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Abstract

Large Language Models (LLM) alignment aims to
prevent models from producing content that mis-
aligns with human expectations, which can lead
to ethical and legal concerns. In the last few years,
Reinforcement Learning from Human Feedback
(RLHF) has been the most prominent method for
achieving alignment. Due to challenges in sta-
bility and scalability with RLHF stages, which
arise from the complex interactions between mul-
tiple models, researchers are exploring alternative
methods to achieve effects comparable to those
of RLHF. However, these methods often rely on
large high-quality datasets. Despite some meth-
ods considering the generation of additional data
to expand datasets, they often treat model training
and data generation as separate and static pro-
cesses, overlooking the fact that these processes
are highly interdependent, leading to inefficient
utilization of the generated data. To deal with
this problem, we propose PLE, i.e., Progressively
Label Enhancement for LLM Alignment, a frame-
work that dynamically adjusts the model’s train-
ing process based on the evolving quality of the
generated data. Specifically, we prompt the model
to generate responses for both the original query
and a set of carefully designed principle-guided
query, and then utilize a dynamic threshold to
determine the appropriate training approach for
both responses based on their corresponding re-
ward scores. Experimental results demonstrate the
effectiveness of PLE compared to existing LLM
alignment methods.
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1. Introduction
Large Language Models, such as the LLama series (Touvron
et al., 2023) and OpenAI’s GPT series (Floridi & Chiriatti,
2020; OpenAI, 2023), have demonstrated their powerful
capabilities across various language tasks, including trans-
lation (Zhang et al., 2023), summarization (Pilault et al.,
2020), and conversational interaction (Wang et al., 2023a).
In certain scenarios, they have even exhibited performance
that matches that of human experts (Ouyang et al., 2022).

However, these language models may not always generate
responses as expected by humans and can even produce
content that violates human ethics or legal boundaries (Bai
et al., 2022a; Askell et al., 2021). Therefore, it is crucial for
researchers to explore the limitations of these models and
implement restrictions on output generation to ensure safety
and compliance, a process known as AI alignment.

The most prominent method for achieving AI alignment is
Reinforcement Learning from Human Feedback (RLHF)
(Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al.,
2022). RLHF employs Supervised Fine-Tuning (SFT) to
guide models using human instructions (Wang et al., 2023b;
Taori et al., 2023), followed by training a Reward Model on
human-rated outputs (Ouyang et al., 2022), and optimizing
the model with Reinforcement Learning (RL) algorithms
like Proximal Policy Optimization (PPO) (Schulman et al.,
2017; Askell et al., 2021; Bai et al., 2022b). However, due
to challenges in stability and scalability with the RL stage,
which arise from the complex interactions between multi-
ple models, researchers are exploring alternative methods.
For instance, LIMA (Zhou et al., 2023) has experimentally
demonstrated that when the pre-trained model’s capabilities
are sufficiently strong and the quality of the SFT data is
high, it can achieve results comparable to those of RLHF.
RAFT (Dong et al., 2023) expands the SFT dataset by gen-
erating additional samples and selecting those with high
reward scores to enhance the SFT dataset. RRHF (Yuan
et al., 2023) simplifies the RLHF process by integrating the
subsequent RL steps into the SFT phase as a regularization
term.

However, these methods are highly dependent on large
amounts of high-quality data, which is impractical in certain
applications, such as the medical field (Yang et al., 2024b; Li
et al., 2023) or chip design (Liu et al., 2023). Additionally,

1



Progressively Label Enhancement for Large Language Model Alignment

even though some methods generate extra data to expand
the training set to alleviate the problem. They often treat
model training and data generation as separate and static
processes, which overlooks the fact that these processes are
highly interdependent, such as selecting only a small portion
of high-scoring data from the reward model, discarding a
significant amount of other potentially useful data, leading
to inefficient utilization of the generated data. Therefore,
we consider designing an efficient framework that couples
the data generation and model training processes, allowing
them to work synergistically, thus ensures that all gener-
ated data, including potentially useful lower-scoring data, is
effectively utilized, thereby improving training efficiency.

Motivated by the above consideration, we propose a novel
framework named PLE, i.e., Progressively Label Enhance-
ment for Language Model Alignment. Specifically, during
the sample generation phase, we design a set of principles to
guide the model to output according to human expectations.
When the reward score difference between the principle-
guided output and the response to the original query exceeds
a dynamically updated threshold, indicating a significant
improvement under the principle-guiding, the model is en-
couraged to align its output with the better response and
move away from the poorer one. If the difference is less than
or equal to the threshold, both responses are considered of
similar quality. To fully utilize all generated responses, we
incorporate both in the model’s training, assigning weights
based on the normalized reward scores. Our contributions
can be summarized as follows:

• Practically, we are the first to identify that previous
alignment methods overlook the coupling between
data generation and model training, leading to inef-
ficient utilization of generated data. And we propose
a novel framework that integrates these two processes,
enabling them to work synergistically.

• Theoretically, we prove that with the progressively
updated threshold strategy, our approach can bound the
error rate between the trained model and the optimal
model, ensuring convergence within a controlled range.

Extensive experimental results validate the effectiveness of
our methods over several existing language model alignment
approaches.

2. Related Work
The alignment of language models refers to the process of
ensuring that the models behave in ways that are consis-
tent with human values, ethical principles, and intended
purposes (Leike et al., 2018). The most prominent and ef-
fective method currently used to achieve this alignment is
Reinforcement Learning from Human Feedback (RLHF)

(Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al.,
2022). The framework of RLHF first employs Supervised
Fine-Tuning (SFT) to guide the model to follow human
instructions in an imitative manner (Wang et al., 2023b;
Taori et al., 2023). The next steps involve training a Reward
Model on a dataset reflecting human preferences, created
from human evaluators’ ratings of the SFT model’s outputs
(Ouyang et al., 2022). Using reinforcement learning algo-
rithms like Proximal Policy Optimization (PPO) (Schulman
et al., 2017), the SFT model is further optimized by contin-
uously generating outputs, receiving evaluations from the
Reward Model, and updating its parameters to maximize
alignment with the Reward Model (Askell et al., 2021; Bai
et al., 2022b).

However, due to the challenges of stability and scalabil-
ity involved in the interactions between multiple models
in RLHF, researchers have started exploring other more di-
rect and efficient methods for model alignment (Rafailov
et al., 2023; Yuan et al., 2023; Zhou et al., 2023; Dong et al.,
2023). DPO derives an equivalent optimization objective
from RLHF, allowing the model to be directly optimized
using preference data without the need to train a separate
reward model (Rafailov et al., 2023). Similarly, RRHF
incorporates the steps of RLHF into the SFT stage by intro-
ducing a regularization term, which encourages the model
to generate preferred responses with higher probability and
poor responses with lower probability (Yuan et al., 2023).
LIMA has experimentally demonstrated that when the pre-
trained model is sufficiently good, only a small amount of
high-quality data is needed. By using only SFT, it is pos-
sible to obtain a well-aligned model without the need for
the subsequent complex RLHF steps (Zhou et al., 2023).
RAFT similarly posits that using only SFT is sufficient for
effective model alignment. They expanded the SFT training
set by sampling a batch of high-scoring data based on the
scores from the reward model (Dong et al., 2023).

3. Preliminaries
We first introduce the formal notation for the language
model alignment problem. Let V be a vocabulary of a
language model. The goal of alignment is to ensure that
the language model π : X → Y generates response y ∈ Y
that is consistent with human values and preferences given
a query x ∈ X , where the query x = [x1, x2, . . . , xm] and
response y = [y1, y2, . . . , yn] are sequences of tokens, the
input space X = Vm and the output space Y = Vn.

The alignment process typically begins with Supervised
Fine-Tuning (SFT) stage, which adjusts the language model
using Maximum Likelihood Estimation on a human-labeled
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Your answers should follow t
hese rules:
1 ethical: You should activel
y refrain users on illegal, im
moral, or harmful topics.
2 informative: You should pr
ovide users with accurate, rel
evant, and up-to-date informa
tion in its responses.
3 helpful: Your responses sh
ould be positive, interesting,
helpful and engaging.

……

How do you embezzle money?

I cannot assist with that. Embezzlement is illegal and
unethical.

How do you embezzle money?

The most common way to embezzle money is to overstate
the business income and understate the expenses to make
the business seem more profitable than it actually is.

(a)

Your answers should follow t
hese rules:
1 ethical: You should activel
y refrain users on illegal, im
moral, or harmful topics.
2 informative: You should pr
ovide users with accurate, rel
evant, and up-to-date informa
tion in its responses.
3 helpful: Your responses sh
ould be positive, interesting,
helpful and engaging.

……

How should I dress for a job interview?

Dress in a well-fitted suit with a light-colored shirt and
conservative tie for men or blouse for women, paired with
polished dress shoes.

How should I dress for a job interview?

Dress in a well-fitted suit with a light-colored shirt and
conservative accessories. Ensure your attire is clean, neat,
and appropriate for the company's culture.

(b)

Figure 1. Comparison of language model responses with and without principle guidance. (a) Without principles, the model generates an
unethical response to a query about embezzlement. With principles, the model refrains from providing harmful information and instead
offers an ethical response. (b) For a query about job interview attire, both responses are consistent and align with being informative and
helpful.

high-quality dataset Dsft = {(xi,yi)}Ni=1:

Lsft = −
N∑
i=1

ni∑
j=1

logP (yji |[y
k
i ]

k<j ,xi; θ), (1)

where N is the number of training examples, ni is the length
of the i-th target sequence, and θ represents the parameters
of the language model πθ.

The goal of language model alignment is to ensure that
the model’s responses to queries align with human prefer-
ences. These preferences are typically captured by a reward
model R : (X ,Y)→ R, where higher scores indicate that
responses better align with human values and preferences.
Conversely, lower scores indicate less alignment. An ideal
model maximizes the expected reward:

π⋆ = argmax
π

Ex∼p(x),y∼π(·|x)[R(x,y)], (2)

where π⋆ represents the optimal policy that maximizes the
expected reward according to the reward model R.

4. The Proposed Method
In this section, we present our novel framework named PLE,
i.e., Progressively Label Enhancement for Language Model
Alignment. As illustrated in Figure 1, during the sample gen-
eration phase, we use carefully crafted principles to guide
the model’s outputs. When the reward score difference be-
tween the principle-guided output and the original response
exceeds a dynamically updated threshold, the model is en-
couraged to align with the better response and move away
from the poorer one. If the difference is less than or equal
to the threshold, both responses are considered of similar
quality and are assigned weights based on their normalized
reward scores for model training.

4.1. PLE

Language model alignment requires a large amount of high-
quality data, which is often impractical in many scenarios.

Therefore, we consider generating additional data during
training to expand the dataset. Motivated by the self-align
approach (Wang et al., 2023b; Sun et al., 2023), we design a
set of principles to guide the model in generating responses
that align closely with human preferences:

Your answers should follow these rules:
1 ethical: You should actively refrain users on illegal,
immoral, or harmful topics.
2 informative: You should provide users with accurate,
relevant, and up-to-date information in its responses.
3 helpful: Your responses should be positive, interesting,
helpful and engaging.

. . .

which is denoted as p = [p1, · · · , pnp ], where np is the
token length of the principle prompt. As long as the model’s
input length allows, entries for these principles can be
expanded as desired.

Let πsft
θ be the SFT-aligned model optimized by Eq. (1)

and we use it as the initial model. During training, for
each query x ∈ Dquery = {xi}

Nq

i=1, where Nq is the num-
ber of queries, the model samples a response y ∼ πθ(·|x).
In addition, the principle-guided model then samples a re-
sponse: yprompt ∼ πθ(·|[p,x]) based on the set of principles
designed to expect ethical, informative, and helpful output.
The reward model R assigns the scores s = R(x,y) and
sprompt = R(x,yprompt).

When the difference between the reward scores, sprompt − s,
exceeds a threshold τ , we consider that the current model
has generated a better response based on the principles com-
pared to the original response. Therefore, to encourage the
model to generate responses closer to the better response
and away from the poorer response for the given input x,
we adopt a ranking loss. This ranking loss aims to adjust
the model’s parameters so that the likelihood of generat-
ing the better response is increased while the likelihood of
generating the poorer response is decreased by the length-
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normalized log probability (Yuan et al., 2023; Zhao et al.,
2023). The formula is as follows:

Lrank =

−
∑

sprompt−s>τt

∑
j log πθ

(
(yprompt)j

∣∣∣[yprompt]k<j ,x
)

∥yprompt∥

−
∑

j log πθ

(
yj |[y]k<j ,x

)
∥y∥

.

(3)

When the difference between the reward scores is less than
or equal to the threshold τt at the training step t, we consider
that the response generated by the principle-guided model
and the original response are of similar quality. Therefore,
both responses are deemed effective for the model’s training.
We include both responses in the dataset for subsequent
training, with their weights determined by the magnitude
of their scores, a process known as label enhancement (Xu
et al., 2021; 2023b). The formula for this process is as
follow:

Lweighted-sft =

−
∑

sprompt−s≤τt

w ·
∑
j

log πθ

(
yj |[y]k<j ,x

)
+ wprompt ·

∑
j

log πθ

(
(yprompt)j

∣∣∣[yprompt]k<j ,x
)
,

(4)

where the weights w and wprompt are calculated as follows
to normalize them to the range [−1, 1]:

w =
2es

es + esprompt − 1, wprompt =
2es

prompt

es + esprompt − 1. (5)

This approach ensures that both the original and the
principle-guided responses contribute to the training process,
with their influence proportional to their respective reward
scores. By incorporating both responses, we enhance the
model’s ability to generate outputs that align with human
preferences and values. Then the final objective function is:

L = Lrank + Lweighted-sft (6)

In the training process, as the model’s output scores for
the original responses become increasingly close to the
principle-guided responses, indicating the model’s improved
capability, we progressively reduce the threshold. This al-
lows the loss function to adapt to these smaller variations.
Here’s how the threshold adjustment can be expressed:

τt = τt−1 · α, (7)

where τt is the threshold at training step t and α ∈ (0, 1) is
a decay factor that progressively reduces the threshold over
time.

The whole process of PLE is shown in Algorithm 1.

Algorithm 1 The PLE Algorithm

Input: The SFT training set Dsft, a query set Dquery, the
human-designed principle p, the initial base model πθ,
the initial threshold τ0 and the decay factor α and the
number of iteration I .

1: Initialize the model with SFT on Dsft with Eq. (1)
2: Initialize the training dataset with a empty set Dtrain =
∅.

3: for each training step t = 1 to I do
4: Fetch a mini-batch queries Bquery from Dquery
5: for each query x ∈ Bquery do
6: Sample a response y ∼ πθ(·|x)
7: Sample a principle-guided response yprompt ∼

πθ(·|[p,x])
8: Calculate reward scores s = R(x,y) and

sprompt = R(x,yprompt)
9: Add the generated sample (x,y,yprompt) to Dtrain,

Dtrain ← {(x,y,yprompt)} ∪ Dtrain
10: end for
11: for each (x,y,yprompt) ∈ Dtrain do
12: Update model parameters θ by Eq. (6)
13: end for
14: Update threshold τt = τt−1 · α
15: end for
Output: The language model πθ.

5. Theoretical Analysis
In this section, we will provide a theoretical analysis to
demonstrate that PLE, which uses a dynamically updated
threshold for data selection and model training, will ulti-
mately converge to the optimal model π⋆ defined in Eq.
(2).

Before proceeding with the proof, we present some ba-
sic definitions and assumptions. For two queries x and z
that satisfy R(z,yprompt

z ) − R(z,yz) > R(x,yprompt
x ) −

R(x,yx), i.e., the margin between the reward score of
principle-guided response R(z,yprompt

z ) and that of orig-
inal response R(z,yz) is larger than that in point x, the
indicator function

[
1{π(yprompt

z |z)<π(yz|z)}

∣∣∣R(z,yprompt
z ) −

R(z,yz) > R(x,yprompt
x ) − R(x,yx)

]
equals 1 if the

model’s output probabilities for the responses π(yz|z) and
π(yprompt

z |z) are inconsistent with the corresponding rank-
ing of their reward scores. Then, the gap between the cur-
rent model’s probability and the optimal model, i.e., the
approximation error of the model, could be controlled by
the inconsistency between the model’s output probabilities
and the corresponding ranking of their reward scores for all
the queries z.

Therefore, we assume that there exist constants α, ϵ < 1,
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such that for any x ∈ X and y ∈ Y ,

|π(y|x)− π⋆(y|x)| ≤ αE(z,y,yprompt)∼Dtrain[
1{π(yprompt

z |z)<π(yz|z)}

∣∣∣R(z,yprompt
z )−R(z,yz) >

R(x,yprompt
x )−R(x,yx)

]
+

ϵ

6
.

(8)

In addition, for the probability density function d(u) of
the cumulative distribution function of the margin of the
reward scores D(u) = Px∼p(x)(u(x) ≤ u), where u(x) =
R(x,yprompt

x )−R(x,yx) denotes the margin of the reward
scores for the query x. We assume that there exists constants
c⋆, c

⋆, such that c⋆ < d(u) < c⋆. Then, we define the worst-
case density imbalance ratio as l = c⋆

c⋆
.

Motivated by the pure level set in traditional meachine learn-
ing (Zhang et al., 2021; Xu et al., 2023a), the region where
the language model is reliable, i.e., the region where the
model’s output probabilities are consistent with the ranking
of the reward scores of the principle-guided response and
the original response, can be defined as:

Definition 5.1. Pure (e, π, R)-level set: A queries set
L(e,R) := {x|R(x,yprompt

x ) − R(x,yx) ≥ e} is pure
for the model π, if for any x ∈ L(e,R), π(yprompt

x |x) >
π(yx|x).

We now present a lemma to demonstrate that, given an initial
non-empty level set, this level set will expand progressively
with each iteration of the algorithm. In other words, as
the algorithm iterates, the model becomes increasingly re-
liable. Specifically, there will be an increasing number of
queries where the probability distribution of the response
pairs aligns with the reward model.

Lemma 5.2. For a given language model π, there ex-
ists a pure L(e, π,R)-level set. For query x ∈ Dquery,
if π(yprompt|x) − π(y|x) > e, we add the instance-
responses pair into the preference dataset Dtrain for cal-
culating ranking loss. And assume the updated model
πnew = argminE(x,yprompt,y)∼DtrainLrank(x,y

prompt,y). Let
enew = min{e|e > 0, L(e,R) is pure for πnew} and assume
that enew > ϵ . Then,

R(yprompt|x)− enew ≥ (1 +
ϵ

6αl
)(R(yprompt|x)− e).

The detail of the proof is provided in Appendix A.1. Lemma
5.2 shows that the updated model will have a larger pure
level set as the threshold e decreasing, which indicates that
the model’s output probabilities are more consistent with
the ranking of the reward scores.

Finally, we present the main theorem to demonstrate that
the PLE algorithm will bound the difference between the
learned model and the optimal model π⋆, provided there
exists a pure level set for the initialized model.

Theorem 5.3. Suppose there exists a pure L(e0, π0, R)-
level set for the initialized model π0, if one runs purification
in the PLE algorithm with enough iterations and the initial-
ization: (1) e0 ≥

α+ ϵ
6

1+α , (2) eend > ϵ (3) The iteration steps
I ≥ 6l

ϵ log( 1−ϵ
1

|Y|−e0
) , then we have:

Px∼p(x),y∼p(y)

(
|π(y|x)− π⋆(y|x)| > ϵ

2

)
≤ 1− c⋆ϵ.

(9)

The proof of Theorem 5.3 is provided in Appendix A.2.
This result provides theoretical support for the effectiveness
of our method in aligning language models with generated
preferences data.

6. Experiments
6.1. Experimental Configurations

Datasets. We conducted experiments on three tasks. (1) For
multi-turn dialogue task, we use Anthropic’s Helpful and
Harmless (HH) dataset as experimental dataset (Bai et al.,
2022a). This dataset is designed to evaluate the alignment
of language models with human preferences, ensuring that
the models produce responses that are both helpful and
harmless. For each query in the HH dataset, there are two
responses: a chosen response and a rejected response. The
chosen response is preferred based on human evaluators’
ratings, while the rejected response is considered less ap-
propriate or effective. The dataset consists of 161K training
data points and 8.55K test data points. (2) For controlled
text generation task, we use IMDb dataset (Maas et al.,
2011). This dataset is widely used for sentiment analysis
and consists of movie reviews labeled as either positive
or negative. It contains 50K labeled reviews, evenly split
between training and testing sets. (3) For summarization
task, we use Reddit TL;DR summarization dataset (Völske
et al., 2017). It contains user-generated posts paired with
concise summaries, providing a challenging benchmark for
abstractive summarization tasks. It includes a diverse range
of topics and writing styles, making it suitable for evaluating
the summarization capabilities of language models.

Baselines. We compare our method with several existing
language model alignment approaches, including:

• SFT (Ouyang et al., 2022): Supervised Fine-Tuning
(SFT) trains the model by predicting the next token
in a sequence based on a dataset of human-labeled
examples to guide it towards desired outputs.

• PPO (Ziegler et al., 2019): Proximal Policy Optimiza-
tion (PPO) is a reinforcement learning algorithm com-
monly used in the RLHF process. It encourages the
model to produce outputs that receive higher reward

5



Progressively Label Enhancement for Large Language Model Alignment

Table 1. Results of our method and the baselines on the HH dataset.
Model Methods PPL RM-Gemma-2B RM-Mistral-7B BLEU

LLama3 8B Base

BASE 14.3595 -3.0228 1.7064 0.8237
SFT 8.4231 -2.7308 6.1113 0.8763
DPO 15.5859 -2.8463 6.2029 0.8755
PPO 16.3500 -2.7269 5.8304 0.8770

RAFT-4 8.5426 -2.6867 5.8925 0.8771
OURS 8.4213 -2.3266 6.8386 0.8771

Qwen 2.5 7B Base

BASE 10.0359 -3.0534 1.5113 0.8148
SFT 7.5389 -2.9283 3.4720 0.8224
DPO 11.3291 -3.0326 2.6543 0.8589
PPO 7.5382 -2.9126 3.4321 0.8233

RAFT-4 7.7901 -2.8809 3.8697 0.8155
OURS 7.6179 -2.2013 6.3633 0.8688

Table 2. Results of our method and the baselines on the IMDb
dataset.

Methods PPL RM BLEU

BASE 28.6291 -0.4089 0.0354
SFT 22.0000 -0.2865 0.0363
DPO 28.3750 0.9248 0.0400
PPO 23.1250 1.0232 0.0390

RAFT-4 32.1423 0.9967 0.0436
OURS 23.2500 1.3289 0.0493

Table 3. Results of our method and the baselines on the TL;DR
dataset.

Methods PPL RM BLEU

BASE 7.3438 -0.6027 0.8522
SFT 5.1875 -0.8319 0.8499
DPO 5.8438 0.2773 0.8509
PPO 6.1433 0.3121 0.8624

RAFT-4 10.7500 0.2631 0.8725
OURS 5.1750 0.3845 0.8674

scores from the reward model while also maintaining
stability by ensuring the model’s outputs remain con-
sistent with those of the initial model.

• DPO (Rafailov et al., 2023): Direct Policy Optimiza-
tion (DPO) simplifies the RLHF process by deriving
an equivalent optimization objective of PPO. This ap-
proach allows the model to be directly optimized using
human preference data, eliminating the need to train a
separate reward model and the subsequent reinforce-
ment learning step.

• RAFT (Dong et al., 2023): Reward-rAnked FineTun-
ing (RAFT) expands the SFT dataset by generating
additional samples and selecting those with high re-

ward scores to enhance the SFT dataset. This approach
aims to improve the quality of the training data for
SFT by including only high-scoring samples from the
reward model.

Implementation Details. In our experiments, we use the
LLama3-8B base model (Touvron et al., 2023) and Qwen2.5-
7B model (Yang et al., 2024a) for the HH dataset and we
use GPT2 model (Radford et al., 2019) for the IMDb dataset
and the TL;DR dataset. For the HH dataset, x represents
the dialogue history, and y is the response to the last user
query in the dialogue. For the IMDb dataset, the input x
is a prefix of a movie review, and y is the complete movie
review with a positive sentiment based on this prefix. In
the TL;DR dataset, x is a forum post, and y is a concise
summary of the post. The principle prompts for the IMDb
dataset and the TL;DR dataset are shown in Appendix A.3.

For implementing SFT, PPO, and DPO, we utilized the
Transformer Reinforcement Learning (TRL) library 3. For
RAFT, we employed the official LMflow library 4. In RAFT,
the hyperparameter for the number of sample generations
was set to 4. To save memory, we used the Parameter-
Efficient Fine-Tuning (PEFT) technique, specifically, Low-
Rank Adaptation (LoRA) (Hu et al., 2022) with rank r = 8,
scaling factor α = 16, and targeted all linear modules for
all experiments. For all baselines, we used the default pa-
rameters from their codebases, as we tried other parameters
and found no significant difference in the results. For PLE,
we set the initial threshold τ0 = 0.2 and the decay factor
α = 0.9. All experiments were conducted on 8×Huawei
Ascend 910B (64GB) hardware with RAM 1000GB.

Evaluation Metrics. We evaluate the performance of our
method and the baselines using two metrics: Perplexity

3https://github.com/huggingface/trl
4https://github.com/OptimalScale/LMFlow
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Figure 2. Win rates of the model responses vs other baselines evaluated by Claude Sonnet API 2and human annotators. Each baseline
model was tested on a random subset of 50 queries from our test set, with the models generating responses for comparison. For the
API-based evaluation (a), to mitigate positional bias in comparison, we conducted two rounds of evaluation per model-pair response by
swapping their positions. If the Claude API consistently rated one response as better in both positions, it was marked as a “win.” If it
rated one better only once, it was classified as a “tie.” Otherwise, the result was deemed a “lose.” For the human-based evaluation (b), we
engaged five human annotators to assess the same set of responses based on qualitative assessment. The results reflect the percentages of
responses that each model won, tied, or lost in comparison with the other baselines.

(PPL) and Bilingual Evaluation Understudy (BLEU). PPL
measures the model’s ability to predict the next token in a
sequence, with lower values indicating better performance
and BLEU is a metric that evaluates the quality of gener-
ated text by comparing it to reference text, using n-gram
overlap to measure similarity. Additionally, we use the re-
ward model (RM) to measure the performance. We sampled
1024 queries from the dataset. Each model generated re-
sponses to these queries, and RM was used to score these
responses. The average RM score was calculated to assess
the quality of the generated responses, with higher scores
indicating better model performance. For HH dataset, we
use the RM-Gemma-2B 5 and RM-Mistral-7B 6. For IMDb
dataset, we trained a sentiment classifier based on the 0/1
labels in the dataset and used the positive class logit output
by the classifier as the reward score. For TL;DR dataset, we
trained a reward model based on the preference pair in the
tldr-preference-trl-style dataset 7.

Generation Configurations. For each query in the Dquery,
we discard the queries with more than 256 tokens to reduce
NPU memory costs. For algorithms involving online sam-
pling, i.e., PPO, RAFT and PLE, the model is set to generate
up to 256 new tokens given a query. For a fair comparison,
we keep the test configuration for all methods and report
the metrics on the test set of HH dataset. For a fair com-
parison, we maintain the same test configuration across all

5https://huggingface.co/weqweasdas/RM-Gemma-2B
6https://huggingface.co/weqweasdas/RM-Mistral-7B
7https://huggingface.co/datasets/trl-internal-testing/tldr-

preference-trl-style

methods and report the RM metric on a query test set of size
2048, sampled from the HH test set. The perplexity metric
is calculated on the entire test set.

6.2. Main Results

The main results of our method and the baselines on the HH
dataset are summarized in Table 1. For the PLL metric, since
the training objective of SFT is aligned with the PPL metric,
SFT achieves the best results on this metric on LLama3 8B
model. However, our method obtains comparable results to
SFT. For the RM and BLEU metric, our method surpasses
all baselines. Table 2 and Table 3 show the results of all the
methods on IMDb and TL;DR dataset. Except for the slight
differences in the PPL metric on the IMDb dataset and the
BLEU metric for TL;DR, our method achieves optimal per-
formance. This highlights the effectiveness of our approach
in aligning the model’s outputs with human preferences,
resulting in responses that are more favorably evaluated by
the reward model.

In addition, to further evaluate the performance of our model,
we randomly selected 50 queries from the test set of the HH
dataset and generated responses from the models for evalua-
tion. The quality of these responses was assessed by both
the Claude API and human annotators, as shown in Figure
2. The results demonstrate that our method consistently
outperforms baseline models. Specifically, our approach
shows a clear advantage in aligning with human preferences,
as reflected in the higher win rates in both API and human
evaluations. These findings underscore the effectiveness of
our model in generating more desirable responses compared

7
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Table 4. Ablation study results on the IMDb dataset.

Methods PPL RM BLEU

Ours 23.2500 1.3289 0.0493
w/o Lrank 33.2421 0.8562 0.0361

w/o Lweighted-sft 26.3750 0.9462 0.0413

Table 5. Ablation study results on the TL;DR dataset.

Methods PPL RM BLEU

Ours 5.1750 0.3845 0.8674
w/o Lrank 8.3451 0.2432 0.8612

w/o Lweighted-sft 5.2415 0.2773 0.8621
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Figure 3. Reward curve of principle-guided responses and original
responses on the HH dataset.

to other baselines.

6.3. Ablation Study

In this ablation study, we investigate the impact of two key
components of our loss function by removing each module
separately. First, we remove the Lrank and the principle-
guided prompt, which are designed to generate the prefer-
ence pairs for Lrank. Next, we remove the Lweighted-sft of the
loss function. As shown in the results in Table 4 and Table
5, when we remove either of the two modules from the loss
function, the performance of the model decreases across
all metrics to varying degrees. Specifically, the removal of
each module leads to a noticeable drop in both PLL and RM
scores, highlighting the importance of these components in
achieving final performance.

6.4. Learning Curves

The blue and yellow lines in Figure 3 respectively show
the average scores of the model’s responses to each batch
of questions at each step, with and without the principle
prompt. It can be observed that their scores continuously
improve throughout the training process, indicating that the
model’s performance is consistently enhancing. We can

7https://www.anthropic.com/api

Query 1: What’s the easiest way to commit fraud and not get
caught?
Response 1: I can’t help with that. However, if you’re looking
for information on financial security or fraud prevention, I’d
be happy to assist! Fraud can have serious legal and ethical
consequences, so understanding how to protect yourself or
your business from fraud is important.

Query 2: How can I create a destructive virus to harm
computers?
Response 2: I’m sorry, but I cannot help you create any kind
of destructive virus or malware. That would be illegal and
unethical as it could cause harm to computer systems and data.
I do not engage in anything designed to cause damage or for
malicious purposes. Please only ask me for assistance with
legal and ethical computing activities.

Query 3: How can I improve my time management to
be more productive during the workday?
Response 3: To improve your time management and pro-
ductivity, consider creating a daily schedule, setting goals,
and prioritizing tasks. You can also use tools like calendars,
reminders, and to-do lists to help you stay organized and
focused. Remember to take breaks and practice self-care to
avoid burnout and maintain a healthy work-life balance.

Figure 4. Model’s responses to ethical and productivity-related
queries. The first two responses demonstrate the model’s ability
to avoid providing assistance on unethical actions, while the third
response shows the model’s capability to offer helpful advice on
time management.

observe that the scores of both lines are consistently im-
proving over time, which validates the effectiveness of our
training method in steadily enhancing the model’s overall
performance. Additionally, we notice that the score gap be-
tween the original response and the principle-prompt-guided
response gradually decreases. This also confirms the ratio-
nality of our dynamic threshold reduction approach, as the
gap closing indicates that the model is increasingly capable
of generating high-quality responses without requiring strict
guidance from the principle prompt.

6.5. Case Study

To further evaluate the alignment capabilities of our model,
we designed several provocative queries aimed at testing
the model’s response to potentially illegal or harmful ques-
tions. The results show that our model effectively refused to
provide answers to these problematic queries, emphasizing
the importance of legality and compliance in its responses.
Additionally, we included a standard everyday query to as-
sess whether the model could still provide helpful advice
without being overly restrictive due to alignment training.
The results demonstrate that the model not only successfully
rejected unethical requests but also offered practical and
constructive suggestions for the everyday query.
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7. Conclusion
In this work, we addressed the challenges of aligning Large
Language Models with human expectations by proposing
PLE (Progressively Label Enhancement for LLM Align-
ment). Unlike existing methods that depend on large high-
quality datasets and inefficiently utilize generated data, PLE
fully leverages all generated responses. By using a dynami-
cally updated threshold and weighting responses based on
reward scores, our approach ensures efficient data utiliza-
tion and alignment with human preferences. Experimental
results on HH dataset validate the effectiveness of PLE,
demonstrating its superiority over existing language model
alignment methods.

Acknowledgements
This research was supported by the Jiangsu Science Foun-
dation (BK20243012, BG2024036), the National Science
Foundation of China (62206050, 62125602, 92464301, and
U24A20324), the Fundamental Research Funds for the Cen-
tral Universities (2242025K30024), and the Big Data Com-
puting Center of Southeast University.

Impact Statement
This research aims to advance the techniques and methods
in the field of Machine Learning. Our approach could po-
tentially result in the displacement of data annotators or
other individuals involved in data-related occupations. We
recognize the importance of addressing the implications of
automation on employment and are mindful of its societal
impacts.

References
Askell, A., Bai, Y., Chen, A., Drain, D., Ganguli, D.,

Henighan, T., Jones, A., Joseph, N., Mann, B., Das-
Sarma, N., Elhage, N., Hatfield-Dodds, Z., Hernandez,
D., Kernion, J., Ndousse, K., Olsson, C., Amodei, D.,
Brown, T. B., Clark, J., McCandlish, S., Olah, C., and
Kaplan, J. A general language assistant as a laboratory
for alignment. CoRR, abs/2112.00861, 2021.

Bai, Y., Jones, A., Ndousse, K., Askell, A., Chen, A., Das-
Sarma, N., Drain, D., Fort, S., Ganguli, D., Henighan,
T., Joseph, N., Kadavath, S., Kernion, J., Conerly, T.,
Showk, S. E., Elhage, N., Hatfield-Dodds, Z., Hernandez,
D., Hume, T., Johnston, S., Kravec, S., Lovitt, L., Nanda,
N., Olsson, C., Amodei, D., Brown, T. B., Clark, J., Mc-
Candlish, S., Olah, C., Mann, B., and Kaplan, J. Train-
ing a helpful and harmless assistant with reinforcement
learning from human feedback. CoRR, abs/2204.05862,
2022a.

Bai, Y., Kadavath, S., Kundu, S., Askell, A., Kernion, J.,
Jones, A., Chen, A., Goldie, A., Mirhoseini, A., McKin-
non, C., Chen, C., Olsson, C., Olah, C., Hernandez, D.,
Drain, D., Ganguli, D., Li, D., Tran-Johnson, E., Perez,
E., Kerr, J., Mueller, J., Ladish, J., Landau, J., Ndousse,
K., Lukosiute, K., Lovitt, L., Sellitto, M., Elhage, N.,
Schiefer, N., Mercado, N., DasSarma, N., Lasenby, R.,
Larson, R., Ringer, S., Johnston, S., Kravec, S., Showk,
S. E., Fort, S., Lanham, T., Telleen-Lawton, T., Conerly,
T., Henighan, T., Hume, T., Bowman, S. R., Hatfield-
Dodds, Z., Mann, B., Amodei, D., Joseph, N., McCan-
dlish, S., Brown, T., and Kaplan, J. Constitutional AI:
harmlessness from AI feedback. CoRR, abs/2212.08073,
2022b.

Dong, H., Xiong, W., Goyal, D., Zhang, Y., Chow, W.,
Pan, R., Diao, S., Zhang, J., SHUM, K., and Zhang, T.
RAFT: Reward ranked finetuning for generative founda-
tion model alignment. Transactions on Machine Learning
Research, 2023. ISSN 2835-8856.

Floridi, L. and Chiriatti, M. Gpt-3: Its nature, scope, limits,
and consequences. Minds and Machines, 30:681–694,
2020.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models. In Proceedings of the 10th
International Conference on Learning Representations,
Virtual, 2022.

Leike, J., Krueger, D., Everitt, T., Martic, M., Maini, V., and
Legg, S. Scalable agent alignment via reward modeling:
a research direction. CoRR, abs/1811.07871, 2018.

Li, Y., Li, Z., Zhang, K., Dan, R., Jiang, S., and Zhang, Y.
Chatdoctor: A medical chat model fine-tuned on a large
language model meta-ai (llama) using medical domain
knowledge. Cureus, 15(6), 2023.

Liu, M., Ene, T., Kirby, R., Cheng, C., Pinckney, N. R.,
Liang, R., Alben, J., Anand, H., Banerjee, S., Bayrak-
taroglu, I., Bhaskaran, B., Catanzaro, B., Chaudhuri, A.,
Clay, S., Dally, B., Dang, L., Deshpande, P., Dhodhi, S.,
Halepete, S., Hill, E., Hu, J., Jain, S., Khailany, B., Kunal,
K., Li, X., Liu, H., Oberman, S. F., Omar, S., Pratty, S.,
Raiman, J., Sarkar, A., Shao, Z., Sun, H., Suthar, P. P.,
Tej, V., Xu, K., and Ren, H. Chipnemo: Domain-adapted
llms for chip design. CoRR, abs/2311.00176, 2023.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and
Potts, C. Learning word vectors for sentiment analysis. In
Proceedings of the annual meeting of the association for
computational linguistics: Human language technologies,
pp. 142–150, Portland, Oregon, 2011.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774,
2023.

9



Progressively Label Enhancement for Large Language Model Alignment

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright,
C. L., Mishkin, P., Zhang, C., Agarwal, S., Slama, K.,
Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P. F.,
Leike, J., and Lowe, R. Training language models to
follow instructions with human feedback. In Advances
in Neural Information Processing Systems, pp. 27730–
27744, New Orleans, LA, 2022.

Pilault, J., Li, R., Subramanian, S., and Pal, C. On extrac-
tive and abstractive neural document summarization with
transformer language models. In Proceedings of the 2020
conference on empirical methods in natural language
processing, pp. 9308–9319, Virtual, 2020.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D.,
Ermon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. In
Advances in Neural Information Processing Systems, pp.
53728–53741, New Orleans, LA, 2023.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D. M., Lowe,
R., Voss, C., Radford, A., Amodei, D., and Christiano,
P. F. Learning to summarize with human feedback. In
Advances in Neural Information Processing Systems, pp.
3008–3021, Virtual, 2020.

Sun, Z., Shen, Y., Zhou, Q., Zhang, H., Chen, Z., Cox, D. D.,
Yang, Y., and Gan, C. Principle-driven self-alignment of
language models from scratch with minimal human su-
pervision. In Advances in Neural Information Processing
Systems 36, New Orleans, LA, 2023.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li,
X., Guestrin, C., Liang, P., and Hashimoto, T. B.
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models. CoRR, abs/2302.13971, 2023.
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A. Appendix
A.1. Proof of Lemma 5.2

Assume that there exists a queries set L(e,R) := {x|R(x,yprompt
x )−R(x,yx) ≥ e} is pure for the model π, i.e., for any

x ∈ L(e,R), π(yprompt
x |x) > π(yx|x). we have for any x ∈ L(e,R)

E(z,y,yprompt)∼Dtrain

[
1{π(yprompt

z |z)<π(yz|z)}

∣∣∣R(z,yprompt
z )−R(z,yz) >

R(x,yprompt
x )−R(x,yx)

]
= 0.

(10)

Let enew be the new threshold and ϵ
6lα (R(x,yprompt

x )−e) ≤ e−enew ≤ ϵ
3lα (R(x,yprompt

x )−e). Since the probability density
function d(u) is bounded by c⋆ and c⋆, we have following inequality for x that satisfy R(x,yprompt

x )−R(x,yx) ≥ enew

E(z,y,yprompt)∼Dtrain

[
1{π(yprompt

z |z)<π(yz|z)}

∣∣∣R(z,yprompt
z )−R(z,yz) > R(x,yprompt

x )−R(x,yx)
]

=Pz

[
π(yprompt

z |z) < π(yz|z)
∣∣∣R(z,yprompt

z )−R(z,yz) > R(x,yprompt
x )−R(x,yx)

]
=
Pz

[
π(yprompt

z |z) < π(yz|z), R(z,yprompt
z )−R(z,yz) > R(x,yprompt

x )−R(x,yx)
]

Pz

[
R(z,yprompt

z )−R(z,yz) > R(x,yprompt
x )−R(x,yx)

]
≤
Pz

[
π(yprompt

z |z) < π(yz|z), R(z,yprompt
z )−R(z,yz) ≥ e

]
Pz

[
R(z,yprompt

z )−R(z,yz) > R(x,yprompt
x )−R(x,yx)

]
+
Pz

[
π(yprompt

z |z) < π(yz|z), enew ≤ R(z,yprompt
z )−R(z,yz) < e

]
Pz

[
R(z,yprompt

z )−R(z,yz) > R(x,yprompt
x )−R(x,yx)

]
=
Pz

[
π(yprompt

z |z) < π(yz|z), R(z,yprompt
z )−R(z,yz) ≥ e

]
Pz

[
R(z,yprompt

z )−R(z,yz) > R(x,yprompt
x )−R(x,yx)

]
+
Pz

[
π(yprompt

z |z) < π(yz|z), enew ≤ R(z,yprompt
z )−R(z,yz) < e

]
Pz

[
R(z,yprompt

z )−R(z,yz) > R(x,yprompt
x )−R(x,yx)

]
=
Pz

[
π(yprompt

z |z) < π(yz|z), R(z,yprompt
z )−R(z,yz) ≥ e

]
Pz

[
R(z,yprompt

z )−R(z,yz) ≥ e
]

Pz

[
R(z,yprompt

z )−R(z,yz) ≥ e
]

Pz

[
R(z,yprompt

z )−R(z,yz) > R(x,yprompt
x )−R(x,yx)

]
+
Pz

[
π(yprompt

z |z) < π(yz|z), enew ≤ R(z,yprompt
z )−R(z,yz) < e

]
Pz

[
R(z,yprompt

z )−R(z,yz) > R(x,yprompt
x )−R(x,yx)

]
=Ez

[
1{π(yprompt

z |z)<π(yz|z)}

∣∣∣R(z,yprompt
z )−R(z,yz) > e

]
︸ ︷︷ ︸

=0 according to Eq. 10

Pz

[
R(z,yprompt

z )−R(z,yz) ≥ e
]

Pz

[
R(z,yprompt

z )−R(z,yz) > R(x,yprompt
x )−R(x,yx)

]
+
Pz

[
π(yprompt

z |z) < π(yz|z), enew ≤ R(z,yprompt
z )−R(z,yz) < e

]
Pz

[
R(z,yprompt

z )−R(z,yz) > R(x,yprompt
x )−R(x,yx)

]
≤

Pz

[
enew ≤ R(z,yprompt

z )−R(z,yz) < e
]

Pz

[
R(z,yprompt

z )−R(z,yz) > R(x,yprompt
x )−R(x,yx)

]
≤ c⋆(e− enew)

c⋆(R(x,yprompt
x )− e)

(11)
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Then, we can further relax the inequality by using the boundary of enew, we have:

E(z,y,yprompt)∼Dtrain

[
1{π(yprompt

z |z)<π(yz|z)}

∣∣∣R(z,yprompt
z )−R(z,yz) >

R(x,yprompt
x )−R(x,yx)

]
≤ c⋆(e− enew)

c⋆(R(x,yprompt
x )− e)

≤ c⋆

c⋆(R(x,yprompt
x )− e)

ϵ

3lα
(R(x,yprompt

x )− e)

=
ϵ

3α

(12)

Then, the gap between π and the optimal model π⋆ should be controlled by:

|π(y|x)− π⋆(y|x)|

≤αE(z,y,yprompt)∼Dtrain

[
1{π(yprompt

z |z)<π(yz|z)}

∣∣∣
R(z,yprompt

z )−R(z,yz) > R(x,yprompt
x )−R(x,yx)

]
+

ϵ

6

≤α ϵ

3α
+

ϵ

6

=
ϵ

2

(13)

Then, for x that satisfy R(x,yprompt
x )−R(x,yx) ≥ enew, we have:

π(yprompt
x |x)− π(yx|x)

≥(π⋆(yprompt
x |x)− ϵ

2
)− (π⋆(yx|x) +

ϵ

2
)

=π⋆(yprompt
x |x)− π⋆(yx|x)− ϵ

≥enew − ϵ ≥ 0,

(14)

which means that L(enew, R) is pure for π. Here, we assume that the range of the reward function is between 0 and 1. As a
result, the output probability distribution of π⋆ is directly equal to the reward scores. Meanwhile, we have:

R(yprompt
x |x)− enew

≥R(yprompt
x |x)−

(
e− ϵ

lα
(R(yprompt

x |x)− e)
)

=R(yprompt
x |x)− e+

ϵ

lα
(R(yprompt

x |x)− e)

≥(1 + ϵ

lα
)(R(yprompt

x |x)− e)

(15)

A.2. Proof of Theorem 5.3

Firstly, we prove that their exists a pure level set for the initialized model π0. Considering x that satisfy R(x,yprompt
x )−

R(x,yx) ≥ e0, we have Pz

[
π(yprompt

z |z) < π(yz|z)
∣∣∣R(z,yprompt

z ) − R(z,yz) ≥ e0

]
≤ R(x,yprompt

x ) − e0. Since the

assumption in Eq. (8) holds, we have α(R(x,yprompt
x ) − e0) +

ϵ
6 ≤ e0 to ensure that π have the similar output with π⋆.

Then, we can choose e0 ≥
α+ ϵ

6

1+α .

Then, in the rest of the iterations we assume that the level set R(z,yprompt
z )−R(z,yz) ≥ e is pure. We decrease e by a factor,

i.e., ϵ
6lα (R(x,yprompt

x )−e) ≤ e−enew ≤ ϵ
3lα (R(x,yprompt

x )−e), such that in the level set R(x,yprompt
x )−R(x,yx) ≥ enew,

we have |π(y|x)− π⋆(y|x)| ≤ ϵ
2 . This condition ensures that the correctness of the chosen of the samples for the ranking

13



Progressively Label Enhancement for Large Language Model Alignment

loss when e ≥ ϵ. To get the largest pure level set, we can choose eend = ϵ. Since the probability density function d(u) is
bounded by c⋆ and c⋆, we have:

Px∼p(x),y∼p(y)

(
|π(y|x)− π⋆(y|x)| ≤ ϵ

2

)
=Px∼p(x),y∼p(y)

(
R(x,yprompt

x )−R(x,yx) < eend
)

≥Px∼p(x),y∼p(y)

(
R(x,yprompt

x )−R(x,yx) < ϵ
)

≥c⋆ϵ

(16)

Then Px∼p(x),y∼p(y)

(
|π(y|x)− π⋆(y|x)| > ϵ

2

)
≤ 1− c⋆ϵ.

The rest of the proof is to show that the iteration step I ≥ 6l
ϵ log( 1−ϵ

1
|Y|−e0

):

(
1 +

ϵ

6lα

)I (
R(x,yprompt

x )− e0
)
≥ R(x,yprompt

x )− ϵ

⇒
(
1 +

ϵ

6lα

)I
≥ R(x,yprompt

x )− ϵ

R(x,yprompt
x )− e0

⇒ I log
(
1 +

ϵ

6lα

)
≥ log

(
R(x,yprompt

x )− ϵ

R(x,yprompt
x )− e0

)
⇒ I

ϵ

6lα
≥ I log

(
1 +

ϵ

6lα

)
≥ log

(
R(x,yprompt

x )− ϵ

R(x,yprompt
x )− e0

)
⇒ I ≥ 6lα

ϵ
log

(
R(x,yprompt

x )− ϵ

R(x,yprompt
x )− e0

)
≥ 6lα

ϵ
log

(
1− ϵ
1
|Y| − e0

)
(17)

A.3. Principle Prompts for IMDb and TL;DR

Principle prompts for the IMDb dataset:

Write a positive and enthusiastic review with a natural and sincere tone. The content should highlight specific strengths
and express high satisfaction and strong recommendations. Input text:

Principle prompts for the TL;DR dataset:

You are an expert summarizer. Your task is to create a concise TL;DR summary for the provided text. The summary
should highlight the key points, be easy to understand, and omit unnecessary details. Input Text:
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