.
- The reconfiguration was made so that the system satisfy the threshold value in the
previous unit test, so the threshold value or other parameters must remain unchanged in
the new unit test. For example, suppose the number of replicas was reconfigured from 1
to 3 in order to maintain a steady state with more than 1 active pod at all times. In
such cases, changing the threshold value from 1 to 3 would alter the intent of this
steady state, so the threshold value must remain unchanged (i.e., more than 1 active
pod)."
- If redundancy has been newly added, the unit test should verify whether the steady
state is maintained by the entire redundancy.
- If the unit test’s content needs no changes and only function or variable names need
to be changed, leave them as they are to save output costs.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"thought\": {\"title\": \"Thought\", \"description\": \"Describe
your thought process for determining whether the unit test requires adjustment to
account for the changes in the reconfigured manifests: First, consider which K8s
manifest resource is the target of the unit test. If there are changes to that manifest
, update the unit test as necessary. If there are no changes, the unit test should not
require modification. If the unit test needs updating, describe also how you modify the
inspection method according to the differences between the previous and reconfigured
manifests. If the modification is not required, describe the reason.\", \"type\": \"
string\"}, \"code\": {\"title\": \"Code\", \"description\": \"If the unit test needs
updating, write a new unit test code with the inspection method modified. Write only
the content of the code without enclosing it in a code block. If not, this field is not
required.\", \"type\": \"string\"}}, \"required\": [\"thought\"]}
‘‘‘

Human:
Here is the previous K8s manifests of my system:
{prev_k8s_yamls}

Here is the reconfigured K8s manifests of my system:
{curr_k8s_yamls}

Here is the unit test for the previous manifests.
{prev_unittest}

Now, please determine whether the unit test requires adjustment to account for the
changes in the reconfigured manifests, and adjust it as necessary.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

----- In the verification loop, the prompts below will be stacked as history -----

AI:
{output}

Human:
Your current unit test causes errors when conducted.
The error message is as follows:
{error_message}

This unit test should be succeeded.
Please analyze the reason why the errors occur, then fix the errors.
Always keep the following rules:
- NEVER repeat the same fixes that have been made in the past.
- Fix only the parts related to the errors without changing the original intent.
- {format_instructions}

Example text embedded to experiment plan summary

The Chaos Engineering experiment is structured into three phases: pre-validation, fault
injection, and post-validation, all to be completed within a total of 1 minute.

In the pre-validation phase, which lasts for 10 seconds, two unit tests are executed
simultaneously to verify the system’s steady states before any faults are introduced.
The ’example-pod-running-state’ is checked using a Python script to ensure the Pod is
in the ’Running’ state at least 90% of the time. This test runs for 5 seconds.
Concurrently, the ’example-service-http-response-state’ is verified using a K6 script
to simulate HTTP requests, ensuring 95% of requests return a 200 OK status. This test
also runs for 5 seconds. Both tests start immediately at the beginning of the phase.

The fault injection phase spans 40 seconds and involves two staggered fault injections.
Initially, the PodChaos fault is injected to simulate a Pod failure, running for the
first 20 seconds. Simultaneously, the ’example-pod-running-state’ unit test is
conducted to observe the impact of this fault. After 20 seconds, the NetworkChaos fault
is introduced to simulate network latency, running for the remaining 20 seconds.
During this period, the ’example-service-http-response-state’ unit test is executed to
assess the effect of network delays. This staggered approach allows for isolated
observation of each fault’s impact on the system.

Finally, the post-validation phase, lasting 10 seconds, ensures the system returns to
its steady states after fault removal. The tests are conducted sequentially. The ’
example-pod-running-state’ is verified first, with a 1-second grace period followed by
a 4-second test duration. Subsequently, the ’example-service-http-response-state’ is
checked, starting after a 5-second grace period and running for 4 seconds. This
sequence confirms the system’s recovery to its expected steady states.

B.1.4 ANALYSIS

3-0: Agent for analyzing an experiment results

System:
You are a helpful AI assistant for Chaos Engineering.
Given K8s manifests for a network system, its hypothesis, the overview of a Chaos-
Engineeering experiment, and the experimental results, you will analyze the
experimental results.
Always keep the following rules:
- Analyze step by step why the test(s) failed, based on the system configurations (
manifests) and the flow of the experiment.
- Specify the cause while mentioning the corresponding system configurations and the
corresponding phenomena in the Chaos-Engineering experiment.
- The analysis report here will be used for reconfiguring the system later to avoid the
failures and improve resiliency. Therefore, make carefully the report rich in insights
so that it will be helpful at that time.
- When providing insights and reconfiguration recommendations, limit them to areas
related to the failed test.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"report\": {\"title\": \"Report\", \"description\": \"Analysis of
the experiment result.\", \"type\": \"string\"}}, \"required\": [\"report\"]}
‘‘‘

Human:
Here is the overview of my system:
{user_input2}

Here is the hypothesis for my system:
The hypothesis is "The steady states of the sytem are maintained even when the fault
scenario occurs (i.e., when the faults are injected)".
The steady states here are as follows:
{steady_states}

The fault scenario here is as follows:
{detailed_fault_scenario}

Here is the overview of my Chaos-Engineering experiment to verify the hypothesis:
{experiment_plan_summary}

For the first analysis, the following prompt is added

The experiment’s results are as follows:
{experiment_result}

Now, please analyze the results and provide an analysis report rich in insights.

For the second and subsequent analyses, the following prompt is added

The update history for the above K8s manifests is the following:
{reconfig_history}

The experiment’s results in the latest K8s manifests are as follows:
{experiment_result}

Now, please analyze the results and provide an analysis report rich in insights.

Example text embedded to experiment result

Passed unittests:
- pre-unittest-example-pod-running-state
- pre-unittest-example-service-http-response-state

Failed unittests:
- fault-unittest-example-pod-running-state
‘‘‘log
Exception when calling CoreV1Api->read_namespaced_pod: (404)
Reason: Not Found\nHTTP response headers: HTTPHeaderDict({’Audit-Id’: ’8a1e6c00-ebd9-43
ee-9522-6399ce015252’, ’Cache-Control’: ’no-cache, private’, ’Content-Type’: ’
application/json’, ’X-Kubernetes-Pf-Flowschema-Uid’: ’c4624bd9-7fc7-42c6-bcb8-4235110
a860d’, ’X-Kubernetes-Pf-Prioritylevel-Uid’: ’4706085f-6263-43ae-93f5-b4a61de8b6be’, ’
Date’: ’Sun, 24 Nov 2024 12:06:18 GMT’, ’Content-Length’: ’190’})
HTTP response body: {\"kind\":\"Status\"...’, ’X-Kubernetes-Pf-Flowschema-Uid’: ’
c4624bd9-7fc7-42c6-bcb8-4235110a860d’, ’X-Kubernetes-Pf-Prioritylevel-Uid’: ’4706085f
-6263-43ae-93f5-b4a61de8b6be’, ’Date’: ’Sun, 24 Nov 2024 12:06:37 GMT’, ’Content-Length
’: ’190’})\nHTTP response body: {\"kind\":\"Status\",\"apiVersion\":\"v1\",\"metadata
\":{},\"status\":\"Failure\",\"message\":\"pods \\\"example-pod\\\" not found\",\"
reason\":\"NotFound\",\"details\":{\"name\":\"example-pod\",\"kind\":\"pods\"},\"code
\":404}

Pod was running 0 out of 20 seconds, which is 0.00% of the time.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

‘‘‘

- fault-unittest-example-service-http-response-state
‘‘‘log
time=\"2024-11-24T12:06:38Z\" level=warning msg=\"Request Failed\" error=\"Get \\\"http
:\/\/example-service.default.svc.cluster.local:80\\\": dial tcp 10.96.255.84:80:
connect: connection refused\"\ntime=\"2024-11-24T12:06:38Z\" level=warning msg=\"
Request Failed\" error=\"Get \\\"http:\/\/example-service.default.svc.cluster.local
:80\\\": dial tcp 10.96.255.84:80: connect: connection refused\"\ntime=\"2024-11-24T12
:06:38Z\" level=warning msg=\"Request Failed\" error=\"Get \\\"http:\/\/example-service
.default.svc.cluster.local:8... level=error msg=\"thresholds on metrics ’
http_req_failed’ have been crossed
‘‘‘

B.1.5 IMPROVEMENT

4-0: Agent for reconfiguring K8s manifests

System:
You are a helpful AI assistant for Chaos Engineering.
Given K8s manifests that define a network system, its hypothesis, the overview of a
Chaos-Engineeering experiment, and the experiment’s results, you will reconfigure the
system based on analysis of the experiment’s results.
Always keep the following rules:
- NEVER change the original intention (its description) of the original version of the
system.
- NEVER do the same reconfiguration as in the history.
- Start with simple reconfiguration, and if the hypothesis is still not satisfied,
gradually try more complex reconfigurations.
- The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"thought\": {\"title\": \"Thought\", \"description\": \"Describe
your plan to modify the K8s manifests.\", \"type\": \"string\"}, \"modified_k8s_yamls
\": {\"title\": \"Modified K8S Yamls\", \"description\": \"The list of modified K8s
manifests (yamls). If you create a new manifest to modify resources in an existing
manifest, make sure to delete the existing manifest before creating the new one.\", \"
type\": \"array\", \"items\": {\"$ref\": \"#/definitions/ModK8sYAML\"}}}, \"required\":
[\"thought\", \"modified_k8s_yamls\"], \"definitions\": {\"ModK8sYAML\": {\"title\":
\"ModK8sYAML\", \"type\": \"object\", \"properties\": {\"mod_type\": {\"title\": \"Mod
Type\", \"description\": \"Modification type. Select from [’replace’, ’create’, ’delete
’]. The ’replace’ replaces/overwites the content of an exisiting yaml. The ’create’
creates a new yaml. The ’delete’ deletes an existing yaml.\", \"enum\": [\"replace\",
\"create\", \"delete\"], \"type\": \"string\"}, \"fname\": {\"title\": \"Fname\", \"
description\": \"The file name of the modified yaml. If mod_type is ’replace’ or ’
delete’, the name must match an existing yaml’s name. If mod_type=’create’, name the
file appropriately to avoid overlapping with existing yamls’ names.\", \"type\": \"
string\"}, \"explanation\": {\"title\": \"Explanation\", \"description\": \"If mod_type
is ’delete’, explain why you need to delete the yaml. If mod_type is ’replace’,
explain which part you should modify from the original conde and why. If mod_type is ’
create’, explain whether it is a completely new resource or a replacement resouce for
an existing resource. If it is a replacement, also explain the differences and the
reasons for them, just like with ’replace’.\", \"type\": \"string\"}, \"code\": {\"
title\": \"Code\", \"description\": \"If mod_type is ’delete’, this field is not
required. Otherwise, write the content of a K8s YAML manifest modified to pass all the
unit tests. Write only the content of the code, and for dictionary values, enclose them
within a pair of single double quotes (\\\").\", \"type\": \"string\"}}, \"required\":
[\"mod_type\", \"fname\", \"explanation\"]}}}
‘‘‘

Human:
Here is the overview of my system (original version):
{user_input2}

Here is the hypothesis for my system:

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

The hypothesis is "The steady states of the sytem are maintained even when the fault
scenario occurs (i.e., when the faults are injected)".
The steady states here are as follows:
{steady_states}

The fault scenario here is as follows:
{detailed_fault_scenario}

Here is the overview of my Chaos-Engineering experiment to verify the hypothesis:
{experiment_plan_summary}

The experiment’s results of the original system are as follows:
{experiment_result}

First, please analyze the results and provide an analysis report rich in insights.

AI:
Here is my analysis report:
{analysis_report}

Human:
Then, please reconfigure the system to avoid the fails (improve resiliency).

In the improvement loop, the prompts below will be stacked as improvement history

AI:
‘‘‘json
{output}
‘‘‘"""

Human:
Here is the K8s menifests of the modified system (version={mod_version}):
{k8s_yamls_mod}

The experiment’s results of the modified system were as follows:
{experiment_result_mod}

Please analyze the results and provide an analysis report rich in insights again.

AI:
Here is my analysis report:
{analysis_report_mod}

Human:
Then, please reconfigure the system to avoid the fails (improve resiliency).

In the verification loop, the prompts below will be stacked as verification history
Verification history is kept within a single verification loop and is reset in every
improvement iteration

AI:
‘‘‘json
{output}
‘‘‘

User:
Your current unittest causes errors when conducted.
The error message is as follows:
{error_message}

Please analyze the reason why the errors occur, then fix the errors.
Always keep the following rules:
- Ensure that the implementation supports variable durations again.
- NEVER repeat the same fixes that have been made in the past.
- Fix only the parts related to the errors without changing the original content.
- the same format instruction as in the System role

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Example text embedded to analysis report

The Chaos Engineering experiment aimed to test the system’s resilience by simulating a
cyber attack through PodChaos and NetworkChaos. The experiment results indicate
failures in maintaining the defined steady states during and after the fault injection
phase. Here is a detailed analysis of the results:

1. **Pre-Validation Phase:**
- Both pre-unittests, ‘example-pod-running-state‘ and ‘example-service-http-response-
state‘, passed successfully. This indicates that the system was in a healthy state
before the fault injection, with the Pod running 100% of the time and the Service
responding with a 200 OK status for all requests.

2. **Fault Injection Phase:**
- **PodChaos Fault:** The ‘fault-unittest-example-pod-running-state‘ failed because
the Pod was not found (404 error) during the test. This is expected due to the
PodChaos action ’pod-kill’, which terminated the Pod. Since the Pod’s restart policy
is set to ’Never’, it did not restart, leading to 0% uptime during the test. This
highlights the critical issue of having a single Pod with no redundancy or automatic
recovery mechanism.
- **NetworkChaos Fault:** The ‘fault-unittest-example-service-http-response-state‘
also failed. The logs show repeated connection refused errors, indicating that the
Service could not route traffic to the Pod, as it was not running. This failure is a
direct consequence of the Pod being unavailable, demonstrating the lack of redundancy
and the impact of a single point of failure.

3. **Post-Validation Phase:**
- Both post-unittests, ‘example-pod-running-state‘ and ‘example-service-http-response
-state‘, failed. The Pod was still not found, and the Service continued to refuse
connections. This indicates that the system did not recover to its steady states
after the faults were removed, primarily due to the Pod’s restart policy and the
absence of a controller to manage Pod lifecycle and redundancy.

Insights and Recommendations:
- **Pod Restart Policy:** The Pod’s restart policy should be changed from ’Never’ to
’Always’ or ’OnFailure’ to ensure automatic recovery in case of failures.
- **Redundancy and Scalability:** Implement a Deployment or ReplicaSet to manage the
Pod. This will provide redundancy and ensure that a minimum number of Pods are always
running, improving the system’s resilience to failures.

- **Service Availability:** Ensure that the Service can handle traffic even if one
Pod fails by having multiple replicas. This can be achieved by scaling the Deployment
to have more than one replica.

- **Monitoring and Alerts:** Implement monitoring and alerting mechanisms to detect
and respond to Pod failures promptly, minimizing downtime.

By addressing these issues, the system can improve its resilience and maintain its
steady states even during fault scenarios.\nHuman: Then, please reconfigure the system
to avoid the fails (improve resiliency).

B.1.6 POST-PROCESSING

EX: Agent for summarizing a completed CE cycle

System:
You are a helpful AI assistant for Chaos Engineering.
Given a summary of a Chaos Engineering cycle, please elaborate the summary.
The output should be formatted as a JSON instance that conforms to the JSON schema
below.

As an example, for the schema {\"properties\": {\"foo\": {\"title\": \"Foo\", \"
description\": \"a list of strings\", \"type\": \"array\", \"items\": {\"type\": \"
string\"}}}, \"required\": [\"foo\"]}\nthe object {\"foo\": [\"bar\", \"baz\"]} is a
well-formatted instance of the schema. The object {\"properties\": {\"foo\": [\"bar\",
\"baz\"]}} is not well-formatted.

Here is the output schema:
‘‘‘
{\"properties\": {\"summary\": {\"title\": \"Summary\", \"type\": \"string\"}}, \"
required\": [\"summary\"]}
‘‘‘

Human:
Here is the overview of a Chaos Engineering Cycle:
Here is a Chaos Engineering cycle

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

Step 0. User-input understanding
Here is the overview of user inputs:
{user_input2}

Step 1. Hypothesis definition
Here is the overview of the hypothesis for the system:
The hypothesis is "The steady states of the system are maintained even when the fault
scenario occurs (i.e., when the faults are injected)".
The steady states here are as follows:
{steady_states}

The fault scenario here is as follows:
{detailed_fault_scenario}

Step 2.1. Chaos-Engineering experiment
Here is the overview of my Chaos-Engineering experiment to verify the hypothesis:
{experiment_plan_summary}

Step 2.2, 3, 4. Experiment execution, analysis and improvement (reconfiguring the
system to satisfy the hypothesis)
Here is the improvement history:
{improvement_history}

Please elaborate the above summary of a Chaos Engineering Cycle.

Example text embedded to improvement history

Experiment result (1st try)
the same content as experiment_result

Analysis report (1st try)
the same content as analysis_report

Improvement result (1st try)
1 K8s manifests are modified:
- The K8s manifest ’nginx/pod.yaml’ was replaced.

Replace the Pod manifest with a Deployment manifest to provide redundancy and automatic
recovery. The Deployment will manage the Pod lifecycle, ensuring that a specified
number of replicas are always running, which addresses both the restart policy and
redundancy issues.
‘‘‘yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: example-deployment
labels:

app: example
spec:
replicas: 3
selector:

matchLabels:
app: example

template:
metadata:
labels:

app: example
spec:
containers:
- name: example-container

image: nginx:1.17.1
ports:
- containerPort: 80

‘‘‘

Experiment result (2nd try)
Passed unittests:
- pre-unittest-example-pod-running-state
- pre-unittest-example-service-http-response-state
- fault-unittest-example-pod-running-state
- fault-unittest-example-service-http-response-state
- post-unittest-example-pod-running-state
- post-unittest-example-service-http-response-state

Failed unittests:

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

C FULL RESULTS OF CASE STUDIES

In this section, we provide full inputs and outputs for each run studied in the case study.
The inputs include instructions, Skaffold configuration files, K8s manifests. The out-
puts include VaC scripts, Chaos Mesh workflow manifests, reconfigured K8s manifests, ad-
justed VaC scripts in the experiment replanning phase. In the case study, we pick up
the fourth run for NGINX and the fifth run for SOCKSHOP. For complete dialogues,
see casestudy complete dialogues/Nginx/ChaosEater GPT4o nginx 4.pdf for NGINX and cases-
tudy complete dialogues/Sockshop/ChaosEater GPT4o sockshop 5.pdf in the Supplementary Ma-
terial. The results of other runs can also be found in the same folders. Table 3 shows the statistics of
NGINX and SOCKSHOP.

Table 3: Statistics of the systems for the case study. Tokens are counted by the tokenizer
cl100k base.

System # manifests # lines # words # tokens

NGINX 2 24 373 115
SOCKSHOP 29 869 17696 4605

C.1 NGINX

C.1.1 INPUTS

Instructions

The Chaos-Engineering experiment must be completed within 1 minute.

skaffold.yaml

1 apiVersion: skaffold/v3
2 kind: Config
3 metadata:
4 name: nginx-app
5 manifests:
6 rawYaml:
7 - pod.yaml
8 - service.yaml

pod.yaml

1 apiVersion: v1
2 kind: Pod
3 metadata:
4 name: example-pod
5 labels:
6 app: example
7 spec:
8 restartPolicy: Never
9 containers:

10 - name: example-container
11 image: nginx:1.17.1
12 ports:
13 - containerPort: 80

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

service.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: example-service
5 spec:
6 selector:
7 app: example
8 ports:
9 - protocol: TCP

10 port: 80
11 targetPort: 80

C.1.2 OUTPUTS

VaC script for the steady state #1: The Pod should be running at least 90% of the time during
the check period

1 import os
2 import time
3 import argparse
4 from kubernetes import client, config
5 from unittest_base import K8sAPIBase
6
7 class TestPodRunningState(K8sAPIBase):
8 def __init__(self):
9 super().__init__()

10
11 def check_pod_status(self, namespace, pod_name):
12 try:
13 pod = self.v1.read_namespaced_pod(name=pod_name, namespace=namespace)
14 return pod.status.phase == ’Running’
15 except client.exceptions.ApiException as e:
16 print(f"Exception when calling CoreV1Api->read_namespaced_pod: {e}")
17 return False
18
19 def test_pod_running_state(self, duration):
20 namespace = ’default’
21 pod_name = ’example-pod’
22 running_count = 0
23
24 # Check the pod status every second for the specified duration
25 for _ in range(duration):
26 if self.check_pod_status(namespace, pod_name):
27 running_count += 1
28 time.sleep(1)
29
30 # Calculate the running percentage
31 running_percentage = (running_count / duration) * 100
32
33 # Assert that the running percentage is at least 90%
34 assert running_percentage >= 90, f"Pod ’{pod_name}’ running percentage is below

threshold: {running_percentage}%"
35
36 print(f"Pod ’{pod_name}’ running status checked {duration} times. Running

percentage: {running_percentage}%.")
37
38
39 def main():
40 parser = argparse.ArgumentParser(description=’Test if a pod is running at least 90%

of the time.’)
41 parser.add_argument(’--duration’, type=int, default=5, help=’Duration to check the

pod status in seconds.’)
42 args = parser.parse_args()
43
44 test = TestPodRunningState()
45 test.test_pod_running_state(args.duration)
46
47
48 if __name__ == ’__main__’:
49 main()

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

VaC script for the steady state #2: Service availability should be at least 99.9% with a re-
sponse status of 200

1 import http from ’k6/http’;
2 import { check } from ’k6’;
3
4 export const options = {
5 vus: 1,
6 duration: ’5s’,
7 thresholds: {
8 // Ensure that the service availability is at least 99.9%
9 ’http_req_failed’: [’rate<=0.001’], // 0.1% failure rate corresponds to 99.9%

availability
10 },
11 };
12
13 export default function () {
14 const res = http.get(’http://example-service.default.svc.cluster.local:80’);
15 check(res, {
16 ’status is 200’: (r) => r.status === 200,
17 });
18 }

Chaos Mesh workflow manifest

1 apiVersion: chaos-mesh.org/v1alpha1
2 kind: Workflow
3 metadata:
4 name: chaos-experiment-20241124-132854
5 spec:
6 entry: the-entry
7 templates:
8 #-------------------------------
9 # entry point of whole workflow

10 #-------------------------------
11 - name: the-entry
12 templateType: Serial
13 deadline: 30m51s
14 children:
15 - pre-validation-phase
16 - fault-injection-phase
17 - post-validation-phase
18
19 #-------------------------------------
20 # Entry point of pre-validation-phase
21 #-------------------------------------
22 - name: pre-validation-phase
23 templateType: Serial
24 deadline: 10m10s
25 children:
26 - pre-validation-overlapped-workflows
27
28 - name: pre-validation-suspend-workflow
29 templateType: Serial
30 deadline: 5m10s
31 children:
32 - pre-validation-suspend
33 - pre-unittest-example-service-availability
34
35 - name: pre-validation-suspend
36 templateType: Suspend
37 deadline: 5s
38
39 - name: pre-validation-overlapped-workflows
40 templateType: Parallel
41 deadline: 5m10s
42 children:
43 - pre-unittest-example-pod-running
44 - pre-validation-suspend-workflow
45
46 # Definitions of children of pre-validation-phase
47 - name: pre-unittest-example-pod-running
48 templateType: Task
49 deadline: 5m5s

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

50 task:
51 container:
52 name: pre-unittest-example-pod-running-container
53 image: chaos-eater/k8sapi:1.0
54 imagePullPolicy: IfNotPresent
55 command: ["/bin/bash", "-c"]
56 args: ["python /chaos-eater/sandbox/cycle_20241124_132128/unittest_example-

pod-running_mod0.py --duration 5"]
57 volumeMounts:
58 - name: pvc-volume
59 mountPath: /chaos-eater
60 volumes:
61 - name: pvc-volume
62 persistentVolumeClaim:
63 claimName: pvc
64
65 - name: pre-unittest-example-service-availability
66 templateType: Task
67 deadline: 5m5s
68 task:
69 container:
70 name: pre-unittest-example-service-availability-container
71 image: grafana/k6:latest
72 command: ["k6", "run", "--duration", "5s", "--quiet", "/chaos-eater/sandbox/

cycle_20241124_132128/unittest_example-service-availability_mod0.js"]
73 volumeMounts:
74 - name: pvc-volume
75 mountPath: /chaos-eater
76 volumes:
77 - name: pvc-volume
78 persistentVolumeClaim:
79 claimName: pvc
80
81 #--------------------------------------
82 # Entry point of fault-injection-phase
83 #--------------------------------------
84 - name: fault-injection-phase
85 templateType: Serial
86 deadline: 10m30s
87 children:
88 - fault-injection-overlapped-workflows
89
90 - name: fault-injection-parallel-workflow
91 templateType: Parallel
92 deadline: 5m10s
93 children:
94 - fault-unittest-example-pod-running
95 - fault-podchaos
96
97 - name: fault-injection-suspend-workflow
98 templateType: Serial
99 deadline: 5m30s

100 children:
101 - fault-injection-suspend
102 - fault-injection-parallel-workflows
103
104 - name: fault-injection-suspend
105 templateType: Suspend
106 deadline: 10s
107
108 - name: fault-injection-parallel-workflows
109 templateType: Parallel
110 deadline: 5m20s
111 children:
112 - fault-unittest-example-service-availability
113 - fault-networkchaos
114
115 - name: fault-injection-overlapped-workflows
116 templateType: Parallel
117 deadline: 5m30s
118 children:
119 - fault-injection-parallel-workflow
120 - fault-injection-suspend-workflow
121
122 # Definitions of children of pre-validation-phase
123 # unit tests
124 - name: fault-unittest-example-pod-running
125 templateType: Task

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

126 deadline: 5m10s
127 task:
128 container:
129 name: fault-unittest-example-pod-running-container
130 image: chaos-eater/k8sapi:1.0
131 imagePullPolicy: IfNotPresent
132 command: ["/bin/bash", "-c"]
133 args: ["python /chaos-eater/sandbox/cycle_20241124_132128/unittest_example-

pod-running_mod0.py --duration 10"]
134 volumeMounts:
135 - name: pvc-volume
136 mountPath: /chaos-eater
137 volumes:
138 - name: pvc-volume
139 persistentVolumeClaim:
140 claimName: pvc
141
142 - name: fault-unittest-example-service-availability
143 templateType: Task
144 deadline: 5m20s
145 task:
146 container:
147 name: fault-unittest-example-service-availability-container
148 image: grafana/k6:latest
149 command: ["k6", "run", "--duration", "20s", "--quiet", "/chaos-eater/sandbox/

cycle_20241124_132128/unittest_example-service-availability_mod0.js"]
150 volumeMounts:
151 - name: pvc-volume
152 mountPath: /chaos-eater
153 volumes:
154 - name: pvc-volume
155 persistentVolumeClaim:
156 claimName: pvc
157
158 # fault_injections
159 - name: fault-podchaos
160 templateType: PodChaos
161 deadline: 10s
162 podChaos:
163 action: pod-kill
164 mode: one
165 selector:
166 labelSelectors:
167 app: example
168 namespaces:
169 - default
170
171
172 - name: fault-networkchaos
173 templateType: NetworkChaos
174 deadline: 20s
175 networkChaos:
176 action: delay
177 delay:
178 correlation: ’50’
179 jitter: 10ms
180 latency: 100ms
181 device: eth0
182 direction: to
183 mode: all
184 selector:
185 labelSelectors:
186 app: example
187 namespaces:
188 - default
189 target:
190 mode: all
191 selector:
192 labelSelectors:
193 app: example
194 namespaces:
195 - default
196
197
198 #--------------------------------------
199 # Entry point of post-validation phase
200 #--------------------------------------
201 - name: post-validation-phase

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

202 templateType: Serial
203 deadline: 10m11s
204 children:
205 - post-validation-overlapped-workflows
206
207 - name: post-validation-suspend-workflow
208 templateType: Serial
209 deadline: 5m8s
210 children:
211 - post-validation-suspend
212 - post-unittest-example-pod-running
213
214 - name: post-validation-suspend
215 templateType: Suspend
216 deadline: 2s
217
218 - name: post-validation-suspend-workflow2
219 templateType: Serial
220 deadline: 5m11s
221 children:
222 - post-validation-suspend2
223 - post-unittest-example-service-availability
224
225 - name: post-validation-suspend2
226 templateType: Suspend
227 deadline: 6s
228
229 - name: post-validation-overlapped-workflows
230 templateType: Parallel
231 deadline: 5m11s
232 children:
233 - post-validation-suspend-workflow
234 - post-validation-suspend-workflow2
235
236 # Definitions of children of pre-validation-phase
237 - name: post-unittest-example-pod-running
238 templateType: Task
239 deadline: 5m6s
240 task:
241 container:
242 name: post-unittest-example-pod-running-container
243 image: chaos-eater/k8sapi:1.0
244 imagePullPolicy: IfNotPresent
245 command: ["/bin/bash", "-c"]
246 args: ["python /chaos-eater/sandbox/cycle_20241124_132128/unittest_example-

pod-running_mod0.py --duration 6"]
247 volumeMounts:
248 - name: pvc-volume
249 mountPath: /chaos-eater
250 volumes:
251 - name: pvc-volume
252 persistentVolumeClaim:
253 claimName: pvc
254
255 - name: post-unittest-example-service-availability
256 templateType: Task
257 deadline: 5m5s
258 task:
259 container:
260 name: post-unittest-example-service-availability-container
261 image: grafana/k6:latest
262 command: ["k6", "run", "--duration", "5s", "--quiet", "/chaos-eater/sandbox/

cycle_20241124_132128/unittest_example-service-availability_mod0.js"]
263 volumeMounts:
264 - name: pvc-volume
265 mountPath: /chaos-eater
266 volumes:
267 - name: pvc-volume
268 persistentVolumeClaim:
269 claimName: pvc

Reconfigured pod.yaml

1 apiVersion: apps/v1
2 kind: Deployment

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

3 metadata:
4 name: example-deployment
5 labels:
6 app: example
7 spec:
8 replicas: 3
9 selector:

10 matchLabels:
11 app: example
12 template:
13 metadata:
14 labels:
15 app: example
16 spec:
17 containers:
18 - name: example-container
19 image: nginx:1.17.1
20 ports:
21 - containerPort: 80

Adjusted VaC script for the steady state #1: The Pod should be running at least 90% of the
time during the check period

1 import os
2 import time
3 import argparse
4 from kubernetes import client, config
5 from unittest_base import K8sAPIBase
6
7 class TestDeploymentRunningState(K8sAPIBase):
8 def __init__(self):
9 super().__init__()

10
11 def check_deployment_pods_status(self, namespace, deployment_name):
12 try:
13 pods = self.v1.list_namespaced_pod(namespace=namespace, label_selector=f’

app={deployment_name}’).items
14 running_pods = [pod for pod in pods if pod.status.phase == ’Running’]
15 return len(running_pods) > 0
16 except client.exceptions.ApiException as e:
17 print(f"Exception when calling CoreV1Api->list_namespaced_pod: {e}")
18 return False
19
20 def test_deployment_running_state(self, duration):
21 namespace = ’default’
22 deployment_name = ’example’
23 running_count = 0
24
25 # Check the deployment pods status every second for the specified duration
26 for _ in range(duration):
27 if self.check_deployment_pods_status(namespace, deployment_name):
28 running_count += 1
29 time.sleep(1)
30
31 # Calculate the running percentage
32 running_percentage = (running_count / duration) * 100
33
34 # Assert that the running percentage is at least 90%
35 assert running_percentage >= 90, f"Deployment ’{deployment_name}’ running

percentage is below threshold: {running_percentage}%"
36
37 print(f"Deployment ’{deployment_name}’ running status checked {duration} times.

Running percentage: {running_percentage}%.")
38
39
40 def main():
41 parser = argparse.ArgumentParser(description=’Test if a deployment has at least one

pod running at least 90% of the time.’)
42 parser.add_argument(’--duration’, type=int, default=5, help=’Duration to check the

deployment pods status in seconds.’)
43 args = parser.parse_args()
44
45 test = TestDeploymentRunningState()
46 test.test_deployment_running_state(args.duration)
47

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

48
49 if __name__ == ’__main__’:
50 main()

C.2 SOCKSHOP

C.2.1 INPUTS

Instructions

- The Chaos-Engineering experiment must be completed within 1 minute.
- When using k6 in steady-state definition, always select a request URL from the
following options (other requests are invalid):
1. http://front-end.sock-shop.svc.cluster.local/
2. http://front-end.sock-shop.svc.cluster.local/catalogue?size=10
3. http://front-end.sock-shop.svc.cluster.local/detail.html?id=<ID>

Replace <ID> with an available ID: [03fef6ac-1896-4ce8-bd69-b798f85c6e0b, 3395a43e-2
d88-40de-b95f-e00e1502085b, 510a0d7e-8e83-4193-b483-e27e09ddc34d, 808a2de1-1aaa-4c25
-a9b9-6612e8f29a38, 819e1fbf-8b7e-4f6d-811f-693534916a8b, 837ab141-399e-4c1f-9abc-
bace40296bac, a0a4f044-b040-410d-8ead-4de0446aec7e, d3588630-ad8e-49df-bbd7-3167
f7efb246, zzz4f044-b040-410d-8ead-4de0446aec7e]

4. http://front-end.sock-shop.svc.cluster.local/category/
5. http://front-end.sock-shop.svc.cluster.local/category?tags=<TAG>

Replace <TAG> with an available tag: [magic, action, blue, brown, black, sport,
formal, red, green, skin, geek]

6. http://front-end.sock-shop.svc.cluster.local/basket.html

skaffold.yaml

1 apiVersion: skaffold/v3
2 kind: Config
3 metadata:
4 name: sock-shop-app
5 manifests:
6 rawYaml:
7 - manifests/00-sock-shop-ns.yaml
8 - manifests/01-carts-dep.yaml
9 - manifests/02-carts-svc.yaml

10 - manifests/03-carts-db-dep.yaml
11 - manifests/04-carts-db-svc.yaml
12 - manifests/05-catalogue-dep.yaml
13 - manifests/06-catalogue-svc.yaml
14 - manifests/07-catalogue-db-dep.yaml
15 - manifests/08-catalogue-db-svc.yaml
16 - manifests/09-front-end-dep.yaml
17 - manifests/10-front-end-svc.yaml
18 - manifests/11-orders-dep.yaml
19 - manifests/12-orders-svc.yaml
20 - manifests/13-orders-db-dep.yaml
21 - manifests/14-orders-db-svc.yaml
22 - manifests/15-payment-dep.yaml
23 - manifests/16-payment-svc.yaml
24 - manifests/17-queue-master-dep.yaml
25 - manifests/18-queue-master-svc.yaml
26 - manifests/19-rabbitmq-dep.yaml
27 - manifests/20-rabbitmq-svc.yaml
28 - manifests/21-session-db-dep.yaml
29 - manifests/22-session-db-svc.yaml
30 - manifests/23-shipping-dep.yaml
31 - manifests/24-shipping-svc.yaml
32 - manifests/25-user-dep.yaml
33 - manifests/26-user-svc.yaml
34 - manifests/27-user-db-dep.yaml
35 - manifests/28-user-db-svc.yaml

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

manifests/00-sock-shop-ns.yaml

1 apiVersion: v1
2 kind: Namespace
3 metadata:
4 name: sock-shop

manifests/01-carts-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: carts
5 labels:
6 name: carts
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: carts
13 template:
14 metadata:
15 labels:
16 name: carts
17 spec:
18 containers:
19 - name: carts
20 image: weaveworksdemos/carts:0.4.8
21 env:
22 - name: JAVA_OPTS
23 value: -Xms64m -Xmx128m -XX:+UseG1GC -Djava.security.egd=file:/dev/urandom -

Dspring.zipkin.enabled=false
24 resources:
25 limits:
26 cpu: 300m
27 memory: 500Mi
28 requests:
29 cpu: 100m
30 memory: 200Mi
31 ports:
32 - containerPort: 80
33 securityContext:
34 runAsNonRoot: true
35 runAsUser: 10001
36 capabilities:
37 drop:
38 - all
39 add:
40 - NET_BIND_SERVICE
41 readOnlyRootFilesystem: true
42 volumeMounts:
43 - mountPath: /tmp
44 name: tmp-volume
45 volumes:
46 - name: tmp-volume
47 emptyDir:
48 medium: Memory
49 nodeSelector:
50 beta.kubernetes.io/os: linux

manifests/02-carts-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: carts
5 annotations:
6 prometheus.io/scrape: ’true’
7 labels:
8 name: carts

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

9 namespace: sock-shop
10 spec:
11 ports:
12 # the port that this service should serve on
13 - port: 80
14 targetPort: 80
15 selector:
16 name: carts

manifests/03-carts-db-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: carts-db
5 labels:
6 name: carts-db
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: carts-db
13 template:
14 metadata:
15 labels:
16 name: carts-db
17 spec:
18 containers:
19 - name: carts-db
20 image: mongo
21 ports:
22 - name: mongo
23 containerPort: 27017
24 securityContext:
25 capabilities:
26 drop:
27 - all
28 add:
29 - CHOWN
30 - SETGID
31 - SETUID
32 readOnlyRootFilesystem: true
33 volumeMounts:
34 - mountPath: /tmp
35 name: tmp-volume
36 volumes:
37 - name: tmp-volume
38 emptyDir:
39 medium: Memory
40 nodeSelector:
41 beta.kubernetes.io/os: linux

manifests/04-carts-db-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: carts-db
5 labels:
6 name: carts-db
7 namespace: sock-shop
8 spec:
9 ports:

10 # the port that this service should serve on
11 - port: 27017
12 targetPort: 27017
13 selector:
14 name: carts-db

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

manifests/05-catalogue-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: catalogue
5 labels:
6 name: catalogue
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: catalogue
13 template:
14 metadata:
15 labels:
16 name: catalogue
17 spec:
18 containers:
19 - name: catalogue
20 image: weaveworksdemos/catalogue:0.3.5
21 command: ["/app"]
22 args:
23 - -port=80
24 resources:
25 limits:
26 cpu: 200m
27 memory: 200Mi
28 requests:
29 cpu: 100m
30 memory: 100Mi
31 ports:
32 - containerPort: 80
33 securityContext:
34 runAsNonRoot: true
35 runAsUser: 10001
36 capabilities:
37 drop:
38 - all
39 add:
40 - NET_BIND_SERVICE
41 readOnlyRootFilesystem: true
42 livenessProbe:
43 httpGet:
44 path: /health
45 port: 80
46 initialDelaySeconds: 300
47 periodSeconds: 3
48 readinessProbe:
49 httpGet:
50 path: /health
51 port: 80
52 initialDelaySeconds: 180
53 periodSeconds: 3
54 nodeSelector:
55 beta.kubernetes.io/os: linux

manifests/06-catalogue-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: catalogue
5 annotations:
6 prometheus.io/scrape: ’true’
7 labels:
8 name: catalogue
9 namespace: sock-shop

10 spec:
11 ports:
12 # the port that this service should serve on
13 - port: 80
14 targetPort: 80
15 selector:

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

16 name: catalogue

manifests/06-catalogue-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: catalogue
5 annotations:
6 prometheus.io/scrape: ’true’
7 labels:
8 name: catalogue
9 namespace: sock-shop

10 spec:
11 ports:
12 # the port that this service should serve on
13 - port: 80
14 targetPort: 80
15 selector:
16 name: catalogue

manifests/07-catalogue-db-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: catalogue-db
5 labels:
6 name: catalogue-db
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: catalogue-db
13 template:
14 metadata:
15 labels:
16 name: catalogue-db
17 spec:
18 containers:
19 - name: catalogue-db
20 image: weaveworksdemos/catalogue-db:0.3.0
21 env:
22 - name: MYSQL_ROOT_PASSWORD
23 value: fake_password
24 - name: MYSQL_DATABASE
25 value: socksdb
26 ports:
27 - name: mysql
28 containerPort: 3306
29 nodeSelector:
30 beta.kubernetes.io/os: linux

manifests/08-catalogue-db-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: catalogue-db
5 labels:
6 name: catalogue-db
7 namespace: sock-shop
8 spec:
9 ports:

10 # the port that this service should serve on
11 - port: 3306
12 targetPort: 3306

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

13 selector:
14 name: catalogue-db

manifests/09-front-end-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: front-end
5 namespace: sock-shop
6 spec:
7 replicas: 1
8 selector:
9 matchLabels:

10 name: front-end
11 template:
12 metadata:
13 labels:
14 name: front-end
15 spec:
16 containers:
17 - name: front-end
18 image: weaveworksdemos/front-end:0.3.12
19 resources:
20 limits:
21 cpu: 300m
22 memory: 1000Mi
23 requests:
24 cpu: 100m
25 memory: 300Mi
26 ports:
27 - containerPort: 8079
28 env:
29 - name: SESSION_REDIS
30 value: "true"
31 securityContext:
32 runAsNonRoot: true
33 runAsUser: 10001
34 capabilities:
35 drop:
36 - all
37 readOnlyRootFilesystem: true
38 livenessProbe:
39 httpGet:
40 path: /
41 port: 8079
42 initialDelaySeconds: 300
43 periodSeconds: 3
44 readinessProbe:
45 httpGet:
46 path: /
47 port: 8079
48 initialDelaySeconds: 30
49 periodSeconds: 3
50 nodeSelector:
51 beta.kubernetes.io/os: linux

manifests/10-front-end-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: front-end
5 annotations:
6 prometheus.io/scrape: ’true’
7 labels:
8 name: front-end
9 namespace: sock-shop

10 spec:
11 type: NodePort
12 ports:
13 - port: 80

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

14 targetPort: 8079
15 nodePort: 30001
16 selector:
17 name: front-end

manifests/11-orders-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: orders
5 labels:
6 name: orders
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: orders
13 template:
14 metadata:
15 labels:
16 name: orders
17 spec:
18 containers:
19 - name: orders
20 image: weaveworksdemos/orders:0.4.7
21 env:
22 - name: JAVA_OPTS
23 value: -Xms64m -Xmx128m -XX:+UseG1GC -Djava.security.egd=file:/dev/urandom -

Dspring.zipkin.enabled=false
24 resources:
25 limits:
26 cpu: 500m
27 memory: 500Mi
28 requests:
29 cpu: 100m
30 memory: 300Mi
31 ports:
32 - containerPort: 80
33 securityContext:
34 runAsNonRoot: true
35 runAsUser: 10001
36 capabilities:
37 drop:
38 - all
39 add:
40 - NET_BIND_SERVICE
41 readOnlyRootFilesystem: true
42 volumeMounts:
43 - mountPath: /tmp
44 name: tmp-volume
45 volumes:
46 - name: tmp-volume
47 emptyDir:
48 medium: Memory
49 nodeSelector:
50 beta.kubernetes.io/os: linux

manifests/12-orders-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: orders
5 annotations:
6 prometheus.io/scrape: ’true’
7 labels:
8 name: orders
9 namespace: sock-shop

10 spec:
11 ports:

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

12 # the port that this service should serve on
13 - port: 80
14 targetPort: 80
15 selector:
16 name: orders

manifests/13-orders-db-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: orders-db
5 labels:
6 name: orders-db
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: orders-db
13 template:
14 metadata:
15 labels:
16 name: orders-db
17 spec:
18 containers:
19 - name: orders-db
20 image: mongo
21 ports:
22 - name: mongo
23 containerPort: 27017
24 securityContext:
25 capabilities:
26 drop:
27 - all
28 add:
29 - CHOWN
30 - SETGID
31 - SETUID
32 readOnlyRootFilesystem: true
33 volumeMounts:
34 - mountPath: /tmp
35 name: tmp-volume
36 volumes:
37 - name: tmp-volume
38 emptyDir:
39 medium: Memory
40 nodeSelector:
41 beta.kubernetes.io/os: linux

manifests/14-orders-db-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: orders-db
5 labels:
6 name: orders-db
7 namespace: sock-shop
8 spec:
9 ports:

10 # the port that this service should serve on
11 - port: 27017
12 targetPort: 27017
13 selector:
14 name: orders-db

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

manifests/15-payment-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: payment
5 labels:
6 name: payment
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: payment
13 template:
14 metadata:
15 labels:
16 name: payment
17 spec:
18 containers:
19 - name: payment
20 image: weaveworksdemos/payment:0.4.3
21 resources:
22 limits:
23 cpu: 200m
24 memory: 200Mi
25 requests:
26 cpu: 99m
27 memory: 100Mi
28 ports:
29 - containerPort: 80
30 securityContext:
31 runAsNonRoot: true
32 runAsUser: 10001
33 capabilities:
34 drop:
35 - all
36 add:
37 - NET_BIND_SERVICE
38 readOnlyRootFilesystem: true
39 livenessProbe:
40 httpGet:
41 path: /health
42 port: 80
43 initialDelaySeconds: 300
44 periodSeconds: 3
45 readinessProbe:
46 httpGet:
47 path: /health
48 port: 80
49 initialDelaySeconds: 180
50 periodSeconds: 3
51 nodeSelector:
52 beta.kubernetes.io/os: linux

manifests/16-payment-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: payment
5 annotations:
6 prometheus.io/scrape: ’true’
7 labels:
8 name: payment
9 namespace: sock-shop

10 spec:
11 ports:
12 # the port that this service should serve on
13 - port: 80
14 targetPort: 80
15 selector:
16 name: payment

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

manifests/17-queue-master-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: queue-master
5 labels:
6 name: queue-master
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: queue-master
13 template:
14 metadata:
15 labels:
16 name: queue-master
17 spec:
18 containers:
19 - name: queue-master
20 image: weaveworksdemos/queue-master:0.3.1
21 env:
22 - name: JAVA_OPTS
23 value: -Xms64m -Xmx128m -XX:+UseG1GC -Djava.security.egd=file:/dev/urandom -

Dspring.zipkin.enabled=false
24 resources:
25 limits:
26 cpu: 300m
27 memory: 500Mi
28 requests:
29 cpu: 100m
30 memory: 300Mi
31 ports:
32 - containerPort: 80
33 nodeSelector:
34 beta.kubernetes.io/os: linux

manifests/18-queue-master-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: queue-master
5 annotations:
6 prometheus.io/scrape: ’true’
7 labels:
8 name: queue-master
9 namespace: sock-shop

10 spec:
11 ports:
12 # the port that this service should serve on
13 - port: 80
14 targetPort: 80
15 selector:
16 name: queue-master

manifests/19-rabbitmq-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: rabbitmq
5 labels:
6 name: rabbitmq
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: rabbitmq

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

13 template:
14 metadata:
15 labels:
16 name: rabbitmq
17 annotations:
18 prometheus.io/scrape: "false"
19 spec:
20 containers:
21 - name: rabbitmq
22 image: rabbitmq:3.6.8-management
23 ports:
24 - containerPort: 15672
25 name: management
26 - containerPort: 5672
27 name: rabbitmq
28 securityContext:
29 capabilities:
30 drop:
31 - all
32 add:
33 - CHOWN
34 - SETGID
35 - SETUID
36 - DAC_OVERRIDE
37 readOnlyRootFilesystem: true
38 - name: rabbitmq-exporter
39 image: kbudde/rabbitmq-exporter
40 ports:
41 - containerPort: 9090
42 name: exporter
43 nodeSelector:
44 beta.kubernetes.io/os: linux

manifests/20-rabbitmq-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: rabbitmq
5 annotations:
6 prometheus.io/scrape: ’true’
7 prometheus.io/port: ’9090’
8 labels:
9 name: rabbitmq

10 namespace: sock-shop
11 spec:
12 ports:
13 # the port that this service should serve on
14 - port: 5672
15 name: rabbitmq
16 targetPort: 5672
17 - port: 9090
18 name: exporter
19 targetPort: exporter
20 protocol: TCP
21 selector:
22 name: rabbitmq

manifests/21-session-db-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: session-db
5 labels:
6 name: session-db
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: session-db

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

13 template:
14 metadata:
15 labels:
16 name: session-db
17 annotations:
18 prometheus.io.scrape: "false"
19 spec:
20 containers:
21 - name: session-db
22 image: redis:alpine
23 ports:
24 - name: redis
25 containerPort: 6379
26 securityContext:
27 capabilities:
28 drop:
29 - all
30 add:
31 - CHOWN
32 - SETGID
33 - SETUID
34 readOnlyRootFilesystem: true
35 nodeSelector:
36 beta.kubernetes.io/os: linux

manifests/22-session-db-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: session-db
5 labels:
6 name: session-db
7 namespace: sock-shop
8 spec:
9 ports:

10 # the port that this service should serve on
11 - port: 6379
12 targetPort: 6379
13 selector:
14 name: session-db

manifests/23-shipping-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: shipping
5 labels:
6 name: shipping
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: shipping
13 template:
14 metadata:
15 labels:
16 name: shipping
17 spec:
18 containers:
19 - name: shipping
20 image: weaveworksdemos/shipping:0.4.8
21 env:
22 - name: ZIPKIN
23 value: zipkin.jaeger.svc.cluster.local
24 - name: JAVA_OPTS
25 value: -Xms64m -Xmx128m -XX:+UseG1GC -Djava.security.egd=file:/dev/urandom -

Dspring.zipkin.enabled=false
26 resources:
27 limits:

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

28 cpu: 300m
29 memory: 500Mi
30 requests:
31 cpu: 100m
32 memory: 300Mi
33 ports:
34 - containerPort: 80
35 securityContext:
36 runAsNonRoot: true
37 runAsUser: 10001
38 capabilities:
39 drop:
40 - all
41 add:
42 - NET_BIND_SERVICE
43 readOnlyRootFilesystem: true
44 volumeMounts:
45 - mountPath: /tmp
46 name: tmp-volume
47 volumes:
48 - name: tmp-volume
49 emptyDir:
50 medium: Memory
51 nodeSelector:
52 beta.kubernetes.io/os: linux

manifests/24-shipping-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: shipping
5 annotations:
6 prometheus.io/scrape: ’true’
7 labels:
8 name: shipping
9 namespace: sock-shop

10 spec:
11 ports:
12 # the port that this service should serve on
13 - port: 80
14 targetPort: 80
15 selector:
16 name: shipping

manifests/25-user-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: user
5 labels:
6 name: user
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: user
13 template:
14 metadata:
15 labels:
16 name: user
17 spec:
18 containers:
19 - name: user
20 image: weaveworksdemos/user:0.4.7
21 resources:
22 limits:
23 cpu: 300m
24 memory: 200Mi
25 requests:

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

26 cpu: 100m
27 memory: 100Mi
28 ports:
29 - containerPort: 80
30 env:
31 - name: mongo
32 value: user-db:27017
33 securityContext:
34 runAsNonRoot: true
35 runAsUser: 10001
36 capabilities:
37 drop:
38 - all
39 add:
40 - NET_BIND_SERVICE
41 readOnlyRootFilesystem: true
42 livenessProbe:
43 httpGet:
44 path: /health
45 port: 80
46 initialDelaySeconds: 300
47 periodSeconds: 3
48 readinessProbe:
49 httpGet:
50 path: /health
51 port: 80
52 initialDelaySeconds: 180
53 periodSeconds: 3
54 nodeSelector:
55 beta.kubernetes.io/os: linux

manifests/26-user-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: user
5 annotations:
6 prometheus.io/scrape: ’true’
7 labels:
8 name: user
9 namespace: sock-shop

10 spec:
11 ports:
12 # the port that this service should serve on
13 - port: 80
14 targetPort: 80
15 selector:
16 name: user

manifests/27-user-db-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: user-db
5 labels:
6 name: user-db
7 namespace: sock-shop
8 spec:
9 replicas: 2

10 selector:
11 matchLabels:
12 name: user-db
13 template:
14 metadata:
15 labels:
16 name: user-db
17 spec:
18 containers:
19 - name: user-db
20 image: weaveworksdemos/user-db:0.3.0

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2025

21 ports:
22 - name: mongo
23 containerPort: 27017
24 securityContext:
25 capabilities:
26 drop:
27 - all
28 add:
29 - CHOWN
30 - SETGID
31 - SETUID
32 readOnlyRootFilesystem: true
33 volumeMounts:
34 - mountPath: /tmp
35 name: tmp-volume
36 volumes:
37 - name: tmp-volume
38 emptyDir:
39 medium: Memory
40 nodeSelector:
41 beta.kubernetes.io/os: linux

manifests/28-user-db-svc.yaml

1 apiVersion: v1
2 kind: Service
3 metadata:
4 name: user-db
5 labels:
6 name: user-db
7 namespace: sock-shop
8 spec:
9 ports:

10 # the port that this service should serve on
11 - port: 27017
12 targetPort: 27017
13 selector:
14 name: user-db

C.2.2 OUTPUTS

VaC script for the steady state #1 (carts-db-dep.yaml): At least 1 ready replica 100% of the
time and 2 ready replicas 80% of the time during the monitoring period

1 import os
2 import time
3 import argparse
4 from kubernetes import client, config
5 from unittest_base import K8sAPIBase
6
7 class TestCartsDBReplicas(K8sAPIBase):
8 def __init__(self, namespace=’sock-shop’, deployment_name=’carts-db’, duration=5):
9 super().__init__()

10 self.namespace = namespace
11 self.deployment_name = deployment_name
12 self.duration = duration
13 # Use the correct API client for deployments
14 self.apps_v1 = client.AppsV1Api()
15
16 def test_replicas_threshold(self):
17 # Initialize counters for ready replicas
18 total_checks = 0
19 ready_replicas_count = 0
20 fully_ready_replicas_count = 0
21
22 for _ in range(self.duration):
23 try:
24 # Read the deployment status using the correct API client
25 deployment = self.apps_v1.read_namespaced_deployment(self.

deployment_name, self.namespace)

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2025

26 replicas = deployment.status.replicas
27 ready_replicas = deployment.status.ready_replicas
28 print(f"Total replicas: {replicas}, Ready replicas: {ready_replicas}")
29
30 # Increment the total checks
31 total_checks += 1
32
33 # Check if at least 1 replica is ready
34 if ready_replicas >= 1:
35 ready_replicas_count += 1
36
37 # Check if both replicas are ready
38 if ready_replicas == 2:
39 fully_ready_replicas_count += 1
40
41 except client.exceptions.ApiException as e:
42 print(f"Exception when calling AppsV1Api->read_namespaced_deployment: {

e}")
43
44 # Wait for 1 second before the next check
45 time.sleep(1)
46
47 # Calculate the percentage of time conditions are met
48 one_ready_percentage = (ready_replicas_count / total_checks) * 100
49 two_ready_percentage = (fully_ready_replicas_count / total_checks) * 100
50
51 # Assert the threshold conditions
52 assert one_ready_percentage == 100, "At least 1 ready replica was not available

100% of the time."
53 assert two_ready_percentage >= 80, "2 ready replicas were not available at

least 80% of the time."
54
55 print("Test passed: Steady state conditions are satisfied.")
56
57
58 def main():
59 parser = argparse.ArgumentParser(description=’Test carts-db replicas threshold’)
60 parser.add_argument(’--duration’, type=int, default=5, help=’Duration to check the

replicas’)
61 args = parser.parse_args()
62
63 # Create an instance of the test class with the specified duration
64 test = TestCartsDBReplicas(duration=args.duration)
65 # Run the test
66 test.test_replicas_threshold()
67
68
69 if __name__ == ’__main__’:
70 main()

VaC script for the steady state #2 (front-end-dep.yaml): At least 1 ready replica must be
present 100% of the time during the monitoring period

1 import os
2 import time
3 import argparse
4 from kubernetes import client, config
5 from unittest_base import K8sAPIBase
6
7 class TestFrontEndReplica(K8sAPIBase):
8 def __init__(self, namespace, deployment_name, duration):
9 super().__init__()

10 self.namespace = namespace
11 self.deployment_name = deployment_name
12 self.duration = duration
13 # Use AppsV1Api to interact with deployments
14 self.apps_v1 = client.AppsV1Api()
15
16 def test_steady_state(self):
17 ready_replicas_count = 0
18
19 # Loop for the specified duration
20 for _ in range(self.duration):
21 # Get the deployment status

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2025

22 resp = self.apps_v1.read_namespaced_deployment_status(self.deployment_name,
self.namespace)

23 ready_replicas = resp.status.ready_replicas or 0
24 print(f"Ready replicas for {self.deployment_name}: {ready_replicas}")
25
26 # Check if the number of ready replicas is at least 1
27 if ready_replicas >= 1:
28 ready_replicas_count += 1
29
30 # Wait for 1 second before the next check
31 time.sleep(1)
32
33 # Calculate the percentage of time the deployment was ready
34 readiness_percentage = (ready_replicas_count / self.duration) * 100
35 print(f"{self.deployment_name} was ready {ready_replicas_count}/{self.duration}

times.")
36
37 # Assert that the deployment was ready 100% of the time
38 assert readiness_percentage == 100, f"{self.deployment_name} readiness was {

readiness_percentage}%, expected 100%."
39
40
41 def main():
42 parser = argparse.ArgumentParser(description=’Test front-end replica readiness’)
43 parser.add_argument(’--duration’, type=int, default=5, help=’Duration to check the

replicas’)
44 args = parser.parse_args()
45
46 # Create a test instance and run the test
47 test = TestFrontEndReplica(’sock-shop’, ’front-end’, args.duration)
48 test.test_steady_state()
49
50
51 if __name__ == ’__main__’:
52 main()

Chaos Mesh workflow manifest

1 apiVersion: chaos-mesh.org/v1alpha1
2 kind: Workflow
3 metadata:
4 name: chaos-experiment-20241127-045539
5 spec:
6 entry: the-entry
7 templates:
8 #-------------------------------
9 # entry point of whole workflow

10 #-------------------------------
11 - name: the-entry
12 templateType: Serial
13 deadline: 30m45s
14 children:
15 - pre-validation-phase
16 - fault-injection-phase
17 - post-validation-phase
18
19 #-------------------------------------
20 # Entry point of pre-validation-phase
21 #-------------------------------------
22 - name: pre-validation-phase
23 templateType: Serial
24 deadline: 10m20s
25 children:
26 - pre-validation-parallel-workflows
27
28 - name: pre-validation-parallel-workflows
29 templateType: Parallel
30 deadline: 5m20s
31 children:
32 - pre-unittest-carts-db-replicas
33 - pre-unittest-front-end-replica
34
35 # Definitions of children of pre-validation-phase
36 - name: pre-unittest-carts-db-replicas
37 templateType: Task

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2025

38 deadline: 5m20s
39 task:
40 container:
41 name: pre-unittest-carts-db-replicas-container
42 image: chaos-eater/k8sapi:1.0
43 imagePullPolicy: IfNotPresent
44 command: ["/bin/bash", "-c"]
45 args: ["python /chaos-eater/sandbox/cycle_20241127_043136/unittest_carts-db-

replicas_mod0.py --duration 20"]
46 volumeMounts:
47 - name: pvc-volume
48 mountPath: /chaos-eater
49 volumes:
50 - name: pvc-volume
51 persistentVolumeClaim:
52 claimName: pvc
53
54 - name: pre-unittest-front-end-replica
55 templateType: Task
56 deadline: 5m20s
57 task:
58 container:
59 name: pre-unittest-front-end-replica-container
60 image: chaos-eater/k8sapi:1.0
61 imagePullPolicy: IfNotPresent
62 command: ["/bin/bash", "-c"]
63 args: ["python /chaos-eater/sandbox/cycle_20241127_043136/unittest_front-end-

replica_mod0.py --duration 20"]
64 volumeMounts:
65 - name: pvc-volume
66 mountPath: /chaos-eater
67 volumes:
68 - name: pvc-volume
69 persistentVolumeClaim:
70 claimName: pvc
71
72 #--------------------------------------
73 # Entry point of fault-injection-phase
74 #--------------------------------------
75 - name: fault-injection-phase
76 templateType: Serial
77 deadline: 10m15s
78 children:
79 - fault-injection-overlapped-workflows
80
81 - name: fault-injection-parallel-workflow
82 templateType: Parallel
83 deadline: 5m10s
84 children:
85 - fault-unittest-carts-db-replicas
86 - fault-stresschaos
87
88 - name: fault-injection-suspend-workflow
89 templateType: Serial
90 deadline: 5m15s
91 children:
92 - fault-injection-suspend
93 - fault-injection-parallel-workflows
94
95 - name: fault-injection-suspend
96 templateType: Suspend
97 deadline: 10s
98
99 - name: fault-injection-parallel-workflows

100 templateType: Parallel
101 deadline: 5m5s
102 children:
103 - fault-unittest-front-end-replica
104 - fault-podchaos
105
106 - name: fault-injection-overlapped-workflows
107 templateType: Parallel
108 deadline: 5m15s
109 children:
110 - fault-injection-parallel-workflow
111 - fault-injection-suspend-workflow
112
113 # Definitions of children of pre-validation-phase

74

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2025

114 # unit tests
115 - name: fault-unittest-carts-db-replicas
116 templateType: Task
117 deadline: 5m10s
118 task:
119 container:
120 name: fault-unittest-carts-db-replicas-container
121 image: chaos-eater/k8sapi:1.0
122 imagePullPolicy: IfNotPresent
123 command: ["/bin/bash", "-c"]
124 args: ["python /chaos-eater/sandbox/cycle_20241127_043136/unittest_carts-db-

replicas_mod0.py --duration 10"]
125 volumeMounts:
126 - name: pvc-volume
127 mountPath: /chaos-eater
128 volumes:
129 - name: pvc-volume
130 persistentVolumeClaim:
131 claimName: pvc
132
133 - name: fault-unittest-front-end-replica
134 templateType: Task
135 deadline: 5m5s
136 task:
137 container:
138 name: fault-unittest-front-end-replica-container
139 image: chaos-eater/k8sapi:1.0
140 imagePullPolicy: IfNotPresent
141 command: ["/bin/bash", "-c"]
142 args: ["python /chaos-eater/sandbox/cycle_20241127_043136/unittest_front-end-

replica_mod0.py --duration 5"]
143 volumeMounts:
144 - name: pvc-volume
145 mountPath: /chaos-eater
146 volumes:
147 - name: pvc-volume
148 persistentVolumeClaim:
149 claimName: pvc
150
151 # fault_injections
152 - name: fault-stresschaos
153 templateType: StressChaos
154 deadline: 10s
155 stressChaos:
156 containerNames:
157 - carts-db
158 mode: all
159 selector:
160 labelSelectors:
161 name: carts-db
162 namespaces:
163 - sock-shop
164 stressors:
165 cpu:
166 load: 80
167 workers: 2
168
169
170 - name: fault-podchaos
171 templateType: PodChaos
172 deadline: 5s
173 podChaos:
174 action: pod-kill
175 mode: one
176 selector:
177 labelSelectors:
178 name: front-end
179 namespaces:
180 - sock-shop
181 value: ’1’
182
183
184 #--------------------------------------
185 # Entry point of post-validation phase
186 #--------------------------------------
187 - name: post-validation-phase
188 templateType: Serial
189 deadline: 10m10s

75

4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103

Under review as a conference paper at ICLR 2025

190 children:
191 - post-validation-parallel-workflows
192
193 - name: post-validation-parallel-workflows
194 templateType: Parallel
195 deadline: 5m10s
196 children:
197 - post-unittest-carts-db-replicas
198 - post-unittest-front-end-replica
199
200 # Definitions of children of pre-validation-phase
201 - name: post-unittest-carts-db-replicas
202 templateType: Task
203 deadline: 5m10s
204 task:
205 container:
206 name: post-unittest-carts-db-replicas-container
207 image: chaos-eater/k8sapi:1.0
208 imagePullPolicy: IfNotPresent
209 command: ["/bin/bash", "-c"]
210 args: ["python /chaos-eater/sandbox/cycle_20241127_043136/unittest_carts-db-

replicas_mod0.py --duration 10"]
211 volumeMounts:
212 - name: pvc-volume
213 mountPath: /chaos-eater
214 volumes:
215 - name: pvc-volume
216 persistentVolumeClaim:
217 claimName: pvc
218
219 - name: post-unittest-front-end-replica
220 templateType: Task
221 deadline: 5m10s
222 task:
223 container:
224 name: post-unittest-front-end-replica-container
225 image: chaos-eater/k8sapi:1.0
226 imagePullPolicy: IfNotPresent
227 command: ["/bin/bash", "-c"]
228 args: ["python /chaos-eater/sandbox/cycle_20241127_043136/unittest_front-end-

replica_mod0.py --duration 10"]
229 volumeMounts:
230 - name: pvc-volume
231 mountPath: /chaos-eater
232 volumes:
233 - name: pvc-volume
234 persistentVolumeClaim:
235 claimName: pvc

Reconfigured 09-front-end-dep.yaml

1 apiVersion: apps/v1
2 kind: Deployment
3 metadata:
4 name: front-end
5 namespace: sock-shop
6 spec:
7 replicas: 2
8 selector:
9 matchLabels:

10 name: front-end
11 template:
12 metadata:
13 labels:
14 name: front-end
15 spec:
16 containers:
17 - name: front-end
18 image: weaveworksdemos/front-end:0.3.12
19 resources:
20 limits:
21 cpu: 300m
22 memory: 1000Mi
23 requests:
24 cpu: 100m

76

4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157

Under review as a conference paper at ICLR 2025

25 memory: 300Mi
26 ports:
27 - containerPort: 8079
28 env:
29 - name: SESSION_REDIS
30 value: "true"
31 securityContext:
32 runAsNonRoot: true
33 runAsUser: 10001
34 capabilities:
35 drop:
36 - all
37 readOnlyRootFilesystem: true
38 livenessProbe:
39 httpGet:
40 path: /
41 port: 8079
42 initialDelaySeconds: 300
43 periodSeconds: 3
44 readinessProbe:
45 httpGet:
46 path: /
47 port: 8079
48 initialDelaySeconds: 30
49 periodSeconds: 3
50 nodeSelector:
51 beta.kubernetes.io/os: linux

77

	Introduction
	Proposed System: ChaosEater
	Phase 0: Pre-processing
	Phase 1: Hypothesis
	Phase 2: (Chaos) Experiment
	Phase 3: Analysis
	Phase 4: Improvement
	Extra Phase: Post-processing

	Case Study
	Discussion
	Conclusion
	Related Work
	Implementation Details
	System Prompts
	Pre-processing
	Hypothesis
	Experiment
	Analysis
	Improvement
	Post-processing

	Full Results of Case Studies
	Nginx
	Inputs
	Outputs

	SockShop
	Inputs
	Outputs

