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ABSTRACT

The lottery ticket hypothesis (LTH) (Frankle & Carbin, 2019) states that learning on a prop-
erly pruned network (the winning ticket) has improved test accuracy over the originally
unpruned network. Although LTH has been justified empirically in a broad range of deep
neural network (DNN) involved applications like computer vision and natural language
processing, the theoretical validation of the improved generalization of a winning ticket
remains elusive. To the best of our knowledge, our work, for the first time, characterizes
the performance of training a sparse neural network by analyzing the geometric structure
of the objective function and the sample complexity to achieve zero generalization error.
We show that the convex region near a desirable model with guaranteed generalization
enlarges as the neural network model is pruned, indicating the structural importance of a
winning ticket. Moreover, as the algorithm for training a sparse neural network is speci-
fied as (accelerated) stochastic gradient descent algorithm, we theoretically show that the
number of samples required for achieving zero generalization error is proportional to the
number of the non-pruned weights in the hidden layer. With a fixed number of samples,
training a pruned neural network enjoys a faster convergence rate to the desirable model
than training the original unpruned one, providing a formal justification of the improved
generalization of the winning ticket. Our theoretical results are acquired from learning a
sparse neural network of one hidden layer, while experimental results are further provided
to justify the implications in pruning multi-layer neural networks.

1 INTRODUCTION

Neural network pruning can reduce the computational cost of training a model significantly (LeCun et al.,
1990; Hassibi & Stork, 1993; Dong et al., 2017; Han et al., 2015; Hu et al., 2016; Srinivas & Babu, 2015;
Yang et al., 2017; Molchanov et al., 2017). The recent Lottery Ticket Hypothesis (LTH) (Frankle & Carbin,
2019) claims that a randomly initialized dense neural network always contains a so-called “winning ticket,”
which is a sub-network bundled with the corresponding initialization, such that when trained in isolation,
this winning ticket can achieve at least the same testing accuracy as that of the original network by running
at most the same amount of training time. This so-called “improved generalization of winning tickets” is
verified empirically in (Frankle & Carbin, 2019). LTH has attracted a significant amount of recent research
interests (Ramanujan et al., 2020; Zhou et al., 2019; Malach et al., 2020). Despite the empirical success
(Evci et al., 2020; You et al., 2019; Wang et al., 2019; Chen et al., 2020a), the theoretical justification
of winning tickets remains elusive except for a few recent works. Malach et al. (2020) provides the first
theoretical evidence that within a randomly initialized neural network, there exists a good sub-network that
can achieve the same test performance as the original network. Meanwhile, recent work (Neyshabur, 2020)
trains neural network by adding the `1 regularization term to obtain a relatively sparse neural network, which
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has a better performance numerically. Arora et al. (2018) and Zhou et al. (2018) show that the expressive
power of a neural network is comparable to a compressed neural network and both networks have the same
generalization error. However, no theoretical explanation has been provided for the improved generalization
of winning tickets, i.e., winning tickets can achieve higher test accuracy after the same training time.

Contributions: This paper provides the first systematic analysis of learning sparse neural networks with a
finite number of training samples. Our analytical results also provide justification of the LTH from the per-
spective of the sample complexity. In particular, we provide the first theoretical justification of the improved
generalization of winning tickets. Specific contributions include:

1. Sparse neural network learning via accelerated gradient descent (AGD): We propose an AGD algo-
rithm with tensor initialization to learn the sparse model from training samples. Considering the scenario
where there exists a ground-truth sparse one-hidden-layer neural network, we prove that our algorithm
converges to the ground-truth model linearly, which has guaranteed generalization on testing data.

2. First sample complexity analysis for pruned networks: We characterize the required number of sam-
ples for successful convergence, termed as the sample complexity. Our sample complexity depends linearly
on the number of the non-pruned weights of the sparse network and is a significant reduction from directly
applying conventional complexity bounds in (Zhong et al., 2017; Zhang et al., 2020a;c).

3. Characterization of the benign optimization landscape of pruned networks: We show analytically
that the empirical risk function has an enlarged convex region near the ground-truth model if the neural
network is sparse, justifying the importance of a good sub-network (i.e., the winning ticket).

4. Characterization of the improved generalization of winning tickets: We show that gradient-descent
methods converge faster to the ground-truth model when the neural network is properly pruned, or equiva-
lently, learning on a pruned network returns a model closer to the ground-truth model with the same number
of iterations, indicating the improved generalization of winning tickets.

1.1 RELATED WORK

Winning tickets. Frankle & Carbin (2019) proposes an Iterative Magnitude Pruning (IMP) algorithm to
obtain the proper sub-network and initialization. IMP and its variations (Frankle et al., 2019a; Renda et al.,
2019) succeed in deeper networks like Residual Networks (Resnet)-50 and Bidirectional Encoder Repre-
sentations from Transformers (BERT) network (Chen et al., 2020b). (Frankle et al., 2019b) shows that IMP
succeeds in finding the “winning ticket” if the ticket is stable to stochastic gradient descent noise. In parallel,
(Liu et al., 2018) shows numerically that the “winning ticket” initialization does not improve over a random
initialization once the correct subnetworks are found, suggesting that the benefit of “winning ticket” mainly
comes from the sub-network structures.

Over-parameterized model. When the number of weights in a neural network is much larger than the
number of training samples, the landscape of the objective function of the learning problem has no spurious
local minima, and first-order algorithms converge to one of the global optima (Livni et al., 2014; Zhang
et al., 2016; Soltanolkotabi et al., 2018). However, the global optima is not guaranteed to generalize well on
testing data (Yehudai & Shamir, 2019; Zhang et al., 2016).

Model estimation & Generalization analysis. This framework assumes a ground-truth model that maps
the input data to the output labels, and the learning objective is to estimate the ground-truth model, which
has a generalization guarantee on testing data. The learning problem has intractably many spurious local
minina even for one-hidden-layer neural networks (Shamir, 2018; Safran & Shamir, 2018; Zhang et al.,
2016). Assuming an infinite number of training samples, (Brutzkus & Globerson, 2017; Du et al., 2018;
Tian, 2017) develop learning methods to estimate the ground-truth model. (Fu et al., 2018; Zhong et al.,
2017; Zhang et al., 2020a;c) extend to the practical case of a finite number of samples and characterize the

2



Under review as a conference paper at ICLR 2021

sample complexity for successful estimation of the ground-truth model. Because the analysis complexity
explodes when the number of hidden layers increases, all the analytical results about estimating the ground-
truth model are limited to one-hidden-layer neural networks, and the input distribution is often assumed to
be the standard Gaussian distribution.

1.2 NOTATIONS

Vectors are bold lowercase, matrices and tensors are bold uppercase. Scalars are in normal font, and sets
are in calligraphy and blackboard bold font. I and ei denote the identity matrix and the i-th standard
basis vector. [Z] stands for the set of {1, 2, · · · , Z} for any number N+. In addition, f(r) = O(g(r))
(or f(r) = Ω(g(r))) if f ≤ C · g (or f ≥ C · g) for some constant C > 0 when r is large enough.
f(r) = Θ(g(r)) if both f(r) = O(g(r)) and f(r) = Ω(g(r)) holds, where c · g ≤ f ≤ C · g for some
constant 0 ≤ c ≤ C when r is large enough.

2 PROBLEM FORMULATION
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Figure 1: Illustration of the model

Given N pairs of training samples D = {xn, yn}Nn=1 where
xn ∈ Rd represent input features and yn ∈ R represents
the corresponding output label. We consider a teacher-student
setup where for any input x, the corresponding output y is gen-
erated by a sparse one-hidden-layer neural network, which is
called teacher, as shown in Fig. 1. Specifically, the teacher
network is equipped with K neurons where each neuron is
connected to r∗ (r∗ ≤ d)1 input features. Let Ŵ ∗ ∈ Rr×K
contain all the ground truth weights of the K neurons in the
teacher network, where the j-th column, denoted by ŵ∗j ∈
Rr∗ , contains the edge weights connected to the j-th neuron.
Let Ω∗j denote the set of indices of the input features to which
the j-th neuron is connected in the teacher network.

Given input xn, let xn,Ω∗j ∈ Rr represent the sub-vector that is connected to j-th neuron, where j ∈ [K].
Then, in a regression problem, yn is obtained by the teacher network through 2

yn =
1

K

K∑
j=1

φ(ŵ∗Tj xn,Ω∗j ) + ξn := g(xn; Ŵ ∗) + ξn, (1)

where ξn is the unknown additive noise and φ is the activation function.

We train on a student network equipped with same K neurons as in the teacher network, however, each
neuron in the student network is connected to r input features instead of r∗. Let Ωj denote the set of indices
of the input features to which the j-th neuron is connected in the student network. Then, given any estimated
weightsW = [w1,w2, · · · ,wK ] ∈ Rr×K for the student networks, the empirical risk function with respect
to the training set D is defined as

f̂D(W ) =
1

2N

N∑
n=1

( 1

K

K∑
j=1

φ(wT
j xn,Ωj )− yn

)2

, (2)

1We consider the same r∗ for each neuron in this paper, but the analysis can be easily modified to handle the case of
different numbers of features per neuron.

2The analysis is extendable to binary classification, and the output is generated by Prob
(
yn = 1|xn

)
= g(xn; Ŵ

∗).
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where we consider the square loss function here. We focus on the case that r ≥ r∗ and Ωj ⊇ Ω∗j . We will
discuss how to obtain such a student network from a fully connected neural network in Section 4.1.

Hence, the learning objective is to estimate a proper weight matrix W for the student network from the
training samples D via solving the following problem:

min
W∈Rr×K

f̂D(W ). (3)

Let us define an augmented matrixW ∗ ∈ Rr×K such thatW ∗
i,j = Ŵ ∗

i,j if i belongs to both Ωj and Ω∗j and
0 otherwise. Clearly,W ∗ is a global minimizer to both (3) and its expectation EDf̂D(W ).

when measurements are noiseless, i.e., ξn = 0 for all n. Hence, if one can estimate W ∗ accurately from
the training data on the student network, one can find the teacher network with Ŵ ∗ equivalently, which has
guaranteed generalization performance on the testing data.

Following the standard assumption in (Zhong et al., 2017), xn is independent and identically distributed
(i.i.d.) from the standard Gaussian distribution N (0, Id×d). 3 Throughout the paper, we consider rectified
linear unit (ReLU), where φ(z) = max{z, 0}. ξn can be arbitrary, and we only assume ξn is bounded as
|ξn| ≤ |ξ| for some constant ξ.

The questions that this paper addresses include: (1) what algorithm to estimate the augmented ground truth
weights W ∗? (2) what is the sample complexity for the accurate estimate? (3) what is the impact of the
network pruning on the difficulty of the learning problem and the performance of the learned model?

Connections with conventional pruned networks. To connect the student network with conventional
pruned networks, we define a further augmented matrix W̃ ∗ ∈ Rd×K , where the j-th column of W̃ ∗,
denoted by w̃∗j , contains the weights connected to the j-th neuron, and W̃ ∗ is zero padded in other entries
for non-existing weights. In other words, w̃∗j,Ωj = w∗j for all j ∈ [K], and W̃ ∗ij = 0 if i /∈ Ωj . The mask
matrix M , as discussed in (Frankle & Carbin, 2019), with respect to W ∗ is defined as Mij = 1 if i ∈ Ωj ,
and Mij = 0 otherwise. Then, we haveM �W̃ ∗ = W̃ ∗, where� stands for the entry-wise multiplication.
In (Frankle & Carbin, 2019), an Iterative Magnitude Pruning (IMP) algorithm is proposed to compute the
mask matrixM for the lottery ticket. Equation (3) can be equivalently written as

min
W̃∈Rd×K

f̂D(W̃ ) =
1

2N

N∑
n=1

( 1

K

K∑
j=1

φ(w̃T
j xn)− yn

)2

, s.t. W̃ = M � W̃ , (4)

where W̃ = [w̃1, w̃2, · · · , w̃K ] ∈ Rd×K is an estimate of the augmented weight matrix W̃ ∗. W̃ ∗ is a
global minimizer to (4) when measurements are noiseless. Note that (4) differs from the learning problem
of the conventional dense networks in the additional constraint M � W̃ = W̃ . Back to the problem setup
in this paper, suppose M∗ denotes the mask of the teacher model, then we learn on a student network with
mask M satisfying Supp(M) ⊇ Supp(M∗), where Supp(·) stands for the indices of the non-zero entries.
Moreover, when M is an all-one matrix, i.e., r = d, (4) reduces to the conventional learning problem of a
one-hidden-layer neural network.

We will mainly focus on the case that a proper student network is given with r ≥ r∗ and Ωj ⊇ Ω∗j and will
discuss how to obtain a proper student network by the IMP algorithm in Section 4.1.

3The assumption is critical in theoretical analysis since the proof is built upon bounding the population risk function,
and the Gaussian assumption is leveraged to analyze the landscape of the population risk function. It is possible to
extend the analysis to other distributions and we will leave that for future work.
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3 LOCAL GEOMETRIC STRUCTURE

We defer the algorithmic design and analysis to Section 4 and study the geometric structure of (2) here.
Theorem 1 characterizes the local convexity of f̂D(W ) in (2). It has two important implications.

1. Strictly local convex ball around W ∗: f̂D(W ) is strictly convex around W ∗, and the radius of the
convex ball is negatively correlated with

√
r, where r is the number of non-pruned weights per neuron.

Thus, the convex ball enlarges as r decreases.

2. Importance of the winning ticket architecture: Compared with training on the dense network directly,
training on a correctly pruned sub-network has a larger convex region near W ∗, which may lead to easier
estimation ofW ∗. To some extend, this result can be viewed as a theoretical validation of the importance of
the winning architecture (a good sub-network) in (Frankle & Carbin, 2019). Formally, we have

Theorem 1 (Local Convexity). Suppose constants ε0, ε1 ∈ (0, 1). When the number of samples satisfies

N = Ω
(
ε−2

1 K4r log d
)
, (5)

then for anyW that satisfies

‖W −W ∗‖F = O
(
ε0

K2

)
, (6)

we have

Θ

(
1− ε0 − ε1

K2

)
I � ∇2f̂D(W ) � Θ

(
1

K

)
I. (7)

Theorem 1 shows that with enough samples as shown in (5), in a local region ofW ∗ as shown in (6), all the
eigenvalues of Hessian matrix of the empirical risk function are lower and upper bounded by two positive
constants. This property is useful in designing efficient algorithms to recoverW ∗, as shown in Section 4.

Moreover, when the number of samples N is fixed and r changes, ε1 can be Θ(
√
r/N) while (5) is still

met. ε0 in (7) can be arbitrarily close to but small than 1 − ε1 so that the Hessian matrix is still positive
definite. Then from (6), the radius of the convex ball is Θ(1)−Θ(

√
r/N), indicating an enlarged region

when r decreases.

4 CONVERGENCE ANALYSIS WITH ACCELERATED GRADIENT DESCENT

We propose to solve the non-convex problem (3) via the accelerated gradient descent (AGD) algorithm, sum-
marized in Algorithm 1. Compared with the vanilla gradient descent (GD) algorithm, AGD has an additional
momentum term, denoted by β(W (t) −W (t−1)), in each iteration. AGD enjoys a faster convergence rate
than GD in solving optimization problems including learning neural networks (Zhang et al., 2020b). Vanilla
GD can be viewed as a special case of AGD by letting β = 0.

The initial pointW (0) can be obtained through a tensor initialization method, which is built upon Algorithm
1 in (Zhong et al., 2017) for fully connected neural networks with modification to handle a sparse neural
network. Specifically, we reduce the complexity dependence from input data dimension d to the sparsity
r, the definitions of the high-order moments (see (13)-(15) in Appendix A) are modified by replacing x in
Definition 5.1 in Zhong et al. (2017) with x̃ = 1√

K

∑K
j=1 xΩj ∈ Rr. Details of the tensor initialization

method are provided in Appendix A.

The theoretical analyses of our algorithm are summarized in Theorem 2 (convergence) and Lemma 1 (Ini-
tialization). The significance of these results can be interpreted from the following aspects.
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Algorithm 1 Accelerated Gradient Descent (AGD) Algorithm

1: Input: training data D = {(xn, yn)}Nn=1, gradient step size η, momentum parameter β, and an initial-
izationW (0) by the tensor initialization method;

2: Partition D into T = log(1/ε) disjoint subsets, denoted as {Dt}Tt=1;
3: for t = 1, 2, · · · , T do
4: W (t+1) = W (t) − η∇W f̂Dt(W

(t))+β(W (t) −W (t−1))
5: end for
6: Return: W (T )

1. Linear convergence to the ground-truth model: Theorem 2 implies that if initialized in the local
convex region, the iterates generated by AGD converge linearly to the ground truth W ∗ when noiseless.
When there is noise, they converge to a point W (T ). The distance between W (T ) and W ∗ is proportional
to the noise level and scales in terms of O(

√
r/N). Moreover, when N is fixed, the convergence rate of

AGD is Θ(
√
r/K). Recall that Algorithm 1 reduces to the vanilla GD by setting β = 0. The rate for the

vanilla GD algorithm here is Θ(
√
r/K) by setting β = 0 by Theorem 2, indicating a slower convergence

than AGD. Lemma 1 shows the tensor initialization method indeed returns an initial point in the convex
region.

2. Sample complexity for accurate estimation: We show that the required number of samples for success-
ful estimation is Θ(r log d), which is order-wise optimal with respect to the number of non-pruned neuron
weights r, and only logarithmic with respect to the input feature dimension d. Our sample complexity is
much less than the conventional bound of Θ(d log d) for one-hidden-layer networks (Zhong et al., 2017;
Zhang et al., 2020a;c). This is the first theoretical characterization of learning a pruned network from the
perspective of sample complexity.

3. Improved generalization of winning tickets: We prove that with a fixed number of training samples,
training on a properly pruned sub-network converges faster to W ∗ than training on the original dense net-
work. Our theoretical analysis justifies that training on the winning ticket can meet or exceed the same
test accuracy within the same number of iterations. To the best of our knowledge, our result here provides
the first theoretical justification for this intriguing empirical finding of “improved generalization of winning
tickets” by (Frankle & Carbin, 2019).
Theorem 2 (Convergence). SupposeW (0) satisfies (6) and the number of samples satisfies

N = Ω
(
ε−2

0 K8r log d log(1/ε)
)

(8)

for some ε0 ∈ (0, 1/2). Let η = K/14 in Algorithm 1. Then the iterates {W (t)}Tt=1 returned by Algorithm
1 converges linearly toW ∗ up to the noise level with probability at least 1−K2T · d−10 as

‖W (t) −W ∗‖F ≤ ν(β)t‖W (0) −W ∗‖F +O
(√

K2r log d/N
)
· |ξ|, (9)

‖W (t) −W ∗‖∞ ≤ ν(β)t‖W (0) −W ∗‖∞ +O
(√

K2r log d/N
)
· |ξ|, (10)

‖W (T ) −W ∗‖F ≤ ε‖W ∗‖F +O
(√

K2r log d/N
)
· |ξ|, (11)

where ν(β) is the rate of convergence that depends on β with ν(β∗) = 1−Θ
(

1−ε0√
K

)
for some non-zero β∗

and ν(0) = 1−Θ
(

1−ε0
K

)
.

Lemma 1 (Initialization). Assume the noise |ξ| ≤ ‖W ∗‖2 and the number of samples N =
Ω
(
ε−2

0 K8r log4 d
)

for ε0 > 0, the tensor initialization method outputs W (0) such that (6) holds, i.e.,
‖W (0) −W ∗‖F = O

(
ε0σK
K2

)
.

6



Under review as a conference paper at ICLR 2021

With a fixed number of samples, when r decreases, ε0 can be Θ(
√
r) while the condition in (8) is still met.

Then ν(0) = Θ(
√
r/K) and ν(β∗) = Θ(

√
r/K). Therefore, when r decreases, both the stochastic and

accelerated gradient descent converge faster. The theoretical bound of the improvement of the convergence
rate by accelerated gradient descent is the same as that in (Zhang et al., 2020a;c). However, (Zhang et al.,
2020a;c) focus on convolutional neural networks without any network pruning, while our results consider
pruned networks. Note that as long as W (0) is initialized in the local convex region, not necessarily by the
tensor method, Theorem 2 guarantees the accurate recovery.

In our proof of Theorem 2, we need to address the technical challenge that does not appear in (Zhong et al.,
2017) such that each wj connects to a different subset of x here instead of the same x in (Zhong et al.,
2017). Hence, the concentration theorem cannot be directly applied here to bound the distance between
population and empirical risk function as used in (Zhong et al., 2017). Moreover, we need to revise the
tensor initialization method and the corresponding proof due to the pruned network architecture. If we
choose r = d, our analysis reduces to the case in (Zhong et al., 2017). Moreover, our algorithm enjoys a
faster convergence rate since we consider AGD method rather than GD as in (Zhong et al., 2017).

4.1 OBTAINING A PROPER STUDENT NETWORK VIA MAGNITUDE PRUNING

We next show that one can combine Algorithm 1 and magnitude pruning to find a proper student network
such that r ≥ r∗ and Ωj ⊇ Ω∗j from a fully-connected network under some assumptions. Suppose the
number of samples is at least Ω

(
K8d log d log(1/ε)

)
, we train directly on the fully-connected dense network

using Algorithm 1. The number of iteration in line 2 of Algorithm 1 is set as T1 = Θ
(
log(2Ŵmax/Ŵmin)

)
,

where Ŵmin and Ŵmax denote the smallest and largest value of W ∗, respectively. From (10), after T1

iterations, the returned model, denote by W (T1), is close to the augmented ground-truth W̃ ∗. Specifically,
if W̃ ∗

ij 6= 0 and W̃ ∗
i′j′ = 0, then W (T1)

ij >W
(T1)
i′j′ for any i, j, i′, j′ (See Appendix-E for details). Then we

sort the weights based on their absolute values and prune them sequentially starting from the least absolute
value. As long as the ratio of pruned weights is at most 1 − r∗/d, all the weights are removed correctly,
leading to a proper student network. In fact, if we remove exactly 1 − r∗/d fraction of weights, the pruned
network has the same architecture as the teacher network.

5 NUMERICAL EXPERIMENTS

We first verify our theoretical results on synthetic data and then analyze the pruning performance of the IMP
algorithm (Frankle & Carbin, 2019) on both synthetic data and real data. The synthetic data are generated
using a ground-truth sparse neural network in Fig. 1. The input {xn}Nn=1 are randomly generated from
Gaussian distributionN (0, Id×d) independently, and the index set Ωj(1 ≤ j ≤ K) is generated by selecting
r numbers randomly from [d] without replacement. Each entry of the weight matrixW ∗ is randomly selected
from [−0.5, 0.5] independently. The noise {ξn}Nn=1 are i.i.d. fromN (0, σ2), and the noise level is measured
by σ/Ey , where Ey is the average energy of the noiseless outputs {g(xn;W ∗)}Nn=1 calculated as Ey =√

1
N

∑N
n=1 |g(xn;W ∗)|2.

Algorithm 1 is implemented with two minor modifications. First, the initial point is randomly selected from{
W (0)

∣∣‖W (0) −W ∗‖F /‖W ∗‖F < λ
}

for some constant λ > 0 to reduce the computation. Second,
we use the whole training data instead of a fresh subset in each iteration. Algorithm 1 terminates when
‖W (t+1)−W (t)‖F /‖W (t)‖F is smaller than 10−8 or reaching 10000 number of iterations. In Section 5.2,
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we implement the IMP algorithm (Frankle & Carbin, 2019) 4 to prune the neural network. The real dataset
we use is the MNIST dataset, and the network architecture is Lenet-5 structure (Lecun et al., 1998).

5.1 EVALUATION OF THEORETICAL FINDINGS ON SYNTHETIC DATA

Local convexity near the ground-truth. We set the number of neurons K = 5, the dimension of the data
d = 500 and the sample size N = 3000. Figure 2 illustrates the success rate of Algorithm 1 when the
network sparsity changes. The y-axis is the relative distance of the initialization W (0) to the ground-truth.
For each pair of r and the initial distance, we run 100 independent tests, and the network weights, training
data and the initialization W (0) are all generated independently in each test. Each test is called successful
if the relative error of the solutionW returned by Algorithm 1, measured by ‖W −W ∗‖2/‖W ∗‖2, is less
than 10−4. A black block means Algorithm 1 fails in estimatingW ∗ in all runs while a white block indicates
all successes. Algorithm 1 succeeds if W (0) is in the local convex region near W ∗. From Figure 2, we can
see that the radius of convex region is indeed linear in −

√
r, as predicted by Theorem 1.
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Figure 3: Convergence rate when r changes

Convergence rate. Figure 3 shows the convergence rate of Algorithm 1 when r changes. N = 3000,
d = 300, K = 5, η = 0.5, and β = 0.2. Figure 3(a) shows that the relative error decreases exponentially
as the number of iterations increases, indicating the linear convergence of Algorithm 1. As shown in Figure
3(b), the convergence rate is almost linear in

√
r, as predicted by Theorem 2. We also compare with GD by

setting β as 0. One can see that AGD has a smaller convergence rate than GD, indicating faster convergence.

Sample complexity. Figure 4 shows the phrase transition of Algorithm 1 when varying N and r. d is fixed
as 100. For each value of N , we construct 100 independent runs where the ground-truth model and training
data are generated independently in each run. We can see that the required number of samples for successful
estimation is linear in r, as predicted by (8).

Performance in noisy case. Figure 5 shows the relative error of the learned model by Algorithm 1 from
noisy measurements when r changes. N = 1000, K = 10, and d = 300. The relative error is linear in

√
r,

as predicted by (9). Moreover, the relative error is proportional to the noise level |ξ|.

5.2 IMP FOR FINDING WINNING TICKETS

Here we implement the IMP algorithm to obtain pruned networks on both synthetic data and real data.
Figure 6 shows the test performance of a pruned network on synthetic data with different sample sizes. Here
in the ground-truth network model, K = 5, d = 100, and r/d = 20%. The noise level σ/Ey = 10−3.
One observation is that for a fixed sample size N greater than 100, the test error decreases as the number of
remaining parameters decreases. This verifies that the IMP algorithm indeed prunes the network properly.
It also shows that the learned model improves as the pruning progresses, verifying our theoretical result in

4The code is downloaded from https://github.com/rahulvigneswaran/Lottery-Ticket-Hypothesis-in-Pytorch.

8



Under review as a conference paper at ICLR 2021

10 30 50 70 90

50

150

250

350

450

550

650

Figure 4: Sample complexity when r changes

3 4 5 6 7 8 9 10
10-6

10-5

10-4

10-3

10-2

R
el

at
iv

e 
er

ro
r

 /E
y
=10-2  /E

y
=10-3  /E

y
=10-4  /E

y
=10-5

Figure 5: Relative error against
√
r at different noise level

Theorem 2 that the difference of the learned model from the ground-truth model decreases as the number
of remaining weights decreases. The second observation is that the test error decreases as N increases for
any fixed number of remaining parameters. This verifies our result in Theorem 2 that the difference of the
learned model from the ground-truth model decreases as the number of training samples increases. When the
network is pruned significantly such that the percentage of reaming parameters is less than the ground-truth
20%, the pruned network cannot explain the data properly, and thus the test error is large for all N . When
the number of samples is too small, N = 100, the test error is always large, because it does not meet the
sample complexity requirement for estimating the sparse model even though the network is properly pruned.

Figure 7 shows the performance of the IMP algorithm on MNIST dataset using Lenet5 architecture. The
percentage of weights to be pruned after each cycle is 20%, and other parameters are set as default values.
Although not as obvious as the results on synthetic data, we still observe the same phenomenon of the
performance when pruning progresses. That is, the test accuracy first increases when we properly prune the
network (e.g., the case of N = 20000), indicating the effectiveness of proper pruning. By contrast, the test
accuracy drops as the network is overly pruned.
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Figure 6: Test error of pruned models on the syn-
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6 CONCLUSIONS

This paper provides the first theoretical analysis of learning one-hidden-layer sparse neural networks, which
offers formal justification of the improved generalization of winning ticket observed from empirical findings
in LTH. We characterize analytically the impact of the number of remaining weights in a pruned network on
the required number of samples for training, the convergence rate of learning algorithm, and the accuracy of
the learned model. We also provide extensive numerical validations of our theoretical findings. One desired
future work will be generalizing our theoretical analysis to the scenario of network pruning on multi-layer
neural networks.
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