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ABSTRACT

General continual learning (GCL) challenges intelligent systems to learn from
single-pass, non-stationary data streams without clear task boundaries. While re-
cent advances in continual parameter-efficient tuning (PET) of pretrained models
show promise, they typically rely on multiple training epochs and explicit task
cues, limiting their effectiveness in GCL scenarios. Moreover, existing methods
often lack targeted design and fail to address two fundamental challenges in con-
tinual PET: how to allocate expert parameters to evolving data distributions, and
how to improve their representational capacity under limited supervision. Inspired
by the fruit fly’s hierarchical memory system characterized by sparse expansion
and modular ensembles, we propose FlyPrompt, a brain-inspired framework that
decomposes GCL into two subproblems: expert routing and expert competence
improvement. FlyPrompt introduces a randomly expanded analytic router for
instance-level expert activation and a temporal ensemble of output heads to dy-
namically adapt decision boundaries over time. Extensive theoretical and empir-
ical evaluations demonstrate FlyPrompt’s superior performance, achieving up to
11.23%, 12.43%, and 7.62% gains over state-of-the-art baselines on CIFAR-100,
ImageNet-R, and CUB-200, respectively.

1 INTRODUCTION

General Continual Learning (GCL) (Buzzega et al., 2020; De Lange et al., [2021)), aims to equip in-
telligent systems with the ability to learn continuously from non-stationary, single-pass data streams,
where tasks may not have clear boundaries and can evolve over time. Unlike traditional Continual
Learning (CL) (Wang et al., [2024b; |Parisi et al.l 2019), which assumes well-defined task bound-
aries and multiple training epochs, GCL presents a much more challenging problem, as it requires
rapid adaptation, robust knowledge retention, and efficient resource usage under conditions of lim-
ited supervision and task ambiguity (Fig. [T). The ability to effectively tackle GCL has profound
implications for real-world applications such as autonomous agents and personal assistants, where
systems must learn from dynamic environments without clear task definitions.

Recent advance in parameter-efficient tuning (PET) of pretrained models (PTMs) have shown
promise in CL (Wang et al., [2022cb; |Smith et al., [2023), but they still face fundamental limita-
tions under GCL conditions. Such methods introduce task-specific prompt experts to adapt PTMs
incrementally, and typically rely on clear task cues and sufficient gradient updates to allocate and
train expert modules (Wang et al., [2024a); |2022a). However, those assumptions no longer hold in
GCL (Koh et al., 2021; Moon et al., [2023)). We therefore identify two fundamental challenges that
remain unresolved: (1) how to dynamically route inputs to appropriate experts without task labels
or iterative training, and (2) how to ensure that each expert maintains strong and adaptive represen-
tations under sparse and imbalanced supervision. Both remain non-trivial and underexplored.

The complexity of GCL has also been extensively studied in biological systems, where organ-
isms have evolved efficient strategies for lifelong learning in dynamic environments. The fruit fly
Drosophila provides a compelling model: despite having fewer than 100,000 neurons, it exhibits

"Due to the page limit, we present a comprehensive summary of related work in Appendix@
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Figure 1: Any-time average accuracy of GCL methods over three datasets using Sup-21K. Dashed
lines indicate task transition. Aauc, the improvement of area-under-curve score by FlyPrompt.

robust memory consolidation, context-aware behavior, and stable learning under minimal supervi-
sion (Davis, 2023; |L1 et al., 2020; Modi et al., [2020; Owald & Waddelll |2015). These capabilities
are largely attributed to the mushroom body, a central brain structure that encodes sensory inputs
via sparse random projections and organizes learning into modular, hierarchical compartments (Aso
et al [2014b} |[Dasgupta et al., [2017) (see Fig. EfLeft)). Projection neurons (PNs) from the antennal
lobe connect randomly to Kenyon cells (KCs) in mushroom body, yielding high-dimensional sparse
codes that support input separation and routing even under noisy or overlapping conditions (Turner,
et al., |2008; Honegger et al.l 2011). Furthermore, different KC subregions exhibit plasticity on
distinct timescales (Aso et al.|[2014a;|Aso & Rubinl 2016)), enabling both rapid adaptation and long-
term consolidation (Cervantes-Sandoval et al., 2013} [Bouzaiane et al., 2015). These mechanisms
closely mirror the goals of GCL, offering principled inspiration for tackling its core challenges.

Building upon these neurobiological principles and our preliminary analysis in Sec.[2.2] we propose
to decompose the GCL challenges into two essential subproblems: (1) expert routing, which aims to
assign each input to an appropriate subnetwork (expert) under unknown and shifting task boundaries;
and (2) expert competence improvement, which seeks to enhance the robustness and adaptability of
each expert given limited training and imbalanced class exposure. To address these challenges, we
introduce FlyPrompt, a brain-inspired framework that integrates two key components: (i) a Random
Expanded Analytic Router (REAR) that mimics the fruit fly’s sparse expansion circuit to rapidly
assign inputs to experts in a forward-only, closed-form manner; and (ii) a Task-wise Experts with
Temporal Ensemble (TE?) that captures knowledge across multiple time scales using exponential
moving averages, mirroring the compartmental consolidation observed in the mushroom body.

FlyPrompt is supported by both theoretical analysis and empirical validation. Across diverse GCL
benchmarks, including CIFAR-100, ImageNet-R, and CUB-200, it consistently outperforms state-
of-the-art CL and GCL methods, achieving accuracy improvements of up to 11.23%, 12.43%, and
7.62%, respectively. By integrating biologically grounded design with principled algorithmic struc-
ture, FlyPrompt offers an interdisciplinary perspective on addressing the core challenges of GCL
and also exemplifies the potential of the emerging field of NeuroAl (Zador et al., 2023).

2 PRELIMINARIES

In this section, we formulate GCL, and then evaluate PET methods in an instantiated GCL scenario.

2.1 PROBLEM FORMULATION

In CL, a model learns sequential tasks ¢t € {1,--- , T}, each associated with a dataset D; = (¢, y;)
where ; € X; and y; € ). The model comprises a backbone fg(-) and an output head gw(-),
which together produce predictions § = g (fe(x)). The objective is to learn a unified mapping
from input domains X' = [ J, &} to label spaces ) = | J, );. Classical CL settings impose structural
assumptions on the input or label space. Domain-incremental learning (DIL) assumes disjoint input
domains with a shared label space (&X; N & = 0,y = Y;), while task-incremental and class-
incremental learning (TIL, CIL) assume disjoint label spaces (3; N Y; = (), with TIL additionally
providing task identity at test time (Van de Ven & Tolias| 2019). Under these assumptions, the
learning objective can be decomposed into two orthogonal subproblems: task identity prediction
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Figure 2: Empirical analysis of GCL. (a) A schematic illustration of GCL viewed as multi-expert
collaboration. (b) Prompt selection accuracy for methods with explicit expert routing designs. (c)
Final average accuracy (Aj.st, T) when using a test-time oracle to provide the correct prompt identity.
Results evaluated across three benchmarks with Sup-21K. FP, FlyPrompt. RP, Random Projection.
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Figure 3: CKA similarity of feature representations between experts of MVP on three datasets.

(TTIP), which selects an appropriate task-specific module, and within-task prediction (WTP), which
performs classification under the selected module (Kim et al.|[2022; [Wang et al., [2023a).

GCL, however, lifts these assumptions and operates under substantially more challenging condi-
tions. Tasks arrive as a one-pass data stream, and their label spaces may overlap with non-negligible
probability: Vi # j, P(V; NY; # 0) > 0 2021). This entangles inter-task and intra-task
interference, undermining the TIP-WTP orthogonality. Especially when using pretrained back-
bones, the strong priors encoded in PTMs already bias prediction before adaptation, causing task
identity and class discrimination to co-evolve (Wang et al., [2023a} [2024a). Moreover, GCL intro-
duces additional difficulties such as severe intra-task class imbalance (e.g., long-tailed distributions)
and limited training iterations. These problems are compounded by memory constraints
let al.} 2020} [De Lange et al.| [2021)), where storing past data is restricted or disallowed.

A representative instantiation of GCL is Si-Blurry (Moon et al.| 2023)), which explicitly partitions
the global label space ) into a disjoint subset VP and a blurry subset VB, with Yy = YP U )YB
and YP N YB = (. The disjoint class ratio rp = |YP|/|Y| controls the proportion of task-specific
classes, while the blurry sample ratio rg determines how frequently classes in )P reappear across
tasks. This flexible design captures the stochasticity and heterogeneity of GCL, which has been
validated in recent theoretical and empirical work (Mi et al.| 2020; [Zhuang et al, 2024}
[2025)). We therefore adopt Si-Blurry as the default GCL benchmark (see Appendix [D]for discussion
about the task/session boundary information and our empirical rationality of using Si-Blurry).

2.2 ANALYSIS OF GCL METHODS WITH EXPERTS

Recent CL and GCL methods increasingly adopt PET techniques on top of PTMs. These meth-
ods can be seen as lightweight extensions of architecture-based CL (Zhu et all, 2021; Wang et al.}
[2023D)), where instead of expanding full networks, they introduce trainable modules p (e.g., adapters,
prompts, and LoRA) that act as semantic-aware adaptation experts to give instructed outputs
fo(x;p). A common strategy is to maintain a pool of such experts and design a router to assign
inputs to the appropriate ones. However, most existing methods, such as L2P (Wang et al.| 2022c),
DualPrompt (Wang et al.} 2022b), MVP (Moon et al, [2023), CODA-P (Smith et al., [2023), and
MISA (Kang et al., [2025), train these routing functions synchronously with the stream of incoming
data, making them vulnerable to distributional shifts and limited iterations. These issues are espe-
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Figure 4: Method overview. Inspired by the fruit fly’s olfactory memory system (Left), FlyPrompt
incorporates a random-expanded analytic router (Middle) and temporal ensemble-based experts
(Right). ORNSs, olfactory receptor neurons. PNs, projection neurons. KCs, Kenyon cells.

cially pronounced in GCL, where blurry task boundaries and online constraints prohibit iterative
tuning, and class imbalance further weakens the quality of per-task representations.

Based on this observation, we propose to decompose the GCL problem into two critical subprob-
lems: expert routing, which determines which expert to assign to each input; and expert compe-
tence, which enhances the quality and robustness of each expert’s representation. Compared to the
classical TIP-WTP formulation for CL with clearly segmented tasks, GCL’s blurry structure and
overlapping class distributions make semantic-level experts a more suitable abstraction for adapta-
tion (see Fig. 2a). Moreover, since the same class may appear in multiple tasks, the correspondence
between classes and experts is inherently one-to-many, which further complicates routing.

To better understand these challenges, we conduct a preliminary empirical study from a multi-expert
collaboration (details in Sec.d.T)). We first evaluate the routing accuracy of methods that explicitly
predict expert identity (e.g., DualPrompt, MVP, MISA, and our FlyPrompt) after all GCL training
tasks. A prediction is considered correct if the selected expert belongs to the set of experts previously
trained on the true label v;, acknowledging the overlap across tasks. As shown in Fig. 2B] existing
routers based on similarity or contrastive losses still exhibit considerable limitations in expert selec-
tion. Next, we evaluate the final average accuracy under an oracle router that always selects a correct
expert for each input (Fig.[2c). The results reveal that, even with perfect routing, previous methods
still exhibit inferior performance, highlighting a second bottleneck: the limited competence of indi-
vidual experts. In a PTM-based context, such competence depends not only on the representation
space shaped by each expert module, but also on how well the output head can maintain consistent
decision boundaries over time; even when an early expert’s encoder is frozen, a single head that
keeps adapting to later data can gradually become misaligned with its fixed representation. To ver-
ify this point, our analysis of expert-specific representations using centered kernel alignment (CKA;
Appendix [F4) in Fig.[B]confirms that experts indeed specialize in distinct feature subspaces, under-
scoring the need for accurate expert assignment. Together with the observed degradation under an
oracle router, these results support decomposing GCL into the interacting subproblems above, and
clarify that expert competence must account for both representation quality and decoding robustness.

3 FLYPROMPT: A BRAIN-INSPIRED GCL APPROACH

In this section, we propose FlyPrompt, an innovative brain-inspired approach designed to tackle
the key challenges of GCL by explicitly improving expert routing and expert competence. As
shown in Fig. [ FlyPrompt consists of two core components: (i) a Random Expanded Analytic
Router (REAR) that employs fixed random projections and closed-form updates to assign inputs
to experts, inspired by the sparse expansion circuits in fruit flies, and (ii) Task-wise Experts with
Temporal Ensemble (TE?) that adaptively refine class boundaries over time to improve expert-level
performance, reflecting modularized ensembles architecture in fruit flies’ neural systems.
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3.1 RANDOM EXPANDED ANALYTIC ROUTER

Recent studies in CL have explored the use of Random Projection (RP) to construct forward-only
learners with desirable properties such as rapid adaptation and immunity to catastrophic forget-
ting (Zhuang et al,[2022} 2024} [McDonnell et al.| 2024). When combined with nonlinear activation,
RP can significantly improve the linear separability of input features by capturing high-order interac-
tions without backpropagation. Notably, this mechanism aligns closely with the olfactory system of
the fruit fly, where projection neurons (PNs) connect sparsely and randomly to a high-dimensional
population of Kenyon cells (KCs) in the mushroom body, achieving a nearly 40-fold expansion.
Global inhibition then enforces sparsity, allowing robust and efficient pattern separation (Dasgupta
let al.l 2017, [Honegger et al},[2011). This neurobiological design inspires REAR, which mimics the
biologically grounded random expansion to enable efficient, non-iterative expert selection in GCL.

Concretely, given a pretrained backbone fq(-) that maps input z to an embedding h = fp(x) € R?
of dimension d, we apply a fixed RP followed by a nonlinear activation:

¢(x) =0 (fo(z)R) = o(hR) € R, (1)

where R € R™M js a random matrix with R; ; ~ N(0,1), M > d, and o(-) is an element-wise
activation function (e.g., ReLU). The resulting feature () is sparse and high-dimensional.

During online training, we associate each task ¢ with a corresponding expert E;. For each incoming
batch B; C D; of size B, we compute the projected features ®; € RB*M whose row vectors are
{o(x) " |[(2,y) € B,}. and update two statistics: the Gram matrix G € RM>*M capturing second-
order feature correlations; and the prototype matrix Q € RM*T storing expert-wise feature sums:

G+ G+ o, Q+—Q+@/C, 2)

where C; € RBXT whose row vectors are the same one-hot embedding ¢; € {0, 1} for expert E;.
We then construct a router matrix U € R”*M by minimizing the following objective:

T
2
LU= Y e@)UT —elf, + AU|Z, 3)
t=1 (z¢,y) €Dy
where A > 0 is the regularization parameter. This objective encourages the router to map sam-
ples from task ¢ to the corresponding expert E; while maintaining numerical stability. Using the
accumulated statistics G and Q, the closed-form solution to this optimization problem is given by:

U'=(G+A)7'Q. @)

The calculation of U is only needed once upon evaluation, therefore this optimization process is
efficient and lightweight compared to gradient-based routing mechanisms. At inference time, the

routing score s and selected expert FE for an input & given router U is computed as:
s(z) = o(x)UT e R7, E(x) = arg max si(x). (5)

This routing mechanism is efficient, biologically motivated, and requires no gradient updates, mak-
ing it well-suited for GCL’s online, single-pass constraints. Unlike prior methods based on random
expanded features, such as RanPAC (McDonnell et al} 2024)) or ACIL (Zhuang et al} [2022)), which
apply closed-form ridge regression directly for final classification on fixed representations, REAR
uses random projections solely for instance-level expert routing while keeping each expert’s prompts
and heads fully trainable. Empirical comparison between the analytic router (REAR) and analytic
classifier (RanPAC) under GCL benchmarks is shown in Appendix Tab.[T3] And we further demon-
strate the superiority of REAR upon alternative routing strategies in Appendix Tab. We then
summarize the core theoretical guarantee that explains why REAR yields reliable routing in the
expanded sparse feature space. Full assumptions and proofs are included in Appendix [E.1}

Theorem 1 (REAR, informal). With high probability over the random expansion and the data
stream, the population excess risk of the ridge router learned from online statistics admits the fol-
lowing decomposition:

RU) —RU*) < Vlog(N)/M + (VN AL+,
for suitable universal constants. Therefore, by increasing the expansion dimension M and the
number of samples N, and choosing the regularization parameter X\ to balance estimation error
and bias, the population excess risk (and, under a fixed margin assumption on expert scores, see
Appen(/ix@ the misrouting probability) can be made arbitrarily small.
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Interpretation. The first term reflects the approximation error due to finite random features; in-
creasing M improves the expressive power of the expansion. The second term captures the variance
arising from finite data, which diminishes as IV grows or A increases. The third term represents the
bias introduced by ridge regularization, which stabilizes learning but limits expressiveness if it is too
large. In practice, this decomposition implies that robust and forward-only routing can be achieved
by employing sufficiently rich random expansions and moderate regularization, without requiring
task-level or iterative refinement.

3.2 TASK EXPERTS AS TEMPORAL ENSEMBLES

To improve the competence of each expert under dynamic distributions, we draw inspiration from the
fruit fly’s KCs in the mushroom body and their connections to output neurons. This brain structure
integrates multi-timescale plasticity and hierarchical processing across subregions, where v KCs
mediate short-term memory, o//3’ KCs support intermediate memory, and o/3 KCs are critical for
long-term memory consolidation (Krashes et al, [2007; [Cervantes-Sandoval et al.} 2013}, [Bouzaiane
let al,2015). These KC subtypes are sequentially recruited during learning and exhibit compartment-
specific modulation by dopamine neurons (Aso et al 2014d; [Owald & Waddelll, 2015}, [Aso et al.}
[2014b}; [Aso & Rubin, [2016)), enabling temporally staged memory formation and retrieval. Inspired
by this biological design, we equip each expert in FlyPrompt with a temporal ensemble of output
heads, implemented using exponential moving averages (EMA) with varying decay rates.

Concretely, instead of using only one shadow head in naive EMA, each expert E, in FlyPrompt
maintains a set of n EMA heads with decay rates {«; }?:1, where o; # «y for all j # k. Let the

online head be parameterized as 19 = (W, b) € RYI*4 xRVl and the j-th EMA head of expert E;

as (Wt(j )7 bgj )). When a new task ¢ begins, its prompt p; is initialized as the average of previously
learned prompts as a warm start:

t—1
1
Pt = 715—1,211% fort > 1,
i

with random initialization for t = 1. This average-prompt warm start provides a more informed
initialization under single-pass GCL streams, where each expert only observes limited data, and
empirically accelerates convergence and more compatible with blurry boundaries in which classes
can reoccur across sessions. The EMA heads of E; are initialized as clones of the current online
head. During training, only online head 1) and prompt p; are updated using the cross-entropy:

Li(®,y) = CE (fo(x;p)W ' +b+m, y), ©6)
where . € RIYl is a non-parametric logit mask initialized for each data batch (X ,4). We set
m. = 0 and for any class ¢ € y encountered in the current batch , and set m, = —oo to sup-

press predictions on unseen labels ¢’ ¢ y. This masking strategy mitigates interference from class
imbalance both across and within tasks (Moon et al} 2023} [Kang et al]] 2023), evaluated in Tab.[T3]

After each update step, the EMA heads are updated as:
WY a, W 4 (1—a)) W, b7« a; b7 +(1—a))b. (7)

At inference, the REAR module first selects an expert e = E’(m) Using the associated prompt p.,
we compute logits from the online and EMA heads:

20 = fo(a;p)WT +b, @®)

Z(j) :fe(m;pe)We(j)T +b£j)7 V] € {17 ?n}' (9)
We then ensemble all n + 1 heads by computing the SoftMax of each and taking their element-wise
maximum, followed by logit masking:

2(x) = ?Olax }softmax(z(j) +m), J(x) = argmax Z.(x). (10)
71€10,...,n c

This temporal ensemble mechanism enables FlyPrompt to integrate stable, long-term information
via EMA heads while preserving rapid adaptation through the online head, mirroring biological
memory consolidation and facilitating robust inference under non-stationary, imbalanced streams.
Here, we also present a theoretical guarantee that supports the use of multiple EMA heads in GCL.
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Table 1: Overall performance of representative methods over three GCL benchmarks across PTMs.

CIFAR-100 ImageNet-R CUB-200
PIM Method Aanc(%,1) At (%) | Aauc(%,1) At (%,1) | Auuc(%,1)  Atast (%, 1)
Seq FT 1971i339 10-42i4.92 751i394 2-29i0.85 3-47i0.41 1-49i0.42
Linear Probe 49~69j:6_0.() 23.07;{:7‘33 29.243:1‘2(; 16.8753}14 28.96i2,1(; 17.333:31)3
Seq FT w/ SL 64.904718 62.06+£1.89 | 47.2041.47 39.604243 | 56.16+4.32  56.5043.08
L2P 76.234075 79114143 | 44404103 42.034172 | 64.304015 61.4240 13
Sup-21K DualPrompt 76.04:{:3‘32 76.62:{:0‘74 46.133:1,94 40-8011,04 65.03i2,24 62.433:1,78
CODA-P 79.13+306 8091y | 5L87 95 48.09.575 | 66.01459 62904 46
MVP 67741406 63.224069 | 39504141 32.634395 | 54.6943.14 50.0713.86
MISA 80.35, 559 80.75:124 | 51.524500 45.084143 | 65.401501 60.2041 g2
FlyPrompt (Ours) 83.24:&2.23 86.76:&()'73 56.58i1,47 55-27:t0.91 70-64:t2,85 73-40:t1.88
L2P 63.8817.70 68961763 | 47.101121 42.221194 | 42961413  45.0013.83
DualPrompt 68.0212.08 67.0415.84 52804197 47394160 | 46.8049g9 46.39. 4 76
sup21k/ik  CODA-P 69.29, 05 09.47,719 | 51.204176 44.304150 | 44.661073 45.184450
MVP 64.6913.77  51.291756 | 48.991201 381215020 | 44101281  33.97+9.62
MISA 62.9157.06 67.99:17.41 | 50.871160 AT.75 5gr | 42.764933 44.0541.04
FlyPrompt (Ours) 78.48i1 31 80.39i3_54 62.01i2_32 56.55i3_94 54-42i4.67 55-50i3.55
L2P 56.821540 67.61.g75 | 35.971162 36.95104s | 14764153 2451, o
DualPrompt 66.06i4452 67'14i8.60 42~48i1.62 35~91i0.88 19'90i3.68 21.84i2_35
iBOT-21K CODA-P 62.131717  63.381708 | 45.501; 65 39.44.735 | 17.721533 20.8217.66
MVP 62.33+3.06 48.32411.42 | 41.554198  29.294503 | 28.73,515 23.624951
MISA 65.304208 67434675 | 40944100 36.164158 | 18.624336 23.6612.01
FlyPrompt (OUI’S) 75.58i1_70 79-36i3_47 57~75i2.12 54~39i1.29 28.86i5_84 36.79i7_5g
L2P 53171708 62.28,¢ 10 | 38291065 39.8610.05 | 19.201901 31.211504
DualPrompt 52~39i3.21 53.563:6‘1() 45.763:1‘63 39-19i0‘65 29-32j:3A15 30.533:533
BOTIK CODA-P 5929 405 61.30s673 | 49.56,, 57 42.64, .5 | 27574083 33.61is5n
MVP 57.521362 44.08112.42 | 44.761023 34.931448 | 3381, 350 26.3219.07
MISA 54311901 55.89:510 | 43.914505 40.094154 | 27.761060 33.74.5 1
FlyPrompt (Ours) | 70.141176  74.84+426 | 61.501166 57.181136 | 38.7545720  45.004419
L2P 47984735 59.13,640 | 35.81a137 36584151 | 21184001 32474610
DualPrompt 52121401  55.7T1ie11 | 43.0311.12 35401140 | 27.801421  29.4914.04
DINO-1K CODA-P 54.69,, 40 5891is54z | 45164005 3823000 | 29221097  31.8517.47
MVP 53.6413.91  41.02112.00 | 41.7812.15  32.0014.22 | 33.44, 3,3  26.02110.29
MISA 52.0313.07 55981426 | 41.261325 37.50x1162 | 27.131331  33.08., 19
FlyPrompt (Ours) 65.921274 72.66:&452 57-29:t2,40 54-72:t1,89 37-3815,86 44.66i2435
L2P 28171708  39.0711131 | 17431171 16.271543 | 12421031 20.0047.36
DualPrompt 53-33i4,65 58.20i7473 36.69i1.74 30~24i1.94 1988i535 21~93i4.30
MoCova.1k  CODA-P 53471340 58551710 | 39.89 57 31.721486 | 20094950 24.10.6.48
MVP 54.331456 40.8441421 | 36454035 26.37T16.04 | 28481334 23.5649.78
MISA 57.004506 62.18,5 94 38854407 33471095 | 25.024430 27.684 35
FlyPrompt (Ours) 64'12i5.18 71'51i8.48 52~32i1.50 49.06i1_35 wi4.53 33~32i3.58

Theorem 2 (TE?, informal). For an EMA head with decay o and window L = 1/(1 — «), the
parameter error at time t satisfies

E (W - W |® < ¢2/L+(LP)

where (? bounds the online noise and P; measures drift. A geometric EMA bank contains, at every
time, a head that achieves a near-optimal bias-variance trade-off up to a constant factor.

Interpretation. The bound decomposes the parameter error into a variance term O(¢?/L), con-
trolled by the effective window size, and a drift-induced bias term O((LP;)?), which increases with
nonstationarity. Larger L reduces variance but increases bias, creating a bias-variance trade-off. A
geometric bank of EMA windows ensures that, at any time, one head is near the optimal trade-off for
the current drift level. Intuitively, when the input stream contains segments with varying temporal
dynamics, such as sudden shifts at session transitions or gradual changes within each task, differ-
ent EMA heads can align better with different segments, leading to more adaptive predictions. In
practice, two EMA heads with windows of 10 and 100 (o = 0.9, 0.99) are sufficient (see Sec. @)

4 EXPERIMENT

In this section, we first introduce the experiment setups and then present the experiment results.
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Table 2: Comparison with prominent offline methods on three GCL benchmarks under Sup-21K.

Method CIFAR-100 ImageNet-R CUB-200
Aauc(%7 T) Alast (%-, T) Aauc(%7 T) Alast (%7 T) Aauc (%7 T) Alast (%7 T)
S—Prompt++ MiQ.SS Milﬂo 52~14i1465 49~13j:1.60 66.6112‘21 64.7312.25
HiDe-Prompt 77~10ﬂ:3.81 81.77i2'00 53.77:‘:1‘09 49.87i3'01 67.05:{:2‘37 67.12:‘:0‘50
HiDe-LoRA 80.0749.41  82.0041.25 | 55.094145 51294600 | 67.26,, 76 67.28., 45
HiDe—Adapter 79-52i2.81 81.41:‘:0'95 53.92;‘:1‘32 50.86:‘:5'08 66.09:‘:1‘41 64.53:‘:1‘78
NoRGa 78.8953_33 83.03i1‘20 54~12i1.37 50-09i3.66 67~16i244 67.06i0_58
SD-LoRA 79.261591  78.91i94s | 55.51, 450 5197509 | 64124002  60.57+0.77
FlyPrompt (Ours) 83.2412'23 86.76io_73 56.58i1‘47 55.2710'91 70-64i2.85 73~40:t1.88

4.1 EXPERIMENT SETUP

Benchmarks. We evaluate FlyPrompt under the Si-Blurry GCL setting (Moon et al.| 2023 [Kang
et al [2025) using three representative benchmarks: CIFAR-100 (Krizhevsky et al.l 2009) (60K
images, 100 classes), ImageNet-R (Hendrycks et al., [2021)) (30K images, 200 classes), and CUB-
200 (Wah et al.||2011) (12K images, 200 fine-grained classes). Unless specified otherwise, we adopt
the default Si-Blurry configuration with disjoint class ratio rp = 50% and blurry sample ratio rg =
10%, trained over five sessions. We report two widely used metrics: average anytime accuracy Agqc
(evaluated every 1000 batches) and final accuracy Aj,s; (measured after all sessions) (Koh et al}
2021). Additional experiments of different (rp, ) and online CL are provided in Appendix
Unless specified, all results are averaged over five runs (& standard deviation) with different seeds.

Baselines. We compare FlyPrompt against a diverse set of CL and GCL methods: (1) lower-bound
baselines such as sequential fine-tuning (Seq FT, including the version with a slow learning rate,
SL) (Zhang et al.l [2023)) and linear probing; (2) prompt-based CL baselines including L2P (Wang
et al.,2022c)), DualPrompt (Wang et al.| 2022b) and CODA-P (Smith et al.| 2023)); (3) state-of-the-
art GCL methods such as MVP (Moon et al., [2023) and MISA (Kang et al.| |2025)); (4) prominent
offline CL methods S-Prompt++ (Wang et al.}[2022a)), HiDe (Wang et al.| [2023a)), NoRGa (Le et al |
2024)) and SD-LoRA (Wu et al.| [2025]) in Tabs. E]und @ We also implement the online version of
the analytic baseline RanPAC (McDonnell et al.,[2024) in Tab. E] and other variants in Tab.

Implementation. We adopt the ViT-B/16 backbone pretrained on ImageNet-21K and ImageNet- 1K,
including strong supervised paradigms Sup-21K, Sup-21K/1K (Sup-21K fine-tuned on ImageNet-
1K) (Ridnik et al.|[2021}; |[Dosovitskiy et al., 2020), and self-supervised paradigms iBOT-21K, iBOT-
1K (Zhou et al .| 2021)), DINO-1K (Caron et al., 2021), and MoCo v3-1K (Chen et al., [2021). We set
the projection dimension M = 10%, and \ based on checkpoints: 10* (Sup-21K), 10° (Sup-21K/1K,
MoCo), and 107 (iBOT, DINO). We use n = 2 EMA heads with decay rates 0.9,0.99. More
implementation details of baseline methods and GCL benchmark setup can be found in Appendix[C]

4.2 EXPERIMENT RESULTS

Overall Performance. Tab. [I|summarizes GCL performance across all benchmarks. Prompt-based
CL methods perform well with supervised backbones (e.g., Sup-21K, Sup-21K/1K), but degrade
significantly under self-supervised ones (e.g., DINO, MoCo v3-1K), particularly on fine-grained
benchmarks CUB-200. This highlights the challenge of extracting discriminative features without
strong pretraining priors. MVP, which incorporates contrastive learning for improved expert selec-
tion, outperforms others under the fine-grained benchmark and self-supervised PTMs, reinforcing
the importance of prompt routing. However, the contrastive loss yields limited performance gains
in other cases due to the absence of a replay buffer. Fig. [I] presents the anytime accuracy during
GCL. MISA benefits from stronger prompt initialization and achieves relatively higher performance
at the early stage, but steadily declines due to parameter overwriting, eventually matching weaker
baselines like CODA-P. This suggests that while good initialization helps, it alone is insufficient for
sustained GCL performance. In contrast, FlyPrompt consistently outperforms all baselines across
datasets and PTMs. It achieves up to 11.23%, 12.43%, and 7.62% improvements in A,.; 13.53%,
16.49%, and 12.28% in Aj,s; on CIFAR-100, ImageNet-R, and CUB-200, respectively. As shown
in Fig. [T} FlyPrompt maintains stable, high accuracy throughout GCL, with minimal drops during
session transitions. This results confirm FlyPrompt as a new state-of-the-art for GCL.
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Table 3: Ablation study of different components in FlyPrompt. “—" indicates not applicable.

PTM FlyPrompt Components CIFAR-100 ImageNet-R
REAR Prompt Expert EMA head | A..c(%,1) Awast(%.1) | Aauc(%, 1)  Alast (%, 1)
RP-Based Analytic Classifier (RanPACT) | 69.911585 79.921007 | 47291070 47.3310.12
- X X 71-33i2.17 73-22i1.63 41-73i0.97 37-33i1.71
— X v 71.6942927 73.301155 | 42504101  38.3541.01
Sup—21K X v X 80-7511.98 83.65i1,94 54-91i1.32 52-58i1.36
X v v 821741207 83.754186 | 95904137  53.6540.92
v v X 81.9012_20 84.231],32 55.7611_32 52761],30
v v v 83.24. 5535 86.76.0735 | 56.58.147 55271001
RP-Based Analytic Classifier (RanPACT) | 69.761333 79.4940.16 | 52.9141.07 54.7910.22
— X X 57.8216.94 62.671555 | 46.241072  39.0642.81
— X v 60.7616.77 63.39+s881 | 49.884+0.93 41.654138
Sup-21K/1K X v X 70.094350 67.621580 | 52.071135 44.134361
X v v 72.513;3(15 68.663:5‘96 55.553:1,51 45.903:3‘53
v v X 71.28 1558 69.7315.78 53.1249.19 44.6943 65
v v v 78481131 80391354 | 62011232 56.55.3094

Table 4: Effect of REAR and TE? on A,..(%) performance for PTM-based CL methods using
CIFAR-100 under Sup-21K. The numbers in parentheses indicate the difference from the baseline,
and the arrow direction indicates an increase (1) or decrease (). See Tab. 1"01‘ complete results.

Method | Baseline w/ REAR w/ TE? w/ Both

DualPrompt 76.041332 80.6319.95 (14.59) 76.8343.44 (10.79) 82.3349.17 (1 6.29)
MVP 67. 744496 67.444489 (10.30) 68914486 1+1.17) 68.9344.60 (+ 1.19)
MISA 80.351239 82.034197 (11.68) 81.65,5 94 11300 83.60+2 08 (+3.25)
S-Prompt++ | 80.21, 555 81.43,, 45 (1 1.21) 81934901 (+11.72)  83.11, 4 30 (1 2.90)
HiDe-Prompt | 77.104381 78414964 (11.31) 77.464356 (10.36) 78.6049 53 (t1.51)
NoRGa 78.894+333 79.374071 (1048) 79.164398 (10.27)  79.3742.74 (10.48)

Ablation Study. To assess the contribution of each FlyPrompt component, we conduct a compre-
hensive ablation study of REAR for prompt selection, multi-prompt across tasks, and TE*for EMA
head ensemble. Results in Tab. 3] show that each module provides consistent gains, with the full
FlyPrompt achieving the best performance. We additionally include RanPACT, an analytic learner
using random projections but no expert modularity, to simulate REAR without multi-expert routing.
While this performs competitively under limited training, it falls short without expert specialization,
underscoring the importance of both routing and competence. Notably, the gain from EMA heads
alone is modest unless combined with REAR and prompt modularization, highlighting the synergy
among bio-inspired components rather than simple additive effects. We further integrate our REAR
and TE2components into a range of strong baseline models by replacing their routing and output
head modules correspondingly. Results in Tab. E|further demonstrate the consistent improvements
when either component is added (more results across datasets and metrics are presented in Tab. [T4).

Hyperparameter Sensitivity. Fig.[5|explores key hyperparameters in REAR. Increasing the projec-
tion dimension M improves performance, consistent with the theory that higher-dimensional spaces
enable better feature separability and router performance (in Theorem [I)), mirroring sparse expan-
sion in the fruit fly mushroom body. However, since the memory cost grows linearly with M, we set
M = 10,000 as a practical trade-off. The regularization parameter A has smaller impact, with per-
formance stable across several orders of magnitude. Full results across other PTMs are provided in
Appendix [F:3] We further analyze EMA decay rates with temporal ensemble. Tab. [6]shows that two
EMA heads of 0.9, 0.99, combined with the online head, achieve the best trade-off across datasets.
This aligns with neurobiological findings that the mushroom body maintains short-, mid-, and long-
term memory modules in parallel. Among various ensemble strategies (Tab. [3), the “SoftMax +
element-wise maximum” method is most effective and used by default. Detailed evaluations across
other PTMs and configurations are provided in Appendices [F.8]and[F.10]

Detailed Analysis. Returning to the core challenges identified in Sec. [2.2] we revisit the roles of
expert routing and expert competence improvement. As shown in Fig. [2] methods (e.g., FlyPrompt)
that improve in these two areas correlate strongly with better overall GCL performance. In particular,
Fig. [2b] demonstrates the impact of random projection in boosting routing accuracy, while Fig.
highlights remaining headroom for improving expert competence. Despite introducing RP layer
and tracking feature statistics, FlyPrompt adds minimal parameter overhead, i.e., just 0.83% more
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Figure 5: Analysis of hyperparameters in REAR. (a-c) Different projection dimension M with fixed
A = 10*% we report A,,. and extra storage cost (bar) given M. (d-f) Different regularization
parameter A\ with fixed M = 10%. Dashed lines indicate the optimal choice of each hyperparameter.

Table 5: Performance comparison of ensemble aggregation choices for TE? under Sup-21K.

Ensemble Method CIFAR-100 ImageNet-R CUB-200
Aauc(%7 T) Alast(%7 T) Aauc(%7 T) Alast(%7 T) Aauc(%s T) Alast(%7 T)
Mean 81.34+164 85.11t103 | 52.711136 53.2411.92 | 684941057 73951190
Max Prob. 82.29i2_25 84.95i1_20 55-5611.38 53-53i1.40 68.00i2_50 66.56i1_60
Min Entropy 81.924219 84.234132 | 55.054131 52.881138 | 66.78+253 64.73+1.36
SoftMax+Mean 82'30i1.82 85.98i0_80 Milﬁﬁ 55-53i0.89 70'77i3.00 Mil,EA
SoftMax+Max Prob. 83.24:(:2‘23 86.76:&0,73 56.58:(:1‘47 @ioyl Miz&') 73-40:(:188
SoftMax+Min El‘ltI‘Opy M:&Z,.‘M Mio,(ﬁ 55'94i1.41 54~24i1.34 69.86i2_30 71.51i1_7g

Table 6: Performance comparison of different Table 7: Computational cost and overall perfor-

EMA decay rates for TE? under Sup-21K. mance using CIFAR-100 under Sup-21K.

CIFAR-100 ImageNet-R Total Param. Trainable Time Delay | A,uc

EMA Decay Rat Method
] Awnc%01) A (%) | Awnc (%1 Aia(%,1) oo M) | Param. (M) | (shatch.) | (%.1)
Online head only | 81.90:550 84.23:132 | 54.915130  52.58.41.36 L2P 86.01 0.22 5.17 76.23
+0.9 82811905  86.3610.51 55.090.50 DualPrompt 86.35 0.55 478 76.04
+0.99 82.84105 8641 4 54.67+0.50 CODA-P 86.72 0.92 4.75 79.13
+0.999 81.804+2.37 84.3940.83 53.5240.80 MVP 86.12 0.32 5.35 67.74
+0.9,0.99 83241505 86761073 55.27, 0 01 MISA 86.37 0.58 478 80.35
+0.9,0.99,0.999 82.99 50 86.241079 | 56.354172  55.5010.77 FlyPrompt (ours) 87.08 0.46 4.96 83.24

parameters than MISA on ViT-B/16, and incurs negligible increase in computational cost (see Tab.
more comprehensive comparison in Tab.[T2)and detailed cost breakdown of components in Tab.[T9).
Together, these findings validate FlyPrompt’s effectiveness in resolving the GCL challenges.

5 CONCLUSION

We presented FlyPrompt, a biologically inspired framework for GCL, which addresses the core
challenges of expert routing and expert competence improvement under blurred task boundaries
and single-pass constraints. Grounded in the neurobiological principles of the fruit fly’s mushroom
body, known for its sparse expansion, random connectivity, and multiscale modularity, FlyPrompt
integrates a randomly expanded analytic router for non-iterative expert selection and a temporal
ensemble of expert heads for robust adaptation over time. Theoretical analysis and empirical results
across multiple GCL benchmarks demonstrate its strong performance and scalability.

While these results are encouraging, several limitations of the current work point to promising future
directions. For instance, the temporal ensemble relies on a fixed composition of EMA decay rates,
and adapting these dynamically to data drift could enhance robustness. Additionally, performance
under extreme long-tailed distributions warrants further study. Looking forward, GCL is essential
for deploying real-world learning systems, such as embodied agents, user-facing Al, and resource-
constrained devices, where data is dynamic and supervision is limited. As continual adaptation is a
natural strength of biological systems, the underlying principles they offer will continue to inspire
future advances in GCL and beyond.

10
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A LARGE LANGUAGE MODELS ASSISTANCE

Large language models were used to polish the manuscript. The authors have thoroughly reviewed
and edited all content and take full responsibility for the published work.

B RELATED WORK

Continual Learning (CL) aims to train models on sequential tasks with evolving data distribu-
tions (Wang et al.l |2024b; [Parisi et al.l 2019). Canonical CL settings are categorized into task-
incremental learning (TIL), class-incremental learning (CIL), and domain-incremental learning
(DIL) (Van de Ven & Tolias, 2019), depending on the structure of input and label spaces. TIL
and CIL assume disjoint label spaces, with task identity provided only in TIL, while DIL shares
label space but varies input domains. Theoretically, CL has been formalized by decoupling task
identity prediction (TIP) and within-task prediction (WTP), which remain orthogonal under clearly
segmented tasks and from-scratch training (Kim et al., 2022} [Wang et al.| [2023al).

The rise of pretrained models (PTMs) has shifted CL towards adapting frozen backbones via
lightweight modules, known as parameter-efficient tuning (PET) (Lester et al.l [2021}; [Li & Liang,
2021; Rebuffi et al.,[2017;|Hu et al., [2021)). PET-based CL methods often employ either task-shared
modules (Zhang et al., [2023; McDonnell et al., 2024)) that require gradual updates, or task-specific
experts (Wang et al.| [2022c; [2023a) that demand effective expert selection (implicitly via external
queries (Wang et al., 2022c) or explicitly via routing functions (Wang et al., 2023a)). Importantly,
the strong priors embedded in PTMs blur the TIP-WTP decomposition, making classical CL theory
less applicable (Wang et al., [2023a}; [2024a)).

General Continual Learning (GCL) extends CL to more practical scenarios by removing assump-
tions of clear task segmentation and offline data access (Buzzega et al., 2020} De Lange et al., 2021}
Mi et al.| 2020). Specifically, GCL emphasizes online learning, where each data point is seen only
once; and blurry or unknown task boundaries, where task identities are absent or ill-defined (Aljundi
et al.l 2019a; [Prabhu et al) 2020; |[Bang et al., 2021} Moon et al., [2023). These properties intro-
duce unique challenges in expert selection, knowledge retention, and fast adaptation, without task
identities or replay buffers. Additional constraints, such as constant memory budgets and anytime
inference, further distinguish GCL from traditional CL (De Lange et al., [2021).

To implement the GCL challenges, benchmarks such as Task-Free CL (Aljundi et al., [2019a} [Prabhu
et al.l 2020) and Si-Blurry (Moon et al., [2023) have been proposed, progressively relaxing task-
awareness and enforcing stream-based learning. Correspondingly, GCL methods adapt replay-based
sampling (Aljundi et al., 2019bj |Bang et al., [2021), memory management (Koh et al., 2021), or
PET-based designs (Moon et al., |2023; [Kang et al., |2025). However, replay methods raise pri-
vacy and scalability concerns, while recent PET-based methods (e.g., MVP (Moon et al.,[2023)) and
MISA (Kang et al., |20235)) still suffer from limited representation capacity and lack principled mech-
anisms for prompt expert selection under non-stationary inputs. Consequently, their improvements
over naive PTM-based baselines remain modest.

C IMPLEMENTATION DETAILS

C.1 TRAINING SETUP

We follow the previous GCL studies (Moon et al., [2023; [Kang et al., 2025)) for a fair comparison.
The standard ViT-B/16 transformer backbone has an embedding dimension of d = 768. For prompt-
based methods, we unify the prompt length to 5 and the position to insert the prompt as the first
five layers of ViT. All methods are trained with an Adam optimizer with a learning rate 0.005 and
zero weight decay. We set the batch size to 64, the epoch number to 1 (online learning), and the
online iteration of each batch to 3. All images are cropped and resized to 224 x 224 to fit the ViT
format using standard data transformation operations (resize, random crop, random horizontal flip
and normalization). Moreover, the logit mask m trick in Sec. [3.2]is generally applied to all methods
to enhance training stability. All experiment jobs are performed on the same Linux server with Intel
Xeon Silver 4316 2.3GHz CPUs (20 cores), 1 NVIDIA RTX 4090 GPU. For random seeds, we use
the fixed values 1, 2, 3, 4, and 5 for all parallel runs.
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C.2 BASELINES

Unless otherwise specified, all baselines share the common ViT-B/16 backbone, single-pass Si-
Blurry streams, optimizer, and data preprocessing described at the beginning of this section; below,
we highlight method-specific architectures and the GCL-specific adaptations.

Sequential fine-tuning (Seq FT / SL) and Linear probing. Seq FT fine-tunes all parameters of the
ViT-B/16 backbone and classifier on the Si-Blurry streams without replay buffers or task-specific
heads; SL is an otherwise identical variant with a smaller learning rate (i.e., 5 x 1072, 10 times
smaller than 0.005 used by other baselines) to provide a more optimistic lower bound
[2023). Linear probing instead freezes the backbone and trains only a linear classifier, with no prompt
modules or expert structures; together, these methods serve as simple PTM-based lower bounds.

Prompt-based CL baselines (L2P, DualPrompt, CODA-Prompt). For L2P (Wang et al| 2022d),
DualPrompt (Wang et al} [2022B), and CODA-Prompt (Smith et al} 2023)), we keep their original
prompt-controller designs (key-based prompt pool in L2P, global+task prompts in DualPrompt, and
attention-based prompts in CODA-Prompt), but adapt them to GCL by freezing the ViT-B/16 back-
bone and unifying prompt length and insertion position as in Sec.[C.1} All three methods are trained
in a single online pass over the Si-Blurry streams with the same update schedule as FlyPrompt, with-
out extra replay or offline fine-tuning, so that differences in performance come from their prompt
mechanisms rather than from additional data passes.

GCL baselines (MVP, MISA). MVP (Moon et al} 2023)) and MISA (Kang et al 2023) are im-

plemented on top of the same ViT-B/16 backbone and Si-Blurry streams. We follow their official
configurations for expert/prompt structures and initialization, while enforcing the unified prompt
configuration and online training protocol of Sec.[C.I] As in prior work, they maintain session-wise
experts or prompts, but do not use any privileged task oracle beyond the evolving data stream; their
routing structures can be interpreted in the same way as FlyPrompt’s experts discussed in Sec.
For fairness, MVP and MISA also use the batch-seen class logit mask in Sec. @ whose effect is
ablated alongside other mask types in Tab.[T3]

Offline PTM-based CL methods (S-Prompt++, HiDe-Prompt/LLoRA/Adapter, NoRGa, SD-
LoRA). S-Prompt++ (Wang et al} 20224) introduces prompt experts with a mixture-of-experts
(MoE) structure with linear gating, while HiDe-Prompt/LoRA/Adapter (Wang et al| [2023a) and
NoRGa [2024) build hierarchical decompositions and stronger MoE-based routing on
top of S-Prompt++, and SD-LoRA (2023) leverages structured low-rank adapters by de-
composing expert LoRA into learnable amplitude and fixed direction; all of these are originally
designed for offline or task/class-incremental CL. Specifically, HiDe and NoRGa consist of a two-
stage TIP+WTP (task-ID prediction then within-task prediction) pipeline. To make them compatible
with GCL and Si-Blurry, we adapt their TIP step as follows: when the method predicts a class, it is
allowed to activate all prompts corresponding to the candidate task IDs associated with that class,
and we count the prediction as correct if any activated prompt outputs the true label. This is an in-
tentionally favorable modification for these baselines. In addition, any feature statistics required by
their alignment modules (e.g., for HiDe or NoRGa) are accumulated online from the stream, rather
than being computed from stored per-task datasets. Quantitative comparisons of these adapted of-
fline PTM-based methods with FlyPrompt are reported in Tab.

Analytic random-projection baselines (RanPAC variants). RanPAC (McDonnell et al] 2024)
was originally proposed for offline class-incremental learning, where the PTM is fine-tuned on the
first task, frozen, and all task-1 features are recomputed and stored to form a stable Gram matrix
for closed-form ridge regression; this protocol is incompatible with single-pass GCL and blurry
task boundaries. To ensure a fair analytic baseline, we adapt RanPAC into three GCL-compliant
variants: RanPAC' fine-tunes the PTM on the first Si-Blurry session without storing features and
then solves a closed-form ridge classifier on the resulting random-feature representations, serving
as the main analytic random-projection baseline in our ablations; RanPAC? freezes the PTM during
the first session and stores all features to approximate the original offline setting while still respect-
ing the single-pass constraint on labels; RanPAC* simultaneously fine-tunes the PTM and collects
features during the first session, which yields an ill-conditioned Gram matrix due to representation
drift but offers an optimistic upper bound on analytic-classifier performance under our setting. As
summarized in Tab. [[3] FlyPrompt consistently outperforms all RanPAC variants across datasets.
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D DISCUSSION OF TASK BOUNDARY IN SI-BLURRY

Table 8: Performance comparison of different numbers of tasks and experts for GCL methods on
CIFAR-100 dataset over Sup-21K. “task-correlated” indicates that the initialization and training of
expert parameters are aligned with task/sessions. w denotes the sample budget (window size) of each
expert when methods adopt a self-triggered expert allocation mechanism. All results are reported as
an average of five parallel runs (& standard deviation) with different random seeds.

MVP MISA FlyPrompt

#of Tasks  # of Experts Anc@.) A1) | Ausc(%:1) Aist(%6.1) | Auue(%r1)  Araet (%, 1)

5 (task-correlated) Mi&QG 63.2210.69 80.35:‘:2'39 80.7541.24 83.241993 86.76.10.73
5 5 (w = 10000) 67.751496 63.2240.76 | 80.601206 81.731117 | 83.6T12023 85.78 4,
10 (w = 5000) 67.234506 6347, 075 | 79.95:186 8132, 15 | 8340 5.5 85431032
20 (w = 2500) 67.194080 64.06514s | 79945175 81031002 | 82261191 84484064
10 (task-correlated) 58.23:&3,42 61~13:k6.00 75~71:k3.10 80.22*0,47 77.65i3,05 84.87:&0,50
10 5 (w = 10000) 58.49.357 6198, | 76.250310 80.62 04r | 77284079 84.63,0 50
10 (w = 5000) 58194342  60.804+6.48 | 75.69+3.11  80.18 4041 | 76.964323  84.0340.39
20 (w = 2500) 5846 44, 62151508 | 75.73,550 80.661061 | 76471535  83.39:055
20 (task-correlated)  56.52.40, 56.87i518 | 73.96.075 77985117 | 75871105 8198, 1
20 5 (w = 10000) 56.591331 56.58+6.76 | T4.2T+0097 71789, 60 | 76.121157 81.9010.32
10 (w = 5000) 56.3543.38  56.804+6.57 | 73.8640.82  77.59+142 | 76.1241 01 82.214050
20 (U) = 2500) 56.48j:&15 56'86i5A39 73-66;{:0,85 77-70i1.24 75.363:1,65 81.133:0‘55

GCL (Buzzega et al] 2020) is defined by a single-pass, non-stationary data stream without task
boundaries during training and without a task oracle at test time. The Si-Blurry benchmark
that we adopt has been carefully analyzed in subsequent work [2025): by
controlling the disjoint-class ratio rp and blurry-sample ratio rp, it generates streams where (i) the
number of active classes can vary across sessions, (ii) classes may reoccur across sessions, and (iii)
the number of samples per class and per session is randomized In particular, when
rp approaching 0, the nominal “task™ or “session” index becomes decorrelated from distributional
changes. These properties ensure that Si-Blurry conforms to the core GCL assumptions, rather than
reducing to standard task-incremental CIL.

Within this setting, FlyPrompt does not assume any privileged boundary information beyond what is
already used by prior GCL methods such as MVP and MISA. The “task’ or “session” index provided
by Si-Blurry is treated as a conceptual device to describe how the benchmark constructs streams,
not as a supervision signal for the model. In our implementation, expert indices are aligned with
nominal session identities purely for convenience: the same behavior can be reproduced by starting a
new expert after a fixed number of observed samples or when a user-defined computational/storage
budget is reached, without accessing the task index. Moreover, the total number of experts 7" is
not a hard-coded prior; matrices such as @ € RM*T and the router head can be dynamically
extended from 7" to 7' + 1 via zero-padding, analogous to adding classes in a standard classifier.
Implementation details for how both GCL methods and offline PTM-based baselines are instantiated
under this regime are summarized in Appendix[C.2}

To empirically validate that FlyPrompt and comparable GCL baselines do not gain an advantage
from Si-Blurry’s session structure, we further compare task-aligned expert management with a self-
triggered expert allocation mechanism. In the self-triggered setup, each method maintains a fixed
sample budget and freezes the current expert while initializing a new one whenever the number of
observed samples reaches a predefined threshold, fully decoupling expert updates from external task
segmentation. We evaluate multiple combinations of nominal task counts (# of Tasks = 5, 10, 20)
and expert budgets (# of Experts = 5, 10, 20) on CIFAR-100, with corresponding sample budgets
chosen to cover the 50K training examples. As summarized in Tab. [§] self-triggered expert initial-
ization achieves performance on par with, or slightly better than, session-aligned setups for MVP,
MISA, and FlyPrompt across all tested budgets. This confirms that (i) task-switching signals of-
fer no measurable benefit in this benchmark, and (ii) our expert management mechanism does not
exploit any extra boundary information.
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E THEORETICAL PROOFS

E.1 PROOFS FOR REAR (THEOREMI)
NOTATION AND ASSUMPTIONS
We repeat and fix the notation used throughout the proof of Theorem [T}

1. fo: X — R9is the given pretrained backbone. For an input x we write h = fg(x) € R%
2. R € R™M js a random matrix with i.i.d. N'(0, 1) entries; the j-th column is 7; € R%.

3. The random-expanded feature map is

-
p(@) = (p1(@),- - ou(@) ,  pj(@) =o(h'r).
4. Assume embedding-boundedness: ||h||2 < H for all . (This can be enforced in practice
by layer-norm or clipping.)

5. Activation o : R — R is L,-Lipschitz and has linear growth |o(2)| < C(1 + |2]). ReLU
satisfies these with L, = 1 and linear growth C' = 1.

6. For training, we accumulate batches (or singletons) to form

N N
G=> ¢@)p@;)" € RN, Q=) o®)c] e RM*T,
i=1 i=1
where ¢; € {0, 1}7 is the one-hot indicator of the target expert; see Eq. ).
7. Ridge solution (router):
U'=(G+A)7'Q, >0,
with regularization parameter A as in Eq. (@).
8. For the theoretical analysis, we treat the training pairs (x;,y;) as i.i.d. draws from an un-
derlying distribution over X x {1,..., T}, with a fixed and finite number of experts 7.

9. For the margin-based routing-accuracy corollary below, we additionally assume that there
exists a margin v > 0 such that, for the population minimizer U™ and almost every input x,
the score of the correct expert ¢* () satisfies sy« ()4 (2) > sy~ (x)¢ + forall t # t*(x),

where sy (x) 1= ¢(x) "TT

At the population level we consider the regularized squared risk
T 2 |12
R(U) ==E||su(X) — C||, + AlU|F,

where (X, C') denotes a random variable pair drawn from the same distribution as the training
examples (x;, ¢;), with X € X and C' € {0,1}7 is the one-hot indicator of the target expert. We
write sy (x) := @(x)U " for the router scores as in Eq. . The minimizer of R in the kernel-
induced feature space is precisely the U* appearing below.
We then state the complete Theorem|[I] here based on the above assumptions:
Theorem (REAR, full). Under the standing assumptions above, form the online statistics G, Q as
in Eq. (IZI) and the ridge solution U as in Eq. (H) Let N be the total number of samples used to form
G, Q and let U* denote the population regularized minimizer in the feature space induced by the
kernel k(h,h') = E.[oc(h"r)o(h’'"r)]. Then for any § € (0,1), with probability at least 1 — §
(over R and the training samples), the excess (population) squared risk decomposes as

R(U) = R(U*) < Ereat(M, 8) + Eestim (N, A, 6) + Ere(N),
where, for universal constants C; (depending on H, L, C'),
log(N/6)
M

1
gestim(N, )‘7 6) é 027

1
gfeat(M, 5) < C'Vl \/N : Xa greg()‘) < CS)‘”U*H%‘

2This assumption is not needed for the excess-risk decomposition in Theoremitself, but acts as a bridge.
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E.1.1 LEMMA: RANDOM-FEATURE CONCENTRATION

Lemma 1. Let S = {x1,...,x N} be the finite training set and write h; = fg(x;). Define the
kernel

k(h,h) :=Eppno1,[c(R"r)a(h 7).
Then, under the standing assumptions, for any § € (0,1) and any € € (0, 1), if

log(N2/§
M > - 08/
€
(with Cy¢ depending only on H, L, C above), then with probability at least 1 — § over R,

.
— . ) — - h)l <e.
| Jnax 27 P @) l(x;) — k(hi,hj)| < e

Proof. Fix a pair (i, j). Write
Zy = po(xi)pe(x;) — Elpe(wi)pe(x;)],  £=1,..., M.

The Z, are independent (across £) mean-zero random variables because columns 7, are independent.
We will apply Bernstein’s inequality for sums of independent sub-exponential variables; to do so,
we need a variance proxy and a uniform tail bound.

From the growth assumption |o(z)| < C(1 + |z|) and r; ~ ./\/(O,Id2r, the marginal p,(x)
o(h] ry) is sub-Gaussian / sub-exponential: more precisely, since h, v, ~ N(0,|h;|?)
N (0, H?), we have for some constants v,b (depending on H, L,,C) that P(|p,(x)| > t)
2 exp(—ct) for large t; thus g (x)pe(x’) is sub-exponential with parameters bounded by functions
of H, L., C. Concretely, one can verify

IANIA I

1Zellyy <

for a finite constant b depending only on H,L,,C, where | - |, denotes the standard sub-
exponential Orlicz norm. Hence, applying Bernstein’s inequality for sub-exponential variables
yields, for any 7 > 0,

2

P(’ iZgl > 7') < Qexp(—cmin (ﬁ,%)),

with constants 9, b, ¢ > 0 determined by the sub-exponential parameters.

Choose 7 = Me. Plugging 7 = Me and requiring the RHS to be < §/N? (to union bound over all
< N? pairs) yields the condition

log(N?
M s B

for some C\¢ (combining cases of Bernstein). This gives, for fixed pair (4, j),
M
1 0
HOIEDES &

Apply union bound over all < N? ordered pairs (i, j). This yields the claimed uniform bound with
probability at least 1 — . O

Remarks on applicability of Bernstein. We used Bernstein for independent sub-exponential sum-
mands. The summands are independent across random-feature index ¢; sub-exponentiality follows
from (i) Gaussianity of r, and (ii) Lipschitz + linear-growth of 0. For ReLU (which is Lipschitz
with linear growth) the same argument applies (moments of Gaussian tails control tails of o (-)).
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E.1.2 LEMMA: RIDGE PERTURBATION

We next show that when the empirical feature covariance concentrates around its population coun-
terpart and the empirical cross-covariance concentrates, then the finite-sample ridge solution is close
to the population ridge solution.

Lemma 2. Let ® € RV*M pe the feature matrix with rows p(x;) ", define empirical covariance

~ ~

1 1
Y=—-0"decRMXM, b=—3'Y e RMXT,
N N

where Y € RNXT s the one-hot label matrix (or soft labels). Let the population quantities be
Y = E[p(x)p(x) "] and b = E[p(x)c"]. Denote population ridge solution

U= (S4+AD"'%,  Uy:i=(E+ )"

s - 2llop < 3 and ||Z— bllr < ey, then

10 = U3llr < et /\2||b||F||2 Zllop-

A
Proof. We write
Un—Uf =E+ADo—b) + [(E+ M)~ = (Z+ D)7
For the first term use operator norm bound ||( + AJ)~! llop < 1/Ato get
~ P 1 .~
IS+ A7 BBl < 5 1B bl

For the second term use the identity A~' — B~ = A=1(B—A)B~! with A = S+AI, B = S+l
Hence
147" = B lap < A7 aplA = Bllpl B lop < 118 ~ Sllepy-
Thus
[E+ADT" = (S +A) 71|, < 2H2 Elop o]l -

Combining the two terms and tightening constants when ||E — Xllop < A/2 gives the stated bound.
O

Concentration of ¥ and b. We next control the empirical covariance and cross-covariance. Recall

N ,
S-2=3%  X=y(e@e@) -5)

Each X; is self-adjoint and satisfies E[X;] = 0. Under the bounded-embedding and activation
assumptions (cf. Lemma , there exists a constant C;, > 0 (depending only on (H, L, C')) such
that ||¢o(x)|]2 < C,, almost surely. Hence, for every i,

1X,lop < - (I @ @) o + 12l < (G2 + [Elp) = 22,
Similarly, we can bound the “matrix variance” term
2 > 2 AT 2 T 1\ 2 Vo
e [Smne] = e, < 2 el 5], <%
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for some constant Vj > 0 depending only on (H, L,, C'). For completeness, we recall a standard
matrix Bernstein inequality (Theorem 6.1 in (2012)): if {X;} Y| are independent, mean-zero,
self-adjoint matrices with || X;||op, < L almost surely and

. N
v? = H ZE[X,Z]
i=1

Op/

then for all ¢ > 0:

t2/2
1) < 2Dewp (- 212,
op - P ’U2 + Lf/3

(|2 x

where D denotes the matrix dimension (in our case D = M, the feature dimension). Applying this
with ¢ = € and our bounds L < Ly/N and 2 < Vo /N gives

Ne2/2 >

N
PSS = Doy > :IP’H X, __e/e
(18 = Zlop > ) =( ;;; Vo + Loe/3

> 5) < 2M exp (
op

For ¢ € (0,1) the denominator in the exponent is bounded above by a constant multiple of V;, so
there exists C’ > 0 (depending only on (H, L, C)) such that, for all § € (0, 1), taking

_ v, [log(M/5)
=0\ =

P(||E — Zllop > €) < 4.
Equivalently, with probability at least 1 — 9,

)

ensures

P log(M/d)
Y= Ylop £ Oy —F—.
I8~ Sllp < -
For the empirical cross-covariance b = N Zi\zl o(x;)c; and its population counterpart b =

E[p(x)c'] we apply the same argument column-wise (each column is an average of bounded sub-
exponential vectors of length 1/) and obtain

log(T'/6)
et

for some constant C”" > 0 depending only on the same problem parameters. Adjusting constants
to account for the two events and taking a union bound, we may assume that both inequalities hold

simultaneously with probability at least 1 — d. Choosing N large enough to make Hi —Xllop < A/2

b —b]lr < C”

and to make ||b — b|| p (denoted € in Lemma small then yields the desired estimation error term
in Lemmal]
E.1.3 LEMMA: ONLINE STATISTICS IMPLEMENT BATCH RIDGE

Lemma 3. If G and Q are formed by accumulating per-example contributions
N N
G= @), Q=3 e,
i=1 i=1

then the closed-form solution UT = (G+AI)~1Q equals the ridge regression solution computed in
batch on features p(x;) and labels c;. Moreover, if the online implementation maintains (G+A\I)~!
via rank-1 updates, numerical equivalence holds up to floating-point precision.

Proof. This is algebraic: batch ridge with design matrix ® and labels Y solves U7 = (®Td +
M)71@TY. But @@ = > p(z;)p(x;) " = Gand @'Y = Q. The equality follows. For in-
cremental numerical maintenance of the inverse, standard Sherman—Morrison or Woodbury updates
apply; also numerically stable Cholesky-updates are recommended when M is large.
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E.1.4 COMBINING LEMMAS: PROOF OF THEOREM 1]
Proof. The excess population risk decomposes as

R(U) — R(U*) = R(U) — R(U;) +RUS) — R(U*).

estimation error reg. bias

The regularization bias is the usual ridge bias and yields the e (A) term; standard calculus shows
it is bounded by A||U*||% up to constant factors.

For the estimation error, apply Lemma[2]to relate the empirical ridge solution (which equals the on-
line U by Lemma Ii to the population ridge solution U5. The two perturbation terms are controlled
by HE EHOD and ||b—b|| g, which in turn are bounded by the matrix Bernstein concentration bounds
for 3 and b derived above. This yields the stated O( TN )\) behavior for Eestim (explicit constants
follow from the above bounds).

Finally, the approximation error due to random features is precisely Lemma [T} replacing the
kernel k by its Monte Carlo approximation using M independent features introduces a uniform
O(+/1og(N/5) /M) perturbation in inner products, which propagates to the excess risk as the term
Eteat (M, 0) displayed in Theorem O

Margin-based routing accuracy. Under the additional margin assumption in the REAR stand-
ing assumptions and a uniform bound |[¢(x)|l2 < C, (for some constant C, depending only on
(H, L,,C)), the excess risk bound above can be converted into a bound on mlsroutmg probdblllty

Let {(z) := arg max; sg () and t*(x) := arg max; sy« (z); denote the experts selected by U and
U™, respectively. Then

2
8C2

/\72(73([7) - R(U")).

P(i(X) # (X)) <

Proof. On the event {f(z) # t*(x)}, the margin condition implies
Y < U (@) () — SU (@) () < 2mtax |su« (@) — sp(x)e].
. . 2
Hence, 1{i(x) # t*(x)} < (2/7)* H@E(w) - SUx(:E)Hz.

Given sy (x) = @(x)U " and Cauchy—Schwarz yields:
max |sy- (@); — s5(®)i] < l@(@)[2|U = U"|[r < CollU = U™,

= 1{i(@) # t*(2)} < (2C4/7)*|U - U*|3.

Since the regularized risk is defined as R(U) := E||sy(X) — C||2 + M|U||%, the quadratic ridge
term \||U||% makes R (at least) A-strongly convex in U. In particular, strong convexity implies:

R(O) = RU*) = (V2T - U*I3,
= [T = U*[% < 2/N)(RO) = R(U)).
Combining these inequalities and taking expectations over X gives the stated bound. O
E.2 PROOFS FOR TE? (THEOREM [2)
E.2.1 NOTATION AND ASSUMPTIONS

We reuse notation from the main text. For a fixed expert (prompt/head), we denote:

s Wr e RYI*P: the (population) time-t optimal linear parameter (in the chosen feature
space) for that expert.
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» W,: the instantaneous (online) estimator after observing the ¢-th update; we model W, =
Wi +&.
* EMA head with decay o € (0,1):
W =1-a) Y oF Wik, L(a) = 15

k>0

* Discounted path length (drift measure):
R ~Jd—1 * o *
b= Z W = W,
Jj>1

where we define the discount factor to match the EMA decay, i.e., ¥ = « or compara-
ble. This is a discounted analogue of the standard path length / variation measure used in
dynamic regret (Zinkevich] 2003} [Besbes et al] 2015).

 Standing conditions: finite P;, zero-mean noise with bounded variance:
E[¢] =0, Ell&|* < ¢2.

* (Optional, for classification calibration) A margin A > 0 and a Lipschitz map-to-logits
with constant Cy imply a bound on 0/1 error from parameter MSE.

We then state the complete Theorem [2] here based on the above assumptions:

Theorem (TE?, full). Under the standing conditions above, fix t and an EMA decay o with L =
1/(1 — «). There exist constants Cy, Cy > 0 such that

N 2
B|W - wi|” < %+ G LRy

Moreover, if we keep a geometric grid of windows {L;}™ | with ratior > 1 (e.g., L; = r*~ 1), then
for every t there exists an index i, with

o 2
BW™ Wi < o) min {6 S+ 0o (LR},

where c(r) depends only on the grid ratio v (one can take, for example, c(r) = max(r?,r) by
the argument below). Additionally, if a margin A > 0 holds and the logits map is Lipschitz with
constant Cyy, then the above parameter MSE implies a classification error bound O((Cre/A)?)

whenever E| Wt(a) - WH? <&

E.2.2 PROOF OF THEOREM[2|

Proof. The proof proceeds via a variance—bias decomposition and a geometric grid selection argu-
ment, followed by a calibration from parameter MSE to classification error.

We start by decomposing the error into the variance term. Define the difference between the EMA
and the population optimum

W W, =(1-a)> o &y,

k>0
W: =(1-a) Zak ol
k>0
where W: is the EMA of the population optima.

Since we have E[¢;] = 0 and E||&;]|?> < ¢2, and the EMA weights are a;, = (1 — a)a¥, we can
compute their squared sum explicitly:

5 5 o (1—a)? 1—a 1
Z”}"i(l_ﬂ) ZO 1 —a? 7'l+n,§2’

k>0 k>0
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Therefore, ,
- . 2
BW - W;|* =E| Y ati| <X at <5
k>0 k>0

which matches the variance term C 2 /L in Theorem (with C absorbing the constant factor).
Next, we address the bias term. The difference between the EMA of the population optima and the
actual population optimum is given by:
W: -Wy = Z ar(Wi_, — WY).
k>0
Reordering sums yields:
Ev vad * * * j
||Wt - Wt || < Z (Zak) ||Wt—j+1 - Wt—j” = ZO‘] At—j+1a
izl k2j i1 (In
where A, = |[W) —W,_,|.

Using the discounted path length P, with the same discount factor v = « as in the EMA definition,
we can simply rewrite the above bound as

||W: - W;H — ZOéj At—j+1 — Oéz (,inlAt_j_i_l = (,YPt S LPt,

J=1 Jj=z1

where we used L = 1/(1 — «) > «. Consequently, the squared bias admits the explicit bound
—%* %112
W, —wW|" < (LR)?,

which corresponds to the term Cy(LP;)? in Theorem
Then, by combining the variance and bias terms, we apply the inequality ||a+b[|? < 2||a||* +2]b]|?,
which yields the claimed MSE bound:

*

. - 2
E||W - W, .

ﬂ < 2°- +2(LP)*

Therefore, in Theorem 2] we may take the explicit choice Cy = Co = 2. If we allow  to differ
slightly from «, the constant Cy becomes (av/7)? (bounded if we restrict y € [(1 — €)a, (1 + €)a]).

For the geometric bank, it is convenient to write the bound in the generic form

f(L) = % + B(LP,)?, A= B=1.

A direct derivative calculation of f’(L) shows that the minimizer over L > 0 is

1/3
oy = -2 +2BP§L;»L*:( A ) .

Nz 2BP?
If we maintain a geometric grid L; = 7'~ ! with ratio » > 1, then for any L* there exists an index i,
such that L;, € [L*/r,rL*]. Writing L = L*n with ) € [1/r,r] and using the optimality condition
A/L* = 2B(L* P;)?, we obtain

f(L) _ 2B(L*P)?/n+n?B(L*R)* _ 2/n+n?

f(L*) 3B(L*P;)? -3
The right-hand side is maximized over 7) € [1/r, r| at one of the endpoints; a simple bound yields

2/ 2 2 r2 2 1
sup 2/n+n° < max (+r77+2> < max(r?,r).
nell/r,r) 3 3r 33 3r

Therefore f(L;,) < c(r) f(L*) with the explicit choice ¢(r) = max(r?,r) used in Theorem
(obviously c(r) = 72, given r > 1 in our case.)

From the general classification error’s view, by the Lipschitz-to-logit condition, the induced logit
error is at most: N
Cr W —wr.

Under the margin conditfion (A > 0), the standard margin-to-0/1 calibration gives an error bound
O((Cre/A)?) when E[|W — W*||2 < &2, O
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F ADDITIONAL EXPERIMENT RESULTS
F.1 EXPERIMENT WITH DISJOINT AND BLURRY SETUP VARIANTS

Table 9: Performance comparison of rp variants in FlyPrompt. We fixed rg = 10% and use
Sup-21K backbone PTM. All results are reported as an average of five parallel runs (& standard
deviation) with different random seeds.

ro(%) Method CIFAR-100 ImageNet-R CUB-200
DA/ Aauc (% T) Alast (%a T) Aauc (% T) Alast (%a T) Aauc (% T) Alast (%a T)
L2P 73.641160 81.71p108 | 42.9741.01 42531079 | 64.624337 62.724332
DualPrompt 72.16:{:2‘40 77.52:{:1‘43 45.08:{:3‘43 42.34;{:1‘55 65423:“;5“; 62.84;{:2‘21
0 (pure blurry) CODA-P 72.331581 785641446 | 50.3114.42 48.881346 | 66.6413.42 63.7012.48
MVP 67104233 74941745 | 39.041149 32.284312 | 56.861371  55.50416.71
MISA 78384149 83.044144 | 51784390 4T7.641064 | 67.381325 64.49415 55
FlyPrompt (ours) 80.1211438 87.1110,52 55-4411,82 55-8910.86 71.6013449 74-7211.69
L2p 76.23+273  79.11t143 | 44404103 42.03+1.72 | 64304218 61424213
DualPrompt 76.04:{:3‘32 76.62:{:0‘74 46.133:1“()4 40.80;{:1‘04 65.03;{:224 62.43;{:1‘78
50 (mixed) CODA-P 79.1313.06 80.91to70 | 51.871281 48.094275 | 66.014220 62.9012.46
MVP 67.741406 63.221069 | 39.50£1.41  32.6313.95 | 54.69+3.14 50.0713.86
MISA 80.3542.39 80.7541924 | D1.524909 45.0847.43 | 65404301 60.2041 82
FlyPrompt (ours) 83.24:&2423 86.7610,73 56.5811447 55.2710.91 70.64:&2485 73-4011.88
L2p 82.9810.72  78.79+0.05 | 45481071 43.121075 | T1.741358 61.5211.82
DualPrompt 81.12:{:2‘10 75.94;{:0‘37 46.79:{:2‘(]0 41.42:{:0‘(,3 72.81;{:330 62.463:0‘97
100 (disjoint) CODA-P 82.68+3.90 77.971319 | 53.01i301 49.31i2s7 | 73.951410 63.9010.04
) MVP 74.924110 956174298 | 40434051 28.324555 | 63414252  43.80+2.60
MISA 85.67+1.01 81.044102 | 53.881199 47.63107s | 74.2T1356 62.9711.44
FlyPrompt (OllrS) 88.25:&0,90 85.5110,64 57.41:&0,95 55.6910,33 78.14:&3,62 74.34:&0,74

Table 10: Performance comparison of rg variants in FlyPrompt. We fixed rp = 50% and use
Sup-21K PTM backbone. All results are reported as an average of five parallel runs (& standard
deviation) with different random seeds.

rs(%) Method CIFAR-100 ImageNet-R CUB-200
B0 Aauc(%y T) Alast (%1 T) Aauc(%7 T) Alast (%7 T) Aauc(%a T) Alast (%7 T)
L2P 76.234073 79114143 | 44404103 42.031172 | 64.30101s 61.424015
DualPrompt 76‘04:&3_32 76.6210_74 46.1311_94 40.80;&1_04 65.0312_24 62~43:tl.78
10 CODA-P 79.1343.06 80914070 | 51.874281 48.094275 | 66.014290 62.9042.46
MVP 67744406 63221069 | 39.5041.41  32.634395 | 54.6943.14 50.071+3.586
MISA 80.3542.39 80.7541.24 | 51.524909 45.0841.43 | 65.404301 60.2041 82
FlyPI'Ol’Ilpt (ours) 83.24:(:2‘23 86.76:&0'73 56.58i1‘47 55'27i0.91 70.64:(:2'85 73-40i1488
L2p 78.4810.92 80.1310.87 | 43.3240.79 42274140 | 63.6742.03 03.6013.09
DualPrompt 77~76i1A65 77.50i()‘49 45~11i1A09 41-01i0,70 64.36i1‘98 63.72i222
30 CODA-P 81.5041.20 82.6540.72 | 50.554224 47.584281 | 65.894142 64.9712583
MVP 71.014170  65.714460 | 38.6241.35 32434475 | 54164456 51.0446.89
MISA 82.5411.08 82504068 | 51.694094 47.0941.16 | 67.1341.72 66.5342.39
FlyPI‘Ol’Ilpt (ours) 84.61i1425 86.89i0,38 55~30j:0.86 55-4311.04 70~19i2.01 74-25i1427
L2p 77444042 80.311069 | 44.39+1.72 43.6611.04 | 65421071  64.621163
DualPrompt 77~44j:2464 77~13:t1.08 46~23i1A83 41.993:0,72 66.40:{:2,72 65‘34i3‘05
50 CODA-P 81.394218 83.1010.97 | 53.054+160 50.2041.74 | 67.884226 65.444930
MVP 67.974478 58114196 | 40.68+159 31.874656 | 57.254376 53.864+3.41
MISA 81.8142.29 82.5110.38 53.2711.71 48.3210.84 68.6812 47 66.84 15 07
FlyPrompt (OUI’S) 83.6911,81 86.3110,73 56.5011,87 55-5910,83 71.9511,92 74-03:t1.02

As detailed in Tabs.[P]and[T0} FlyPrompt consistently outperforms baselines from the purely blurry
regime (rp = 0) to fully disjoint tasks (rp = 1, namely, online CIL) and across different blurry
ratios g, demonstrating robustness under extreme GCL configurations and superior versatility.
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F.2 GCL EVALUATION METRICS

Table 11: Average accuracy of 5 sessions and forgetting of different GCL methods over three
datasets. All results are reported as an average of five runs (& standard deviation) with different
random seeds.

CIFAR-100 ImageNet-R CUB-200
PIM MethOd Aavg(% T) Fiast (%7 »L) Aavg<%7 T) Fiast (%« \L) Aavg(%7 T) Fiast (%« \L)
L2P 75414075 11534144 | 478240095 19.1641.92 | 65444330 29.1543.19
DualPrompt 75-96i2.56 11442i0.91 49~90i2.34 18‘24i4,34 66.54i3_05 27‘18i2,91
Sup21K CODA-P 78731300 9.95:1130 | 55.7Pinss  1849i944 | 67.19,5 05 27434340
MVP 64.7044.14 33194233 | 40.144139 43.39+4023 | 52424506 47.614573
MISA 79.67, 1 75 967,30 | 55.78, 4 21461405 | 66.924312 30.0643.70
FlyPrompt (OUI‘S) 82°72i2.69 5'03i1.16 60.38i1_76 13'42i1.74 72-22i4.35 10'97il 52
L2P 60.98+10.04 14.8846.27 | 50.214300 35.884451 | 43.724519  35.0549.31
DualPrompt 66.13i4.34 19.18i5,13 56.53:&1‘22 30.73i7,45 47.37:&5‘07 35~40i8,16
Sup21k/1K  COPA-P 66.81,, 5, 19.8216s5 | 55.0141.66 35.58:552 | 45381400 35.731s.05
MVP 63.224167 46.984815 | 50.914309 51114286 | 46.134176 62.9345.05
MISA 60114535 11.38,0 76 | 54171002 28.66 ¢19 | 43.331530 33.95,¢ 3
FlyPrompt (OUI‘S) 76.86i2'29 9.5012.33 64.41:&1,80 21-5914,28 55.1215,49 21.7113‘55
L2P 52731778 1258 oy | 38411638 3417,75, | 14931050 19.09.¢ o5
DualPrompt 62.86i7_45 19~22i422 46»07i2A16 37-9619{;0 21.96i520 30.18i&79
BoT21k  CODA-P 59.5917.04 22201561 | 4947570 41214610 | 18.771605 28981054
MVP 61.481255  50.23111.27 | 44.014418  62.171610 | 30921226 62.204581
MISA 62.87, 476 17.34ig20 | 44.621336 35.6211160 | 19481485  21.18110.00
FlyPrompt (OLII‘S) 73.083:2‘18 8.38;{:1‘52 59.40;{:134 23-40i&20 30'78i8.41 18.85i4A15
L2P 48971618 1647740 | 41234731 33014605 | 19.751357  21.26411.00
DualPrompt 50.16i4_91 20~45i3,88 49~51i1.57 35~14i7,72 30~29i3.97 32'70i9,00
BOT-1K CODA-P 55.841508  22.72:632 | 5349, 5, 40.231610 | 28854308 27.71la9.65
MVP 56.41,5 09 53.4712.87 | 46.961597 56.261540 | 3497, 44 62614688
MISA 52.58+4.34  19.1644.04 | 48.8942.82 33.52410.12 | 27.9845.32  29.3546.60
FlyPrompt (OUI'S) 64.94i2_57 11'52i3,71 63.77i1,42 20.89i3475 38-05i6.98 21‘6213,82
L2P 45454685 14.82,6¢; | 38984754 33.00 70 | 2321is6s 2423005
DualPrompt 49-65i5.46 18.693;5(27 47.16;{:1‘05 37.89i7ﬁ5 29.483:5‘33 31.35i1()‘51
pNO.jk  CODAP 50761565 19431583 | 48.68,570 41.264690 | 29431480  32.69:10.65
MVP 5241, 45 547041047 | 44451011 56.541600 | 3471, g0 6421178
MISA 49.814367 17761408 | 46.611224 34.38%10.60 | 27464511  25.77110.77
FlyPrompt (ours) | 63.59+456  9.0411.73 60.831157 20.65:30s | 37501533 19471454
L2P 26.7516.56  19.6841510 | 19.020075  43.59146s | 13424550  26.38.,; 63
DualPrompt 49-61i7.76 14‘79i4,09 41~37i1.80 35407i5.93 21~87i4.80 28442i9_47
MoCo-1K CODA-P 48.261559 16.9716.15 | 44.T14043 43274097 | 22.334394  30.90410.77
MVP 52.8219.35 55.42415.00 | 38.6813.83 55.8714.26 30.74 15 46 62.97 1567
MISA 5346, 64 16194506 | 45.41 6 3442 ¢4 | 26.92,, 4¢  35.5017.07
FlyPrompt (ours) | 60.1616 g3 7.6912 42 55951160 21274959 26.524631 20.69 355

Following Moon et al.| (2023));|Kang et al.|(2025)), we consider the standard evaluation metrics A,
Alasts Aavg and Fiag for GCL performance. We denote R; ; as the accuracy recorded right after
session ¢ with respect to the data in the session j. We then maintain a matrix R whose jth column is
the history of evaluation after each session with respect to the data in session j. Firstly we calculate
the final average accuracy Aj. as:

T
A = 7 > e (12)
average running accuracy Aay,:
T
v = 7 > i (13)
and the final average forgetting Fias:
1
Fiast = 7 ;<max(Rj) — R, (14)

where A}, and A,y are the higher the better and Fiag is the lower the better. They are all conven-
tional metrics used in classic CL research.
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Moreover, A,y (higher the better) is the anytime inference metric proposed by (2021)
to better evaluate the GCL performance during the learning process. Specifically, the evaluation of
GCL accuracy is performed every b batches. Throughout this work, we fix b = 1000. Denote the
total number of the assessments performed as S, then given the history @ € RS (where as shows
the accuracy of the model at time stamp s over the data it has observed so far), we calculate the area
under curve of any-time accuracy Aayc as :

1 S
Aauc = g ;a& (15)

In addition to these metrics, we also report the backward transfer (BWT) metric (Lin et al.| [2022) to
quantify how learning later sessions influences performance on earlier ones. Using the same notation
R; j and T as above, we define

T—1
) 1
BWT = ; (Rr; — Riy). (16)

A positive BWT indicates that subsequent learning improves performance on previous sessions
(positive backward transfer), while a negative value implies net forgetting on earlier sessions. BWT
results of GCL methods are presented in Tab. [[2}

F.3 COMPARISON WITH PROMINENT OFFLINE PTM-BASED METHODS

Table 12: Extended Comparison of performance, backward transfer, and computational cost across
PTM-based CL methods. All performance results are reported as an average of five parallel runs (&
standard deviation) with different random seeds, over the CIFAR-100 dataset and Sup-21K back-
bone. Parameter counts are measured in millions. Time cost is reported in seconds per batch.

Method | Aaue(%,1) | BWT (%, 1) | Total Param. | Trainable Param. | Training Time | Inference Time
L2P 76.2349.73 0.1042.65 86.01 0.22 5.57 0.95
DualPrompt 76.0413 32 —2.9342.42 86.35 0.55 4.78 0.90
CODA-P 79.13+3.06 —0.8349.17 86.72 0.92 4.75 0.94
MVP 67744496 | —18.0943.04 86.12 0.32 5.35 1.27
MISA 8035, 049 | —1.761208 86.37 0.58 478 0.90
S-Prompt++ 80.2149.55 0.8141 86 86.26 0.46 6.03 1.18
HiDe-Prompt 771041381 3.3545 71 86.81 0.94 6.13 1.27
HiDe-LoRA 80.0742.41 0.36+0.94 87.39 1.51 6.80 1.17
HiDe-Adapter 79.5219.81 —2.0541.95 87.41 1.53 6.68 1.04
NoRGa 7889i333 2~72:El.98 86.81 0.94 6.69 1.05
SD-LoRA 79.26+2.01 —6.6643.22 87.72 1.92 7.24 0.82
FlyPrompt (ours) | 83.2419 23 4.3511 19 87.08 0.46 4.96 0.92

Table 13: Comparison between RanPAC variants and FlyPrompt over three GCL benchmarks. All
results are reported as an average of five parallel runs (4 standard deviation) with different seeds.

Method CIFAR-100 ImageNet-R CUB-200
Aauc(%u T) Alast(%7 T) Aauc(%7 T) Alast(%a T) Aauc(%a T) Alast(%7 T)
RE\.IIPAC]L 69-91:l:3.88 79.92:‘:0,07 47-1412.18 50.75:|:2.15 60.18:&5.52 66.21i6,15
RanPAC? 57.3548.23 T77.6514021 | 369041417 44.3940.11 | 64.524823 71.6540.17
RanPAC* T7.88. 408 86.52. 15 | 5318 900 AT o,e | 69.64, 550 72.304; oo

FlyPrompt (ours) 83.24:|:2.23 86.76i0_73 56.58i1_47 55.27:|:0.91 70.64:|:2.85 73°40:t1.88

F.4 CKA ANALYSIS OF EXPERTS’ REPRESENTATION SIMILARITY

We use centered kernel alignment (CKA) (Kornblith et al] [2019) to quantify the similarity between
expert-specific representations while factoring out the shared contribution of the frozen PTM back-
bone. For a given method and dataset, we first fix the backbone fy and, for each expert Fy, apply
its prompt (or expert-specific encoder parameters) to obtain a matrix of CLS features Z; € R"*¢
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Figure 6: CKA similarity of feature representations between experts of MISA on three datasets.
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Figure 7: CKA similarity of feature representations between FlyPrompt experts on three datasets.

over a common set of n samples. Using the same backbone together with the expert-shared pa-
rameters (e.g., the global prompt in DualPrompt), we also compute a common representation matrix
Zcom ¢ R™*d We then define the residual features of expert By as Zy = Zy — Z°°™, which remove
the largely stable PTM-driven component and highlight the expert-specific modulation that emerges
during online GCL. Based on these residual features, we measure the (linear) CKA between experts
E: and Ey as o

12 Zy ||%
12 Zi|lx |12, Zu ||
This similarity measure is invariant to isotropic rescaling and orthogonal transformations of the
features, and is well-suited for comparing representations across experts. We report the pairwise
CKA scores between all experts as a heatmap: diagonal entries capture self-similarity, whereas off-
diagonal values reveal the degree of specialization or redundancy among experts after removing the
common PTM-induced component.

CKA(Zt,Zt/) — (17)

F.5 EXTRA HYPERPARAMETER SENSITIVITY TEST RESULTS
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Figure 8: Analysis of hyperparameters in REAR [Backbone: Sup-21K/1K]. (a-c) Different random
projection dimension M with fixed A = 10°: we report A,,. and extra storage cost (bar) given M.
(d-f) Different regularization parameter A with fixed M = 10%.
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Figure 9: Analysis of hyperparameters in REAR [Backbone: iBOT-21K]. (a-c) Different random
projection dimension M with fixed A = 107: we report A,,. and extra storage cost (bar) given M.
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Figure 10: Analysis of hyperparameters in REAR [Backbone: iBOT-1K]. (a-c) Different random
projection dimension M with fixed A = 107: we report A, and extra storage cost (bar) given M.

(d-f) Different regularization parameter A with fixed M = 10%.
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Figure 11: Analysis of hyperparameters in REAR [Backbone: DINO-1K]. (a-c) Different random
projection dimension M with fixed A = 107: we report A,,. and extra storage cost (bar) given M.
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F.6 ADDITIONAL ABLATION STUDY

Table 14: Effect of REAR and TE? on various PTM-based CL methods over three GCL benchmarks.
All results are reported as an average of five runs (4 standard deviation) over Sup-21K backbone.

Setup Method CIFAR-100 ImageNet-R CUB-200
Aauc (%7 T) Alast (%a T) Aauc (%a T) Alast (%7 T) Aauc (%7 T) Alast (%a T)
DualPrompt 76.04+332 76.6210.74 | 46.1311.04 40.80+1.04 | 65.034224 62.4311.78
MVP 67.7414096 63.221069 | 39.5011.41 32.6313.95 | 54.6913.14 50.0713.86
Baseline MISA 80.354239 80.754124 | 51.524909 45.084143 | 65.4043.01 60.204; 82
S—Prompt++ 80-21i2.55 83.48i1_20 52-14i1.65 49-13i1.60 66.61i2_21 64.73i2_25
HiDe-Prompt 77'10:(:&81 81.77:&2‘00 53.77:&1,09 49.87:{;31)1 67‘05:&237 67.12:&0‘5[)
NoRGa 78.89i3433 83.03i1,20 54-12i1.37 50~09i3,66 67.16i2,44 67.06i0,58
DualPrompt 80.63i2_25 83.65i1_25 53-16i1.26 51-11i0.91 65.96i2_50 63.81i1_74
MVP 67.441489 62334162 | 38874127  31.594419 | 53.654317 48.254338
w/ REAR MISA 82.03+1.97 83.824104 | 57.3041 15 54.021066 | 68.044234 65.5542.69
S—Prompt++ 81.4349.45 83.9340.84 54.7441 53 52.3041.05 66.8042.48 64.7241. 97
HiDe-Prompt 78411064 83.4611.14 | 53.614116 49.261256 | 67.054236 66.9911.01
NoRGa 79374271 83.794108 | 54.7841.05 50.244339 | 67.264250 67204085
DualPrompt 76.834344 78001061 | 47114019 42.1541081 | 66.474070 654241 55
MVP 68911486 64.2841.00 | 42.0641.11 35944092 | 56.984279 54.1449.89
w/ TE2 MISA 81.654224 82.80+1.06 | 54.0541.70 48464115 | 69.304243 67.2942.44
S-Prompt++ 81.9349.21 83.9840.65 55-37i1.64 52.9141 .53 67.9712.51 67.6841.49
HiDe—Prompt 77.463:3‘56 82.093:1'92 54.833:1,()8 50.263:2‘78 67.773:2,60 69643:0,76
NoRGa 79.164328 83.014145 | 54.084158 51.814351 | 67.974270 69.5840.90
DualPrompt 82‘33:&217 86.14:(:0'9[) 54.72:(:1,29 54‘00:!:()‘76 69‘65:(:293 72.75:&2,03
MVP 68.931460 64524145 | 41.594134 35454144 | 55.654279 51.8449.44
MISA 83.60_5 05 86.6610.55 59.1241 02 56.62_( 32 72.38.15.08 74.68.211
w/ both S-Prompt++ 83‘11:(:230 wio_% 56-57:(:1.48 5524:{:1‘24 Miz_m Miygg
HiDe—Prompt 78.60i2453 83.14i1'12 54.79i1.13 51'30i2,81 68.27i2'57 69.61i0'g4
NoRGa 79374274 83.79+0.96 | 55.754+1.31  52.504333 | 68.324264 70.03+0.67
FlyPI'OHlpt (ours) Miz% 86.76:{:073 56.58:&1,47 MiO.QI 70464:{:285 73~4Oj:1.88

F.7 DIFFERENT LOGIT MASK STRATEGIES FOR GCL MASKS

Table 15: Performance of different logit mask strategies for GCL methods. All results are reported
as an average of five parallel runs (4 standard deviation) with different random seeds, over Sup-21K.

CIFAR-100 ImageNet-R CUB-200
Mask e Method
Typ Aauc (% T) Alast (%7 T) Aauc(%a T) Alast (%; T) Aauc(%7 T) Alast(%7 T)
L2p 62.741439 56.0842.10 | 34.58+123 26.181469 | 54.834265 47.941464
DualPrompt 66.68:&5_25 61.9814_09 41‘6211_43 36.0811_39 56.6812_57 50‘71:&4_21
No Mask CODA-P 66.151500 58424139 | 40.704550 30561515 | 56.4du0ss  49.5046.04
MVP 68184485 63.9641.48 | 38.79+1.12 32.011080 | 54.744201 52.88.3 g
MISA 69.85,575 65.13, 70 | 45.05,, 75 35.91454s | BT.87.0 49 52151407
FlyPrompt (OllI'S) 78.73i3(55 83.623:0‘50 51'39i1.80 48.723:1,05 69.22i3‘04 73.07i2(34
L2p 62464454 54.67+1.39 | 33.104134 24.731450 | 52.924051  45.0544.89
DualPrompt 65.48i4_45 59.66i1_70 36.9411_77 29-22i1.66 55-07i2.21 47.8315_00
. CODA-P 65.584523 57.0541.97 | 39.234280 289145920 | 55.6442927 48.004550
Random Mask MVP 67751495 6321 078 | 39450142 32704505 | 54724514  50.0L,4 5
MISA 68.23 5, 61.551907 | 40.67 ., 95 2948143 | 56.06 5,9 48.1214 g6
FlyPl'OIIlpt (ours) 78-32i3A48 81.883:0‘58 51.67i1_30 47.26i125 68.63i2_32 69.523:4‘03
L2P 62.224439  53.3642.03 | 33.80+1.22 25.204465 | 53.104260 45.5514.96
Dua]Prompt 65~29i4.62 57-74i2.53 37.3111_30 29»72i1,49 55-25i2.43 47.6714_65
CODA-P 65.6345.40 56.754151 | 40.134246 29.354501 | 55.801258 47.T1is55
Seen-Class Mask MVP 67.720487 6299005 | 39571140 827200 | 54720514 5014 4 g
MISA 68.34,590 Ol4diosy | 4117, g5 29.974414 | 56.44,5 40 48.584474
FlyPl'OIIlpt (ours) 78.7513_52 82.8710,82 52'39:I:1.46 48.0211_00 69.2812_95 70'91:!:2.83
L2p 76234073 79114143 | 44404103 42.0314172 | 64.304218 61.424913
DualPrompt 760413‘32 76.62iu_74 46.13i|_g4 40.80i1,04 65-03i2_24 624311.78
CODA-P 79131306 80.91,070 | 51.87.0g 48.09,5.5 | 66.01 5, 6290 5 46
Batch Seen-Class Mask MVP 67740406 63.220069 | 39.5001.41 32.634305 | 54.692514 50.0715.56
MISA 8035, 540 80.751124 | 51521900 45.08:143 | 65401501 60.2011.80
FlyPI'OIIlpt (OLII'S) 83.24:(:2_23 86.7610,73 56.58:{:1_47 55.2710_91 70.6412_85 73'40:!:1.88

(1) No Mask, standard softmax over all output classes. (2) Random Mask, for each sample (x, y),
set m,, = 0 and assign m,. = 0 or —oo randomly with 0.5 probability for each previously seen class
¢ # y. (3) Seen-Class Mask, setting m. = 0 for all previously seen classes, —oco otherwise. (4)
Batch Seen-Class Mask (used), setting m,. = 0 only for the classes present in the current batch y.
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F.8 COMPLETE RESULTS OF DIFFERENT EMA DECAY RATES FOR TEMPORAL ENSEMBLE

Table 16: Performance comparison of different EMA decay rates for TE? across all PTMs. All
results are reported as an average of five parallel runs (£ standard deviation) with different seeds.

CIFAR-100 ImageNet-R
r EMA Decay Rate | 4ue(%.1) Atuse(%.1) | Auc(%: 1) Arnar(%.1)
online 81.903:2‘20 84.233:1'32 54.913:1,32 52.583:136
0.9 82.814908 86.361054 | 56.364; 50 55.090.80
Sup21K 0.99 82.84105 8641059 | 55945165 54671080
0.999 81.804257 84.39:083 | 55.154130  53.5210.80
0.9,0.99 83.241553 86761073 | 56581147 552700,
0.9,0.99,0.999 82.99. 50, 86244079 | 56.351170  55.5010.77
online 71.283:2‘53 69-73j:5.78 53.123:2,19 44.693:3,65
09 75.59;&293 77.3916,14 61-5611.48 57'35i1.63
0.99 77964215 79.711367 | 60.961194 56.3247.87
Sup-2IK/K 999 TA131161  T4081205 | 53961150 465551 17
0.9,0.99 7848115 8039, .5, | 62.01,54 56.55+3.04
0.9,0.99,0.999 7844, 45 80551415 | 62591055 58.001; 7
online 67~01i3.85 65.38i7'24 45-32i1.46 35-45i4.60
0.9 72434156 75464405 | 56.3719 05 52.37.087
BoTaik 099 75.03,075 78.08, 555 | 55.931035 51.641053
0.999 68.9613200 69.304094 | 43.78:1991 34.6449.90
0.9,0.99 75584170 79364347 | 57754212 54.3911.29
0.9,0.99,0.999 74.164247 76.614096 | 55.944312 52124079
online 61.381232 60.58i7_91 50-7911.43 4192:&176
0.9 68.011118  71.99:1462 | 60.52115 56.98., ;4
BOTIK 0.99 71504100 75204510 | 60.66., 55 56.57+0.70
0.999 65.881351 67.0711.05 | 50.2711.40 42.714903
0.9,0.99 7014, g TA84L, 06 | 61501165 5718136
0.9,0.99,0.999 67.9313.07 70.69+350 | 59.601188 55.3541.34
online 58.61:&326 60.763:6,77 47.35:(:2,24 41.33:(:204
0.9 62.951415 69.651651 | 56.83,, 47 53.68.0 g3
pINO-1k 0-99 66.42.05 73.031561 | 56.6741 74 53231077
0.999 60.3744.38 64.064237 | 46.384151  39.6942.07
0.9,0.99 65.92, 074 72.66,, 55 | 57291040 54721189
0.9,0.99,0.999 65.2740098  70.834432 | 55.661157 51914973
online 57~90i5,29 62.20i10‘03 42-81i0.83 35.46i3,32
0.9 61.961650 69.83+10.05 | 51471164 47.88+1.49
MoCo-1K 0.99 65951440 73284696 | 50.754189 47.4244 99
0.999 61.264307 66424507 | 42.334154 36.8249.14
0.9,0.99 6412, - 15 T151.q4s | 52320150 49.061 35
0.9,0.99,0.999 64.031447  69.921613 | 51.64,, 59 48.69, 0 s

F.9 COMPARISON OF DIFFERENT ROUTING ALGORITHMS ON RANDOM EXPANDED FEATURES

Table 17: Comparison of routing algorithms based on random expanded features in FlyPrompt. M:
expansion dimension (default 10,000); 7": number of experts (default 5); H: hidden dimension of
MLP (H = 512is used); K: number of nearest neighbors () = 10 is used). Time cost is reported in
seconds per batch on CIFAR-100. All performance results are reported as an average of five parallel
runs (4 standard deviation) with different random seeds over Sup-21K.

Routing Train Inference Inference CIFAR-100 ImageNet-R CUB-200

Algorithm Time  Time  Complexity | Auc(%1) Aet(%1) | Aue(%t) A (%1 | Auie(% 1) Aver(%.1)
Prototype Similarity 558 0.90 O(MT) 80672045 83.801115 | 54.294170  52.361112 | 67.004077  66.6611.56
Naive Bayes 5.30 0.93 O(MT) 82731517 85.5lig97 | 55.851183 53.844, 49 | 6908459, 69.634, 5
MLP 7.03 1.00 O(MH + HT) | 81.754009 82.7611.98 | 56.31. 59 53.7040.06 | 68.531230 67.9241.01
K-Means 6.11 1.49 O(KMT) 82.224004 85274083 | 54.934104 53.08+1.43 | 68.334071 68.244959
Ridge Regression (ours) | 4.96 0.92 O(MT) 83.24,55; 86.76.073 | 56.58.1 47 5527091 | 70.641555 73.404 g3

(1) Prototype Similarity, cosine similarity to each expert’s mean feature. (2) Naive Bayes, assum-
ing Gaussian-distributed features per expert. (3) MLP, a two-layer MLP router, as in HiDe
[20234). (4) K-Means, clusters each expert’s features and routes based on the nearest center.
(5) Ridge Regression (Ours), the REAR analytic router trained once over accumulated statistics.
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F.10 COMPLETE RESULTS OF DIFFERENT AGGREGATION METHODS FOR TEMPORAL
ENSEMBLE

Table 18: Performance comparison of different aggregation choices for TE? across all PTMs. All
results are reported as an average of five parallel runs (4 standard deviation) with different random
seeds.

CIFAR-100 ImageNet-R CUB-200
PIM Ensemble Method Aauc (%7 T) Alast (%7 T) Aauc (%7 T) Alast (%7 T) Aauc (%-, T) Alast (%-, T)
Mean 81~34i1.64 85.11i1_03 52-71i1.36 53-24i1.‘2‘2 68‘49i2_57 73‘95:&1.90
Max Prob 82.29i2_25 84.95i1_20 55.56i1_33 53~53i1.40 68400i2_50 66456i1_60
Sup-21K Min Entropy 81.921019 84.231132 | 55.054131  52.884138 | 66.784253 64.7311.36
SoftMax+Mean 82.30:&1.82 85.98:{:0.80 56'16i1.56 55-53:(:()‘89 70.77:{:3.00 74.86:{:1.54
SoftMax+Max 83.2412423 86.76:&0,73 56.58;&1447 55'27i0.91 70‘64;{:2,85 73‘40:&1,33
SoftMax+Min 8311, 54, 86.50,064 | 55944141 542431814 | 69.861080 71.5141.79
Mean 79.44:&114 82.8211,63 60.84i2.09 56.97:&2,72 56.64i4‘59 60'39i3‘95
Max Prob 72.5812.99 71.31:57.52 54~28:t2.06 4644i‘325 47‘05:&3.41 44‘4213.59
Sup—21K/1K Min Entropy 71~27i2.58 69.73i5_32 53~05i2.11 44.80i3_42 45‘36i3.15 42‘82i4.31
SoftMax+Mean 77~72i1.48 81'77i3.15 60~35i1.86 56.63i2_05 57.68i5_02 62.60i4_05
SoftMax+Max 78.48i1_31 80.39i3_54 62~0112A32 56.55i3_94 54-42i4‘67 55-50i3‘55
SoftMax+Min 78.303:1,25 80-07i3.68 60.89i2_15 55'59i3.37 54-12:{:4‘61 54.753:3‘57
Mean 76.59i1_33 81-40i2.48 54~92i1.86 51.82i1_97 29°31i5.17 37.60i4_77
Max Prob 68.51:{:4‘08 67.60i8.11 46.74i1,39 37.64i4,20 24.143:3‘53 28.533:3‘46
iBOT-21K Min Entropy 67.03:&3.85 65.44*7.22 4533:&1.36 35.86*4.55 23‘44:&3,39 27‘4013.60
SoftMax+Mean 74.6911 77 805855 | 54414105 5258, 10 | 29.09, 45 36.281754
SoftMax+Max 75'58i1.70 79.36i3_47 57'75i2.12 54'39i1.29 28‘86i5_84 36‘79i7.58
SoftMax+Min 74~87i1.89 77.60i4_71 55'98i1.90 52~03i1.61 27447i5.43 34457i5.12
Mean 70.96i1413 76.38i4,03 58.15i1_53 54~24i1.39 37‘64i5.03 44‘4613.01
Max Prob 62.92i2_41 63~09i8.29 52~02i1.32 44~15i1.01 31‘53i3.46 34‘27i4.92
iBOT-1K Min Emropy 61.36i2_30 60-73i7.76 50~74i1.30 42~27i1.46 30-53i3.62 32-82i4.98
SoftMax+Mean 67'24:{:1.92 72»80i4.63 56.14i1,33 53'35i0.95 38.08i5_57 44.133:4‘27
SoftMax+Max 70'14i1.76 74‘84i4.26 61-5011.66 57.18;&1.36 38.54*5.72 45.00*4.19
SoftMax+Min 69.72:&1.(54 73.7615,07 59'87i1.52 55'39i0.90 37.3115,53 41.8614,01
Mean 66.72:(:189 73-94:(:3.66 54.00:{:2.34 51.60:{:2.21 37-91:!:6.38 wili’ﬂl
Max Prob 59.76:&3.26 62.61i7.14 48.12i2.33 42.17*2.21 31‘36:&3,40 34‘50:&4,30
DINO-1K Min Entropy 58.51i3_22 60-79i6.67 47~14i2.31 40~95i2.13 30'15i3.34 32‘83i4.91
SoftMax+Mean 64.79i3_29 Mi4,57 52.98i1_49 51.38i0_95 37422i7.26 43474i5.34
SoftMax+Max wi?.Wl 72.66i4_52 57~29i2.40 54:7211.89 wiE.Sb‘ 44.66i2_35
SoftMax+Min 65.48;{:2,69 71.88i5_38 Mizm Milﬂo 36.483:5‘73 41.433:2‘14
Mean 642916.09 72'17i8.65 49~69i1.28 46.86i0_90 27~92i5.19 33~32i3.58
Max Prob 58.70;{:5,09 63.893:1(]‘06 44.073:0,90 37.06i3,05 21-35i3‘06 24-21i4»51
MoCo-1K Min Entropy 57.84:&5.27 62.21i9.97 42»79:t0.82 35511354 20‘5912‘95 22.7514‘42
SoftMax+Mean 62.9016.00 TL7lig00 | 50.561157 47.95,070 | 26.95 50 31.50 5 s
SoftMax+Max 64'1215.18 71'51i8.48 52-32i1 .50 49.06i] .35 25‘49i4.53 30‘44i4.50
SoftMax+Min 63.92i5_03 71~29i8.50 51'46i1.44 47~93i1.27 25426i4_52 29433i3.88

F.11 MORE RESULTS ON SCALABILITY AND EFFICIENCY OF FLYPROMPT

Table 19: Parameter counts, storage and computational complexity breakdown of FlyPrompt com-
ponents. M: expansion dimension (default 10,000); 7": number of experts (default 5); [: prompt
length (default 20); d: embedding dimension (default 768). Results are reported in millions.

Components | Total Param. | Trainable Param. | Storage | Storage Cost | Computation Cost

G matrix 0.00 0.00 100 O(M?) O(M?)
Q matrix 0.00 0.00 0.05 O(MT) O(MT)
Router Head 0.05 0.00 0.05 O(MT) O(MT)
Prompts 0.38 0.38 0.38 O(ld) O(12d)
TE? heads 0.77 0.08 0.77 o(dT) o(dT)
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G.1

PSEUDO-CODE OF FLYPROMPT

PSEUDO-CODE: ONLINE REAR UPDATES AND TE?> AGGREGATION

Algorithm 1 FlyPrompt: online REAR maintenance and TE?inference

1:

10:
11:
12:
13:
14:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

Inputs: sessions {D;}_;, backbone fg, random matrix RER?*M | ridge A\, EMA decays

{a;}7_1, online iterations k.

Initialize: G<0p; pr, Q<0xr <7, prompt set P<—(@, online head (W, b), logit mask m<—0
(1) Online Training Phase
for t=1to T do
Set expert Fy: pﬁ—ﬁ Z:;} p; if t>1 else random
P+ PU{p}
Initialize EMA heads: (W7, b"))«(W,b), Vj € {1,...,n}
for each batch (X, y)CD; do
Set logit mask m: for any class ¢ € y, m.<0, and for ¢ ¢ y, mey+ — o0
for 1tok do
Update (W, b) and p; by minimizing CE(fo(X; p;)W " +b+m, y)
EMA for Ey: W7 a; W +(1—0; )W, b ;b + (1—a;)b, Vj
end for
H<fo(X;pt); Po(HR)
Update REAR stats: G+ G+® " ®; Q+—Q+®'C, (one-hot C} for expert E;)
end for
end for

Update closed-form router offline: U +(G+MI)"'Q  (only once after the training phase)

(2) Inference Phase
for = from the test dataset do
Get routing score: S(CL’)(—O’(fg(SC)R)ﬁT
Select the expert: e<— arg max;<7p s;()
Get online head outputs: 29« fo(z; p. )W T +b
Get EMA heads output: z() ¢« fg(x; pe)We(j)T—Fbgj)
Get aggregated ensemble output: 2(x)« max;c(o,....n} softmax(z() +m)
Final output: §(x)= arg max, Z.(x)

end for

G.1.1 COMPLEXITY

 Memory for REAR: storing G € RM*M and Q € RM*T is O(M?).
» Time complexity of solving the analytic router: O(M?) (matrix inverse and multiply).
* Per-sample cost: forming ¢(x) = o(h " R) costs O(dM) (matrix multiply).
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