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ABSTRACT

General continual learning (GCL) challenges intelligent systems to learn from
single-pass, non-stationary data streams without clear task boundaries. While re-
cent advances in continual parameter-efficient tuning (PET) of pretrained models
show promise, they typically rely on multiple training epochs and explicit task
cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods
often lack targeted design and fail to address two fundamental challenges in con-
tinual PET: how to allocate expert parameters to evolving data distributions, and
how to improve their representational capacity under limited supervision. Inspired
by the fruit fly’s hierarchical memory system characterized by sparse expansion
and modular ensembles, we propose FlyPrompt, a brain-inspired framework that
decomposes GCL into two subproblems: expert routing and expert competence
improvement. FlyPrompt introduces a randomly expanded analytic router for
instance-level expert activation and a temporal ensemble of output heads to dy-
namically adapt decision boundaries over time. Extensive theoretical and empir-
ical evaluations demonstrate FlyPrompt’s superior performance, achieving up to
11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100,
ImageNet-R, and CUB-200, respectively.

1 INTRODUCTION

General Continual Learning (GCL) (Buzzega et al., 2020; De Lange et al., 2021), aims to equip in-
telligent systems with the ability to learn continuously from non-stationary, single-pass data streams,
where tasks may not have clear boundaries and can evolve over time. Unlike traditional Continual
Learning (CL) (Wang et al., 2024b; Parisi et al., 2019), which assumes well-defined task bound-
aries and multiple training epochs, GCL presents a much more challenging problem, as it requires
rapid adaptation, robust knowledge retention, and efficient resource usage under conditions of lim-
ited supervision and task ambiguity (Fig. 1). The ability to effectively tackle GCL has profound
implications for real-world applications such as autonomous agents and personal assistants, where
systems must learn from dynamic environments without clear task definitions.

Recent advances1 in parameter-efficient tuning (PET) of pretrained models (PTMs) have shown
promise in CL (Wang et al., 2022c;b; Smith et al., 2023), but they still face fundamental limita-
tions under GCL conditions. Such methods introduce task-specific prompt experts to adapt PTMs
incrementally, and typically rely on clear task cues and sufficient gradient updates to allocate and
train expert modules (Wang et al., 2024a; 2022a). However, those assumptions no longer hold in
GCL (Koh et al., 2021; Moon et al., 2023). We therefore identify two fundamental challenges that
remain unresolved: (1) how to dynamically route inputs to appropriate experts without task labels
or iterative training, and (2) how to ensure that each expert maintains strong and adaptive represen-
tations under sparse and imbalanced supervision. Both remain non-trivial and underexplored.

The complexity of GCL has also been extensively studied in biological systems, where organ-
isms have evolved efficient strategies for lifelong learning in dynamic environments. The fruit fly
Drosophila provides a compelling model: despite having fewer than 100,000 neurons, it exhibits

1Due to the page limit, we present a comprehensive summary of related work in Appendix B.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 10000 20000 30000 40000 50000
Training Steps

35

45

55

65

75

85

95

Av
er

ag
e 

Ac
cu

ra
cy

 (%
)

∆auc : + 4.52%

CIFAR-100

(a)
0 5000 10000 15000 20000 25000

Training Steps

15

25

35

45

55

65

75

∆auc : + 6.49%

ImageNet-R

(b)
0 2000 4000 6000 8000

Training Steps

35

45

55

65

75

85

∆auc : + 6.04%

CUB-200

(c)

L2P DualPrompt CODA-P MVP MISA FlyPrompt

Figure 1: Any-time average accuracy of GCL methods over three datasets using Sup-21K. Dashed
lines indicate task transition. ∆auc, the improvement of area-under-curve score by FlyPrompt.

robust memory consolidation, context-aware behavior, and stable learning under minimal supervi-
sion (Davis, 2023; Li et al., 2020; Modi et al., 2020; Owald & Waddell, 2015). These capabilities
are largely attributed to the mushroom body, a central brain structure that encodes sensory inputs
via sparse random projections and organizes learning into modular, hierarchical compartments (Aso
et al., 2014b; Dasgupta et al., 2017) (see Fig. 4(Left)). Projection neurons (PNs) from the antennal
lobe connect randomly to Kenyon cells (KCs) in mushroom body, yielding high-dimensional sparse
codes that support input separation and routing even under noisy or overlapping conditions (Turner
et al., 2008; Honegger et al., 2011). Furthermore, different KC subregions exhibit plasticity on
distinct timescales (Aso et al., 2014a; Aso & Rubin, 2016), enabling both rapid adaptation and long-
term consolidation (Cervantes-Sandoval et al., 2013; Bouzaiane et al., 2015). These mechanisms
closely mirror the goals of GCL, offering principled inspiration for tackling its core challenges.

Building upon these neurobiological principles and our preliminary analysis in Sec. 2.2, we propose
to decompose the GCL challenges into two essential subproblems: (1) expert routing, which aims to
assign each input to an appropriate subnetwork (expert) under unknown and shifting task boundaries;
and (2) expert competence improvement, which seeks to enhance the robustness and adaptability of
each expert given limited training and imbalanced class exposure. To address these challenges, we
introduce FlyPrompt, a brain-inspired framework that integrates two key components: (i) a Random
Expanded Analytic Router (REAR) that mimics the fruit fly’s sparse expansion circuit to rapidly
assign inputs to experts in a forward-only, closed-form manner; and (ii) a Task-wise Experts with
Temporal Ensemble (TE2) that captures knowledge across multiple time scales using exponential
moving averages, mirroring the compartmental consolidation observed in the mushroom body.

FlyPrompt is supported by both theoretical analysis and empirical validation. Across diverse GCL
benchmarks, including CIFAR-100, ImageNet-R, and CUB-200, it consistently outperforms state-
of-the-art CL and GCL methods, achieving accuracy improvements of up to 11.23%, 12.43%, and
7.62%, respectively. By integrating biologically grounded design with principled algorithmic struc-
ture, FlyPrompt offers an interdisciplinary perspective on addressing the core challenges of GCL
and also exemplifies the potential of the emerging field of NeuroAI (Zador et al., 2023).

2 PRELIMINARIES

In this section, we formulate GCL, and then evaluate PET methods in an instantiated GCL scenario.

2.1 PROBLEM FORMULATION

In CL, a model learns sequential tasks t ∈ {1, · · · , T}, each associated with a dataset Dt = (xt, yt)
where xt ∈ Xt and yt ∈ Yt. The model comprises a backbone fθ(·) and an output head gψ(·),
which together produce predictions ŷ = gψ(fθ(x)). The objective is to learn a unified mapping
from input domains X =

⋃
t Xt to label spaces Y =

⋃
t Yt. Classical CL settings impose structural

assumptions on the input or label space. Domain-incremental learning (DIL) assumes disjoint input
domains with a shared label space (Xi ∩ Xj = ∅, Yi = Yj), while task-incremental and class-
incremental learning (TIL, CIL) assume disjoint label spaces (Yi ∩ Yj = ∅), with TIL additionally
providing task identity at test time (Van de Ven & Tolias, 2019). Under these assumptions, the
learning objective can be decomposed into two orthogonal subproblems: task identity prediction

2
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Figure 2: Empirical analysis of GCL. (a) A schematic illustration of GCL viewed as multi-expert
collaboration. (b) Prompt selection accuracy for methods with explicit expert routing designs. (c)
Final average accuracy (Alast, ↑) when using a test-time oracle to provide the correct prompt identity.
Results evaluated across three benchmarks with Sup-21K. FP, FlyPrompt. RP, Random Projection.
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Figure 3: CKA similarity of feature representations between experts of MVP on three datasets.

(TIP), which selects an appropriate task-specific module, and within-task prediction (WTP), which
performs classification under the selected module (Kim et al., 2022; Wang et al., 2023a).

GCL, however, lifts these assumptions and operates under substantially more challenging condi-
tions. Tasks arrive as a one-pass data stream, and their label spaces may overlap with non-negligible
probability: ∀i ̸= j, P (Yi ∩Yj ̸= ∅) > 0 (Koh et al., 2021). This entangles inter-task and intra-task
interference, undermining the TIP–WTP orthogonality. Especially when using pretrained back-
bones, the strong priors encoded in PTMs already bias prediction before adaptation, causing task
identity and class discrimination to co-evolve (Wang et al., 2023a; 2024a). Moreover, GCL intro-
duces additional difficulties such as severe intra-task class imbalance (e.g., long-tailed distributions)
and limited training iterations. These problems are compounded by memory constraints (Buzzega
et al., 2020; De Lange et al., 2021), where storing past data is restricted or disallowed.

A representative instantiation of GCL is Si-Blurry (Moon et al., 2023), which explicitly partitions
the global label space Y into a disjoint subset YD and a blurry subset YB, with Y = YD ∪ YB

and YD ∩ YB = ∅. The disjoint class ratio rD = |YD|/|Y| controls the proportion of task-specific
classes, while the blurry sample ratio rB determines how frequently classes in YB reappear across
tasks. This flexible design captures the stochasticity and heterogeneity of GCL, which has been
validated in recent theoretical and empirical work (Mi et al., 2020; Zhuang et al., 2024; Kang et al.,
2025). We therefore adopt Si-Blurry as the default GCL benchmark (see Appendix D for discussion
about the task/session boundary information and our empirical rationality of using Si-Blurry).

2.2 ANALYSIS OF GCL METHODS WITH EXPERTS

Recent CL and GCL methods increasingly adopt PET techniques on top of PTMs. These meth-
ods can be seen as lightweight extensions of architecture-based CL (Zhu et al., 2021; Wang et al.,
2023b), where instead of expanding full networks, they introduce trainable modules p (e.g., adapters,
prompts, and LoRA) that act as semantic-aware adaptation experts to give instructed outputs
fθ(x;p). A common strategy is to maintain a pool of such experts and design a router to assign
inputs to the appropriate ones. However, most existing methods, such as L2P (Wang et al., 2022c),
DualPrompt (Wang et al., 2022b), MVP (Moon et al., 2023), CODA-P (Smith et al., 2023), and
MISA (Kang et al., 2025), train these routing functions synchronously with the stream of incoming
data, making them vulnerable to distributional shifts and limited iterations. These issues are espe-
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Figure 4: Method overview. Inspired by the fruit fly’s olfactory memory system (Left), FlyPrompt
incorporates a random-expanded analytic router (Middle) and temporal ensemble-based experts
(Right). ORNs, olfactory receptor neurons. PNs, projection neurons. KCs, Kenyon cells.

cially pronounced in GCL, where blurry task boundaries and online constraints prohibit iterative
tuning, and class imbalance further weakens the quality of per-task representations.

Based on this observation, we propose to decompose the GCL problem into two critical subprob-
lems: expert routing, which determines which expert to assign to each input; and expert compe-
tence, which enhances the quality and robustness of each expert’s representation. Compared to the
classical TIP-WTP formulation for CL with clearly segmented tasks, GCL’s blurry structure and
overlapping class distributions make semantic-level experts a more suitable abstraction for adapta-
tion (see Fig. 2a). Moreover, since the same class may appear in multiple tasks, the correspondence
between classes and experts is inherently one-to-many, which further complicates routing.

To better understand these challenges, we conduct a preliminary empirical study from a multi-expert
collaboration (details in Sec. 4.1). We first evaluate the routing accuracy of methods that explicitly
predict expert identity (e.g., DualPrompt, MVP, MISA, and our FlyPrompt) after all GCL training
tasks. A prediction is considered correct if the selected expert belongs to the set of experts previously
trained on the true label yt, acknowledging the overlap across tasks. As shown in Fig. 2b, existing
routers based on similarity or contrastive losses still exhibit considerable limitations in expert selec-
tion. Next, we evaluate the final average accuracy under an oracle router that always selects a correct
expert for each input (Fig. 2c). The results reveal that, even with perfect routing, previous methods
still exhibit inferior performance, highlighting a second bottleneck: the limited competence of indi-
vidual experts. In a PTM-based context, such competence depends not only on the representation
space shaped by each expert module, but also on how well the output head can maintain consistent
decision boundaries over time; even when an early expert’s encoder is frozen, a single head that
keeps adapting to later data can gradually become misaligned with its fixed representation. To ver-
ify this point, our analysis of expert-specific representations using centered kernel alignment (CKA;
Appendix F.4) in Fig. 3 confirms that experts indeed specialize in distinct feature subspaces, under-
scoring the need for accurate expert assignment. Together with the observed degradation under an
oracle router, these results support decomposing GCL into the interacting subproblems above, and
clarify that expert competence must account for both representation quality and decoding robustness.

3 FLYPROMPT: A BRAIN-INSPIRED GCL APPROACH

In this section, we propose FlyPrompt, an innovative brain-inspired approach designed to tackle
the key challenges of GCL by explicitly improving expert routing and expert competence. As
shown in Fig. 4, FlyPrompt consists of two core components: (i) a Random Expanded Analytic
Router (REAR) that employs fixed random projections and closed-form updates to assign inputs
to experts, inspired by the sparse expansion circuits in fruit flies, and (ii) Task-wise Experts with
Temporal Ensemble (TE2) that adaptively refine class boundaries over time to improve expert-level
performance, reflecting modularized ensembles architecture in fruit flies’ neural systems.

4
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3.1 RANDOM EXPANDED ANALYTIC ROUTER

Recent studies in CL have explored the use of Random Projection (RP) to construct forward-only
learners with desirable properties such as rapid adaptation and immunity to catastrophic forget-
ting (Zhuang et al., 2022; 2024; McDonnell et al., 2024). When combined with nonlinear activation,
RP can significantly improve the linear separability of input features by capturing high-order interac-
tions without backpropagation. Notably, this mechanism aligns closely with the olfactory system of
the fruit fly, where projection neurons (PNs) connect sparsely and randomly to a high-dimensional
population of Kenyon cells (KCs) in the mushroom body, achieving a nearly 40-fold expansion.
Global inhibition then enforces sparsity, allowing robust and efficient pattern separation (Dasgupta
et al., 2017; Honegger et al., 2011). This neurobiological design inspires REAR, which mimics the
biologically grounded random expansion to enable efficient, non-iterative expert selection in GCL.

Concretely, given a pretrained backbone fθ(·) that maps input x to an embedding h = fθ(x) ∈ Rd
of dimension d, we apply a fixed RP followed by a nonlinear activation:

φ(x) = σ (fθ(x)R) = σ(hR) ∈ RM , (1)
where R ∈ Rd×M is a random matrix with Ri,j ∼ N (0, 1), M > d, and σ(·) is an element-wise
activation function (e.g., ReLU). The resulting feature φ(x) is sparse and high-dimensional.

During online training, we associate each task t with a corresponding expert Et. For each incoming
batch Bi ⊂ Dt of size B, we compute the projected features Φi ∈ RB×M , whose row vectors are
{φ(x)⊤|(x, y) ∈ Bi}, and update two statistics: the Gram matrix G ∈ RM×M capturing second-
order feature correlations; and the prototype matrix Q ∈ RM×T storing expert-wise feature sums:

G← G+Φ⊤
i Φi, Q← Q+Φ⊤

i Ct, (2)
where Ct ∈ RB×T whose row vectors are the same one-hot embedding ct ∈ {0, 1}T for expert Et.
We then construct a router matrix U ∈ RT×M by minimizing the following objective:

L(U) =

T∑
t=1

∑
(xt,y)∈Dt

∥∥φ(xt)U⊤ − ct
∥∥2
2
+ λ∥U∥2F , (3)

where λ > 0 is the regularization parameter. This objective encourages the router to map sam-
ples from task t to the corresponding expert Et while maintaining numerical stability. Using the
accumulated statisticsG andQ, the closed-form solution to this optimization problem is given by:

Û⊤ = (G+ λI)−1Q. (4)

The calculation of Û is only needed once upon evaluation, therefore this optimization process is
efficient and lightweight compared to gradient-based routing mechanisms. At inference time, the
routing score s and selected expert Ê for an input x given router Û is computed as:

s(x) = φ(x)Û⊤ ∈ RT , Ê(x) = argmax
t≤T

st(x). (5)

This routing mechanism is efficient, biologically motivated, and requires no gradient updates, mak-
ing it well-suited for GCL’s online, single-pass constraints. Unlike prior methods based on random
expanded features, such as RanPAC (McDonnell et al., 2024) or ACIL (Zhuang et al., 2022), which
apply closed-form ridge regression directly for final classification on fixed representations, REAR
uses random projections solely for instance-level expert routing while keeping each expert’s prompts
and heads fully trainable. Empirical comparison between the analytic router (REAR) and analytic
classifier (RanPAC) under GCL benchmarks is shown in Appendix Tab. 13. And we further demon-
strate the superiority of REAR upon alternative routing strategies in Appendix Tab. 17. We then
summarize the core theoretical guarantee that explains why REAR yields reliable routing in the
expanded sparse feature space. Full assumptions and proofs are included in Appendix E.1.
Theorem 1 (REAR, informal). With high probability over the random expansion and the data
stream, the population excess risk of the ridge router learned from online statistics admits the fol-
lowing decomposition:

R(Û)−R(U⋆) ≲
√
log(N)/M + (

√
N λ)−1 + λ,

for suitable universal constants. Therefore, by increasing the expansion dimension M and the
number of samples N , and choosing the regularization parameter λ to balance estimation error
and bias, the population excess risk (and, under a fixed margin assumption on expert scores; see
Appendix E.1, the misrouting probability) can be made arbitrarily small.
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Interpretation. The first term reflects the approximation error due to finite random features; in-
creasing M improves the expressive power of the expansion. The second term captures the variance
arising from finite data, which diminishes as N grows or λ increases. The third term represents the
bias introduced by ridge regularization, which stabilizes learning but limits expressiveness if it is too
large. In practice, this decomposition implies that robust and forward-only routing can be achieved
by employing sufficiently rich random expansions and moderate regularization, without requiring
task-level or iterative refinement.

3.2 TASK EXPERTS AS TEMPORAL ENSEMBLES

To improve the competence of each expert under dynamic distributions, we draw inspiration from the
fruit fly’s KCs in the mushroom body and their connections to output neurons. This brain structure
integrates multi-timescale plasticity and hierarchical processing across subregions, where γ KCs
mediate short-term memory, α′/β′ KCs support intermediate memory, and α/β KCs are critical for
long-term memory consolidation (Krashes et al., 2007; Cervantes-Sandoval et al., 2013; Bouzaiane
et al., 2015). These KC subtypes are sequentially recruited during learning and exhibit compartment-
specific modulation by dopamine neurons (Aso et al., 2014a; Owald & Waddell, 2015; Aso et al.,
2014b; Aso & Rubin, 2016), enabling temporally staged memory formation and retrieval. Inspired
by this biological design, we equip each expert in FlyPrompt with a temporal ensemble of output
heads, implemented using exponential moving averages (EMA) with varying decay rates.

Concretely, instead of using only one shadow head in naı̈ve EMA, each expert Et in FlyPrompt
maintains a set of n EMA heads with decay rates {αj}nj=1, where αj ̸= αk for all j ̸= k. Let the
online head be parameterized asψ = (W , b) ∈ R|Y|×d×R|Y|, and the j-th EMA head of expert Et
as (W (j)

t , b
(j)
t ). When a new task t begins, its prompt pt is initialized as the average of previously

learned prompts as a warm start:

pt =
1

t− 1

t−1∑
i=1

pi for t > 1,

with random initialization for t = 1. This average-prompt warm start provides a more informed
initialization under single-pass GCL streams, where each expert only observes limited data, and
empirically accelerates convergence and more compatible with blurry boundaries in which classes
can reoccur across sessions. The EMA heads of Et are initialized as clones of the current online
head. During training, only online head ψ and prompt pt are updated using the cross-entropy:

Lt(x, y) = CE
(
fθ(x;pt)W

⊤ + b+m, y
)
, (6)

where m ∈ R|Y| is a non-parametric logit mask initialized for each data batch (X,y). We set
mc = 0 and for any class c ∈ y encountered in the current batch , and set mc′ = −∞ to sup-
press predictions on unseen labels c′ /∈ y. This masking strategy mitigates interference from class
imbalance both across and within tasks (Moon et al., 2023; Kang et al., 2025), evaluated in Tab. 15.

After each update step, the EMA heads are updated as:

W
(j)
t ← αjW

(j)
t + (1− αj)W , b

(j)
t ← αj b

(j)
t + (1− αj) b. (7)

At inference, the REAR module first selects an expert e = Ê(x). Using the associated prompt pe,
we compute logits from the online and EMA heads:

z(0) = fθ(x;pe)W
⊤ + b, (8)

z(j) = fθ(x;pe)W
(j)⊤
e + b(j)e , ∀j ∈ {1, · · · , n}. (9)

We then ensemble all n+ 1 heads by computing the SoftMax of each and taking their element-wise
maximum, followed by logit masking:

ẑ(x) = max
j∈{0,...,n}

softmax(z(j) +m), ŷ(x) = argmax
c

ẑc(x). (10)

This temporal ensemble mechanism enables FlyPrompt to integrate stable, long-term information
via EMA heads while preserving rapid adaptation through the online head, mirroring biological
memory consolidation and facilitating robust inference under non-stationary, imbalanced streams.
Here, we also present a theoretical guarantee that supports the use of multiple EMA heads in GCL.
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Table 1: Overall performance of representative methods over three GCL benchmarks across PTMs.

PTM Method CIFAR-100 ImageNet-R CUB-200
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

Sup-21K

Seq FT 19.71±3.39 10.42±4.92 7.51±3.94 2.29±0.85 3.47±0.41 1.49±0.42

Linear Probe 49.69±6.09 23.07±7.33 29.24±1.26 16.87±3.14 28.96±2.46 17.33±3.08

Seq FT w/ SL 64.90±7.18 62.06±1.89 47.20±1.47 39.60±2.43 56.16±4.32 56.50±3.08

L2P 76.23±2.73 79.11±1.43 44.40±1.03 42.03±1.72 64.30±2.18 61.42±2.13

DualPrompt 76.04±3.32 76.62±0.74 46.13±1.94 40.80±1.04 65.03±2.24 62.43±1.78

CODA-P 79.13±3.06 80.91±0.70 51.87±2.81 48.09±2.75 66.01±2.20 62.90±2.46

MVP 67.74±4.96 63.22±0.69 39.50±1.41 32.63±3.95 54.69±3.14 50.07±3.86

MISA 80.35±2.39 80.75±1.24 51.52±2.09 45.08±1.43 65.40±3.01 60.20±1.82

FlyPrompt (Ours) 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91 70.64±2.85 73.40±1.88

Sup-21K/1K

L2P 63.88±7.79 68.96±7.63 47.10±1.21 42.22±1.94 42.96±4.13 45.00±3.83

DualPrompt 68.02±2.08 67.04±5.84 52.80±1.21 47.39±1.60 46.80±2.89 46.39±2.76

CODA-P 69.29±2.52 69.47±7.19 51.20±1.76 44.30±1.50 44.66±2.73 45.18±4.50

MVP 64.69±3.77 51.29±7.56 48.99±2.01 38.12±5.20 44.10±2.81 33.97±9.62

MISA 62.91±7.96 67.99±7.41 50.87±1.69 47.75±2.87 42.76±2.33 44.05±1.94

FlyPrompt (Ours) 78.48±1.31 80.39±3.54 62.01±2.32 56.55±3.94 54.42±4.67 55.50±3.55

iBOT-21K

L2P 56.82±8.42 67.61±8.76 35.97±1.62 36.95±2.44 14.76±1.53 24.51±4.82

DualPrompt 66.06±4.52 67.14±8.60 42.48±1.62 35.91±0.88 19.90±3.68 21.84±2.35

CODA-P 62.13±7.17 63.38±7.98 45.50±1.66 39.44±1.35 17.72±5.33 20.82±7.66

MVP 62.33±3.06 48.32±11.42 41.55±1.98 29.29±5.03 28.73±3.18 23.62±9.51

MISA 65.30±2.28 67.43±6.75 40.94±1.22 36.16±1.58 18.62±3.36 23.66±2.21

FlyPrompt (Ours) 75.58±1.70 79.36±3.47 57.75±2.12 54.39±1.29 28.86±5.84 36.79±7.58

iBOT-1K

L2P 53.17±7.08 62.28±8.19 38.29±2.65 39.86±0.95 19.20±2.21 31.21±5.24

DualPrompt 52.39±3.21 53.56±6.10 45.76±1.63 39.19±0.65 29.32±3.15 30.53±5.33

CODA-P 59.29±4.03 61.30±6.73 49.56±1.57 42.64±2.78 27.57±2.83 33.61±4.52

MVP 57.52±3.62 44.08±12.42 44.76±2.23 34.93±4.48 33.81±3.50 26.32±9.97

MISA 54.31±2.91 55.89±5.10 43.91±3.95 40.09±1.24 27.76±2.69 33.74±2.11

FlyPrompt (Ours) 70.14±1.76 74.84±4.26 61.50±1.66 57.18±1.36 38.75±5.72 45.00±4.19

DINO-1K

L2P 47.98±7.38 59.13±6.32 35.81±1.37 36.58±1.31 21.18±2.01 32.47±6.10

DualPrompt 52.12±4.01 55.71±6.11 43.03±1.12 35.40±1.40 27.80±4.21 29.49±4.24

CODA-P 54.69±4.49 58.91±5.43 45.16±2.05 38.23±2.02 29.22±2.97 31.85±7.47

MVP 53.64±3.91 41.02±12.09 41.78±2.15 32.00±4.22 33.44±3.43 26.02±10.29

MISA 52.03±3.07 55.98±4.26 41.26±3.25 37.50±1.62 27.13±3.31 33.08±4.10

FlyPrompt (Ours) 65.92±2.74 72.66±4.52 57.29±2.40 54.72±1.89 37.38±5.86 44.66±2.35

MoCo v3-1K

L2P 28.17±7.08 39.07±11.31 17.43±1.71 16.27±5.43 12.42±2.31 20.00±7.36

DualPrompt 53.33±4.65 58.20±7.73 36.69±1.74 30.24±1.94 19.88±3.35 21.93±4.30

CODA-P 53.47±3.42 58.55±7.19 39.89±2.71 31.72±4.86 20.09±2.52 24.10±6.48

MVP 54.33±4.56 40.84±14.21 36.45±2.35 26.37±6.04 28.48±3.34 23.56±9.78

MISA 57.00±6.06 62.18±3.94 38.85±4.27 33.47±0.95 25.02±4.39 27.68±4.35

FlyPrompt (Ours) 64.12±5.18 71.51±8.48 52.32±1.50 49.06±1.35 27.92±4.53 33.32±3.58

Theorem 2 (TE2, informal). For an EMA head with decay α and window L = 1/(1 − α), the
parameter error at time t satisfies

E
∥∥W̃ (α)

t −W ⋆
t

∥∥2 ≲ ζ2/L+ (LPt)
2,

where ζ2 bounds the online noise and Pt measures drift. A geometric EMA bank contains, at every
time, a head that achieves a near-optimal bias-variance trade-off up to a constant factor.

Interpretation. The bound decomposes the parameter error into a variance term O(ζ2/L), con-
trolled by the effective window size, and a drift-induced bias term O((LPt)

2), which increases with
nonstationarity. Larger L reduces variance but increases bias, creating a bias-variance trade-off. A
geometric bank of EMA windows ensures that, at any time, one head is near the optimal trade-off for
the current drift level. Intuitively, when the input stream contains segments with varying temporal
dynamics, such as sudden shifts at session transitions or gradual changes within each task, differ-
ent EMA heads can align better with different segments, leading to more adaptive predictions. In
practice, two EMA heads with windows of 10 and 100 (α = 0.9, 0.99) are sufficient (see Sec. 4.2).

4 EXPERIMENT

In this section, we first introduce the experiment setups and then present the experiment results.
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Table 2: Comparison with prominent offline methods on three GCL benchmarks under Sup-21K.

Method CIFAR-100 ImageNet-R CUB-200
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

S-Prompt++ 80.21±2.55 83.48±1.20 52.14±1.65 49.13±1.60 66.61±2.21 64.73±2.25

HiDe-Prompt 77.10±3.81 81.77±2.00 53.77±1.09 49.87±3.01 67.05±2.37 67.12±0.50

HiDe-LoRA 80.07±2.41 82.00±1.25 55.09±1.45 51.29±6.29 67.26±1.76 67.28±1.45

HiDe-Adapter 79.52±2.81 81.41±0.95 53.92±1.32 50.86±5.08 66.09±1.41 64.53±1.78

NoRGa 78.89±3.33 83.03±1.20 54.12±1.37 50.09±3.66 67.16±2.44 67.06±0.58

SD-LoRA 79.26±2.21 78.91±2.48 55.51±1.30 51.97±3.09 64.12±2.02 60.57±0.77

FlyPrompt (Ours) 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91 70.64±2.85 73.40±1.88

4.1 EXPERIMENT SETUP

Benchmarks. We evaluate FlyPrompt under the Si-Blurry GCL setting (Moon et al., 2023; Kang
et al., 2025) using three representative benchmarks: CIFAR-100 (Krizhevsky et al., 2009) (60K
images, 100 classes), ImageNet-R (Hendrycks et al., 2021) (30K images, 200 classes), and CUB-
200 (Wah et al., 2011) (12K images, 200 fine-grained classes). Unless specified otherwise, we adopt
the default Si-Blurry configuration with disjoint class ratio rD = 50% and blurry sample ratio rB =
10%, trained over five sessions. We report two widely used metrics: average anytime accuracy Aauc

(evaluated every 1000 batches) and final accuracy Alast (measured after all sessions) (Koh et al.,
2021). Additional experiments of different (rD, rB) and online CL are provided in Appendix F.1.
Unless specified, all results are averaged over five runs (± standard deviation) with different seeds.

Baselines. We compare FlyPrompt against a diverse set of CL and GCL methods: (1) lower-bound
baselines such as sequential fine-tuning (Seq FT, including the version with a slow learning rate,
SL) (Zhang et al., 2023) and linear probing; (2) prompt-based CL baselines including L2P (Wang
et al., 2022c), DualPrompt (Wang et al., 2022b) and CODA-P (Smith et al., 2023); (3) state-of-the-
art GCL methods such as MVP (Moon et al., 2023) and MISA (Kang et al., 2025); (4) prominent
offline CL methods S-Prompt++ (Wang et al., 2022a), HiDe (Wang et al., 2023a), NoRGa (Le et al.,
2024) and SD-LoRA (Wu et al., 2025) in Tabs. 2 and 12. We also implement the online version of
the analytic baseline RanPAC (McDonnell et al., 2024) in Tab. 3 and other variants in Tab. 13.

Implementation. We adopt the ViT-B/16 backbone pretrained on ImageNet-21K and ImageNet-1K,
including strong supervised paradigms Sup-21K, Sup-21K/1K (Sup-21K fine-tuned on ImageNet-
1K) (Ridnik et al., 2021; Dosovitskiy et al., 2020), and self-supervised paradigms iBOT-21K, iBOT-
1K (Zhou et al., 2021), DINO-1K (Caron et al., 2021), and MoCo v3-1K (Chen et al., 2021). We set
the projection dimension M = 104, and λ based on checkpoints: 104 (Sup-21K), 106 (Sup-21K/1K,
MoCo), and 107 (iBOT, DINO). We use n = 2 EMA heads with decay rates 0.9, 0.99. More
implementation details of baseline methods and GCL benchmark setup can be found in Appendix C.

4.2 EXPERIMENT RESULTS

Overall Performance. Tab. 1 summarizes GCL performance across all benchmarks. Prompt-based
CL methods perform well with supervised backbones (e.g., Sup-21K, Sup-21K/1K), but degrade
significantly under self-supervised ones (e.g., DINO, MoCo v3-1K), particularly on fine-grained
benchmarks CUB-200. This highlights the challenge of extracting discriminative features without
strong pretraining priors. MVP, which incorporates contrastive learning for improved expert selec-
tion, outperforms others under the fine-grained benchmark and self-supervised PTMs, reinforcing
the importance of prompt routing. However, the contrastive loss yields limited performance gains
in other cases due to the absence of a replay buffer. Fig. 1 presents the anytime accuracy during
GCL. MISA benefits from stronger prompt initialization and achieves relatively higher performance
at the early stage, but steadily declines due to parameter overwriting, eventually matching weaker
baselines like CODA-P. This suggests that while good initialization helps, it alone is insufficient for
sustained GCL performance. In contrast, FlyPrompt consistently outperforms all baselines across
datasets and PTMs. It achieves up to 11.23%, 12.43%, and 7.62% improvements in Aauc; 13.53%,
16.49%, and 12.28% in Alast on CIFAR-100, ImageNet-R, and CUB-200, respectively. As shown
in Fig. 1, FlyPrompt maintains stable, high accuracy throughout GCL, with minimal drops during
session transitions. This results confirm FlyPrompt as a new state-of-the-art for GCL.
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Table 3: Ablation study of different components in FlyPrompt. “−” indicates not applicable.

PTM FlyPrompt Components CIFAR-100 ImageNet-R
REAR Prompt Expert EMA head Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

Sup-21K

RP-Based Analytic Classifier (RanPAC†) 69.91±3.88 79.92±0.07 47.29±0.70 47.33±0.12

− × × 71.33±2.17 73.22±1.63 41.73±0.97 37.33±1.71

− × ✓ 71.69±2.27 73.30±1.55 42.50±1.01 38.35±1.01

× ✓ × 80.75±1.98 83.65±1.94 54.91±1.32 52.58±1.36

× ✓ ✓ 82.17±2.07 83.75±1.86 55.90±1.37 53.65±0.92

✓ ✓ × 81.90±2.20 84.23±1.32 55.76±1.32 52.76±1.30

✓ ✓ ✓ 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91

Sup-21K/1K

RP-Based Analytic Classifier (RanPAC†) 69.76±3.33 79.49±0.16 52.91±1.07 54.79±0.22

− × × 57.82±6.94 62.67±8.55 46.24±0.72 39.06±2.81

− × ✓ 60.76±6.77 63.39±8.81 49.88±0.93 41.65±1.38

× ✓ × 70.09±3.52 67.62±5.80 52.07±1.35 44.13±3.61

× ✓ ✓ 72.51±3.15 68.66±5.96 55.55±1.51 45.90±3.53

✓ ✓ × 71.28±2.58 69.73±5.78 53.12±2.19 44.69±3.65

✓ ✓ ✓ 78.48±1.31 80.39±3.54 62.01±2.32 56.55±3.94

Table 4: Effect of REAR and TE2 on Aauc(%) performance for PTM-based CL methods using
CIFAR-100 under Sup-21K. The numbers in parentheses indicate the difference from the baseline,
and the arrow direction indicates an increase (↑) or decrease (↓). See Tab. 14 for complete results.

Method Baseline w/ REAR w/ TE2 w/ Both

DualPrompt 76.04±3.32 80.63±2.25 (↑ 4.59) 76.83±3.44 (↑ 0.79) 82.33±2.17 (↑ 6.29)

MVP 67.74±4.96 67.44±4.89 (↓ 0.30) 68.91±4.86 (↑ 1.17) 68.93±4.60 (↑ 1.19)

MISA 80.35±2.39 82.03±1.97 (↑ 1.68) 81.65±2.24 (↑ 1.30) 83.60±2.08 (↑ 3.25)

S-Prompt++ 80.21±2.55 81.43±2.45 (↑ 1.21) 81.93±2.21 (↑ 1.72) 83.11±2.30 (↑ 2.90)

HiDe-Prompt 77.10±3.81 78.41±2.64 (↑ 1.31) 77.46±3.56 (↑ 0.36) 78.60±2.53 (↑ 1.51)

NoRGa 78.89±3.33 79.37±2.71 (↑ 0.48) 79.16±3.28 (↑ 0.27) 79.37±2.74 (↑ 0.48)

Ablation Study. To assess the contribution of each FlyPrompt component, we conduct a compre-
hensive ablation study of REAR for prompt selection, multi-prompt across tasks, and TE2for EMA
head ensemble. Results in Tab. 3 show that each module provides consistent gains, with the full
FlyPrompt achieving the best performance. We additionally include RanPAC†, an analytic learner
using random projections but no expert modularity, to simulate REAR without multi-expert routing.
While this performs competitively under limited training, it falls short without expert specialization,
underscoring the importance of both routing and competence. Notably, the gain from EMA heads
alone is modest unless combined with REAR and prompt modularization, highlighting the synergy
among bio-inspired components rather than simple additive effects. We further integrate our REAR
and TE2components into a range of strong baseline models by replacing their routing and output
head modules correspondingly. Results in Tab. 4 further demonstrate the consistent improvements
when either component is added (more results across datasets and metrics are presented in Tab. 14).

Hyperparameter Sensitivity. Fig. 5 explores key hyperparameters in REAR. Increasing the projec-
tion dimension M improves performance, consistent with the theory that higher-dimensional spaces
enable better feature separability and router performance (in Theorem 1), mirroring sparse expan-
sion in the fruit fly mushroom body. However, since the memory cost grows linearly with M , we set
M = 10,000 as a practical trade-off. The regularization parameter λ has smaller impact, with per-
formance stable across several orders of magnitude. Full results across other PTMs are provided in
Appendix F.5. We further analyze EMA decay rates with temporal ensemble. Tab. 6 shows that two
EMA heads of 0.9, 0.99, combined with the online head, achieve the best trade-off across datasets.
This aligns with neurobiological findings that the mushroom body maintains short-, mid-, and long-
term memory modules in parallel. Among various ensemble strategies (Tab. 5), the “SoftMax +
element-wise maximum” method is most effective and used by default. Detailed evaluations across
other PTMs and configurations are provided in Appendices F.8 and F.10.

Detailed Analysis. Returning to the core challenges identified in Sec. 2.2, we revisit the roles of
expert routing and expert competence improvement. As shown in Fig. 2, methods (e.g., FlyPrompt)
that improve in these two areas correlate strongly with better overall GCL performance. In particular,
Fig. 2b demonstrates the impact of random projection in boosting routing accuracy, while Fig. 2c
highlights remaining headroom for improving expert competence. Despite introducing RP layer
and tracking feature statistics, FlyPrompt adds minimal parameter overhead, i.e., just 0.83% more
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Figure 5: Analysis of hyperparameters in REAR. (a-c) Different projection dimension M with fixed
λ = 104: we report Aauc and extra storage cost (bar) given M . (d-f) Different regularization
parameter λ with fixed M = 104. Dashed lines indicate the optimal choice of each hyperparameter.

Table 5: Performance comparison of ensemble aggregation choices for TE2 under Sup-21K.

Ensemble Method CIFAR-100 ImageNet-R CUB-200
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

Mean 81.34±1.64 85.11±1.03 52.71±1.36 53.24±1.22 68.49±2.57 73.95±1.90

Max Prob. 82.29±2.25 84.95±1.20 55.56±1.38 53.53±1.40 68.00±2.50 66.56±1.60

Min Entropy 81.92±2.19 84.23±1.32 55.05±1.31 52.88±1.38 66.78±2.53 64.73±1.36

SoftMax+Mean 82.30±1.82 85.98±0.80 56.16±1.56 55.53±0.89 70.77±3.00 74.86±1.54

SoftMax+Max Prob. 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91 70.64±2.85 73.40±1.88

SoftMax+Min Entropy 83.11±2.34 86.50±0.64 55.94±1.41 54.24±1.34 69.86±2.80 71.51±1.79

Table 6: Performance comparison of different
EMA decay rates for TE2 under Sup-21K.

EMA Decay Rate CIFAR-100 ImageNet-R
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

Online head only 81.90±2.20 84.23±1.32 54.91±1.32 52.58±1.36

+0.9 82.81±2.28 86.36±0.54 56.36±1.52 55.09±0.89

+0.99 82.84±2.51 86.41±0.39 55.94±1.65 54.67±0.89

+0.999 81.80±2.37 84.39±0.83 55.15±1.39 53.52±0.80

+0.9,0.99 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91
+0.9,0.99,0.999 82.99±2.22 86.24±0.79 56.35±1.72 55.50±0.77

Table 7: Computational cost and overall perfor-
mance using CIFAR-100 under Sup-21K.

Method Total Param. Trainable Time Delay Aauc

(M,↓) Param. (M,↓) (s/batch,↓) (%,↑)
L2P 86.01 0.22 5.17 76.23
DualPrompt 86.35 0.55 4.78 76.04
CODA-P 86.72 0.92 4.75 79.13
MVP 86.12 0.32 5.35 67.74
MISA 86.37 0.58 4.78 80.35
FlyPrompt (ours) 87.08 0.46 4.96 83.24

parameters than MISA on ViT-B/16, and incurs negligible increase in computational cost (see Tab. 7,
more comprehensive comparison in Tab. 12 and detailed cost breakdown of components in Tab. 19).
Together, these findings validate FlyPrompt’s effectiveness in resolving the GCL challenges.

5 CONCLUSION

We presented FlyPrompt, a biologically inspired framework for GCL, which addresses the core
challenges of expert routing and expert competence improvement under blurred task boundaries
and single-pass constraints. Grounded in the neurobiological principles of the fruit fly’s mushroom
body, known for its sparse expansion, random connectivity, and multiscale modularity, FlyPrompt
integrates a randomly expanded analytic router for non-iterative expert selection and a temporal
ensemble of expert heads for robust adaptation over time. Theoretical analysis and empirical results
across multiple GCL benchmarks demonstrate its strong performance and scalability.

While these results are encouraging, several limitations of the current work point to promising future
directions. For instance, the temporal ensemble relies on a fixed composition of EMA decay rates,
and adapting these dynamically to data drift could enhance robustness. Additionally, performance
under extreme long-tailed distributions warrants further study. Looking forward, GCL is essential
for deploying real-world learning systems, such as embodied agents, user-facing AI, and resource-
constrained devices, where data is dynamic and supervision is limited. As continual adaptation is a
natural strength of biological systems, the underlying principles they offer will continue to inspire
future advances in GCL and beyond.
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A LARGE LANGUAGE MODELS ASSISTANCE

Large language models were used to polish the manuscript. The authors have thoroughly reviewed
and edited all content and take full responsibility for the published work.

B RELATED WORK

Continual Learning (CL) aims to train models on sequential tasks with evolving data distribu-
tions (Wang et al., 2024b; Parisi et al., 2019). Canonical CL settings are categorized into task-
incremental learning (TIL), class-incremental learning (CIL), and domain-incremental learning
(DIL) (Van de Ven & Tolias, 2019), depending on the structure of input and label spaces. TIL
and CIL assume disjoint label spaces, with task identity provided only in TIL, while DIL shares
label space but varies input domains. Theoretically, CL has been formalized by decoupling task
identity prediction (TIP) and within-task prediction (WTP), which remain orthogonal under clearly
segmented tasks and from-scratch training (Kim et al., 2022; Wang et al., 2023a).

The rise of pretrained models (PTMs) has shifted CL towards adapting frozen backbones via
lightweight modules, known as parameter-efficient tuning (PET) (Lester et al., 2021; Li & Liang,
2021; Rebuffi et al., 2017; Hu et al., 2021). PET-based CL methods often employ either task-shared
modules (Zhang et al., 2023; McDonnell et al., 2024) that require gradual updates, or task-specific
experts (Wang et al., 2022c; 2023a) that demand effective expert selection (implicitly via external
queries (Wang et al., 2022c) or explicitly via routing functions (Wang et al., 2023a)). Importantly,
the strong priors embedded in PTMs blur the TIP–WTP decomposition, making classical CL theory
less applicable (Wang et al., 2023a; 2024a).

General Continual Learning (GCL) extends CL to more practical scenarios by removing assump-
tions of clear task segmentation and offline data access (Buzzega et al., 2020; De Lange et al., 2021;
Mi et al., 2020). Specifically, GCL emphasizes online learning, where each data point is seen only
once; and blurry or unknown task boundaries, where task identities are absent or ill-defined (Aljundi
et al., 2019a; Prabhu et al., 2020; Bang et al., 2021; Moon et al., 2023). These properties intro-
duce unique challenges in expert selection, knowledge retention, and fast adaptation, without task
identities or replay buffers. Additional constraints, such as constant memory budgets and anytime
inference, further distinguish GCL from traditional CL (De Lange et al., 2021).

To implement the GCL challenges, benchmarks such as Task-Free CL (Aljundi et al., 2019a; Prabhu
et al., 2020) and Si-Blurry (Moon et al., 2023) have been proposed, progressively relaxing task-
awareness and enforcing stream-based learning. Correspondingly, GCL methods adapt replay-based
sampling (Aljundi et al., 2019b; Bang et al., 2021), memory management (Koh et al., 2021), or
PET-based designs (Moon et al., 2023; Kang et al., 2025). However, replay methods raise pri-
vacy and scalability concerns, while recent PET-based methods (e.g., MVP (Moon et al., 2023) and
MISA (Kang et al., 2025)) still suffer from limited representation capacity and lack principled mech-
anisms for prompt expert selection under non-stationary inputs. Consequently, their improvements
over naive PTM-based baselines remain modest.

C IMPLEMENTATION DETAILS

C.1 TRAINING SETUP

We follow the previous GCL studies (Moon et al., 2023; Kang et al., 2025) for a fair comparison.
The standard ViT-B/16 transformer backbone has an embedding dimension of d = 768. For prompt-
based methods, we unify the prompt length to 5 and the position to insert the prompt as the first
five layers of ViT. All methods are trained with an Adam optimizer with a learning rate 0.005 and
zero weight decay. We set the batch size to 64, the epoch number to 1 (online learning), and the
online iteration of each batch to 3. All images are cropped and resized to 224 × 224 to fit the ViT
format using standard data transformation operations (resize, random crop, random horizontal flip
and normalization). Moreover, the logit maskm trick in Sec. 3.2 is generally applied to all methods
to enhance training stability. All experiment jobs are performed on the same Linux server with Intel
Xeon Silver 4316 2.3GHz CPUs (20 cores), 1 NVIDIA RTX 4090 GPU. For random seeds, we use
the fixed values 1, 2, 3, 4, and 5 for all parallel runs.
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C.2 BASELINES

Unless otherwise specified, all baselines share the common ViT-B/16 backbone, single-pass Si-
Blurry streams, optimizer, and data preprocessing described at the beginning of this section; below,
we highlight method-specific architectures and the GCL-specific adaptations.

Sequential fine-tuning (Seq FT / SL) and Linear probing. Seq FT fine-tunes all parameters of the
ViT-B/16 backbone and classifier on the Si-Blurry streams without replay buffers or task-specific
heads; SL is an otherwise identical variant with a smaller learning rate (i.e., 5 × 10−5, 10 times
smaller than 0.005 used by other baselines) to provide a more optimistic lower bound (Zhang et al.,
2023). Linear probing instead freezes the backbone and trains only a linear classifier, with no prompt
modules or expert structures; together, these methods serve as simple PTM-based lower bounds.

Prompt-based CL baselines (L2P, DualPrompt, CODA-Prompt). For L2P (Wang et al., 2022c),
DualPrompt (Wang et al., 2022b), and CODA-Prompt (Smith et al., 2023), we keep their original
prompt-controller designs (key-based prompt pool in L2P, global+task prompts in DualPrompt, and
attention-based prompts in CODA-Prompt), but adapt them to GCL by freezing the ViT-B/16 back-
bone and unifying prompt length and insertion position as in Sec. C.1. All three methods are trained
in a single online pass over the Si-Blurry streams with the same update schedule as FlyPrompt, with-
out extra replay or offline fine-tuning, so that differences in performance come from their prompt
mechanisms rather than from additional data passes.

GCL baselines (MVP, MISA). MVP (Moon et al., 2023) and MISA (Kang et al., 2025) are im-
plemented on top of the same ViT-B/16 backbone and Si-Blurry streams. We follow their official
configurations for expert/prompt structures and initialization, while enforcing the unified prompt
configuration and online training protocol of Sec. C.1. As in prior work, they maintain session-wise
experts or prompts, but do not use any privileged task oracle beyond the evolving data stream; their
routing structures can be interpreted in the same way as FlyPrompt’s experts discussed in Sec. D.
For fairness, MVP and MISA also use the batch-seen class logit mask in Sec. 3.2, whose effect is
ablated alongside other mask types in Tab. 15.

Offline PTM-based CL methods (S-Prompt++, HiDe-Prompt/LoRA/Adapter, NoRGa, SD-
LoRA). S-Prompt++ (Wang et al., 2022a) introduces prompt experts with a mixture-of-experts
(MoE) structure with linear gating, while HiDe-Prompt/LoRA/Adapter (Wang et al., 2023a) and
NoRGa (Le et al., 2024) build hierarchical decompositions and stronger MoE-based routing on
top of S-Prompt++, and SD-LoRA Wu et al. (2025) leverages structured low-rank adapters by de-
composing expert LoRA into learnable amplitude and fixed direction; all of these are originally
designed for offline or task/class-incremental CL. Specifically, HiDe and NoRGa consist of a two-
stage TIP+WTP (task-ID prediction then within-task prediction) pipeline. To make them compatible
with GCL and Si-Blurry, we adapt their TIP step as follows: when the method predicts a class, it is
allowed to activate all prompts corresponding to the candidate task IDs associated with that class,
and we count the prediction as correct if any activated prompt outputs the true label. This is an in-
tentionally favorable modification for these baselines. In addition, any feature statistics required by
their alignment modules (e.g., for HiDe or NoRGa) are accumulated online from the stream, rather
than being computed from stored per-task datasets. Quantitative comparisons of these adapted of-
fline PTM-based methods with FlyPrompt are reported in Tab. 12.

Analytic random-projection baselines (RanPAC variants). RanPAC (McDonnell et al., 2024)
was originally proposed for offline class-incremental learning, where the PTM is fine-tuned on the
first task, frozen, and all task-1 features are recomputed and stored to form a stable Gram matrix
for closed-form ridge regression; this protocol is incompatible with single-pass GCL and blurry
task boundaries. To ensure a fair analytic baseline, we adapt RanPAC into three GCL-compliant
variants: RanPAC† fine-tunes the PTM on the first Si-Blurry session without storing features and
then solves a closed-form ridge classifier on the resulting random-feature representations, serving
as the main analytic random-projection baseline in our ablations; RanPAC‡ freezes the PTM during
the first session and stores all features to approximate the original offline setting while still respect-
ing the single-pass constraint on labels; RanPAC∗ simultaneously fine-tunes the PTM and collects
features during the first session, which yields an ill-conditioned Gram matrix due to representation
drift but offers an optimistic upper bound on analytic-classifier performance under our setting. As
summarized in Tab. 13, FlyPrompt consistently outperforms all RanPAC variants across datasets.
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D DISCUSSION OF TASK BOUNDARY IN SI-BLURRY

Table 8: Performance comparison of different numbers of tasks and experts for GCL methods on
CIFAR-100 dataset over Sup-21K. “task-correlated” indicates that the initialization and training of
expert parameters are aligned with task/sessions. w denotes the sample budget (window size) of each
expert when methods adopt a self-triggered expert allocation mechanism. All results are reported as
an average of five parallel runs (± standard deviation) with different random seeds.

# of Tasks # of Experts MVP MISA FlyPrompt
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

5

5 (task-correlated) 67.74±4.96 63.22±0.69 80.35±2.39 80.75±1.24 83.24±2.23 86.76±0.73

5 (w = 10000) 67.75±4.96 63.22±0.76 80.60±2.06 81.73±1.17 83.67±2.23 85.78±0.62

10 (w = 5000) 67.23±5.06 63.47±0.78 79.95±1.86 81.32±1.15 83.40±2.28 85.43±0.32

20 (w = 2500) 67.19±4.80 64.06±1.48 79.94±1.75 81.03±0.92 82.26±1.94 84.48±0.64

10

10 (task-correlated) 58.23±3.42 61.13±6.00 75.71±3.10 80.22±0.47 77.65±3.05 84.87±0.50

5 (w = 10000) 58.49±3.57 61.98±6.19 76.25±3.10 80.62±0.62 77.28±2.79 84.63±0.50

10 (w = 5000) 58.19±3.42 60.80±6.48 75.69±3.11 80.18±0.41 76.96±3.23 84.03±0.39

20 (w = 2500) 58.46±3.34 62.15±5.28 75.73±2.80 80.66±0.61 76.47±3.38 83.39±0.55

20

20 (task-correlated) 56.52±3.20 56.87±5.18 73.96±0.72 77.98±1.17 75.87±1.93 81.98±1.12

5 (w = 10000) 56.59±3.34 56.58±6.76 74.27±0.97 77.89±1.60 76.12±1.57 81.90±0.32

10 (w = 5000) 56.35±3.38 56.80±6.57 73.86±0.82 77.59±1.42 76.12±1.21 82.21±0.80

20 (w = 2500) 56.48±3.15 56.86±5.39 73.66±0.85 77.70±1.24 75.36±1.65 81.13±0.55

GCL (Buzzega et al., 2020) is defined by a single-pass, non-stationary data stream without task
boundaries during training and without a task oracle at test time. The Si-Blurry benchmark (Moon
et al., 2023) that we adopt has been carefully analyzed in subsequent work (Kang et al., 2025): by
controlling the disjoint-class ratio rD and blurry-sample ratio rB, it generates streams where (i) the
number of active classes can vary across sessions, (ii) classes may reoccur across sessions, and (iii)
the number of samples per class and per session is randomized (Mi et al., 2020) In particular, when
rD approaching 0, the nominal “task” or “session” index becomes decorrelated from distributional
changes. These properties ensure that Si-Blurry conforms to the core GCL assumptions, rather than
reducing to standard task-incremental CIL.

Within this setting, FlyPrompt does not assume any privileged boundary information beyond what is
already used by prior GCL methods such as MVP and MISA. The “task” or “session” index provided
by Si-Blurry is treated as a conceptual device to describe how the benchmark constructs streams,
not as a supervision signal for the model. In our implementation, expert indices are aligned with
nominal session identities purely for convenience: the same behavior can be reproduced by starting a
new expert after a fixed number of observed samples or when a user-defined computational/storage
budget is reached, without accessing the task index. Moreover, the total number of experts T is
not a hard-coded prior; matrices such as Q ∈ RM×T and the router head can be dynamically
extended from T to T + 1 via zero-padding, analogous to adding classes in a standard classifier.
Implementation details for how both GCL methods and offline PTM-based baselines are instantiated
under this regime are summarized in Appendix C.2.

To empirically validate that FlyPrompt and comparable GCL baselines do not gain an advantage
from Si-Blurry’s session structure, we further compare task-aligned expert management with a self-
triggered expert allocation mechanism. In the self-triggered setup, each method maintains a fixed
sample budget and freezes the current expert while initializing a new one whenever the number of
observed samples reaches a predefined threshold, fully decoupling expert updates from external task
segmentation. We evaluate multiple combinations of nominal task counts (# of Tasks = 5, 10, 20)
and expert budgets (# of Experts = 5, 10, 20) on CIFAR-100, with corresponding sample budgets
chosen to cover the 50K training examples. As summarized in Tab. 8, self-triggered expert initial-
ization achieves performance on par with, or slightly better than, session-aligned setups for MVP,
MISA, and FlyPrompt across all tested budgets. This confirms that (i) task-switching signals of-
fer no measurable benefit in this benchmark, and (ii) our expert management mechanism does not
exploit any extra boundary information.
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E THEORETICAL PROOFS

E.1 PROOFS FOR REAR (THEOREM 1)

NOTATION AND ASSUMPTIONS

We repeat and fix the notation used throughout the proof of Theorem 1:

1. fθ : X → Rd is the given pretrained backbone. For an input x we write h = fθ(x) ∈ Rd.
2. R ∈ Rd×M is a random matrix with i.i.d. N (0, 1) entries; the j-th column is rj ∈ Rd.
3. The random-expanded feature map is

φ(x) =
(
φ1(x), . . . , φM (x)

)⊤
, φj(x) = σ(h⊤rj).

4. Assume embedding-boundedness: ∥h∥2 ≤ H for all x. (This can be enforced in practice
by layer-norm or clipping.)

5. Activation σ : R → R is Lσ-Lipschitz and has linear growth |σ(z)| ≤ C(1 + |z|). ReLU
satisfies these with Lσ = 1 and linear growth C = 1.

6. For training, we accumulate batches (or singletons) to form

G =

N∑
i=1

φ(xi)φ(xi)
⊤ ∈ RM×M , Q =

N∑
i=1

φ(xi)c
⊤
i ∈ RM×T ,

where ci ∈ {0, 1}T is the one-hot indicator of the target expert; see Eq. (2)).
7. Ridge solution (router):

Û⊤ = (G+ λI)−1Q, λ > 0,

with regularization parameter λ as in Eq. (4).
8. For the theoretical analysis, we treat the training pairs (xi, yi) as i.i.d. draws from an un-

derlying distribution over X × {1, . . . , T}, with a fixed and finite number of experts T .

9. For the margin-based routing-accuracy corollary below, we additionally assume that there
exists a margin γ > 0 such that, for the population minimizer U⋆ and almost every input x,
the score of the correct expert t⋆(x) satisfies sU⋆(x)t⋆(x) ≥ sU⋆(x)t+γ for all t ̸= t⋆(x),
where sU (x) := φ(x)U

⊤.2

At the population level we consider the regularized squared risk

R(U) := E
∥∥sU (X)− C

∥∥2
2
+ λ∥U∥2F ,

where (X,C) denotes a random variable pair drawn from the same distribution as the training
examples (xi, ci), with X ∈ X and C ∈ {0, 1}T is the one-hot indicator of the target expert. We
write sU (x) := φ(x)U⊤ for the router scores as in Eq. (5). The minimizer of R in the kernel-
induced feature space is precisely the U⋆ appearing below.

We then state the complete Theorem 1 here based on the above assumptions:
Theorem (REAR, full). Under the standing assumptions above, form the online statistics G,Q as
in Eq. (2) and the ridge solution Û as in Eq. (4). Let N be the total number of samples used to form
G,Q and let U⋆ denote the population regularized minimizer in the feature space induced by the
kernel k(h,h′) = Er[σ(h⊤r)σ(h′⊤r)]. Then for any δ ∈ (0, 1), with probability at least 1 − δ
(overR and the training samples), the excess (population) squared risk decomposes as

R(Û)−R(U⋆) ≤ Efeat(M, δ) + Eestim(N,λ, δ) + Ereg(λ),
where, for universal constants Ci (depending on H,Lσ, C),

Efeat(M, δ) ≤ C1

√
log(N/δ)

M
, Eestim(N,λ, δ) ≤ C2

1√
N
· 1
λ
, Ereg(λ) ≤ C3λ∥U⋆∥2F .

2This assumption is not needed for the excess-risk decomposition in Theorem 1 itself, but acts as a bridge.
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E.1.1 LEMMA: RANDOM-FEATURE CONCENTRATION

Lemma 1. Let S = {x1, . . . ,xN} be the finite training set and write hi = fθ(xi). Define the
kernel

k(h,h′) := Er∼N (0,Id)

[
σ(h⊤r)σ(h′⊤r)

]
.

Then, under the standing assumptions, for any δ ∈ (0, 1) and any ε ∈ (0, 1), if

M ≥ Crf ·
log(N2/δ)

ε2

(with Crf depending only on H,Lσ, C above), then with probability at least 1− δ overR,

max
1≤i,j≤N

∣∣∣ 1
M
φ(xi)

⊤φ(xj)− k(hi,hj)
∣∣∣ ≤ ε.

Proof. Fix a pair (i, j). Write

Zℓ := φℓ(xi)φℓ(xj)− E[φℓ(xi)φℓ(xj)], ℓ = 1, . . . ,M.

The Zℓ are independent (across ℓ) mean-zero random variables because columns rℓ are independent.
We will apply Bernstein’s inequality for sums of independent sub-exponential variables; to do so,
we need a variance proxy and a uniform tail bound.

From the growth assumption |σ(z)| ≤ C(1 + |z|) and rℓ ∼ N (0, Id), the marginal φℓ(x) =
σ(h⊤

i rℓ) is sub-Gaussian / sub-exponential: more precisely, since h⊤
i rℓ ∼ N (0, ∥hi∥2) ≤

N (0, H2), we have for some constants v, b (depending on H,Lσ, C) that P(|φℓ(x)| ≥ t) ≤
2 exp(−ct) for large t; thus φℓ(x)φℓ(x′) is sub-exponential with parameters bounded by functions
of H,Lσ, C. Concretely, one can verify

∥Zℓ∥ψ1
≤ b̃

for a finite constant b̃ depending only on H,Lσ, C, where ∥ · ∥ψ1 denotes the standard sub-
exponential Orlicz norm. Hence, applying Bernstein’s inequality for sub-exponential variables
yields, for any τ > 0,

P
(∣∣∣ M∑

ℓ=1

Zℓ

∣∣∣ ≥ τ
)
≤ 2 exp

(
− cmin

( τ2

Mṽ2
,
τ

b̃

))
,

with constants ṽ, b̃, c > 0 determined by the sub-exponential parameters.

Choose τ = Mε. Plugging τ = Mε and requiring the RHS to be ≤ δ/N2 (to union bound over all
≤ N2 pairs) yields the condition

M ≥ Crf
log(N2/δ)

ε2

for some Crf (combining cases of Bernstein). This gives, for fixed pair (i, j),

P
(∣∣ 1

M

M∑
ℓ=1

Zℓ
∣∣ ≥ ε

)
≤ δ

N2
.

Apply union bound over all ≤ N2 ordered pairs (i, j). This yields the claimed uniform bound with
probability at least 1− δ.

Remarks on applicability of Bernstein. We used Bernstein for independent sub-exponential sum-
mands. The summands are independent across random-feature index ℓ; sub-exponentiality follows
from (i) Gaussianity of rℓ and (ii) Lipschitz + linear-growth of σ. For ReLU (which is Lipschitz
with linear growth) the same argument applies (moments of Gaussian tails control tails of σ(·)).
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E.1.2 LEMMA: RIDGE PERTURBATION

We next show that when the empirical feature covariance concentrates around its population coun-
terpart and the empirical cross-covariance concentrates, then the finite-sample ridge solution is close
to the population ridge solution.

Lemma 2. Let Φ ∈ RN×M be the feature matrix with rows φ(xi)⊤, define empirical covariance

Σ̂ =
1

N
Φ⊤Φ ∈ RM×M , b̂ =

1

N
Φ⊤Y ∈ RM×T ,

where Y ∈ RN×T is the one-hot label matrix (or soft labels). Let the population quantities be
Σ = E[φ(x)φ(x)⊤] and b = E[φ(x)c⊤]. Denote population ridge solution

U⋆
λ := (Σ + λI)−1b, Ûλ := (Σ̂ + λI)−1b̂.

If ∥Σ̂− Σ∥op ≤ λ
2 and ∥b̂− b∥F ≤ ϵb, then

∥Ûλ − U⋆
λ∥F ≤

2

λ
ϵb +

2

λ2
∥b∥F ∥Σ̂− Σ∥op.

Proof. We write

Ûλ − U⋆
λ = (Σ̂ + λI)−1(̂b− b) +

[
(Σ̂ + λI)−1 − (Σ + λI)−1

]
b.

For the first term use operator norm bound ∥(Σ̂ + λI)−1∥op ≤ 1/λ to get

∥(Σ̂ + λI)−1(̂b− b)∥F ≤
1

λ
∥b̂− b∥F .

For the second term use the identity A−1−B−1 = A−1(B−A)B−1 with A = Σ̂+λI , B = Σ+λI .
Hence

∥A−1 −B−1∥op ≤ ∥A−1∥op∥A−B∥op∥B−1∥op ≤
1

λ
∥Σ̂− Σ∥op

1

λ
.

Thus ∥∥[(Σ̂ + λI)−1 − (Σ + λI)−1]b
∥∥
F
≤ 1

λ2
∥Σ̂− Σ∥op∥b∥F .

Combining the two terms and tightening constants when ∥Σ̂− Σ∥op ≤ λ/2 gives the stated bound.

Concentration of Σ̂ and b̂. We next control the empirical covariance and cross-covariance. Recall

Σ̂ =
1

N

N∑
i=1

φ(xi)φ(xi)
⊤, Σ = E[φ(x)φ(x)⊤].

It is convenient to write

Σ̂− Σ =

N∑
i=1

Xi, Xi :=
1

N

(
φ(xi)φ(xi)

⊤ − Σ
)
.

Each Xi is self-adjoint and satisfies E[Xi] = 0. Under the bounded-embedding and activation
assumptions (cf. Lemma 1), there exists a constant Cφ > 0 (depending only on (H,Lσ, C)) such
that ∥φ(x)∥2 ≤ Cφ almost surely. Hence, for every i,

∥Xi∥op ≤
1

N

(
∥φ(xi)φ(xi)⊤∥op + ∥Σ∥op

)
≤ 1

N

(
C2
φ + ∥Σ∥op

)
=:

L0

N
.

Similarly, we can bound the “matrix variance” term

v2 :=
∥∥∥ N∑
i=1

E[X2
i ]
∥∥∥
op

= N
∥∥∥E[X2

1 ]
∥∥∥
op
≤ N

N2

∥∥∥E[(φ(x)φ(x)⊤ − Σ)2
]∥∥∥

op
≤ V0

N
,
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for some constant V0 > 0 depending only on (H,Lσ, C). For completeness, we recall a standard
matrix Bernstein inequality (Theorem 6.1 in Tropp (2012)): if {Xi}Ni=1 are independent, mean-zero,
self-adjoint matrices with ∥Xi∥op ≤ L almost surely and

v2 :=
∥∥∥ N∑
i=1

E[X2
i ]
∥∥∥
op
,

then for all t > 0:

P
(∥∥∥ N∑

i=1

Xi

∥∥∥
op
≥ t

)
≤ 2D exp

(
− t2/2

v2 + Lt/3

)
,

where D denotes the matrix dimension (in our case D = M , the feature dimension). Applying this
with t = ε and our bounds L ≤ L0/N and v2 ≤ V0/N gives

P
(
∥Σ̂− Σ∥op ≥ ε

)
= P

(∥∥∥ N∑
i=1

Xi

∥∥∥
op
≥ ε

)
≤ 2M exp

(
− Nε2/2

V0 + L0ε/3

)
.

For ε ∈ (0, 1) the denominator in the exponent is bounded above by a constant multiple of V0, so
there exists C ′ > 0 (depending only on (H,Lσ, C)) such that, for all δ ∈ (0, 1), taking

ε = C ′

√
log(M/δ)

N
ensures

P
(
∥Σ̂− Σ∥op ≥ ε

)
≤ δ.

Equivalently, with probability at least 1− δ,

∥Σ̂− Σ∥op ≤ C ′

√
log(M/δ)

N
.

For the empirical cross-covariance b̂ = 1
N

∑N
i=1φ(xi)c

⊤
i and its population counterpart b =

E[φ(x)c⊤] we apply the same argument column-wise (each column is an average of bounded sub-
exponential vectors of length M ) and obtain

∥b̂− b∥F ≤ C ′′

√
log(T/δ)

N
,

for some constant C ′′ > 0 depending only on the same problem parameters. Adjusting constants
to account for the two events and taking a union bound, we may assume that both inequalities hold
simultaneously with probability at least 1− δ. Choosing N large enough to make ∥Σ̂−Σ∥op ≤ λ/2

and to make ∥b̂ − b∥F (denoted ϵb in Lemma 2) small then yields the desired estimation error term
in Lemma 2.

E.1.3 LEMMA: ONLINE STATISTICS IMPLEMENT BATCH RIDGE

Lemma 3. IfG andQ are formed by accumulating per-example contributions

G =

N∑
i=1

φ(xi)φ(xi)
⊤, Q =

N∑
i=1

φ(xi)c
⊤
i ,

then the closed-form solution Û⊤ = (G+λI)−1Q equals the ridge regression solution computed in
batch on featuresφ(xi) and labels ci. Moreover, if the online implementation maintains (G+λI)−1

via rank-1 updates, numerical equivalence holds up to floating-point precision.

Proof. This is algebraic: batch ridge with design matrix Φ and labels Y solves Û⊤ = (Φ⊤Φ +
λI)−1Φ⊤Y . But Φ⊤Φ =

∑
iφ(xi)φ(xi)

⊤ = G and Φ⊤Y = Q. The equality follows. For in-
cremental numerical maintenance of the inverse, standard Sherman–Morrison or Woodbury updates
apply; also numerically stable Cholesky-updates are recommended when M is large.
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E.1.4 COMBINING LEMMAS: PROOF OF THEOREM 1

Proof. The excess population risk decomposes as

R(Û)−R(U⋆) = R(Û)−R(U⋆
λ)︸ ︷︷ ︸

estimation error

+R(U⋆
λ)−R(U⋆)︸ ︷︷ ︸

reg. bias

.

The regularization bias is the usual ridge bias and yields the Ereg(λ) term; standard calculus shows
it is bounded by λ∥U⋆∥2F up to constant factors.

For the estimation error, apply Lemma 2 to relate the empirical ridge solution (which equals the on-
line Û by Lemma 3) to the population ridge solution U⋆

λ . The two perturbation terms are controlled
by ∥Σ̂−Σ∥op and ∥b̂−b∥F , which in turn are bounded by the matrix Bernstein concentration bounds
for Σ̂ and b̂ derived above. This yields the stated O

(
1√
N
· 1λ

)
behavior for Eestim (explicit constants

follow from the above bounds).

Finally, the approximation error due to random features is precisely Lemma 1: replacing the
kernel k by its Monte Carlo approximation using M independent features introduces a uniform
O
(√

log(N/δ)/M
)

perturbation in inner products, which propagates to the excess risk as the term
Efeat(M, δ) displayed in Theorem 1.

Margin-based routing accuracy. Under the additional margin assumption in the REAR stand-
ing assumptions and a uniform bound ∥φ(x)∥2 ≤ Cφ (for some constant Cφ depending only on
(H,Lσ, C)), the excess risk bound above can be converted into a bound on misrouting probability.
Let t̂(x) := argmaxt sÛ (x)t and t⋆(x) := argmaxt sU⋆(x)t denote the experts selected by Û and
U⋆, respectively. Then

P
(
t̂(X) ̸= t⋆(X)

)
≤

8C2
φ

λγ2

(
R(Û)−R(U⋆)

)
.

Proof. On the event {t̂(x) ̸= t⋆(x)}, the margin condition implies

γ ≤ sU⋆(x)t⋆(x) − sU⋆(x)t̂(x) ≤ 2max
t

∣∣sU⋆(x)t − sÛ (x)t
∣∣.

Hence, 1{t̂(x) ̸= t⋆(x)} ≤ (2/γ)2
∥∥sÛ (x)− sU⋆(x)

∥∥2
2
.

Given sU (x) = φ(x)U
⊤ and Cauchy–Schwarz yields:

max
t
|sU⋆(x)t − sÛ (x)t| ≤ ∥φ(x)∥2 ∥Û − U⋆∥F ≤ Cφ∥Û − U⋆∥F ,

⇒ 1{t̂(x) ̸= t⋆(x)} ≤ (2Cφ/γ)
2∥Û − U⋆∥2F .

Since the regularized risk is defined as R(U) := E∥sU (X) − C∥22 + λ∥U∥2F , the quadratic ridge
term λ∥U∥2F makesR (at least) λ-strongly convex in U . In particular, strong convexity implies:

R(Û)−R(U⋆) ≥ (λ/2)∥Û − U⋆∥2F ,

⇒ ∥Û − U⋆∥2F ≤ (2/λ)
(
R(Û)−R(U⋆)

)
.

Combining these inequalities and taking expectations over X gives the stated bound.

E.2 PROOFS FOR TE2 (THEOREM 2)

E.2.1 NOTATION AND ASSUMPTIONS

We reuse notation from the main text. For a fixed expert (prompt/head), we denote:

• W ⋆
t ∈ R|Y|×D: the (population) time-t optimal linear parameter (in the chosen feature

space) for that expert.
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• Wt: the instantaneous (online) estimator after observing the t-th update; we model Wt =
W ⋆

t + ξt.
• EMA head with decay α ∈ (0, 1):

W̃
(α)
t = (1− α)

∑
k≥0

αkWt−k, L(α) = 1
1−α .

• Discounted path length (drift measure):

Pt :=
∑
j≥1

γj−1
∥∥W ⋆

t−j+1 −W ⋆
t−j

∥∥,
where we define the discount factor to match the EMA decay, i.e., γ = α or compara-

ble. This is a discounted analogue of the standard path length / variation measure used in
dynamic regret (Zinkevich, 2003; Besbes et al., 2015).

• Standing conditions: finite Pt, zero-mean noise with bounded variance:

E[ξt] = 0, E∥ξt∥2 ≤ ζ2.

• (Optional, for classification calibration) A margin ∆ > 0 and a Lipschitz map-to-logits
with constant Cf imply a bound on 0/1 error from parameter MSE.

We then state the complete Theorem 2 here based on the above assumptions:
Theorem (TE2, full). Under the standing conditions above, fix t and an EMA decay α with L =
1/(1− α). There exist constants C1, C2 > 0 such that

E
∥∥W̃ (α)

t −W ⋆
t

∥∥2 ≤ C1
ζ2

L
+ C2 (LPt)

2.

Moreover, if we keep a geometric grid of windows {Li}mi=1 with ratio r > 1 (e.g., Li = ri−1), then
for every t there exists an index it with

E
∥∥W̃ (αit )

t −W ⋆
t

∥∥2 ≤ c(r) min
L≥1

{
C1

ζ2

L
+ C2 (LPt)

2
}
,

where c(r) depends only on the grid ratio r (one can take, for example, c(r) = max(r2, r) by
the argument below). Additionally, if a margin ∆ > 0 holds and the logits map is Lipschitz with
constant Cf , then the above parameter MSE implies a classification error bound O

(
(Cfε/∆)2

)
whenever E∥W̃ (α)

t −W ⋆
t ∥2 ≤ ε2.

E.2.2 PROOF OF THEOREM 2

Proof. The proof proceeds via a variance–bias decomposition and a geometric grid selection argu-
ment, followed by a calibration from parameter MSE to classification error.

We start by decomposing the error into the variance term. Define the difference between the EMA
and the population optimum

W̃
(α)
t −W ⋆

t = (1− α)
∑
k≥0

αk ξt−k,

W
⋆

t := (1− α)
∑
k≥0

αkW ⋆
t−k,

whereW
⋆

t is the EMA of the population optima.

Since we have E[ξt] = 0 and E∥ξt∥2 ≤ ζ2, and the EMA weights are ak = (1 − α)αk, we can
compute their squared sum explicitly:∑

k≥0

a2k = (1− α)2
∑
k≥0

α2k =
(1− α)2

1− α2
=

1− α

1 + α
≤ 1

L
,
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Therefore,

E
∥∥W̃ (α)

t −W ⋆

t

∥∥2 = E
∥∥∥∑
k≥0

akξt−k

∥∥∥2 ≤ ζ2
∑
k≥0

a2k ≤
ζ2

L
,

which matches the variance term C1 ζ
2/L in Theorem 2 (with C1 absorbing the constant factor).

Next, we address the bias term. The difference between the EMA of the population optima and the
actual population optimum is given by:

W
⋆

t −W ⋆
t =

∑
k≥0

ak(W
⋆
t−k −W ⋆

t ).

Reordering sums yields:∥∥W ⋆

t −W ⋆
t

∥∥ ≤ ∑
j≥1

(∑
k≥j

ak

)
∥W ⋆

t−j+1 −W ⋆
t−j∥ =

∑
j≥1

αj ∆t−j+1,

where ∆u = ∥W ⋆
u −W ⋆

u−1∥.
(11)

Using the discounted path length Pt with the same discount factor γ = α as in the EMA definition,
we can simply rewrite the above bound as∥∥W ⋆

t −W ⋆
t

∥∥ =
∑
j≥1

αj ∆t−j+1 = α
∑
j≥1

αj−1∆t−j+1 = αPt ≤ LPt,

where we used L = 1/(1− α) ≥ α. Consequently, the squared bias admits the explicit bound∥∥W ⋆

t −W ⋆
t

∥∥2 ≤ (LPt)
2,

which corresponds to the term C2(LPt)
2 in Theorem 2.

Then, by combining the variance and bias terms, we apply the inequality ∥a+b∥2 ≤ 2∥a∥2+2∥b∥2,
which yields the claimed MSE bound:

E
[∥∥W̃ (α)

t −W ⋆

t

∥∥2] ≤ 2
ζ2

L
+ 2 (LPt)

2.

Therefore, in Theorem 2 we may take the explicit choice C1 = C2 = 2. If we allow γ to differ
slightly from α, the constant C2 becomes (α/γ)2 (bounded if we restrict γ ∈ [(1− ϵ)α, (1 + ϵ)α]).

For the geometric bank, it is convenient to write the bound in the generic form

f(L) :=
A

L
+B(LPt)

2, A ≍ ζ2, B ≍ 1.

A direct derivative calculation of f ′(L) shows that the minimizer over L > 0 is

f ′(L) = − A

L2
+ 2BP 2

t L⇒ L⋆ =
( A

2BP 2
t

)1/3

.

If we maintain a geometric grid Li = ri−1 with ratio r > 1, then for any L⋆ there exists an index it
such that Lit ∈ [L⋆/r, rL⋆]. Writing L = L⋆η with η ∈ [1/r, r] and using the optimality condition
A/L⋆ = 2B(L⋆Pt)

2, we obtain
f(L)

f(L⋆)
=

2B(L⋆Pt)
2/η + η2B(L⋆Pt)

2

3B(L⋆Pt)2
=

2/η + η2

3
.

The right-hand side is maximized over η ∈ [1/r, r] at one of the endpoints; a simple bound yields

sup
η∈[1/r,r]

2/η + η2

3
≤ max

(
2

3r
+

r2

3
,
2r

3
+

1

3r2

)
≤ max(r2, r).

Therefore f(Lit) ≤ c(r) f(L⋆) with the explicit choice c(r) = max(r2, r) used in Theorem 2
(obviously c(r) = r2, given r > 1 in our case.)

From the general classification error’s view, by the Lipschitz-to-logit condition, the induced logit
error is at most:

Cf ∥W̃ −W ⋆∥.

Under the margin condition (∆ > 0), the standard margin-to-0/1 calibration gives an error bound
O((Cfε/∆)2) when E∥W̃ −W ⋆∥2 ≤ ε2.
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F ADDITIONAL EXPERIMENT RESULTS

F.1 EXPERIMENT WITH DISJOINT AND BLURRY SETUP VARIANTS

Table 9: Performance comparison of rD variants in FlyPrompt. We fixed rB = 10% and use
Sup-21K backbone PTM. All results are reported as an average of five parallel runs (± standard
deviation) with different random seeds.

rD(%) Method CIFAR-100 ImageNet-R CUB-200
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

0 (pure blurry)

L2P 73.64±1.69 81.71±1.28 42.97±1.91 42.53±0.79 64.62±3.37 62.72±3.32

DualPrompt 72.16±2.40 77.52±1.43 45.08±3.48 42.34±1.55 65.42±3.53 62.84±2.21

CODA-P 72.33±5.84 78.56±4.46 50.31±4.42 48.88±3.46 66.64±3.42 63.70±2.48

MVP 67.10±2.33 74.94±7.45 39.04±1.49 32.28±3.12 56.86±3.71 55.50±6.71

MISA 78.38±1.49 83.04±1.44 51.78±3.22 47.64±0.64 67.38±3.25 64.49±2.55

FlyPrompt (ours) 80.12±1.38 87.11±0.52 55.44±1.82 55.89±0.86 71.60±3.49 74.72±1.69

50 (mixed)

L2P 76.23±2.73 79.11±1.43 44.40±1.03 42.03±1.72 64.30±2.18 61.42±2.13

DualPrompt 76.04±3.32 76.62±0.74 46.13±1.94 40.80±1.04 65.03±2.24 62.43±1.78

CODA-P 79.13±3.06 80.91±0.70 51.87±2.81 48.09±2.75 66.01±2.20 62.90±2.46

MVP 67.74±4.96 63.22±0.69 39.50±1.41 32.63±3.95 54.69±3.14 50.07±3.86

MISA 80.35±2.39 80.75±1.24 51.52±2.09 45.08±1.43 65.40±3.01 60.20±1.82

FlyPrompt (ours) 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91 70.64±2.85 73.40±1.88

100 (disjoint)

L2P 82.98±0.72 78.79±0.95 45.48±0.71 43.12±0.75 71.74±3.58 61.52±1.82

DualPrompt 81.12±2.10 75.94±0.37 46.79±2.00 41.42±0.63 72.81±3.80 62.46±0.97

CODA-P 82.68±3.99 77.97±3.19 53.01±3.01 49.31±2.87 73.95±4.10 63.90±0.94

MVP 74.92±1.10 56.17±2.98 40.43±0.51 28.32±5.55 63.41±2.52 43.80±2.60

MISA 85.67±1.01 81.04±1.02 53.88±1.99 47.63±0.78 74.27±3.56 62.97±1.44

FlyPrompt (ours) 88.25±0.90 85.51±0.64 57.41±0.95 55.69±0.33 78.14±3.62 74.34±0.74

Table 10: Performance comparison of rB variants in FlyPrompt. We fixed rD = 50% and use
Sup-21K PTM backbone. All results are reported as an average of five parallel runs (± standard
deviation) with different random seeds.

rB(%) Method CIFAR-100 ImageNet-R CUB-200
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

10

L2P 76.23±2.73 79.11±1.43 44.40±1.03 42.03±1.72 64.30±2.18 61.42±2.13

DualPrompt 76.04±3.32 76.62±0.74 46.13±1.94 40.80±1.04 65.03±2.24 62.43±1.78

CODA-P 79.13±3.06 80.91±0.70 51.87±2.81 48.09±2.75 66.01±2.20 62.90±2.46

MVP 67.74±4.96 63.22±0.69 39.50±1.41 32.63±3.95 54.69±3.14 50.07±3.86

MISA 80.35±2.39 80.75±1.24 51.52±2.09 45.08±1.43 65.40±3.01 60.20±1.82

FlyPrompt (ours) 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91 70.64±2.85 73.40±1.88

30

L2P 78.48±0.92 80.13±0.87 43.32±0.79 42.27±1.40 63.67±2.03 63.60±3.09

DualPrompt 77.76±1.65 77.50±0.49 45.11±1.09 41.01±0.70 64.36±1.98 63.72±2.22

CODA-P 81.50±1.20 82.65±0.72 50.55±2.24 47.58±2.81 65.89±1.42 64.97±2.83

MVP 71.01±1.70 65.71±4.60 38.62±1.35 32.43±4.75 54.16±4.56 51.04±6.89

MISA 82.54±1.08 82.50±0.68 51.69±0.94 47.09±1.16 67.13±1.72 66.53±2.39

FlyPrompt (ours) 84.61±1.25 86.89±0.38 55.30±0.86 55.43±1.04 70.19±2.01 74.25±1.27

50

L2P 77.44±2.42 80.31±0.69 44.39±1.72 43.66±1.04 65.42±2.71 64.62±1.63

DualPrompt 77.44±2.64 77.13±1.08 46.23±1.83 41.99±0.72 66.40±2.72 65.34±3.05

CODA-P 81.39±2.18 83.10±0.97 53.05±1.60 50.20±1.74 67.88±2.26 65.44±2.32

MVP 67.97±4.78 58.11±1.26 40.68±1.59 31.87±6.56 57.25±3.76 53.86±3.41

MISA 81.81±2.29 82.51±0.38 53.27±1.71 48.32±0.84 68.68±2.47 66.84±2.27

FlyPrompt (ours) 83.69±1.81 86.31±0.73 56.50±1.87 55.59±0.83 71.95±1.92 74.03±1.02

As detailed in Tabs. 9 and 10, FlyPrompt consistently outperforms baselines from the purely blurry
regime (rD = 0) to fully disjoint tasks (rD = 1, namely, online CIL) and across different blurry
ratios rB, demonstrating robustness under extreme GCL configurations and superior versatility.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F.2 GCL EVALUATION METRICS

Table 11: Average accuracy of 5 sessions and forgetting of different GCL methods over three
datasets. All results are reported as an average of five runs (± standard deviation) with different
random seeds.

PTM Method CIFAR-100 ImageNet-R CUB-200
Aavg(%, ↑) Flast(%, ↓) Aavg(%, ↑) Flast(%, ↓) Aavg(%, ↑) Flast(%, ↓)

Sup-21K

L2P 75.41±2.75 11.53±1.44 47.82±0.95 19.16±1.92 65.44±3.30 29.15±3.19

DualPrompt 75.96±2.56 11.42±0.91 49.90±2.34 18.24±4.34 66.54±3.05 27.18±2.91
CODA-P 78.73±3.09 9.95±1.30 55.75±2.83 18.49±2.44 67.19±2.98 27.43±3.42

MVP 64.70±4.14 33.19±2.33 40.14±1.39 43.39±4.23 52.42±5.06 47.61±5.73

MISA 79.67±1.78 9.67±1.39 55.78±1.41 21.46±4.25 66.92±3.12 30.06±3.70

FlyPrompt (ours) 82.72±2.69 5.03±1.16 60.38±1.76 13.42±1.74 72.22±4.35 10.97±1.52

Sup-21K/1K

L2P 60.98±10.04 14.88±6.27 50.21±3.09 35.88±4.51 43.72±5.19 35.05±9.31

DualPrompt 66.13±4.34 19.18±5.13 56.53±1.22 30.73±7.45 47.37±5.07 35.40±8.16

CODA-P 66.81±4.87 19.82±6.85 55.01±1.66 35.58±5.52 45.38±4.99 35.73±8.95

MVP 63.22±1.67 46.98±8.15 50.91±3.09 51.11±2.86 46.13±1.76 62.93±8.05

MISA 60.11±8.35 11.38±2.76 54.17±2.92 28.66±8.19 43.33±5.30 33.95±8.63
FlyPrompt (ours) 76.86±2.29 9.50±2.33 64.41±1.80 21.59±4.28 55.12±5.49 21.71±3.56

iBOT-21K

L2P 52.73±7.78 12.58±6.24 38.41±6.38 34.17±7.54 14.93±2.30 19.09±8.05
DualPrompt 62.86±7.45 19.22±4.22 46.07±2.16 37.96±9.50 21.96±5.20 30.18±8.79

CODA-P 59.59±7.94 22.20±5.61 49.47±2.79 41.21±6.19 18.77±6.28 28.98±9.54

MVP 61.48±2.55 50.23±11.27 44.01±4.18 62.17±6.10 30.92±2.26 62.20±5.81

MISA 62.87±3.76 17.34±6.20 44.62±3.36 35.62±11.69 19.48±4.88 21.18±10.00

FlyPrompt (ours) 73.08±2.18 8.38±1.52 59.40±1.84 23.40±3.20 30.78±8.41 18.85±4.15

iBOT-1K

L2P 48.97±6.18 16.47±7.80 41.23±7.31 33.01±8.96 19.75±3.57 21.26±11.09

DualPrompt 50.16±4.91 20.45±3.88 49.51±1.57 35.14±7.72 30.29±3.97 32.70±9.00

CODA-P 55.84±5.28 22.72±6.32 53.49±1.21 40.23±6.19 28.85±3.98 27.71±9.65

MVP 56.41±2.00 53.47±12.87 46.96±3.97 56.26±5.49 34.97±1.44 62.61±6.88

MISA 52.58±4.34 19.16±4.04 48.89±2.82 33.52±10.12 27.98±5.32 29.35±6.60

FlyPrompt (ours) 64.94±2.57 11.52±3.71 63.77±1.42 20.89±3.75 38.05±6.98 21.62±3.82

DINO-1K

L2P 45.45±6.86 14.82±6.81 38.98±7.34 33.00±7.22 23.21±3.68 24.23±9.93
DualPrompt 49.65±5.46 18.69±5.27 47.16±1.05 37.89±7.65 29.48±5.88 31.35±10.61

CODA-P 50.76±5.65 19.43±5.83 48.68±2.79 41.26±6.20 29.43±4.89 32.69±10.65

MVP 52.41±1.48 54.70±12.47 44.45±4.11 56.54±6.00 34.71±1.92 64.21±7.82

MISA 49.81±3.67 17.76±4.28 46.61±2.24 34.38±10.60 27.46±5.11 25.77±10.77

FlyPrompt (ours) 63.59±4.56 9.04±1.73 60.83±1.57 20.65±3.08 37.50±8.33 19.47±4.84

MoCo-1K

L2P 26.75±6.56 19.68±15.19 19.02±2.75 43.59±4.64 13.42±3.89 26.38±11.63
DualPrompt 49.61±7.76 14.79±4.09 41.37±1.80 35.07±5.93 21.87±4.80 28.42±9.47

CODA-P 48.26±5.59 16.97±6.15 44.71±2.43 43.27±2.27 22.33±3.94 30.90±10.77

MVP 52.82±2.35 55.42±15.00 38.68±3.83 55.87±4.26 30.74±2.46 62.97±5.67

MISA 53.46±6.41 16.19±5.26 45.41±4.62 34.42±8.60 26.92±4.88 35.50±7.97

FlyPrompt (ours) 60.16±6.88 7.69±2.42 55.95±1.60 21.27±2.89 26.52±6.31 20.69±3.58

Following Moon et al. (2023); Kang et al. (2025), we consider the standard evaluation metrics Aauc,
Alast, Aavg and Flast for GCL performance. We denote Ri,j as the accuracy recorded right after
session i with respect to the data in the session j. We then maintain a matrixR whose jth column is
the history of evaluation after each session with respect to the data in session j. Firstly we calculate
the final average accuracy Alast as:

Alast =
1

T

T∑
i=1

RT,i, (12)

average running accuracy Aavg:

Aavg =
1

T

T∑
i=1

Ri,i, (13)

and the final average forgetting Flast:

Flast =
1

T

T∑
i=1

(max(Rj)−RT,i), (14)

where Alast and Aavg are the higher the better and Flast is the lower the better. They are all conven-
tional metrics used in classic CL research.
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Moreover, Aauc (higher the better) is the anytime inference metric proposed by Koh et al. (2021)
to better evaluate the GCL performance during the learning process. Specifically, the evaluation of
GCL accuracy is performed every b batches. Throughout this work, we fix b = 1000. Denote the
total number of the assessments performed as S, then given the history a ∈ RS (where as shows
the accuracy of the model at time stamp s over the data it has observed so far), we calculate the area
under curve of any-time accuracy Aauc as :

Aauc =
1

S

S∑
s=1

as. (15)

In addition to these metrics, we also report the backward transfer (BWT) metric (Lin et al., 2022) to
quantify how learning later sessions influences performance on earlier ones. Using the same notation
Ri,j and T as above, we define

BWT =
1

T − 1

T−1∑
i=1

(
RT,i −Ri,i

)
. (16)

A positive BWT indicates that subsequent learning improves performance on previous sessions
(positive backward transfer), while a negative value implies net forgetting on earlier sessions. BWT
results of GCL methods are presented in Tab. 12.

F.3 COMPARISON WITH PROMINENT OFFLINE PTM-BASED METHODS

Table 12: Extended Comparison of performance, backward transfer, and computational cost across
PTM-based CL methods. All performance results are reported as an average of five parallel runs (±
standard deviation) with different random seeds, over the CIFAR-100 dataset and Sup-21K back-
bone. Parameter counts are measured in millions. Time cost is reported in seconds per batch.

Method Aauc(%, ↑) BWT (%, ↑) Total Param. Trainable Param. Training Time Inference Time

L2P 76.23±2.73 0.10±2.65 86.01 0.22 5.57 0.95
DualPrompt 76.04±3.32 −2.93±2.42 86.35 0.55 4.78 0.90
CODA-P 79.13±3.06 −0.83±2.17 86.72 0.92 4.75 0.94
MVP 67.74±4.96 −18.09±3.24 86.12 0.32 5.35 1.27
MISA 80.35±2.39 −1.76±2.28 86.37 0.58 4.78 0.90
S-Prompt++ 80.21±2.55 0.81±1.86 86.26 0.46 6.03 1.18
HiDe-Prompt 77.10±3.81 3.35±2.71 86.81 0.94 6.13 1.27
HiDe-LoRA 80.07±2.41 0.36±0.94 87.39 1.51 6.80 1.17
HiDe-Adapter 79.52±2.81 −2.05±1.95 87.41 1.53 6.68 1.04
NoRGa 78.89±3.33 2.72±1.98 86.81 0.94 6.69 1.05
SD-LoRA 79.26±2.21 −6.66±3.22 87.72 1.92 7.24 0.82
FlyPrompt (ours) 83.24±2.23 4.35±1.19 87.08 0.46 4.96 0.92

Table 13: Comparison between RanPAC variants and FlyPrompt over three GCL benchmarks. All
results are reported as an average of five parallel runs (± standard deviation) with different seeds.

Method CIFAR-100 ImageNet-R CUB-200
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

RanPAC† 69.91±3.88 79.92±0.07 47.14±2.18 50.75±2.15 60.18±5.52 66.21±6.15

RanPAC‡ 57.35±8.23 77.65±0.21 36.90±4.17 44.39±0.11 64.52±8.23 71.65±0.17

RanPAC∗ 77.88±4.28 86.52±1.15 53.18±2.22 54.71±2.48 69.64±3.89 72.30±1.09

FlyPrompt (ours) 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91 70.64±2.85 73.40±1.88

F.4 CKA ANALYSIS OF EXPERTS’ REPRESENTATION SIMILARITY

We use centered kernel alignment (CKA) (Kornblith et al., 2019) to quantify the similarity between
expert-specific representations while factoring out the shared contribution of the frozen PTM back-
bone. For a given method and dataset, we first fix the backbone fθ and, for each expert Et, apply
its prompt (or expert-specific encoder parameters) to obtain a matrix of CLS features Zt ∈ Rn×d
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Figure 6: CKA similarity of feature representations between experts of MISA on three datasets.
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Figure 7: CKA similarity of feature representations between FlyPrompt experts on three datasets.

over a common set of n samples. Using the same backbone together with the expert-shared pa-
rameters (e.g., the global prompt in DualPrompt), we also compute a common representation matrix
Zcom ∈ Rn×d. We then define the residual features of expert Et as Z̃t = Zt−Zcom, which remove
the largely stable PTM-driven component and highlight the expert-specific modulation that emerges
during online GCL. Based on these residual features, we measure the (linear) CKA between experts
Et and Et′ as

CKA(Z̃t, Z̃t′) =
∥Z̃⊤

t Z̃t′∥2F
∥Z̃⊤

t Z̃t∥F ∥Z̃⊤
t′ Z̃t′∥F

. (17)

This similarity measure is invariant to isotropic rescaling and orthogonal transformations of the
features, and is well-suited for comparing representations across experts. We report the pairwise
CKA scores between all experts as a heatmap: diagonal entries capture self-similarity, whereas off-
diagonal values reveal the degree of specialization or redundancy among experts after removing the
common PTM-induced component.

F.5 EXTRA HYPERPARAMETER SENSITIVITY TEST RESULTS
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Figure 8: Analysis of hyperparameters in REAR [Backbone: Sup-21K/1K]. (a-c) Different random
projection dimension M with fixed λ = 106: we report Aauc and extra storage cost (bar) given M .
(d-f) Different regularization parameter λ with fixed M = 104.
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Figure 9: Analysis of hyperparameters in REAR [Backbone: iBOT-21K]. (a-c) Different random
projection dimension M with fixed λ = 107: we report Aauc and extra storage cost (bar) given M .
(d-f) Different regularization parameter λ with fixed M = 104.

w/o RP 200 500 1K 2K 5K 10K 20K
M

65.14

66.46

67.78

69.11

70.43

A
au

c
 (%

)

CIFAR-100
λ= 104

(a)
w/o RP 200 500 1K 2K 5K 10K 20K

M

56.20

57.65

59.09

60.54

61.99
ImageNet-R
λ= 104

(b)
w/o RP 200 500 1K 2K 5K 10K 20K

M

36.35

37.00

37.65

38.31

38.96
CUB-200
λ= 104

(c)

2 3 4 5 6 7 8
log10(λ)

67.98

68.57

69.16

69.75

70.34

A
au

c
 (%

)

(d)

M= 10K

2 3 4 5 6 7 8
log10(λ)

57.70

58.74

59.78

60.81

61.85

(e)

M= 10K

2 3 4 5 6 7 8
log10(λ)

32.61

34.23

35.85

37.47

39.09

(f)

M= 10K

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

St
or

ag
e 

(×
10

)

0.0 0.2 0.7 2.0 5.9
29.8

109.7

419.4

Figure 10: Analysis of hyperparameters in REAR [Backbone: iBOT-1K]. (a-c) Different random
projection dimension M with fixed λ = 107: we report Aauc and extra storage cost (bar) given M .
(d-f) Different regularization parameter λ with fixed M = 104.
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Figure 11: Analysis of hyperparameters in REAR [Backbone: DINO-1K]. (a-c) Different random
projection dimension M with fixed λ = 107: we report Aauc and extra storage cost (bar) given M .
(d-f) Different regularization parameter λ with fixed M = 104.
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Figure 12: Analysis of hyperparameters in REAR [Backbone: MoCo v3-1K]. (a-c) Different ran-
dom projection dimension M with fixed λ = 106: we report Aauc and extra storage cost (bar) given
M . (d-f) Different regularization parameter λ with fixed M = 104.
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F.6 ADDITIONAL ABLATION STUDY

Table 14: Effect of REAR and TE2 on various PTM-based CL methods over three GCL benchmarks.
All results are reported as an average of five runs (± standard deviation) over Sup-21K backbone.

Setup Method CIFAR-100 ImageNet-R CUB-200
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

Baseline

DualPrompt 76.04±3.32 76.62±0.74 46.13±1.94 40.80±1.04 65.03±2.24 62.43±1.78

MVP 67.74±4.96 63.22±0.69 39.50±1.41 32.63±3.95 54.69±3.14 50.07±3.86

MISA 80.35±2.39 80.75±1.24 51.52±2.09 45.08±1.43 65.40±3.01 60.20±1.82

S-Prompt++ 80.21±2.55 83.48±1.20 52.14±1.65 49.13±1.60 66.61±2.21 64.73±2.25

HiDe-Prompt 77.10±3.81 81.77±2.00 53.77±1.09 49.87±3.01 67.05±2.37 67.12±0.50

NoRGa 78.89±3.33 83.03±1.20 54.12±1.37 50.09±3.66 67.16±2.44 67.06±0.58

w/ REAR

DualPrompt 80.63±2.25 83.65±1.25 53.16±1.26 51.11±0.91 65.96±2.50 63.81±1.74

MVP 67.44±4.89 62.33±1.62 38.87±1.27 31.59±4.19 53.65±3.17 48.25±3.38

MISA 82.03±1.97 83.82±1.04 57.30±1.12 54.02±0.66 68.04±2.34 65.55±2.69

S-Prompt++ 81.43±2.45 83.93±0.84 54.74±1.53 52.30±1.05 66.80±2.48 64.72±1.97

HiDe-Prompt 78.41±2.64 83.46±1.14 53.61±1.16 49.26±2.56 67.05±2.36 66.99±1.01

NoRGa 79.37±2.71 83.79±1.28 54.78±1.05 50.24±3.39 67.26±2.50 67.20±0.85

w/ TE2

DualPrompt 76.83±3.44 78.00±0.61 47.11±2.19 42.15±0.81 66.47±2.72 65.42±1.55

MVP 68.91±4.86 64.28±1.00 42.06±1.11 35.94±0.92 56.98±2.79 54.14±2.89

MISA 81.65±2.24 82.80±1.06 54.05±1.70 48.46±1.15 69.30±2.43 67.29±2.44

S-Prompt++ 81.93±2.21 83.98±0.65 55.37±1.64 52.91±1.53 67.97±2.51 67.68±1.49

HiDe-Prompt 77.46±3.56 82.09±1.92 54.83±1.08 50.26±2.78 67.77±2.60 69.64±0.76

NoRGa 79.16±3.28 83.01±1.45 54.08±1.58 51.81±3.51 67.97±2.70 69.58±0.90

w/ both

DualPrompt 82.33±2.17 86.14±0.90 54.72±1.29 54.00±0.76 69.65±2.93 72.75±2.03

MVP 68.93±4.60 64.52±1.45 41.59±1.34 35.45±1.44 55.65±2.79 51.84±2.44

MISA 83.60±2.08 86.66±0.55 59.12±1.02 56.62±0.82 72.38±2.98 74.68±2.11

S-Prompt++ 83.11±2.30 86.67±0.45 56.57±1.48 55.24±1.24 70.65±2.84 73.42±1.88

HiDe-Prompt 78.60±2.53 83.14±1.12 54.79±1.13 51.30±2.81 68.27±2.57 69.61±0.84

NoRGa 79.37±2.74 83.79±0.96 55.75±1.31 52.50±3.33 68.32±2.64 70.03±0.67

FlyPrompt (ours) 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91 70.64±2.85 73.40±1.88

F.7 DIFFERENT LOGIT MASK STRATEGIES FOR GCL MASKS

Table 15: Performance of different logit mask strategies for GCL methods. All results are reported
as an average of five parallel runs (± standard deviation) with different random seeds, over Sup-21K.

Mask Type Method CIFAR-100 ImageNet-R CUB-200
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

No Mask

L2P 62.74±4.39 56.08±2.10 34.58±1.23 26.18±4.69 54.83±2.65 47.94±4.64

DualPrompt 66.68±5.25 61.98±4.09 41.62±1.43 36.08±1.39 56.68±2.57 50.71±4.21

CODA-P 66.15±5.22 58.42±1.39 40.71±3.50 30.56±5.15 56.44±2.84 49.50±6.04

MVP 68.18±4.85 63.96±1.48 38.79±1.12 32.01±2.80 54.74±2.01 52.88±3.08

MISA 69.85±3.73 65.13±1.70 45.15±1.75 35.91±3.48 57.87±2.49 52.15±4.27

FlyPrompt (ours) 78.73±3.55 83.62±0.50 51.39±1.80 48.72±1.06 69.22±3.04 73.07±2.34

Random Mask

L2P 62.46±4.54 54.67±1.39 33.10±1.34 24.73±4.52 52.92±2.51 45.05±4.89

DualPrompt 65.48±4.45 59.66±1.70 36.94±1.77 29.22±1.66 55.07±2.21 47.83±5.00

CODA-P 65.58±5.23 57.05±1.97 39.23±2.80 28.91±5.22 55.64±2.27 48.00±5.50

MVP 67.75±4.95 63.21±0.78 39.45±1.42 32.70±3.96 54.72±3.14 50.01±3.81

MISA 68.23±3.82 61.55±2.02 40.67±1.93 29.48±4.32 56.06±2.19 48.12±4.86

FlyPrompt (ours) 78.32±3.48 81.88±0.88 51.67±1.30 47.26±1.25 68.63±2.82 69.52±4.03

Seen-Class Mask

L2P 62.22±4.39 53.36±2.03 33.80±1.22 25.20±4.65 53.10±2.60 45.55±4.96

DualPrompt 65.29±4.62 57.74±2.53 37.31±1.80 29.72±1.49 55.25±2.43 47.67±4.65

CODA-P 65.63±5.40 56.75±1.51 40.13±2.46 29.35±5.01 55.80±2.58 47.71±5.55

MVP 67.72±4.87 62.99±0.95 39.57±1.44 32.72±4.00 54.72±3.14 50.14±3.80

MISA 68.34±3.90 61.44±2.54 41.17±1.85 29.97±4.14 56.44±2.42 48.58±4.74

FlyPrompt (ours) 78.75±3.52 82.87±0.82 52.39±1.46 48.02±1.00 69.28±2.95 70.91±2.83

Batch Seen-Class Mask

L2P 76.23±2.73 79.11±1.43 44.40±1.03 42.03±1.72 64.30±2.18 61.42±2.13

DualPrompt 76.04±3.32 76.62±0.74 46.13±1.94 40.80±1.04 65.03±2.24 62.43±1.78

CODA-P 79.13±3.06 80.91±0.70 51.87±2.81 48.09±2.75 66.01±2.20 62.90±2.46

MVP 67.74±4.96 63.22±0.69 39.50±1.41 32.63±3.95 54.69±3.14 50.07±3.86

MISA 80.35±2.39 80.75±1.24 51.52±2.09 45.08±1.43 65.40±3.01 60.20±1.82

FlyPrompt (ours) 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91 70.64±2.85 73.40±1.88

(1) No Mask, standard softmax over all output classes. (2) Random Mask, for each sample (x, y),
set my = 0 and assign mc = 0 or −∞ randomly with 0.5 probability for each previously seen class
c ̸= y. (3) Seen-Class Mask, setting mc = 0 for all previously seen classes, −∞ otherwise. (4)
Batch Seen-Class Mask (used), setting mc = 0 only for the classes present in the current batch y.
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F.8 COMPLETE RESULTS OF DIFFERENT EMA DECAY RATES FOR TEMPORAL ENSEMBLE

Table 16: Performance comparison of different EMA decay rates for TE2 across all PTMs. All
results are reported as an average of five parallel runs (± standard deviation) with different seeds.

PTM EMA Decay Rate CIFAR-100 ImageNet-R
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

Sup-21K

online 81.90±2.20 84.23±1.32 54.91±1.32 52.58±1.36

0.9 82.81±2.28 86.36±0.54 56.36±1.52 55.09±0.89

0.99 82.84±2.51 86.41±0.39 55.94±1.65 54.67±0.89

0.999 81.80±2.37 84.39±0.83 55.15±1.39 53.52±0.80

0.9,0.99 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91
0.9,0.99,0.999 82.99±2.22 86.24±0.79 56.35±1.72 55.50±0.77

Sup-21K/1K

online 71.28±2.58 69.73±5.78 53.12±2.19 44.69±3.65

0.9 75.59±2.93 77.39±6.14 61.56±1.48 57.35±1.63
0.99 77.96±2.15 79.71±3.67 60.96±1.94 56.32±1.87

0.999 74.13±1.64 74.68±2.93 53.96±1.30 46.55±1.17

0.9,0.99 78.48±1.31 80.39±3.54 62.01±2.32 56.55±3.94

0.9,0.99,0.999 78.44±1.38 80.55±4.12 62.59±2.22 58.00±1.79

iBOT-21K

online 67.01±3.85 65.38±7.24 45.32±1.46 35.45±4.60

0.9 72.43±1.56 75.46±4.96 56.37±2.06 52.37±0.87
0.99 75.03±0.78 78.08±3.35 55.93±2.35 51.64±0.53

0.999 68.96±3.22 69.30±2.94 43.78±2.21 34.64±2.90

0.9,0.99 75.58±1.70 79.36±3.47 57.75±2.12 54.39±1.29

0.9,0.99,0.999 74.16±2.47 76.61±2.26 55.94±3.12 52.12±0.79

iBOT-1K

online 61.38±2.32 60.58±7.91 50.79±1.43 41.92±1.76

0.9 68.01±1.18 71.99±4.62 60.52±1.51 56.98±1.17
0.99 71.50±1.00 75.20±3.10 60.66±1.56 56.57±0.70

0.999 65.88±3.51 67.07±1.95 50.27±1.40 42.71±2.03

0.9,0.99 70.14±1.76 74.84±4.26 61.50±1.66 57.18±1.36

0.9,0.99,0.999 67.93±3.07 70.69±3.50 59.60±1.88 55.35±1.34

DINO-1K

online 58.61±3.26 60.76±6.77 47.35±2.24 41.33±2.04

0.9 62.95±4.13 69.65±6.54 56.83±1.47 53.68±0.83
0.99 66.42±2.51 73.03±3.61 56.67±1.74 53.23±0.77

0.999 60.37±4.38 64.06±2.37 46.38±1.51 39.69±2.07

0.9,0.99 65.92±2.74 72.66±4.52 57.29±2.40 54.72±1.89

0.9,0.99,0.999 65.27±2.98 70.83±4.32 55.66±1.57 51.91±1.73

MoCo-1K

online 57.90±5.29 62.20±10.03 42.81±0.83 35.46±3.32

0.9 61.96±6.50 69.83±10.05 51.47±1.64 47.88±1.49

0.99 65.95±4.40 73.28±6.96 50.75±1.89 47.42±1.29

0.999 61.26±3.27 66.42±5.07 42.33±1.54 36.82±2.14

0.9,0.99 64.12±5.18 71.51±8.48 52.32±1.50 49.06±1.35

0.9,0.99,0.999 64.03±4.47 69.92±6.13 51.64±2.59 48.69±0.68

F.9 COMPARISON OF DIFFERENT ROUTING ALGORITHMS ON RANDOM EXPANDED FEATURES

Table 17: Comparison of routing algorithms based on random expanded features in FlyPrompt. M :
expansion dimension (default 10,000); T : number of experts (default 5); H: hidden dimension of
MLP (H = 512 is used); K: number of nearest neighbors (K = 10 is used). Time cost is reported in
seconds per batch on CIFAR-100. All performance results are reported as an average of five parallel
runs (± standard deviation) with different random seeds over Sup-21K.

Routing
Algorithm

Train
Time

Inference
Time

Inference
Complexity

CIFAR-100 ImageNet-R CUB-200
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

Prototype Similarity 5.58 0.90 O(MT ) 80.67±2.48 83.80±1.15 54.29±1.72 52.36±1.12 67.00±2.77 66.66±1.56

Naı̈ve Bayes 5.30 0.93 O(MT ) 82.73±2.17 85.51±0.97 55.85±1.83 53.84±1.40 69.08±2.91 69.63±1.18

MLP 7.03 1.00 O(MH +HT ) 81.75±2.09 82.76±1.98 56.31±1.29 53.70±0.96 68.53±2.39 67.92±1.91

K-Means 6.11 1.49 O(KMT ) 82.22±2.04 85.27±0.83 54.93±1.94 53.08±1.43 68.33±2.71 68.24±2.59

Ridge Regression (ours) 4.96 0.92 O(MT ) 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91 70.64±2.85 73.40±1.88

(1) Prototype Similarity, cosine similarity to each expert’s mean feature. (2) Naı̈ve Bayes, assum-
ing Gaussian-distributed features per expert. (3) MLP, a two-layer MLP router, as in HiDe (Wang
et al., 2023a). (4) K-Means, clusters each expert’s features and routes based on the nearest center.
(5) Ridge Regression (Ours), the REAR analytic router trained once over accumulated statistics.
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F.10 COMPLETE RESULTS OF DIFFERENT AGGREGATION METHODS FOR TEMPORAL
ENSEMBLE

Table 18: Performance comparison of different aggregation choices for TE2 across all PTMs. All
results are reported as an average of five parallel runs (± standard deviation) with different random
seeds.

PTM Ensemble Method CIFAR-100 ImageNet-R CUB-200
Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑) Aauc(%, ↑) Alast(%, ↑)

Sup-21K

Mean 81.34±1.64 85.11±1.03 52.71±1.36 53.24±1.22 68.49±2.57 73.95±1.90
Max Prob 82.29±2.25 84.95±1.20 55.56±1.38 53.53±1.40 68.00±2.50 66.56±1.60

Min Entropy 81.92±2.19 84.23±1.32 55.05±1.31 52.88±1.38 66.78±2.53 64.73±1.36

SoftMax+Mean 82.30±1.82 85.98±0.80 56.16±1.56 55.53±0.89 70.77±3.00 74.86±1.54

SoftMax+Max 83.24±2.23 86.76±0.73 56.58±1.47 55.27±0.91 70.64±2.85 73.40±1.88

SoftMax+Min 83.11±2.34 86.50±0.64 55.94±1.41 54.24±1.34 69.86±2.80 71.51±1.79

Sup-21K/1K

Mean 79.44±1.14 82.82±1.63 60.84±2.09 56.97±2.72 56.64±4.59 60.39±3.95
Max Prob 72.58±2.99 71.31±7.52 54.28±2.06 46.44±3.23 47.05±3.41 44.42±3.59

Min Entropy 71.27±2.58 69.73±5.82 53.05±2.11 44.80±3.42 45.36±3.15 42.82±4.31

SoftMax+Mean 77.72±1.48 81.77±3.15 60.35±1.86 56.63±2.05 57.68±5.02 62.60±4.05

SoftMax+Max 78.48±1.31 80.39±3.54 62.01±2.32 56.55±3.94 54.42±4.67 55.50±3.55

SoftMax+Min 78.30±1.25 80.07±3.68 60.89±2.15 55.59±3.37 54.12±4.61 54.75±3.57

iBOT-21K

Mean 76.59±1.33 81.40±2.48 54.92±1.86 51.82±1.97 29.31±5.17 37.60±4.77

Max Prob 68.51±4.08 67.60±8.11 46.74±1.39 37.64±4.20 24.14±3.53 28.53±3.46

Min Entropy 67.03±3.85 65.44±7.22 45.33±1.36 35.86±4.55 23.44±3.39 27.40±3.60

SoftMax+Mean 74.69±1.77 80.58±2.75 54.41±1.95 52.58±1.10 29.09±6.33 36.28±7.54

SoftMax+Max 75.58±1.70 79.36±3.47 57.75±2.12 54.39±1.29 28.86±5.84 36.79±7.58
SoftMax+Min 74.87±1.89 77.60±4.71 55.98±1.90 52.03±1.61 27.47±5.43 34.57±5.12

iBOT-1K

Mean 70.96±1.13 76.38±4.03 58.15±1.53 54.24±1.39 37.64±5.03 44.46±3.01
Max Prob 62.92±2.41 63.09±8.29 52.02±1.32 44.15±1.01 31.53±3.46 34.27±4.92

Min Entropy 61.36±2.30 60.73±7.76 50.74±1.30 42.27±1.46 30.53±3.62 32.82±4.98

SoftMax+Mean 67.24±1.92 72.80±4.63 56.14±1.33 53.35±0.95 38.08±5.57 44.13±4.27

SoftMax+Max 70.14±1.76 74.84±4.26 61.50±1.66 57.18±1.36 38.54±5.72 45.00±4.19

SoftMax+Min 69.72±1.64 73.76±5.07 59.87±1.52 55.39±0.90 37.31±5.53 41.86±4.01

DINO-1K

Mean 66.72±1.89 73.94±3.66 54.00±2.34 51.60±2.21 37.91±6.38 44.02±2.34
Max Prob 59.76±3.26 62.61±7.14 48.12±2.33 42.17±2.21 31.36±3.40 34.50±4.80

Min Entropy 58.51±3.22 60.79±6.67 47.14±2.31 40.95±2.13 30.15±3.34 32.83±4.91

SoftMax+Mean 64.79±3.29 72.87±4.57 52.98±1.49 51.38±0.95 37.22±7.26 43.74±5.34

SoftMax+Max 65.92±2.74 72.66±4.52 57.29±2.40 54.72±1.89 37.38±5.86 44.66±2.35

SoftMax+Min 65.48±2.69 71.88±5.38 55.69±2.51 52.55±1.90 36.48±5.73 41.43±2.14

MoCo-1K

Mean 64.29±6.09 72.17±8.65 49.69±1.28 46.86±0.90 27.92±5.19 33.32±3.58

Max Prob 58.70±5.09 63.89±10.06 44.07±0.90 37.06±3.05 21.35±3.06 24.21±4.51

Min Entropy 57.84±5.27 62.21±9.97 42.79±0.82 35.51±3.34 20.59±2.95 22.75±4.42

SoftMax+Mean 62.90±6.00 71.71±8.20 50.56±1.57 47.95±0.70 26.95±5.22 31.50±3.85
SoftMax+Max 64.12±5.18 71.51±8.48 52.32±1.50 49.06±1.35 25.49±4.53 30.44±4.50

SoftMax+Min 63.92±5.03 71.29±8.50 51.46±1.44 47.93±1.27 25.26±4.52 29.33±3.88

F.11 MORE RESULTS ON SCALABILITY AND EFFICIENCY OF FLYPROMPT

Table 19: Parameter counts, storage and computational complexity breakdown of FlyPrompt com-
ponents. M : expansion dimension (default 10,000); T : number of experts (default 5); l: prompt
length (default 20); d: embedding dimension (default 768). Results are reported in millions.

Components Total Param. Trainable Param. Storage Storage Cost Computation Cost

G matrix 0.00 0.00 100 O(M2) O(M3)
Q matrix 0.00 0.00 0.05 O(MT ) O(MT )
Router Head 0.05 0.00 0.05 O(MT ) O(MT )
Prompts 0.38 0.38 0.38 O(ld) O(l2d)
TE2 heads 0.77 0.08 0.77 O(dT ) O(dT )
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G PSEUDO-CODE OF FLYPROMPT

G.1 PSEUDO-CODE: ONLINE REAR UPDATES AND TE2 AGGREGATION

Algorithm 1 FlyPrompt: online REAR maintenance and TE2inference

1: Inputs: sessions {Dt}Tt=1, backbone fθ, random matrix R∈Rd×M , ridge λ, EMA decays

{αj}nj=1, online iterations k.

2: Initialize: G←0M×M ,Q←0M×T , prompt set P←∅, online head (W , b), logit maskm←0

3:

4: (1) Online Training Phase
5: for t=1 to T do
6: Set expert Et: pt← 1

t−1

∑t−1
i=1 pi if t>1 else random

7: P ← P ∪ {pt}
8: Initialize EMA heads: (W (j)

t , b
(j)
t )←(W , b), ∀j ∈ {1, . . . , n}

9: for each batch (X,y)⊂Dt do
10: Set logit maskm: for any class c ∈ y, mc←0, and for c′ /∈ y, mc′←−∞
11: for 1 to k do
12: Update (W , b) and pt by minimizing CE(fθ(X;pt)W

⊤+b+m, y)

13: EMA for Et: W
(j)
t ←αjW

(j)
t +(1−αj)W , b(j)t ←αjb

(j)
t +(1−αj)b, ∀j

14: end for
15: H←fθ(X;pt); Φ←σ(HR)

16: Update REAR stats: G←G+Φ⊤Φ;Q←Q+Φ⊤Ct (one-hot Ct for expert Et)

17: end for
18: end for
19: Update closed-form router offline: Û⊤←(G+λI)−1Q (only once after the training phase)

20:

21: (2) Inference Phase
22: for x from the test dataset do
23: Get routing score: s(x)←σ(fθ(x)R)Û⊤

24: Select the expert: e← argmaxt≤T st(x)

25: Get online head outputs: z(0)←fθ(x;pe)W
⊤+b

26: Get EMA heads output: z(j)←fθ(x;pe)W
(j)⊤
e +b

(j)
e

27: Get aggregated ensemble output: ẑ(x)←maxj∈{0,...,n} softmax(z(j)+m)

28: Final output: ŷ(x)= argmaxc ẑc(x)

29: end for

G.1.1 COMPLEXITY

• Memory for REAR: storingG ∈ RM×M andQ ∈ RM×T is O(M2).
• Time complexity of solving the analytic router: O(M3) (matrix inverse and multiply).
• Per-sample cost: forming φ(x) = σ(h⊤R) costs O(dM) (matrix multiply).
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