
From Laws to Motivation: Guiding Exploration
through Law-Based Reasoning and Rewards

Ziyu Chen∗ Zhiqing Xiao∗ Xinbei Jiang Junbo Zhao
Zhejiang University

{ziyu, zhiqing.xiao, xinbei, j.zhao}@zju.edu.cn

Abstract

Large Language Models (LLMs) and Reinforcement Learning (RL) are two pow-
erful approaches for building autonomous agents. However, due to limited under-
standing of the game environment, agents often resort to inefficient exploration
and trial-and-error, struggling to develop long-term strategies or make decisions.
We propose a method that extracts experience from interaction records to model
the underlying laws of the game environment, using these experience as internal
motivation to guide agents. These experience, expressed in language, are highly
flexible and can either assist agents in reasoning directly or be transformed into
rewards for guiding training. Our evaluation results in Crafter demonstrate that
both RL and LLM agents benefit from these experience, leading to improved
overall performance.

1 Introduction

Agents are often objective-driven. For agents based on Large Language Models (LLM), a well-
defined objective makes them more efficient and effective at completing tasks [26]. For Reinforcement
Learning (RL) agents, objectives are expressed through reward, which shape the agent’s policy [3].
In simple environments, objectives may be singular, but in more complex environments, such as
open-ended worlds, defining clear objectives becomes more challenging. In these environments, tasks
can be subdivided into sub-tasks or involve multiple, sometimes conflicting, objectives, requiring
agents to make trade-offs [6]. These challenges often hinder agents’ performance.

However, humans, even in completely unfamiliar environments, can achieve strong performance
through exploration. We believe that agents struggle to generalize well in complex, dynamic environ-
ments because they often lack a deep understanding of the underlying laws, properties, or mechanisms
of environments. These laws, similar to physical laws in the real world, represent key characteristics
of the environment.

Humans are able to learn from brief interactions with the environment, leveraging accumulated
commonsense to prune their action space and avoid unreasonable behaviors [19], while reflecting
on past experience to form an understanding of environmental laws [2]. LLM agents retain context
through memory modules to assist in reasoning [17, 22, 30], while RL agents rely on trials and
feedback to evaluate actions [8, 13].

We aim to leverage LLMs to infer experience from interaction records, approximate the laws of
the environment, and use these "approximate laws" as internal motivation sources to guide agents’
exploration. Experience is tied to actions. LLMs infer experience of an action by comparing the
states before and after it is executed across multiple records (including failures and successes). For
LLM agents, laws can be incorporated as context to improve reasoning and reduce hallucinations,
while for RL agents, we propose the design of law-based rewards to promote more rational behaviors.

*Equal contribution.

Accepted at the Intrinsically Motivated Open-ended Learning workshop at NeurIPS 2024.

Preconditions
The conditions required before
completing an action.

- make_wood_sword: 1 wood,
and table nearby
…

Cost & Benefit
Differences before and after
the action.

- place_furnace: 4 stone and
place a furnace in front of the
player
…

RL Agent

Reward

LLM Agent

Reward Functions
def place_furnace(agent, target):
if agent.inv['stone'] >= 4:
texture, _ = agent.world[target]
if texture in ['grass']:
return True

return False
...

Context
Refined experience for
reasoning.

Experience

Env

Action

Env Driven by Laws

Interaction Records

Game Code

𝑆!"#𝑆! 𝑎

𝑆$"#𝑆$ 𝑎
Success

Failure

Figure 1: From Laws to Motivation. Experience approximates the laws of the environment and,
through textual or reward, encourages the agents to achieve self-motivation.

These rewards, self-assigned by the agents, are independent of environmental feedback. Our goal
is to enable agents to make decisions based on laws learned through interactions, allowing them to
evaluate action outcomes before execution, relying on self-motivation rather than external feedback.

To demonstrate the benefits of understanding laws, we study agents in Crafter [9], a complex, open-
ended environment similar to Minecraft [7]. Our results show that LLMs can infer approximate
laws of the environment from interactions, helping agents make more informed decisions. Our
approach shifts agents from “blind exploration” to “purposeful exploration”, demonstrating the
feasibility of using laws as internal motivation to guide exploration.

2 Related Works

Related works are discussed in more detail in Appendix A. With the recent advances of language
models, more and more research attempts to incorporate external information into the design of
agents [26, 30]. When building LLM-based agents, static or dynamic environment-related information
is introduced through in-context learning [21, 22, 25] or fine-tuning [23, 27], enabling agents to
make more adaptive decisions. Similarly, in the training of RL agents, external prior knowledge is
expected to reduce trial-and-error [24]. One of the most common ways to leverage prior knowledge
is through reward shaping [16], which reduces random exploration by providing auxiliary reward.
Compared to traditional manual reward design, LLMs can generate code for reward functions based
on the information provided in prompts [15, 28] or directly infer appropriate reward values [12],
significantly lowering the barrier from prior knowledge to reward. LLMs can also provide guidance
to agents [5, 29], thus helping agents in better learning.

3 Method

In this section, we introduce the specific methodology. First, we formulate the problem using a
Constrained Markov Decision Process (CMDP) [1]. Then, we collect human player records and
utilize LLMs to extract experience, denoted as E , from these records as an approximation of the
laws. Records, similar to pre-collected data in Offline RL, focus on the description of states. The
observation of state changes before and after actions, along with the effects of the same action under
different states, reflects the laws of the game. Examples of records are provided in Appendix D.2. E
is in natural language form, describing the preconditions required to achieve each objective and the
effects of achieving it, based on the perspective provided by the records.

3.1 Constrained Markov Decision Process

A CMDP is represented as ⟨S,A,R,P, γ, C⟩, which extends a standard MDP by incorporating
additional constraints, denoted as C. The constraints C = {(ci, bi)}mi=1 consist of pairs, where each
pair includes a cost function ci and a corresponding threshold bi.

2

The cost function ci(s, a) represents the cost incurred when action a is taken in state s:

ci : S ×A → R, (1)

where S is the state space and A is the action space. Each constraint i in C can be expressed as:

ci(s, a) ≤ bi ∀i ∈ {1, . . . ,m}. (2)

In the setting of objective-conditioned constraints, ci = 1{·} is the indicator function that returns 1 if
the condition inside the braces is met, and 0 otherwise. For all i, bi = 0.

Given any objective gi associated with action agi , in a state s, The transition to a new state s′ is
governed by the following conditional probabilities:

s′ ∼
{
P(· | s, agi) if

∧m
i=1 (ci(s, agi) ≤ bi)

P(· | s, noop) otherwise
(3)

The achievement of objective gi is defined as:

gi is achieved ⇐⇒
m∧
i=1

(ci(s, agi) ≤ bi) . (4)

3.2 Generate E

We propose leveraging LLMs to extract and preserve essential constraints C from successful records
E to guide agents in achieving objectives under specific conditions. More details and definitions can
be found in Appendix B.

Considering a record d = ⟨s, a, s′, v⟩. According to the definition of v and Equation 4, for any record
dk = ⟨sk, ak, s′k, vk⟩, if ak corresponds to the objective gk, then:

vk = True ⇐⇒
m∧
i=1

(ci(sk, ak) ≤ bi) . (5)

Let D be the set of all records. Define Dg = {d ∈ D | a corresponds to g} as the subset of records
in D. Further, define Dv=True

g = {d ∈ Dg | v = True} and Dv=False
g = {d ∈ Dg | v = False} as the

subsets representing successful and unsuccessful attempts at objective g, respectively.

Dv=True
g is a good starting point because for all d = ⟨s, a, s′, v⟩ ∈ Dv=True

g , a is indicative of achieving
g and s well reflects all necessary and unnecessary preconditions for g. The state s is described in
text. For all d = ⟨s, a, s′, v⟩ ∈ Dv=True

g , by comparing s and s′, we can determine the cost and benefit
of achieving the objective g:

(u, o) =MLLM(s, s′, prompt). (6)

u and o respectively correspond to the cost and benefit of successfully executing a. Similarly, using
LLMs, we can also obtain y =MLLM(s, s′, prompt’), which represents the preconditions required
for a to be successfully executed. More details in Algorithm 2 and 3.

Next, we construct the sets U , O, and Y . These sets aggregate the values of u, o, and y across various
actions a. Using these sets, we can form the experience E :

E = {U ,O, Y }. (7)

In the "make wood pickaxe" action (objective), two preconditions must be met: "having at least
1 wood" and "standing next to a table". These preconditions serve as constraints, and the action
given by policy is executed successfully only if both are satisfied. If not, the action results in a
noop. Game laws define these preconditions as necessary, and we expect experience E align with
laws as closely as possible, though E may sometimes be stricter, such as mistakenly requiring "at
least 2 wood". Additionally, records indicating successful execution of the "make wood pickaxe"
task also reflect its Costs and Benefits: consuming 1 wood to obtain 1 wood pickaxe. So for the
action "make wood pickaxe", u is "1 wood", o is "1 wood pickaxe", and y is "having at least
1 wood and standing next to a table".

3

3.3 LLMs Reasoning with E

LLMs have vast knowledge and can interact with environments through language [26]. While they
show zero-shot reasoning, it relies on prior knowledge and struggles in completely unfamiliar settings.
Introducing E helps address this limitation. By concatenating the original prompt p with E , p′ = p⊕E .
This enhanced prompt p′ is then used for reasoning by LLMs.

For instance, in Minecraft, LLMs can precisely guide how to craft a wood pickaxe by specifying
that it requires 3 wood planks and 2 sticks. However, in similar other games, the recipe for crafting
a wood pickaxe may vary. In such cases, agents can only attempt randomly, which is especially
problematic without memory module, as each trial is isolated. By incorporating experience into
reasoning, agents gain accurate knowledge about the environment.

3.4 Reward Design with E

Carefully designed reward functions can help agents learn more quickly and perform better [13].
Previously, the design of reward functions often required expert involvement, now it can also be
accomplished using LLMs [15, 28]. However, using LLMs to generate rewards primarily rely on
feedback and iterative, making them difficult to apply in open-ended multi-task learning. A detailed
discussion can be found in Appendix A. Therefore, in contrast to these methods, our aim is to enable
LLMs to optimize the structure of reward functions.

Algorithm 1 Law-based Reward Generation with LLMs
1: Require: Objective set G, environment experience E , LLM

model LLM, initial prompt prompt
2: Hyperparameters: Iterations N
3: for each g ∈ G do
4: r0g ← ∅
5: // Extract relevant experience from E based on g
6: eg ← extract(E , g)
7: for each i = 1 to N do
8: // rig is in code format
9: rig ∼ LLM(g, eg, prompt+ ri−1

g)
10: end for
11: rg := rig // Reward function for objective g
12: end for
13: Output: {rg | g ∈ G} // Set of reward functions

Considering the experience ei =
⟨ui, oi, yi⟩ ∈ E , which is related to
the objective gi, where ui records the
element’s cost to accomplish gi, oi
represents the expected outcome, and
yi shows the preconditions needed to
achieve gi. The information contained
within ei approximately reflects the
laws of the environment. Unlike meth-
ods that refine values [15], we keep
the reward values constant, but the de-
termination of whether a reward is ob-
tained at a particular step is controlled
by generated code, as specified in Al-
gorithm 1. ei enhance the stability of
code generation. LLMs only need to
convert the conditions described in the text into code form and align it with the environment code.
This law-based reward design method shifts the source of rewards from the environment to the agents
themselves, acting as stepping stones that transform abstract knowledge into timely rewards.

4 Experiments

Crafter is a complex open-world game where agents must survive while continuously exploring the
world. For more details about Crafter, please refer to Appendix C. We conducted experiments on
different agents within Crafter: (1) LLM agents, where environment laws were directly incorporated
into the context for the agents to reason about; (2) RL agents, where environment laws were translated
into conditional judgment codes, yielding rewards. Implementation and experiments details can be
found in Appendix D.

LLM Agents. We have adopted the framework proposed in SPRING [25]. This framework not only
allows agents to interact with the Crafter through text but also introduces a QA-DAG to help agents
reason and make decisions more effectively. The QA-DAG, composed of 9 questions, is designed to
promote a consistent chain-of-thought. SPRING traverses QA-DAG to determine the appropriate
action for current state. In SPRING, the agent configuration includes basic information about the
environment and tasks, as well as specific details about Crafter, which is pre-extracted from the
benchmark’s LATEX source code [9] via the "Paper Studying Module".

RL Agents. We use E to generate code for each achievement (or corresponding action / objective) to
determine whether a reward should be granted, as described in Algorithm 1. Most achievements in

4

Crafter correspond to a specific action, and an achievement is only accomplished when that action
is performed under the right conditions.

Specifically, we use the LLM in combination with E to generate code for each action corresponding to
an achievement, to evaluate the state when attempting an action. We use Proximal Policy Optimization
(PPO) [18] as our backbone algorithm and compare agents’ performance under different rewards.
Generated reward functions can be found in Appendix D.5.

Method Score Reward
SPRING + experience 12.9± 2.3 9.9± 1.0
SPRING + paper 8.4± 1.4 7.7± 0.8
SPRING + action 2.0± 0.2 1.3± 0.4

Table 1: Comparing SPRING with different context.
More detailed context results in better agents.

Results. We study the effect of different
contextual information on the behavior of
the LLM agent through ablations shown in
Table 1. We use the same reasoning frame-
work from SPRING with different exter-
nal content. "Experience" is text obtained
using our method from records; "paper"
represents information extracted from the
original benchmark LATEX, consistent with
the original SPRING implementation; "action" simply provides the names of the available actions.
The basic game background is always provided. Merely knowing the names of various actions results
in significant hallucinations by the agent, similar to random attempts. Adding the key information
extracted from the benchmark paper significantly improves performance. Using E as context yields
the best performance. We compared E with the benchmark paper and found that the paper does not
mention the recipes needed for crafting tools (e.g., what materials are needed to craft a stone pickaxe),
which may affects the agent’s expectations when selecting actions.

Method Score Training Steps
Human Experts 50.5± 6.8% N/A

health reward + achievement reward + penalty 12.3± 0.8% 4M
health reward + achievement reward 9.7± 0.7% 4M
health reward 0.9± 0.1% 0

Table 2: Compare the performance of agents trained under different rewards. After incorporating
internal law-based rewards, agents improved.
In Table 2, we study the performance of RL agents trained under different rewards. The most basic
reward strategy only rewards the agent for changes in health, resulting in an agent that avoids deeper
exploration (as it requires sacrificing health initially) and focuses on survival. Each action has a
corresponding achievement reward generated by E . These functions assess whether an action is
meaningful based on the agent’s state and provide a 1-point reward for the first valid step of each
action. The penalty is for poor choices: if the agent selects a in a state where none of a’s preconditions
are met, it will incur -0.5 point penalty upon the first occurrence. The reward function actually only
determines whether an action is valid (good enough) in a given state, and it can be combined with
different reward shaping methods. The results show that law-based reward system with high-level
reward shaping strategies can train better agents.

5 Conclusions and Limitations

The aim of this work is to leverage past interaction records to create experience, which can then
be used to guide agents in future tasks. We propose a framework that converts interaction records
from Crafter into textual experience, using these experience to develop LLM agents and train RL
agents. Our findings show that these experience can approximate the laws governing the environment
and provide internal motivation to assist agents in reasoning and reward design. By capturing the
preconditions, costs, and benefits of each objective, agents can establish expectations about actions
without relying on environmental feedback, enabling self-reflection and fostering self-motivation.

We propose a method for generating reward functions by determining the timing of rewards rather
than iteratively adjusting their values. However, the rewards used in our experiments remain relatively
simplistic. A potential avenue for improvement could involve combining experiential data with formal
methods, such as using Finite State Machines (FSM), where reward machines [10] can manage state
transitions and reward design. The experience E could approximate the environment’s FSM and be
transformed by LLMs to enhance integration with reward design methodologies.

5

References
[1] Eitan Altman. Constrained Markov decision processes. Routledge, 2021.

[2] David Boud, Rosemary Keogh, and David Walker. Reflection: Turning experience into learning.
Routledge, 2013.

[3] Peter Dayan and Bernard W Balleine. Reward, motivation, and reinforcement learning. Neuron,
36(2):285–298, 2002.

[4] Yifan Du, Zikang Liu, Junyi Li, and Wayne Xin Zhao. A survey of vision-language pre-trained
models. arXiv preprint arXiv:2202.10936, 2022.

[5] Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Colas, Trevor Darrell, Pieter Abbeel, Abhishek
Gupta, and Jacob Andreas. Guiding pretraining in reinforcement learning with large language
models. In International Conference on Machine Learning, pages 8657–8677. PMLR, 2023.

[6] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world reinforce-
ment learning. arXiv preprint arXiv:1904.12901, 2019.

[7] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew
Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended
embodied agents with internet-scale knowledge. Advances in Neural Information Processing
Systems, 35:18343–18362, 2022.

[8] Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L Isbell, and Andrea L Thomaz.
Policy shaping: Integrating human feedback with reinforcement learning. Advances in neural
information processing systems, 26, 2013.

[9] Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint
arXiv:2109.06780, 2021.

[10] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. Using reward
machines for high-level task specification and decomposition in reinforcement learning. In
International Conference on Machine Learning, pages 2107–2116. PMLR, 2018.

[11] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

[12] Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with
language models. arXiv preprint arXiv:2303.00001, 2023.

[13] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

[14] Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr,
Chong Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient
mixture-of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

[15] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh
Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design
via coding large language models. arXiv preprint arXiv:2310.12931, 2023.

[16] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In Icml, volume 99, pages 278–287,
1999.

[17] Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceed-
ings of the 36th annual acm symposium on user interface software and technology, pages 1–22,
2023.

[18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

6

[19] Alfred Schutz. Common-sense and scientific interpretation of human action. In Collected
papers I: The problem of social reality, pages 3–47. Springer, 1962.

[20] Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and
characterizing reward gaming. Advances in Neural Information Processing Systems, 35:9460–
9471, 2022.

[21] Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models. Advances in Neural Information Processing
Systems, 36, 2024.

[22] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

[23] Kuan Wang, Yadong Lu, Michael Santacroce, Yeyun Gong, Chao Zhang, and Yelong Shen.
Adapting llm agents through communication. arXiv preprint arXiv:2310.01444, 2023.

[24] Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom M Mitchell. Read
and reap the rewards: Learning to play atari with the help of instruction manuals. Advances in
Neural Information Processing Systems, 36, 2024.

[25] Yue Wu, So Yeon Min, Shrimai Prabhumoye, Yonatan Bisk, Russ R Salakhutdinov, Amos
Azaria, Tom M Mitchell, and Yuanzhi Li. Spring: Studying papers and reasoning to play games.
Advances in Neural Information Processing Systems, 36, 2024.

[26] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang,
Junzhe Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model
based agents: A survey. arXiv preprint arXiv:2309.07864, 2023.

[27] Jiannan Xiang, Tianhua Tao, Yi Gu, Tianmin Shu, Zirui Wang, Zichao Yang, and Zhiting
Hu. Language models meet world models: Embodied experiences enhance language models.
Advances in neural information processing systems, 36, 2024.

[28] Tianbao Xie, Siheng Zhao, Chen Henry Wu, Yitao Liu, Qian Luo, Victor Zhong, Yanchao Yang,
and Tao Yu. Text2reward: Automated dense reward function generation for reinforcement
learning. arXiv preprint arXiv:2309.11489, 2023.

[29] Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via
models of human notions of interestingness. arXiv preprint arXiv:2306.01711, 2023.

[30] Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin
Li, Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for
open-world environments via large language models with text-based knowledge and memory.
arXiv preprint arXiv:2305.17144, 2023.

7

A Related Works

LLMs have a vast amount of knowledge, and although their overall performance is strong, additional
context remains important for specific tasks. The most common approach is to place this context
within the prompt, which is in-context learning [11]. GITM [30] improves agents’ performance in
games by introducing knowledge from the Minecraft Wiki, while SPRING [25] allowing them to
acquire information from academic papers. Generative Agents [17] reflect on and summarize the
interaction history of agents, enabling believable simulations of human behavior.

In addition, researchers hope to leverage LLMs to benefit reinforcement learning agents. Designing
reward functions using LLMs is an emerging approach [15, 28]. Despite having access to the
environment’s source code, existing LLMs often fail to generate optimal reward functions initially
and heavily rely on iterative external feedback to incrementally refine these functions. Often, LLMs
need to make subtle adjustments to hard-coded values in the code to achieve better design. Assuming
there are, on average, m combinations of values for a single task, then for N tasks, there are
mN possible combinations. Therefore, relying solely on feedback to adjust hard-coded values is
impractical for multi-task learning. Moreover, this method also struggles with the challenges brought
by reward hacking [20].

B Starting from Records

The objectives of agents need to be achieved under specific conditions. However, LLM or RL agents
initially lack knowledge and understanding of the environment. Agents cannot determine which
conditions are necessary and establish strategies only through trial-and-error. Successful records are
worthy of attention. Agents are expected to benefit from these records when addressing the same
objectives in the future. We propose using LLMs to reason through these records, extract useful
information, and preserve it as experience.

Agents observe the environment in various forms, most commonly text and images. Existing Vision-
Language Models (VLMs) are capable of describing images in natural language [4], so we focus on
extracting constraints from textual observations. Instead of merely structuring text descriptions, we
expect LLMs to identify the constraints C of the objective, rather than documenting all conditions in
the successful records, which is not conducive to generalization.

A record d = ⟨s, a, s′, v⟩ can be represented as a tuple, where s and s′ are the states, s′ ∼ P(· | s, a),
a is the action, and v is a boolean value indicating whether the agent successfully executed the action
a.

As illustrated in Algorithm 3, identifying necessary preconditions for objective g can be achieved by
utilizing records from Dg. This method is specifically applicable to conditions connected by AND;
however, for conditions connected by OR , they can be derived by leveraging more diverse Dg and
extracting from different records separately. Subsequently, LLMs can consolidate these findings at
the language level.

Additionally, enabling LLMs to infer the why and when of an action based on existing content can
allow text-based agents to more explicitly access the relevant motivations.

C Crafter Details

Crafter [9] is an abstraction of Minecraft, offering a simpler open-ended world.

Game Mechanism. Each game generates a world map randomly. Agents can collect resources and
use them to craft items and tools, ensuring survival by maintaining health. The grid includes grass,
water, stone, etc. Agents must keep their health, food, drink, and energy from dropping to zero. They
can collect a variety of resources such as saplings, wood, coal, iron, and diamonds, etc, which can be
used to craft tools or place on the grid. The positions and movements of other creatures are random,
and killing these creatures provides additional resources.

Interface. The agent’s observation is a frame of a 64× 64× 3 image, displaying a map of the grid
along with all items and information. The action space consists of 17 actions, some of which are
only effective under specific conditions. A game ends when the player’s health reach zero. For the

8

Figure 2: Each observation in Crafter is a 9 × 9 local map, and the entire world is generated by
randomly combining various types of grids according to certain rules.

Algorithm 2 Find Costs and Benefits for Objective g

Require: Language model LLM, extraction prompt prompte, update prompt promptu
Input: Set Dv=True

g

Output: String ug and og

1: ug, og ← ""
2: for all d ∈ Dv=True

g do
3: x, x′ ← LLM(d, prompte)
4: Ug,Og ← LLM(ug, og, x, x

′, promptu)
5: end for
6: return ug , og

training of RL agents, we referred to the modifications in ELLM [5], making the "do" (which means
"attack" in front of a zombie but "drink" in front of water, has different effects in different situations)
action more concrete by transforming it into specific actions such as "eat_cow," "collect_drink,"
"attack_zombie," etc., resulting in a total of 11 actions. Consequently, the action space has been
expanded to 27. This increases the exploration problem but also makes it compatible with our method.

Challenges. Crafter is able to assess various agent capabilities within a single environment,
including survival, exploration, utilization, memory, and generalization. Due to the complexity of
relationships between different tasks, agents need to explore deeply to accomplish more advanced
tasks. To progress in the game, agents must repeatedly perform several actions over a long period,
such as searching for food, defending against threats, and collecting materials that require multiple
uses. More advanced agents should also remember position information to make decisions over

Algorithm 3 Find Preconditions for Objective g

Require: Language model LLM, extraction prompt prompte, update prompt promptu
Input: Sets Dg and String ug

Output: Sting y, which is the necessary preconditions set for objective g
1: y ← LLM(ug, prompte)
2: for all d ∈ Dg do
3: Y ← LLM(d, y, promptu)
4: end for
5: return y

9

Collect Iron

Collect Drink

Place Table

Make Wood Pickaxe

Defeat Skeleton

Defeat Zombie

Collect Wood

Collect Stone

Collect Coal

Make Stone Pickaxe

Make Iron PickaxeCollect Diamond

Place Furnace

Make Wood Sword

Eat Cow

Place Stone

Make Iron Sword

Make Stone Sword

Place Plant

Collect Sapling

Eat Plant

Wake Up

Figure 3: Crafter defines 22 achievements that can be unlocked in each episode of gameplay. The
arrows represent the dependencies between achievements, indicating that the achievement being
pointed to is one of the prerequisites for completing the achievement it points towards.

extended periods. Lastly, because many game scenes are often similar in different environments,
agents must recognize and remain robust against irrelevant changes across different environments.

Evaluation. To evaluate various agent capabilities, Crafter defines 22 achievements, as illustrated
in 3. These achievements correspond to semantically meaningful behaviors, such as gathering various
resources, crafting items and tools, seeking food and water, defeating monsters, and more. These
achievements encompass a range of difficulty levels, with some being independent of each other, thus
testing the breadth of exploration, while others are interdependent, testing the depth of exploration.

Based on these 22 achievements, agents can be evaluated through Success rate and Score.

• Success Rate Each achievement corresponds to a success rate Ri, which is defined as the
ratio of the number of episodes where the agent successfully completes the achievement
to the total number of episodes. Here, Ni represents the number of episodes in which
achievement i is accomplished, and Ntotal represents the total number of episodes.

Ri =
Ni

Ntotal
(8)

• Score Score is calculated by aggregating the success rates of individual achievements.
Unlocking high-difficulty achievements, even if infrequent, should be more significant than
further increasing the success rate of already unlocked achievements. Here, si ∈ [0, 100]
represents the agent’s success rate for achievement i, and N = 22 is the total number of
achievements.

S = exp

(
1

N

N∑
i=1

ln (1 + si)

)
− 1 (9)

D Implementation Details

For records used to infer experience, we represent them as a triplet composed of "the description of
the state, the action, and the description of the state after the action is performed." An example is as
follows. The reason for choosing attributes, tools, materials, face, and nearby to describe
a state is determined by Crafter.

In all parts of the experiment involving LLM access, we used DeepSeek-V2 [14] from DeepSeek’s
API.

10

D.1 Data Collection

Before starting, we collected structured interaction records from human players. In Crafter, 22
predefined achievements exist, each of which requires performing a specific action under particular
conditions. We gathered 10 successful and 10 failed attempts for each achievement and summarized
the experience E using the method described in Algorithm 2 and 3. Under appropriate prompt settings
and with the interaction records, LLMs were able to generate E that aligned with the environment
laws. However, we found that the diversity of records had a significant impact on the LLM’s reasoning
capabilities. Additionally, we observed that LLMs appeared capable of determining whether an
attempt was successful or failed by comparing the states before and after, without needing explicit
labels. All the prompts can be found in Appendix D.3.

D.2 Interaction Records

action: collect_wood

init_state:
{

"attributes": {
"health": 9,
"food": 8,
"drink": 7,
"energy": 7

},
"tools": {},
"materials": {

"sapling": 1
},
"face": "tree()",
"nearby": [

["grass()", "tree()", "grass()"],
["grass()", "grass(player)", "grass()"],
["grass(cow)", "grass()", "grass()"]

]
}

resulting_state:
{
"attributes": {

"health": 9,
"food": 8,
"drink": 7,
"energy": 7

},
"tools": {},
"materials": {

"wood": 1,
"sapling": 1

},
"face": "grass()",
"nearby": [

["grass()", "grass()", "grass()"],
["grass()", "grass(player)", "grass()"],
["grass(cow)", "grass()", "grass()"]

]
}

11

The interaction between the LLM agent and Crafter is conducted through text. SPRING [25] has
implemented text-based interaction for Crafter. Here is an example.

You see:
- grass 1 steps to your south
- stone 3 steps to your west
- path 1 steps to your west
- tree 5 steps to your north-east
- table 1 steps to your east
- furnace 2 steps to your south-west
- zombie 2 steps to your south-east
- plant 1 steps to your north

You face plant at your front.

Your attributes status:
- health: 2/9
- food: 2/9
- drink: 0/9
- energy: 4/9

Your materials inventory:
- stone: 1
- iron: 5

Your tools inventory:
- wood_pickaxe: 2
- stone_pickaxe: 4
- stone_sword: 1"

D.3 Prompt

Here is the prompt used for extracting experience from interaction records: SYSTEM + USER A is
used to generate results based solely on the common knowledge of the LLM itself, while SYSTEM +
existing experience + USER B is used for refining the output.

SYSTEM:
You are a player who is in an open-world game. It’s up to you to explore as much of the world
while trying to survive! The world is made of grids.

ATTRIBUTES are some information related to yourself. These are the attributes that you
have to manage in order to survive. They are affected by the your actions and the environment.
All max values are 9.
{

"health",
"food",
"drink",
"energy"

}

TOOLS are some of the tools you currently have. In accomplishing some actions, you can use
the tools that are held, and you can also make more tools.

MATERIALS are some materials you currently have, which can be obtained by interacting
with the environment. You can combine them into a construction tool, or for other purposes.

12

FACE records the grid you’re currently facing. In some special cases, the object on the current
grid is recorded in ’()’.

NEARBY records a nine-panel grid centered on you, the player.

USER A:
Let’s consider an action called "{action_name}", what kind of things do you think this action
does? Do you guess what the effect would be on some element in "{aspect}"? You only need
to considering the changes in "{aspect}".

Completing an action costs something (optional) and gains some benefit (optional). Please pay
attention to the difference between "initial_state" and "resulting_state". Describe in natural
language what happened in this transition.

You only need to output one description without any other words.

USER B:
Now, I will show you the comparison of "{aspect}" before and after the player executes
action "{action_name}".

{records}

Please pay attention to the difference between "initial_state" and "resulting_state".

After obtaining the experience, use the following prompt, along with partial environment code, to
generate code that determines whether each action is valid.

SYSTEM:
The following information can help you in the process of designing a Reward Function:

The game environment is consist of a grid of blocks. Each block has a texture and an object
on it (optional). The texture can be one of the following:

- water
- grass
- stone
- path
- sand
- tree
- lava
- coal
- iron
- diamond
- table
- furnace

The objects can be:
- Zombie
- Skeleton
- Plant
- Cow

Agent can perform the following actions:
- noop
- move_left

13

- move_right
- move_up
- move_down
- eat_plant
- defeat_zombie
- defeat_skeleton
- eat_cow
- collect_coal
- collect_diamond
- collect_drink
- collect_iron
- collect_sapling
- collect_stone
- collect_wood
- sleep
- place_stone
- place_table
- place_furnace
- place_plant
- make_wood_pickaxe
- make_stone_pickaxe
- make_iron_pickaxe
- make_wood_sword
- make_stone_sword
- make_iron_sword

ATTRIBUTES are some information related to the agent. These are the attributes that the
agent have to manage in order to survive. They are affected by the agent’s actions and the
environment. All max values are 9.

{
"health",
"food",
"drink",
"energy"

}

TOOLS are some of the tools the agent currently have. In accomplishing some actions, the
agent can use the tools that are held, and the agent can also make more tools.

MATERIALS are some materials the agent currently have, which can be obtained by inter-
acting with the environment. Agent can combine them into a construction tool, or for other
purposes.

FACE records the grid the agent is currently facing.

NEARBY records a nine-panel grid centered on the agent.

When you help AGENT with Reward Function Design, you may also need some code-level
knowledge, which can help you better translate your understanding into sensible Python code:

- You can visit the AGENT’s inventory by calling the function agent.inventory. It will return
a dictionary with the resources and tools that the AGENT has. agent.inventory including
information of ATTRIBUTES, TOOLS and MATERIALS.
e.g.,
agent.inventory
{’health’: 9, ’food’: 9, ’drink’: 9, ’energy’: 9, ’sapling’:
0, ’wood’: 0, ’stone’: 0, ’coal’: 0, ’iron’: 0, ’diamond’:
0, ’wood_pickaxe’: 0, ’stone_pickaxe’: 0, ’iron_pickaxe’: 0,
’wood_sword’: 0, ’stone_sword’: 0, ’iron_sword’: 0}

14

- You can get information about the gird the agent is facing by accessing agent.world[target].
Gird is probably some kind of texture or an object.
e.g.,
texture, obj = agent.world[target]
texture is a string and obj is a object. Cow, Zombie, Skeleton,
Plant, are a list of objects and others are all texture. treat
objects using isinstance().

- You can look at the NEARBY AGENT by agent.world.nearby(agent.pos, 1). Simi-
lar to facing, this function call will return a ’tuple’, which contains a tuple of materials
(string), and a set of objects.
e.g., agent.world.nearby(agent.pos, 1)
((’grass’, ’sand’), {{<crafter.objects.Plant object at
0x7f4283106290>, <crafter.objects.Zombie object at 0x7f4283106440>,
<crafter.objects.Player object at 0x7f42845c9960>}})

USER:
Now you need to write a reward function, which is a simple function that only needs to
determine if the action can be done in the current state, the action is: {action_name}

Here are some understanding of this action:
{experience}

You only need to output the python function named ’{name}_reward(agent, target)’ and the
function return a bool value.
’True’ means the action can be done at current state, ’False’ means the action can not be done
at current state.

Output code only, without any explanation.

D.4 Experience in Text

Preconditions

1. Collect Wood: collected wood from a tree, adding it to the player’s inventory while leaving
the player’s attributes and tools unchanged, and removing the tree from the grid the player
was facing.
2. Place Table: consumes 2 units of wood to place a table in the player’s facing grid, replacing
grass, without affecting attributes, tools, or nearby entities, potentially offering new interaction
options.
3. Eat Cow: increases the player’s ’food’ attribute by 6 points, removes the cow from the
facing grid, and has no other observed effects on attributes, tools, materials, or the nearby
environment.
4. Collect Sapling: added one sapling, had no effect on ATTRIBUTES or TOOLS, did not
change the FACE attribute.
5. Collect Drink: increased the player’s ’drink’ attribute by 1 without affecting other attributes,
tools, materials, or the environment, indicating a focused hydration replenishment with no
visible environmental impact.
6. Make Wood Pickaxe: consumes 1 unit of wood, adds a wood pickaxe to the player’s tools,
and leaves all attributes and the environment unchanged.
7. Make Wood Sword: consumes one unit of ’wood’ from the player’s materials, adds a
’wood_sword’ to their tools, and does not affect attributes or the environment.
8. Place Plant: consumed a sapling, added a plant to the player’s current grid, and had no
immediate impact on attributes or tools.

15

9. Defeat Zombie: resulted in the removal of a zombie from the grid in front of the player,
with no changes to the player’s attributes, tools, materials, or the environment.
10. Collect Stone: collects a stone from the player’s facing grid, adds it to the inventory, and
reveals a path in the now-empty grid, with no impact on attributes or tools.
11. Place Stone: transitions the player’s facing grid to stone, reducing the stone inventory by
one without affecting attributes, tools, or other materials.
12. Eat Plant: increases the player’s ’food’ attribute by 4 and removes a ripe plant from the
facing grid, with no other attribute or environmental changes.
13. Defeat Skeleton: resulted in the removal of the skeleton from the player’s facing grid
without affecting attributes, tools, or materials, indicating a neutral combat encounter with no
immediate rewards or resource changes.
14. Make Stone Pickaxe: consumes 1 unit of wood and 1 unit of stone to craft a stone pickaxe,
leaving the player’s attributes unchanged and not affecting the nearby environment.
15. Make Stone Sword: successfully crafts a stone sword using 1 stone and 1 wood from the
player’s inventory, without affecting the player’s attributes or the environment.
16. Sleep: transitions the player’s state to "sleeping" without altering attributes, tools, materi-
als, or the environment, suggesting a focus on internal attribute restoration without external
impact.
17. Place Furnace: consumes 4 stones to place a furnace on the grid the player is facing, with-
out affecting the player’s attributes, tools, or position, and without immediate environmental
impact.
18. Collect Coal: Removed coal from the grid the player was facing, added it to the player’s
materials inventory, and replaced the coal grid with a path, without affecting the player’s
attributes or tools.
19. Collect Iron: requires stone_pickaxe and facing iron. Successfully collected iron from the
grid directly to the right of the player, converting it from an iron() to path(), without affecting
other attributes or nearby grids.
20. Make Iron Pickaxe: requires 1 wood, 1 coal, and 1 iron, and table and furnace nearby.
Has resulted in the player crafting an iron pickaxe, consuming 1 unit of wood, 1 unit of iron,
and coal, while adding the iron pickaxe to their tools without affecting their attributes or the
environment.
21. Make Iron Sword: requires 1 wood, 1 coal, and 1 iron, and table and furnace nearby. Suc-
cessfully crafts an iron sword, consuming one iron and one wood from the player’s materials,
without affecting health, food, drink, or energy, and leaves the environment unchanged.
22. Collect Diamond: requires iron_pickaxe and facing diamond. Successfully adds a
diamond to the player’s materials inventory while transforming the faced grid from a diamond-
containing area to a path, with no impact on attributes, tools, or other nearby resources.

Costs & Benefits

1. Collect Wood: Requires facing tree
2. Place Table: Requires 2 woods and facing grass or sand or path
3. Eat Cow: Requires facing a cow
4. Collect Sapling: Requires facing grass
5. Collect Drink: Requires facing water
6. Make Wood Pickaxe: Requires 1 wood and table nearby
7. Make Wood Sword: Requires 1 wood and table nearby
8. Place Plant: Requires 1 sapling and facing grass
9. Defeat Zombie: Requires facing zombie and better with weapons
10. Collect Stone: Requires wood_pickaxe and facing stone
11. Place Stone: Requires 1 stone and facing grass or sand or path or water or lava
12. Eat Plant: Requires facing ripe plant
13. Defeat Skeleton: Requires facing skeleton and better with weapons
14. Make Stone Pickaxe: Requires 1 wood and 1 stone and table nearby
15. Make Stone Sword: Requires 1 wood and 1 stone and table nearby
16. Sleep: Requires insufficient energy
17. Place Furnace: Requires 4 stones and facing grass or sand or path

16

18. Collect Coal: Requires wood_pickaxe and facing coal
19. Collect Iron: Requires stone_pickaxe and facing iron
20. Make Iron Pickaxe: Requires 1 wood and 1 coal and 1 iron, also need table and furnace
nearby
21. Make Iron Sword: Requires 1 wood and 1 coal and 1 iron, also need table and furnace
nearby
22. Collect Diamond: Requires iron_pickaxe and facing diamond

D.5 Reward Functions

def collect_coal_reward(agent, target):
texture, obj = agent.world[target]
if texture == ’coal’ and agent.inventory[’wood_pickaxe’] > 0:

return True
return False

def eat_plant_reward(agent, target):
texture, obj = agent.world[target]
return isinstance(obj, Plant)

def defeat_zombie_reward(agent, target):
texture, obj = agent.world[target]
if isinstance(obj, Zombie):

if ’iron_sword’ in agent.inventory or ’stone_sword’ in
agent.inventory or ’wood_sword’ in agent.inventory:

return True
return False

def defeat_skeleton_reward(agent, target):
texture, obj = agent.world[target]
if isinstance(obj, Skeleton):

if agent.inventory[’wood_sword’] > 0 or
agent.inventory[’stone_sword’] > 0 or agent.inventory[’iron_sword’] > 0:

return True
return False

def eat_cow_reward(agent, target):
texture, obj = agent.world[target]
return isinstance(obj, Cow)

def collect_coal_reward(agent, target):
texture, obj = agent.world[target]
if texture == ’coal’ and agent.inventory[’wood_pickaxe’] > 0:

return True
return False

def collect_diamond_reward(agent, target):
texture, obj = agent.world[target]
if texture == ’diamond’ and agent.inventory[’iron_pickaxe’] > 0:

return True
return False

def collect_drink_reward(agent, target):
texture, obj = agent.world[target]
return texture == ’water’

def collect_iron_reward(agent, target):
texture, obj = agent.world[target]
return texture == ’iron’ and ’stone_pickaxe’ in agent.inventory

17

def collect_sapling_reward(agent, target):
texture, obj = agent.world[target]
return texture == ’grass’

def collect_stone_reward(agent, target):
texture, obj = agent.world[target]
return texture == ’stone’ and ’wood_pickaxe’ in agent.inventory

def collect_wood_reward(agent, target):
texture, obj = agent.world[target]
return texture == ’tree’

def sleep_reward(agent, target):
return agent.inventory[’energy’] < 9

def place_stone_reward(agent, target):
if agent.inventory[’stone’] < 1:

return False
texture, obj = agent.world[target]
if texture not in [’grass’, ’sand’, ’path’, ’water’, ’lava’]:

return False
return True

def place_table_reward(agent, target):
texture, obj = agent.world[target]
if texture in [’grass’, ’sand’, ’path’] and ’wood’ in agent.inventory
and agent.inventory[’wood’] >= 2:

return True
return False

def place_furnace_reward(agent, target):
if agent.inventory[’stone’] >= 4:

texture, _ = agent.world[target]
if texture in [’grass’, ’sand’, ’path’]:

return True
return False

def place_plant_reward(agent, target):
if agent.inventory[’sapling’] >= 1 and agent.world[target][0] == ’grass’:

return True
return False

def make_wood_pickaxe_reward(agent, target):
if agent.inventory[’wood’] >= 1 and any(isinstance(obj, Table) for obj
in agent.world.nearby(agent.pos, 1)[1]):

return True
return False

def make_stone_pickaxe_reward(agent, target):
if ’wood’ in agent.inventory and ’stone’ in agent.inventory and ’table’
in agent.world[target][1]:

return True
return False

def make_iron_pickaxe_reward(agent, target):
materials = agent.inventory
if materials[’wood’] < 1 or materials[’coal’] < 1 or materials[’iron’] <
1:

return False
nearby = agent.world.nearby(agent.pos, 1)
if ’table’ not in nearby[0] or ’furnace’ not in nearby[0]:

return False
return True

18

def make_wood_sword_reward(agent, target):
if agent.inventory[’wood’] >= 1:

nearby_textures, nearby_objects = agent.world.nearby(agent.pos, 1)
if ’table’ in nearby_textures:

return True
return False

def make_stone_sword_reward(agent, target):
inventory = agent.inventory
if inventory[’wood’] >= 1 and inventory[’stone’] >= 1:

nearby = agent.world.nearby(agent.pos, 1)
for texture, obj in nearby:

if ’table’ in texture:
return True

return False

def make_iron_sword_reward(agent, target):
inventory = agent.inventory
if inventory[’wood’] >= 1 and inventory[’coal’] >= 1 and
inventory[’iron’] >= 1:

nearby = agent.world.nearby(agent.pos, 1)
textures, objects = nearby
if ’table’ in textures and ’furnace’ in textures:

return True
return False

19

	Introduction
	Related Works
	Method
	Constrained Markov Decision Process
	Generate E
	LLMs Reasoning with E
	Reward Design with E

	Experiments
	Conclusions and Limitations
	Related Works
	Starting from Records
	Crafter Details
	Implementation Details
	Data Collection
	Interaction Records
	Prompt
	Experience in Text
	Reward Functions

