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ABSTRACT

Training diffusion models is always a computation-intensive task. In this paper,
we introduce a novel speed-up method for diffusion model training, called SpeeD,
which is based on a closer look at time steps. Our key findings are: i) Time
steps can be empirically divided into acceleration, deceleration, and convergence
areas based on the process increment. ii) These time steps are imbalanced, with
many concentrated in the convergence area. iii) The concentrated steps provide
limited benefits for diffusion training. To address this, we design an asymmetric
sampling strategy that reduces the frequency of steps from the convergence area
while increasing the sampling probability for steps from other areas. Additionally,
we propose a weighting strategy to emphasize the importance of time steps with
rapid-change process increments. As a plug-and-play and architecture-agnostic
approach, SpeeD consistently achieves 3× acceleration across various diffusion
architectures, datasets, and tasks. Notably, due to its simple design, our approach
significantly reduces the cost of diffusion model training with minimal overhead.
Our research enables more researchers to train diffusion models at a lower cost.

1 INTRODUCTION

Training diffusion models is not usually affordable for many researchers, especially for ones in
academia. For example, DALL·E 2 (OpenAI, 2023) needs 40K A100 GPU days and Sora (OpenAI,
2024) at least necessitates 126K H100 GPU days. Therefore, accelerating the training for diffusion
models has become urgent for broader generative AI and other computer vision applications.

Recently, some acceleration methods for diffusion training focus on time steps, primarily using
re-weighting and re-sampling 1) Re-weighting on the time steps based on heuristic rules. P2 (Choi
et al., 2022) and Min-SNR (Hang et al., 2023) use monotonous and single-peak weighting strategies
according to sign-to-noise ratios (SNR) in different time steps. 2) Re-sampling the time steps. Log-
Normal (Karras et al., 2022) assigns high sampling probabilities for the middle time steps of the
diffusion process. CLTS (Xu et al., 2024) proposes a curriculum learning based time step schedule,
gradually tuning the sampling probability from uniform to Gaussian by interpolation for acceleration
as shown in Fig. 1b.

To investigate the essence of the above accelerations, we take a closer look at the time steps. The
diffusion models essentially learn and estimate the process increment noted as δt := xt+1−xt at time
step t at training and inference phase. As illustrated in the left of Fig. 1a, we visualize the changes
of mean and variance of process increment through the time steps. The time steps are categorized
into three areas: acceleration, deceleration, and convergence, based on observations and theoretical
analyses (Sec. 2.2) that both the changes of mean and variance initially accelerate, subsequently
decelerate, and ultimately converge in a narrow interval.

One can easily find that the proportions of the three areas are imbalanced: there are a large number of
time steps at convergence area, and the others are small. Another finding is that process increments at
the convergence area are almost identical noise, e.g., in DDPM, the distribution are nearly N (0, 2I),
where I is the unit matrix. To further explore the characteristics of these three areas, we visualize the
training loss curve in the right of Fig. 1a. The loss values from the convergence area are much lower
than those from the other areas, which indicates estimating the identical noise is easy.
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Figure 1: Motivation: designing an efficient training via analyzing process increment δt at different
time steps. (a) E(δt) and Var(δt) are the mean and variance of process increments δt. Two histograms
represent the proportions of the process increments at different noise levels (left) and the proportions
of the time steps (right) in the three areas. The loss curve is obtained from DDPM (Ho et al., 2020) on
CIFAR-10 (Krizhevsky et al., 2009). (b) w(t) and P(t) are respectively the weighting and sampling
curve. The probability of convergence area being sampled remains, while the one of acceleration is
reduced faster.

Previous acceleration works have achieved promising results, but the analysis of time steps remains
relatively under-explored. P2 (Choi et al., 2022) and Min-SNR (Hang et al., 2023) are two re-
weighting methods, with their weighting curves across time steps as shown in Fig. 1b. They employ
uniform sampling of time steps, which include too many easy samples from the convergence area
during diffusion model training.

On the other hand, most re-sampling methods heuristically emphasize sampling the middle-time steps,
but they do not dive into the difference between the acceleration and convergence areas. For example,
CLTS (Xu et al., 2024) gradually changes the sampling distribution from uniform to Gaussian by
interpolation as shown in Fig. 1b. The sampling probability of the acceleration area drops faster
than the one of the convergence area. The acceleration area is still under-sampled and therefore not
well-learned.
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Figure 2: Core designs of SpeeD. Red and blue
lines denote sampling and weighting curves.

Motivated by the analyses from a closer look at
time steps, we propose SpeeD , a novel approach
that aims to improve the training efficiency for
diffusion models. The core ideas are illustrated
in Fig. 2. To mitigate the redundant training cost,
different from uniform sampling, we design an
asymmetric sampling strategy that suppresses
the attendance of the time steps from the con-
vergence area in each iteration. Meanwhile, we
weight the time steps by the change rate of the
process increment, emphasizing the importance
of the rapid-change intervals.

Our approach has the following characteristics: SpeeD is compatible with various diffusion model
training methods, i.e., U-Net (Ronneberger et al., 2015) and DiT (Peebles & Xie, 2023) with minimal
modifications. For performance, SpeeD achieves non-trivial improvements than baseline and other
methods at the same training iterations. For efficiency, SpeeD consistently accelerates the diffusion
training by 3× across various tasks and datasets. It helps mitigate the heavy computational cost for
diffusion model training, enabling more researchers to train a model at an acceptable expense. The
extra time complexity of SpeeD is O(1), costing only seconds to reduce days of diffusion models
training on datasets like FFHQ, MetFaces and ImageNet-1K. We hope this work can bring novel
insights for efficient diffusion model training.
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2 SPEEDING UP TRAINING FROM PROCESS INCREMENTS AT TIME STEPS

In this section, we first introduce the preliminaries of diffusion models and then focus on a closer
look at time steps and key designs of our proposed SpeeD .

2.1 PRELIMINARIES OF DIFFUSION MODELS

In conventional DDPM (Ho et al., 2020; Sohl-Dickstein et al., 2015), given data x0 ∼ p(x0), the
forward process is a Markov-Gaussian process that gradually adds noise to obtain a perturbed
sequence {x1, x2, ..., xT },

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), q(x1:T |x0) =

T∏
t=1

q(xt|xt−1),

where I is the unit matrix, T is the total number of time steps, q andN represent forward process and
Gaussian distribution parameterized by scheduled hyper-parameters {βt}t∈[T ]. Perturbed samples
are sampled by xt =

√
ᾱt · x0 +

√
1− ᾱt · ϵ, ϵ ∼ N (0, I), where αt = 1− βt and ᾱt =

∏t
s=1 αs.

For diffusion model training, the forward process is divided into pairs of samples and targeted process
increments by time steps t, defined as δt := xt+1 − xt. The diffusion model is expected to predict
the next step from the given time step. The training loss (Ho et al., 2020) for diffusion models is to
predict the normalized noise. The loss highlighted with weighting and sampling modules:

L = Eµt
[wt||ϵ− ϵθ(xt, t)||2] :=

∫
t

wt||ϵ− ϵθ(xt, t)||2dµt, ϵ ∼ N (0, I). (1)

Intuitively, a neural network ϵθ is trained to predict the normalized noise ϵ added at given time-step t.
The probability of a sample being sampled in the forward process is determined by the probability
measure µt, while the weight of the loss function is determined by wt at tth time-step.

2.2 CASE STUDY ON DDPM: A CLOSER LOOK AT TIME STEPS

In DDPM, the diffusion model learns the noise added in the forward process at given tth time step.
The noise is presented as ϵ, the label in Eqn. 1, which is the normalized process increment at given
time step. This label tells what the output of the diffusion model is aligning to. To take a closer look,
we focus on the nature of the process increment δt itself to study the diffusion process xt → xt+1,
instead of ϵ the normalized one. According to Theorem 1 and Remark 1, based on the variation
trends of process increments δt, we can distinguish three distinct areas: acceleration, deceleration,
and convergence. The detailed discussion is shown as follows:
Theorem 1 (Process increment in DDPM). In DDPM’s setting (Ho et al., 2020), the linear schedule
hyper-parameters {βt}t∈[T ] is an equivariant series, the extreme deviation ∆β := maxt βt−mint βt,
T is the total number of time steps, and we have the bounds about the process increment δt ∼
N (ϕt,Ψt), where ϕt := (

√
αt+1 − 1)

√
ᾱtx0,Ψt := [2− ᾱt(1 + αt+1)]I, I is the unit matrix:

Upper-bound: ||ϕt||2 ≤ ϕ̂t||Ex0||2, ϕ̂t := βmax exp{−(β0 +∆βt/2T )t}

Lower-bound: Ψt ⪰ Ψ̂tI, Ψ̂t := 2− 2 exp{−(β0 +∆βt/2T )t}
(2)

Remark 1. The entire diffusion process can be approximated using the upper and lower bounds from
Theorem 1, which we visualize as shown in Figure 3. We can observe that the diffusion process can
be divided into three areas: acceleration, deceleration, and convergence. The two boundary points of
these areas are denoted as ta-d and td-c with their specific definitions and properties outlined below.

Definition of ta-d. The boundary between the acceleration and deceleration areas is determined
by the inflection point in the parameter variation curves, as illustrated in Figure 3. This inflection
point represents the peak where the process increment changes most rapidly. The key time-step ta-d

between acceleration and deceleration areas satisfies ta-d = argmaxt ∂tΨ̂t and βta−d
=

√
∆β/T in

our setting, where ∂tΨ̂t = 2(β0 +∆βt/T ) exp{−(β0 +∆βt/2T )t}.
Definition of td-c. The process is considered to be in the convergence area where the increments’
variance is within a range. The convergence area is identified by a magnitude r, where 1− 1/r is the
ratio to the maximum variance.
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Figure 3: Visualization of Theorem 1: three areas of acceleration, deceleration and convergence.

According to Theorem 1, the convergence area is defined as one magnitude reduction of the scale
factor (i.e., 1 × r), and we have the lower-bound of the magnitude r̂t := exp{(β0 + ∆βt/2T )t}
employed as the threshold selection function in Section 2.5. The time step t is guaranteed to be in
convergence area when r̂t > r, .

Analyses. In the convergence area, the variations of δt stabilize, signifying that the process is
approaching a steady state.

This area corresponds to a very large proportion of the overall time steps. On top of that, the training
loss in this area is empirically low, which leads to the redundant training cost on time steps with
limited benefits for training.

In the acceleration area, the variations of δt increase, indicating a rapid change. Conversely, in the
deceleration area, the variations of δt decrease, reflecting a slowing down of the process. Notably,
near the peak between the acceleration and deceleration areas, the process exhibits the fastest changes.
These time steps only occupy a small proportion. Beyond that, the training losses in this area are
empirically high. The issue is that a hard-to-learn area is even under-sampled, necessitating more
sampling and training efforts.

Takeaways. Based on the analyses and observations, we provide takeaways as follows:

• The samples from convergence area provide limited benefits for training. The sampling of
the time step from this area should be suppressed.

• Pay more attention to the process increment’s rapid-change area which is hard to learn and
the corresponding time steps are fewer than the other areas.

2.3 GENERAL CASES BEYOND DDPM: DIVE INTO THE COMMONALITY.

This section generalize the above findings on DDPM to broader settings. The findings are about
the process increments δt := xt+1 − xt, and the related differentiation of right limit dx in forward
process. The corresponding SDE (Karras et al., 2022) and the discretization are:

dx = xṡ/sdt+ s
√
σ̇σdw, xt = stx0 + stσtϵ, ϵ ∼ N (0, I),

where scale factor s = st and noise standard deviation (std.) σ = σt are the main designs related to
the main factors ϕ̂t and Ψ̂t about process increment δt in Theorem 1 across time steps t.

Generalize Theorem 1: s-σ Scheduled Process Increments. The generalized process increment
is δ ∼ N (∆x0,ΣI), where ∆ := s+ − s and Σ := s2+σ

2
+ + s2σ2 across t. ∆, Σ are continuous on t

without discretization, where s+ and σ+ are the right outer limits, i.e., s(t+ dt). In discretization,
∆t and Σt, marked by t, are related to sample granularity of time step t. Like Theorem 1, we study
the variation of process increments by ∆̇ = ṡ+ − ṡ and Σ̇ = m⊤ṅ where m = [s2+, σ

2
+, s

2, σ2]⊤,
n = [σ2

+, s
2
+, σ

2, s2]⊤. This formulation involves only terms about derivatives of given schedule
functions, which brings computational convenience. Tab. 1 provides all ingredients needed to
calculate curves of ∆̇ and Σ̇ in schedules of VP, VE and EDM.

We also generalize the previous takeaways from the DDPM case study to s-σ scheduled setting with
the following analyses and discussion.

σ is better for the design of sampling and weighting than s. It stands due to its direct reflection about
SNR (signal-to-noise ratio), and additionally, because s is usually adapted to heuristic motivations.
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Table 1: The ingredients of generalized curves ∆̇ and Σ̇ schedules about mainstream SDE designs,
including VP, VE (Song et al., 2021), EDM (Karras et al., 2022).

Schedules s σ2 ṡ σ̇

VP exp{− 1
4∆βt

2 − 1
2β0t} exp{ 12∆βt

2 + β0t} − 1 − σσ̇
(1+σ2)3/2

(1+σ2)(∆βt+β0)
2σ

VE 1 t 0 1
EDM 1 t2 0 2t

In DDPM, corresponding to VP in Tab. 1, the SDE design is simply from data to normal noise. In
VE, realistic diffusion processes inspire that the diffusion rate is limited to σ =

√
t. Further in EDM,

motivation become more complex of training objective and concise of schedule and motivation at the
same time, bringing benefits to training. Its key ideas and designs are 1) the std. of inputs and targeted
outputs of a neural network Fθ in EDM is constrained to 1 with preconditioning; 2) the weights wt

in Eqn. 1 are allocated according to coutwt = 1, where cout is the scale factor of F-prediction neural
network Fθ’s outputs, and is related to σ and the std. of data (sometimes normalized as 1).

Sampling deserves more attention. The SDE design goal of most diffusion models nowadays is to
add much larger noise to the data so that the samples can cover larger space. However, in terms of
the process increment, it always results in a low signal-to-noise ratio of the late data when t is large.
Either the standard deviation is too large or the s used to suppress it is too small. For instance, EDM
does not bias the data distribution from expectations due to the scale ∆̇ = 0, but Σ̇ = 2[(t+dt)2+t2]
is a quadratic increase as t grows. In VP, s→ 0, as t grows, leads that the model needs to recover
expectations in approximation. For these samples, which are not very informative, a single weight
adjustment is not as efficient as directly reducing the sampling rate.

2.4 OVERVIEW OF SPEED

Based on the above observations and analyses, we propose SpeeD , a novel approach for achieving
lossless training acceleration tailored for diffusion models. As illustrated in Fig. 2, SpeeD sup-
presses the trivial time steps from convergence area, and weight the rapid-change intervals between
acceleration and deceleration areas. Correspondingly, two main modules, asymmetric sampling
and change-aware weighting, are proposed. Asymmetric sampling uses a two-step step function to
respectively suppress and increase the sampling probability corresponding to trivial and beneficial
time steps. Change-aware weighting is based on the change rate of process increment ∂tΨ(t).

2.5 ASYMMETRIC SAMPLING

SpeeD adopts the time steps sampling probability P(t) as the step function in Eqn. 3 to construct the
loss in Eqn. 1. We first define τ as the step threshold in P(t). The pre-defined boundary τ means the
area where the time step are suppressed. The sampling probability is k times from time-steps where
t < τ than that from t > τ instead of the uniform sampling U(t) = 1/T .

P(t) =

{
k

T+τ(k−1) , 0 < t ≤ τ
1

T+τ(k−1) , τ < t ≤ T
, where suppression intensity k ≥ 1 and τ ∈ (0, T ]. (3)

Threshold Selection τ . According to Theorem 1, given a magnitude r, τ should satisfy r̂(τ) > r to
make sure that τ > td-c, where the time steps suppressed are all time steps in the convergence area. To
maximum the number of suppressed time steps, we set τ ←

√
2T log r/∆β + T 2β2

0/∆
2
β−Tβ0/∆β .

2.6 CHANGE-AWARE WEIGHTING

According to Theorem 1, a faster change of process increment means fewer samples at the correspond-
ing noise level. This leads to under-sampling in acceleration and deceleration areas. Change-aware
weighting is adopted to mitigate the under-sampling issue. The weights {wt}t∈[T ] are assigned based
on the gradient of the variance over time, where we use the approximation ∂tΨ̂t in Theorem 1.
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(b) Visualization comparison on FFHQ dataset.

Figure 4: Our SpeeD obtains significant improvements than baseline in visualizations. More visual-
izations on other datasets and tasks can be found in the Appendix D.

The original gradient ∂tΨ̂t is practically not suitable for weighting due to its small scale. Therefore,
∂tΨ̂t is re-scaled into range [1-λ, λ] that min{1,maxt ∂tΨ̂t} → λ and max{0,mint ∂tΨ̂t} → 1-λ,
where symmetry ceiling λ ∈ [0.5, 1]. λ regulates the curvature of the weighting function. A higher λ
results in a more obvious distinction in weights between different time-steps.

3 EXPERIMENTS

We first present visualizations in Sec. 3.1 and describe the main experiment setups in Sec. 3.2,
including benchmark datasets, network architectures, training details, and evaluation protocols. In
Sec. 3.3, we present the main results regarding both performance and efficiency. After that, in Sec. 3.6
and 3.4, we ablate the effectiveness of each designed module and evaluate the generalization of SpeeD
in various diffusion tasks and settings. Finally, we investigate the compatibility of our approach with
other recent methods in 3.5.

3.1 VISUALIZATION

The comparison of visualizations between SpeeD and DiT-XL/2 models on the MetFaces and
FFHQ datasets clearly demonstrates the superiority of SpeeD. As shown in Fig. 4, SpeeD achieves
significantly better visual quality at just 20K or 30K training iterations, compared to DiT-XL/2. This
highlights that SpeeD reaches high-quality results much faster than the baseline method, making it a
more efficient and effective approach for training diffusion models.

3.2 IMPLEMENTATION DETAILS

Datasets. We mainly investigate the effectiveness of our approach on the following datasets: Met-
Faces (Karras et al., 2020) and FFHQ (Karras et al., 2019) are used to train unconditional image
generation, CIFAR-10 (Krizhevsky et al., 2009) and ImageNet-1K (Deng et al., 2009) are used to train
conditional image generation, and MS-COCO (Lin et al., 2014) is used to evaluate the generalization
of our method in the text to image task. More details of these datasets can be found in the Appendix A.

Network architectures. U-Net (Ronneberger et al., 2015) and DiT (Peebles & Xie, 2023) are
two famous architectures in the diffusion model area. We implement our approach on these two
architectures and their variants. We follow the same hyper parameters as the baseline by default.
More information about the details of the architectures can be found in Appendix A.3.

Training details. We train all models using AdamW (Kingma & Ba, 2014; Loshchilov & Hutter,
2017) with a constant learning rate 1e-4. We set the maximum step in training to 1000 and use the
linear variance. All images are augmented with horizontal flip transformations if not stated otherwise.
Following common practice in the generative modeling literature, the exponential moving average
(EMA) (Gardner Jr, 1985) of network weights is used with a decay of 0.9999. The results are reported
using the EMA model. Details can be found in Tab. 7.

Evaluation protocols. In inference, we default to generating 10K images. Fréchet Inception Distance
(FID) is used to evaluate both the fidelity and coverage of generated images.

6
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Table 2: The FID↓ comparison to the baseline: DiT-XL/2, re-weighting methods: P2 and Min-SNR,
and re-sampling methods: Log-Normal and CLTS. All methods are trained with DiT-XL/2 for 50K
iterations. We report the FID per 10K iterations. Our approach achieves the best results on MetFaces
and FFHQ datasets. Bold entries are best results. Following previous work (Go et al., 2023), more
results of 100K iterations and longer training phase with different schedules are in Appendix B.1.

dataset MetFaces FFHQ

iterations 10K 20K 30K 40K 50K 10K 20K 30K 40K 50K

DiT-XL/2 (Peebles & Xie, 2023) 398.7 132.7 74.7 36.7 29.3 356.1 335.3 165.2 35.8 12.9
P2 (Choi et al., 2022) 377.1 328.2 111.0 27.3 23.3 368.7 357.9 158.6 35.5 15.0

Min-SNR (Hang et al., 2023) 389.4 313.9 52.1 31.3 28.6 376.3 334.1 151.2 34.0 12.6
Log-Normal (Esser et al., 2024) 311.8 165.1 63.9 51.1 47.3 307.6 165.1 63.9 51.1 47.3

CLTS (Xu et al., 2024) 375.0 57.2 28.6 24.6 23.5 336.1 329.1 173.4 33.7 12.7

SpeeD (ours) 367.3 23.4 22.6 22.1 21.1 322.1 320.0 91.8 19.8 9.9

3.3 COMPARISONS WITH OTHER STRATEGIES.

Performance Comparisons. Before our comparison, we first introduce our baseline, i.e., DiT-
XL/2, a strong image generation backbone as introduced in DiT (Peebles & Xie, 2023). We follow
the hyperparameter settings from DiT and train DiT-XL/2 on MetFaces (Karras et al., 2020) and
FFHQ (Karras et al., 2019), respectively. We compare our approach with two re-weighting methods:
P2 (Choi et al., 2022) and Min-SNR (Hang et al., 2023), and two re-sampling methods: Log-
Normal (Karras et al., 2022) and CLTS (Xu et al., 2024). In the evaluation, we use 10K generated
images to calculate FID (Heusel et al., 2017) for comparison. To make a detailed comparison, all the
approaches are trained for 50K iterations and we report the FID scores per 10K iterations.

As shown in Tab 2, compared to DiT-XL/2, re-weighting, and re-sampling methods, our approach
obtains the best FID results. Specifically, at the 50K iteration, compared to other methods, we reduce
2.3 and 2.6 FID scores on MetFaces and FFHQ at least. Another interesting finding is that the
re-weighting methods reduce the FID very slowly at the beginning of the training, i.e., from the 10K
to 20K iterations. That aligns with our analysis well: re-weighting methods involve a lot of steps
from the convergence area. Based on the experimental results, the time steps that come from the
convergence area indeed contribute limited to the diffusion training.

Efficiency comparisons. In addition to the performance comparison, we also present the accel-
eration results of our SpeeD . This naturally raises a question: how to calculate the acceleration?
Here, we follow the previous diffusion acceleration methods (Gao et al., 2023) and other efficient
training papers (Qin et al., 2023; Xu et al., 2024): visualizing the FID-Iteration curve and reporting
the estimated highest acceleration ratio. We mainly compare with DiT-XL/2, one re-weighting
method Min-SNR (Choi et al., 2022), and one re-sampling method CLTS (Xu et al., 2024) in Fig 5.
At the same training iterations, our approach achieves significantly better FID scores than other
methods. Notably, SpeeD accelerates the Min-SNR, and CLTS by 2.7 and 2.6 times, respectively.
More comparisons with other methods can be found in Appendix B.

For the comparison with the baseline, i.e., DiT-XL/2, considering the 50K iterations might be too
short for converge, we extend the training iterations from 50K to 200K. In the long-term training, we
speed up the DiT-XL/2 by 4 times without performance drops. That shows the strong efficiency of
our proposed method. Most importantly, we can save 3∼5 times the overall training cost with very
minimal overhead. For instance, we save 48 hours (result obtained by training on 8 A6000 Nvidia
GPUs) of training time for DiT-XL/2 with negligible seconds overhead.

3.4 GENERALIZATION EVALUATION

Cross-architecture robustness evaluation. There are mainly two architectures in the diffusion
models: U-Net (Ronneberger et al., 2015) and DiT (Peebles & Xie, 2023). SpeeD is not correlated to
specific model architecture, thereby it is a model-agnostic approach. We implement our method with
DiT-XL/2 and U-Net on MetFaces, FFHQ, and ImageNet-1K, respectively. We default to training
the models for 50K iterations on MetFaces and FFHQ, 400K on ImageNet-1K.To ensure a fair
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Figure 5: We plot the FID-Iteration curves of our approach and other methods on the MetFaces
dataset. SpeeD accelerates other methods obviously. The horizontal and vertical axes represent the
training iterations and log(FID), respectively.

Table 3: Cross-architecture robustness evalua-
tion. ‘Baseline’ denotes training diffusion mod-
els without acceleration strategy. ’DiT’ refers
to the DiT-XL/2 network. All FID scores are
obtained by testing 10K generated images.

Metfaces FFHQ ImageNet
DiT U-Net DiT U-Net DiT U-Net

baseline 36.61 46.77 12.86 17.37 26.74 45.71
SpeeD 21.13 22.88 9.95 16.52 20.63 37.33

improve 15.48 23.89 2.91 0.85 6.11 7.38

Table 4: Comparisons of FID and IS scores on
FFHQ with different schedules on time steps.
We mainly evaluate the generalization of our ap-
proach on linear, quadratic, and cosine schedules.
We use the vanilla DiT-XL/2 as the baseline.

linear quadratic cosine
FID ↓ IS ↑ FID ↓ IS ↑ FID ↓ IS ↑

baseline 12.86 4.21 11.12 4.21 18.31 4.10
SpeeD 9.95 4.23 9.78 4.29 17.79 4.15

improve 2.91 0.02 1.34 0.08 0.52 0.05

comparison, we keep all hyper-parameters the same and report the FID scores at 50K iterations. As
shown in Tab. 3, SpeeD consistently achieve significantly higher performance under all settings,
which indicates the strong generality of our method for different architectures and datasets.

Cross-schedule robustness evaluation. In the diffusion process, there are various time step schedules,
including linear (Ho et al., 2020), quadratic and cosine (Nichol & Dhariwal, 2021) schedules. We
verify SpeeD’s robustness across these schedules. We report FID and inception score (IS) (Salimans
et al., 2016) scores as metrics for comparisons. As shown in Tab. 4, SpeeD achieves significant
improvement on linear, quadratic, and cosine schedules both in FID and IS. That shows the strong
generality of SpeeD in various schedules.

Table 5: Text to image.

Method FID↓ CLIP score↑
baseline 27.41 0.237
SpeeD 25.30 0.244

Cross-task robustness evaluation. We apply SpeeD to the text-
to-image task for evaluating the generality of our method. For
text-to-image generation, we first introduce CLIP (Radford et al.,
2021) to extract the text embedding for MS-COCO (Lin et al., 2014)
dataset. Then, DiT-XL/2 is used to train a text-to-image model as
our baseline. Following prior work(Saharia et al., 2022), FID score
and CLIP score on MS-COCO validation set are evaluation metrics for quantitative analyses. As
illustrated in Tab. 5, we obtain the better FID and CLIP score than our baseline.

3.5 COMPATIBILITY WITH OTHER ACCELERATION METHODS

Until now, we evaluate the effectiveness and generalization of our proposed method: SpeeD is
a task-agnostic and architecture-agnostic diffusion acceleration approach. Is SpeeD compatible
with other acceleration techniques? To investigate this, we apply our approach with two recent
proposed algorithms: masked diffusion transformer (MDT) (Gao et al., 2023) and fast diffusion
model (FDM) (Wu et al., 2023).

MDT + SpeeD. MDT (Gao et al., 2023) proposes a masked diffusion transformer method, which
applies a masking scheme in latent space to enhance the contextual learning ability of diffusion
probabilistic models explicitly. MDT can speed up the diffusion training by 10 times. They evaluate
their MDT with DiT-S/2. We just inject our SpeeD on their MDT and report FID-Iteration curves
for comparison in Fig. 6a. All the results are obtained on ImageNet-1K dataset. Our approach can
further accelerate MDT at least by 4 ×, which indicates the good compatibility of SpeeD.
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(a) FID-Iteration curve comparisons on ImageNet-1K.
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(b) FID-Iteration curve comparisons on CIFAR-10.

Figure 6: SpeeD works well with recent acceleration algorithms and can consistently further accelerate
the diffusion model training. We plot the figures using log(FID) for better visualization.

Table 6: Ablation studies on FFHQ dataset. Default settings and baseline are in gray and cyan .

(a) Components of SpeeD. Sup-
pressing some trivial time steps does
help.

sampling curve CAW FID ↓

uniform 17.37
uniform ✓ 16.75

asymmetric 15.82
asymmetric ✓ 15.07

(b) Suppression intensity k. Huge
suppression decrease diversity to
modeling data.

suppression intensity k FID ↓

1 15.01
5 14.86
10 16.97
25 25.59

(c) Symmetry ceiling λ. Weighting
served as temperature factor should
be in moderation.

symmetry ceiling λ FID ↓

0.5 15.46
0.6 14.86
0.8 16.83
1.0 23.77

FDM + SpeeD. Fast Diffusion Model (Wu et al., 2023) is a diffusion process acceleration method
inspired by the classic momentum approach to solve optimization problem in parameter space. By
integrating momentum into the diffusion process, it achieves similar performance as EDM (Karras
et al., 2022) with less training cost. Based on the official implementation, we compare EDM, FDM,
and FDM + SpeeD on CIFAR-10 of 32 × 32 images. FDM accelerates the EDM by about 1.6 ×.
Meanwhile, SpeeD can further reduce the overall training cost around 1.6 ×.

3.6 ABLATION EXPERIMENTS

We perform extensive ablation studies to illustrate the characteristics of SpeeD . The experiments
in ablation studies are conducted on the FFHQ dataset and U-Net model by default. We ablate
our designed components: asymmetric sampling (abbreviated as asymmetric) and change-aware
weighting (abbreviated as CAW), suppression intensity k in asymmetric sampling defined in Eqn. 3
and symmetry ceiling λ for weighting in Sec. 2.6.

Evaluating the components of SpeeD. Our approach includes two strategies: asymmetric sampling
and change-aware weighting. We note these two strategies using ‘asymmetric’ and ‘CAW’. We ablate
each component in SpeeD. As illustrated in Tab. 6a, combining our proposed strategies achieves the
best results. Using weighting and sampling strategies alone improves the baseline by 0.6 and 1.5
FID scores, respectively, indicating that filtering most samples from the convergence area is more
beneficial for training.

Evaluating of suppression intensity k. To prioritize the training of critical time steps, asymmetric
sampling focus on the time steps out of the convergence area. A higher probability is given for these
time steps which is k times than the time steps from the convergence area. A larger suppression
intensity k means a larger gap in training between the different areas of time steps. We evaluate
different suppression intensity k from 1 to 25 and report the FID score In Tab. 6b. We observe that
k = 5 achieves the best performance. A huge suppression intensity decrease FID scores seriously,
which means that it hurts the diversity a lot to modeling data. This means that the samples in the
convergence area, although very close to pure noise, still contains some useful information. Extreme
complete discard of these samples results in a degradation of the acceleration performance.
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Evaluating of symmetry ceiling λ. The symmetry ceiling λ is a hyper-parameter that regulates the
curvature of the weighting function. λ is set in the interval [0.5, 1]. The midpoint of the re-scaled
weight interval is fixed at 0.5. The symmetry ceiling λ is the right boundary of the interval and the
left boundary is 1-λ. A higher λ results in a larger weight interval and a more obvious distinction in
weights between different time steps. In Tab. 6c, settings λ ≤ 0.8 obtain higher performance on FID
scores than the baseline, which indicates SpeeD is relatively robust on symmetry ceiling λ. Further
increase λ leads to performance degradation. This means weighting should be in moderation.

4 RELATED WORK

We discuss the related works about Diffusion Models and its Training Acceleration. The most related
works are as follows, and more about cross-modality and video generation are in Appendix C.

Diffusion models Diffusion models have emerged as the dominant approach in generative tasks (Sa-
haria et al., 2022; Chen et al., 2023b; Wang et al., 2024a; Igashov et al., 2024), which outperform
other generative methods including GANs (Zhu et al., 2017; Isola et al., 2017; Brock et al., 2018),
VAEs (Kingma & Welling, 2013), flow-based models (Dinh et al., 2014). These methods (Ho et al.,
2020; Song et al., 2020; Karras et al., 2022) are based on non-equilibrium thermodynamics (Jarzynski,
1997; Sohl-Dickstein et al., 2015), where the generative process is modeled as a reverse diffusion
process that gradually constructs the sample from a noise distribution (Sohl-Dickstein et al., 2015).
Previous works focused on enhancing diffusion models’ generation quality and alignment with users
in visual generation. To generate high-resolution images, Latent Diffusion Models (LDMs) (Saharia
et al., 2022; Rombach et al., 2022) perform diffusion process in latent space instead of pixel space,
which employ VAEs to be encoder and decoder for latent representations.

Acceleration in diffusion models To reduce the computational costs, previous works accelerate the
diffusion models in training and inference. For training acceleration, the earliest works (Choi et al.,
2022; Hang et al., 2023) assign different weights to each time step on Mean Square Error (MSE)
loss to improve the learning efficiency. The other methods in training acceleration are proposed,
e.g., network architecture (Ryu & Ye, 2022; Wang et al., 2024b) and diffusion algorithm (Karras
et al., 2022; Wu et al., 2023). Masking modeling (Gao et al., 2023; Zheng et al., 2023) are recently
proposed to train diffusion models. Works (Go et al., 2023; Park et al., 2024b;a; Kim et al., 2024)
provide observations for explanation from the perspective of multi-tasks learning. SpeeD is of
good compatibility with these methods, e.g., (Yu et al., 2024; Zheng et al., 2024a;b). In the field of
sampling acceleration, a number of works tackle the slow inference speed of diffusion models by
using fewer reverse steps while maintaining sample quality, including DDIM (Song et al., 2020),
Analytic-DPM (Bao et al., 2022), and DPM-Solver (Lu et al., 2022).

Conditional generation. To better control the generation process with various conditions, e.g.,
image style, text prompt and stroke, Classifier-Free Guidance (CFG) proposes a guidance strategy
with diffusion models that balance the sample quality and prompt alignment. ControlNet (Zhang et al.,
2023b) reuses the large-scale pre-trained layers of source models to build a deep and strong encoder
to learn specific conditions. Recently benefiting from diffusion models in the image generation field,
video generation (Ma et al., 2024; Lab & etc., 2024) is getting trendy.

5 CONCLUSION

We present SpeeD , a novel approach for accelerating diffusion training by closely examining time
steps. The core insights from this examination are: 1) suppressing the sampling probabilities of
time steps that offer limited benefits to diffusion training (i.e., those with extremely small losses),
and 2) emphasizing the importance of time steps with rapidly changing process increments. SpeeD
demonstrates strong robustness across various architectures and datasets, achieving significant accel-
eration on multiple diffusion-based image generation tasks. Additionally, SpeeD is easily compatible
with other diffusion acceleration methods, highlighting its wide applicability. We provide extensive
theoretical analysis in this paper, aiming to support future research in both academia and industry.
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A MORE DETAIL OF EXPERIMENTS

In this section, we introduce detailed experiment settings, datasets, and architectures.

A.1 STATEMENT

Experimental design note: Referring to previous works (Peebles & Xie, 2023; Go et al., 2023; Park
et al., 2024b; Choi et al., 2022; Hang et al., 2023; Esser et al., 2024; Xu et al., 2024), our experiments
train 50K, 100K, and 400K in MetFaces 256 × 256, FFHQ 256 × 256, and ImageNet-1K, respectively.
we know that DiT used 7M iterations to train ImageNet in the original work Peebles & Xie (2023),
which 1) is not the amount of resource usage that can be achieved in general research. Meanwhile, 2)
the focus of this paper is on the acceleration effect of training, and a direct comparison of the ultimate
convergence stage is very unnecessary for the research topic of this paper.

A.2 INSTRUCTIONS FOR CODE

We have submitted the source code as the supplementary materials in a zipped file named as
‘SpeeD.zip’ for reproduction.

A.3 ARCHITECTURE AND TRAINING RECIPE.

We utilize Unet and DiT as our base architecture in the diffusion model. pre-trained VAE which loads
checkpoints from huggingface is employed to be latent encoder. Following Unet implementation
from LDM and DIT from official implementation, we provide the architecture detail in Tab. 7. We
provide our basic training recipe and evaluation setting with specific details in Tab. 8.

Architecture input size input channels patch size model depth hidden size attention heads

U-Net 32 × 32 3 - 8 128 1
DiT-XL/2 32 × 32 4 2 28 1152 16
DiT-S/2 32 × 32 4 2 12 384 6

Table 7: Architecture detail of Unet and DiT on MetFaces, FFHQ, and ImageNet.

MetFaces 256 × 256 FFHQ 256 × 256 ImageNet-1K 256 × 256

latent size 32 × 32 × 3 32 × 32 × 3 32 × 32 × 3
class-conditional ✓
diffusion steps 1000 1000 1000
noise schedule linear linear linear
batch size 256 256 256
training iterations 50K 100K 400K
optimizer AdamW AadamW AdamW
learning rate 1e-4 1e-4 1e-4
weight decay 0 0 0
sample algorithm DDPM DDPM DDPM
number steps in sample 250 250 250
number sample in evaluation 10, 000 10, 000 10, 000

Table 8: Our basic training recipe based on MetFaces, FFHQ, ImageNet datasets

A.4 DATASETS

CIFAR-10. CIFAR-10 datasets consist of 32× 32 size colored natural images divided into categories.
It uses 50, 000 in images for training and EDM evaluation suite in image generation.

MetFaces is an image dataset of human faces extracted from works of art. It consists of 1336
high-quality PNG images at 1024×1024 resolution. We download it at 256 resolution from kaggle.

FFHQ is a high-quality image dataset of human faces, contains 70,000 images. We download it at
256x256 resolution from kaggle.
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ImageNet-1K is the subset of the ImageNet-21K dataset with 1, 000 categories. It contains 1, 281, 167
training images and 50, 000 validation images.

MSCOCO is a large-scale text-image pair dataset. It contains 118K training text-image pairs and 5K
validation images. We download it from official website.

FaceForensics is a video dataset consisting of more than 500,000 frames containing faces from 1004
videos that can be used to study image or video forgeries.

A.5 DETAIL OF MDT + SPEED EXPERIMENT

MDT utilizes an asymmetric diffusion transformer architecture, which is composed of three main
components: an encoder, a side interpolater, and a decoder. During training, a subset of the latent
embedding patches is randomly masked using Gaussian noise with a masking ratio. Then, the
remaining latent embedding, along with the full latent embedding is input into the diffusion model.

Following the official implementation of MDT, We utilize DiT-S/2 and MDT-S/2 as our base archi-
tecture, whose total block number both is 12 and the number of decoder layers in MDT is 2. We
employ the AdamW (Loshchilov & Hutter, 2017) optimizer with constant learning rate 1e-4 using
256 batch size without weight decay on class-conditional ImageNet with an image resolution of 2562.
We perform training on the class-conditional ImageNet dataset with images of resolution 256x256.
The diffusion models are trained for a total of 1000K iterations, utilizing a mask ratio of 0.3.

A.6 DETAIL OF FDM + SPEED EXPERIMENT

FDM add the momentum to the forward diffusion process with a scale that control the weight of
momentum for faster convergence to the target distribution. Following official implementation, we
train diffusion models of EDM and FDM. We retrain these official network architecture which is
U-Net with positional time embedding with dropout rate 0.13 in training. We adopt Adam optimizer
with learning rate 1e-3 and batch size 512 to train each model by a total of 200 million images of
322 CIFAR-10 dataset. During training, we adopt a learning rate ramp-up duration of 10 Mimgs and
set the EMA half-life as 0.5 Mimgs. For evaluation, EMA models generate 50K images using EDM
sampler based on Heun’s 2nd order method (Süli & Mayers, 2003).

A.7 TEXT-TO-IMAGE EXPERIMENT DETAIL

In text to image task, diffusion models synthesize images with textual prompts. For understanding
textual prompts, text-to-image models need semantic text encoders to encode language text tokens
into text embedding. We incorporate a pre-trained CLIP language encoder, which processes text with
a maximum token length of 77. DiT-XL/2 is employed as our base diffusion architecture. We employ
AdamW optimizer with a constant learning rate 1e-4 without weight decay. We train text-to-image
diffusion models for 400K training iterations on MS-COCO training dataset and evaluate the FID and
CLIP score on MS-COCO validation dataset. To enhance the quality of conditional image synthesis,
we implement classifier-free guidance with 1.5 scale factor.

A.8 THEORETICAL ANALYSIS

A.8.1 NOTATIONS

In this section, we will introduce the main auxiliary notations and the quantities that need to be used.
The range of schedule hyper-parameter group {βt}t∈[T ] turns out to be t = 1 to t = T . For analytical
convenience, we define β0 as β0 := β1 −∆β/T .

Another auxiliary notation is forward ratio ρt, which is defined as ρt = t/T . Forward ratio provide
an total number free notation for general diffusion process descriptions.

Based on the two auxiliary notations β0 and ρt, the expression of βt with respect to the forward
process ratio is βt = β0 +∆βρt.

The relationship between αt and βt is recalled and re-written as follows: αt = 1−βt = 1−β0−∆βρt.
ᾱt the multiplication of αt is re-written as ᾱt = Πt

s=1(1− β0 −∆βρs).
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Perturbed samples’ distribution: xt|x0 ∼ N (
√
ᾱtx0, (1− ᾱt)I)

A.8.2 AUXILIARY LEMMA AND CORE THEOREM

Lemma 1 (Bounded α by β). In DDPM (Ho et al., 2020), using a simple equivariant series {βt}t∈[T ]

to simplify the complex cumulative products {ᾱt}t∈[T ], we obtain the following auxiliary upper bound
of ¯alphat.

ᾱt ≤ exp{−(β0t+
∆βt

2

2T
)}

A.8.3 PROPOSITIONS

Proposition A.1 (Jensen’s inequality). If f is convex, we have:

EXf(X) ≥ f(EXX).

A variant of the general one shown above:

||
∑
i∈[N ]

xi||2 ≤ N
∑
i∈[N ]

||xi||2.

Proposition A.2 (triangle inequality). The triangle inequality is shown as follows, where || · || is a
norm and A,B is the quantity in the corresponding norm space:

||A+B|| ≤ ||A||+ ||B||
.
Proposition A.3 (matrix norm compatibility). The matrix norm compatibility, A ∈ Ra×b, B ∈
Rb×c, v ∈ Rb:

||AB||m ≤ ||A||m||B||m
||Av||m ≤ ||A||m||v||.

Proposition A.4 (Peter Paul inequality).

2⟨x, y⟩ ≤ 1

ϵ
||x||2 + ϵ||y||2

.

A.8.4 PROOF OF LEMMA 1

Proof. To proof the auxiliary Lemma 1, we re-arrange the notation of ᾱt as shown in Section A.8.1,
and we have the following upper bound:

log ᾱt =

t∑
s=1

log(1− β0 −∆βρs)

≤ t log(
1

t

t∑
s=1

(1− β0 −∆βρs))

= t log(1− β0 −∆β
1

t

t∑
s=1

s

T
)

= t log(1− β0 −∆β
t+ 1

2T
)

≤ −(β0t+
∆β(t+ 1)t

2T
),

where the two inequalities are by the concavity of log function and the inequality: log(1 + x) ≤ x.
Taking exponents on both sides simultaneously, we have:

ᾱt ≤ exp{−(β0t+
∆βt

2

2T
)}.
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A.8.5 PROOF OF THEOREM 1

Before the proof of the theorem, we note that the samples xt|x0 ∼ N (µt, σt) have the following
bounds with Lemma 1:

• Reformulate the expression of
√
ᾱ, we have the mean vector µt’s components µ̇t bounded

by ẋ0 the corresponding components of data x0 as follows:

µ̇t =
√
ᾱtẋ0 ≤ exp{−1

2
(β0t+

∆βt
2

2T
)}ẋ0,

• Reformulate the expression of ᾱ, we have a partial order relation on the cone about covari-
ance matrix of xt|x0 as follows:

σt = (1− ᾱt)I ⪰ (1− exp{−(β0t+
∆βt

2

2T
)})I.

Proof. The process increment at given tth time step is δt = xt+1 − xt. δt is a Gaussian process as
follows:

δt ∼ N ((
√
αt+1 − 1)

√
ᾱtx0︸ ︷︷ ︸

ϕt

, [2− ᾱt(1 + αt+1)]I︸ ︷︷ ︸
Ψt

)

The theorem’s key motivation is that the label is noisy, and noisy magnitude is measured by mean
vector’s norm ||ϕt|| and covariance matrix Ψt.

The upper bounds of mean vectors’ norm and the partial order of covariance matrix at different time
step t are shown as follows:

||ϕt||2 ≤ (
√
αt+1 − 1)2ᾱt||Ex0||2

≤ (1− αt+1)ᾱt||Ex0||2

≤ (β0 +∆βρt+1︸ ︷︷ ︸
βt+1

) exp{−(β0 +
∆βt

2T︸ ︷︷ ︸
βt/2

)t}||Ex0||2

≤ βmax exp{−(β0 +
∆βt

2T︸ ︷︷ ︸
βt/2

)t}||Ex0||2

where the inequalities are by Lemma 1, (1− x)2 ≤ (1− x2) = (1− x)(1 + x), when x ∈ [0, 1], and
βt+1 ≤ βmax

Ψt = [2(1− ᾱt) + ᾱt(β0 +∆βρt+1)]I

⪰ 2(1− exp{−(β0 +
∆βt

2T︸ ︷︷ ︸
βt/2

)t})I+ ᾱtβt+1I

⪰ 2(1− exp{−(β0 +
∆βt

2T︸ ︷︷ ︸
βt/2

)t})I

where the inequalities are by Lemma 1 and ᾱtβt+1I ⪰ 0. The residual term is
ᾱtβt+1 = βt+1Π

t
s=1(1− βs) ≥ exp{log βt+1 + t log(1− βt)}

B MORE EXPERIMENT RESULTS

Efficiency comparisons. In Fig. 7, besides the Min-SNR and CLTS, we show the efficiency
comparison with P2 and Log-Normal methods. One can find that our method consistently accelerates
the diffusion training in large margins.
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Figure 7: More efficiency comparison on MetFaces.

Table 9: Super resolution.

Method 50K 100K

DiT-XL/2 77.9 35.4
SpeeD 48.7 10.6

Super resolution with SpeeD. We employ SpeeD to super-
resolution image generation on 512 × 512 MetFaces compared
with vanilla DiT. We train DiT-XL/2 for 100K training iterations and
compare the FID score at 50K, 100K training iterations. The batch
size is 32 for saving the GPU memory. As shown in 9, SpeeD obtain
better performance than vanilla DiT at same training iterations on
5122 MetFaces dataset. It indicates that SpeeD can achieve training acceleration on super-resolution
tasks.

B.1 ADDITIONAL EXPERIMENTS

B.1.1 100K ITERATIONS CUT ON FFHQ

A cut of training process comparison on FFHQ dataset are shown in Tab. 10.

Schedules linear quadratic cosine

DiT-XL/2 (Peebles & Xie, 2023) 7.8 7.6 8.0
ANT-UW (Go et al., 2023) 6.3 7.1 8.3

TskDif-Cur (Park et al., 2024b) 6.7 6.7 7.2
P2 (Choi et al., 2022) 10.1 10.2 12.3

MinSNR (Hang et al., 2023) 7.6 7.6 11.2
Log-Normal (Esser et al., 2024) 15.6 14.9 19.2

CLTS (Xu et al., 2024) 7.9 7.7 9.1
SpeeD(ours) 5.8 5.8 6.4

Table 10: 100K iterations cut on FFHQ.

B.1.2 GUIDANCE SCALE

Ablation experiments about guidance scale in related conditional generation task are shown in Tab. 11.

Guidance 0.75 1 1.5 2 3

t2i DiT-XL/2 20.1 22.5 27.4 31.0 36.2
t2i SpeeD 19.4 20.8 25.3 28.8 34.8
ccg EDM 1.8 1.8 1.9 1.9 2.5

ccg SpeeD on EDM 1.7 1.7 1.8 1.8 2.3

Table 11: Text-to-image (t2i) task on MS-COCO at 400K iteration and EDM on CIFAR-10 with
200M training images for class-conditional generation (ccg).

B.1.3 DIT ARCHITECTURE

Ablation experiments about DiTs of different architectures are shown in Tab. 12.
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S/2 B/2 XL/2

DiTs 18.1 12.9 7.8
SpeeD 15.3 10.8 5.8

Table 12: Different size of DiT with 100K iterations on FFHQ.

Iterations (K) 10 20 30 40 50 60 70 80 90 100

DiT-XL/2 356.1 335.3 165.2 35.8 12.9 11.9 10.5 9.6 8.7 7.8
SpeeD 322.1 320.0 91.8 19.8 9.9 7.6 7.1 6.6 6.2 5.8

Table 13: Details about training to 100K on FFHQ.

B.1.4 DETAILED TRAINING PROCESS

The detailed training process on FFHQ through 100K iterations are shown in Tab. 13.

C MORE RELATED WORKS

We discuss other works related to SpeeD, including Text to Image and Video generation. Another
point to mention is that we learn from InfoBatch (Qin et al., 2023) in writing.

Text to image generation with diffusion models Text-to-image generation has emerged as a hotly
contested and rapidly evolving field in recent years, with an explosion of related industrial products
springing up (Saharia et al., 2022; Rombach et al., 2022; Betker et al., 2023; Chen et al., 2023a; Esser
et al., 2024). Convert textual descriptions into corresponding visual content, models not only learn to
synthesize image content but also ensuring alignment with the accompanying textual descriptions.
To better align images with textual prompt guidance, previous work has primarily focused on
enhancements in several schemes including strengthening the capacity of text encoder (Raffel et al.,
2020; Radford et al., 2021) improving the condition plugin module in diffusion model (Zhang et al.,
2023b), improving data quality (Betker et al., 2023).

Video generation with diffusion models. As diffusion models achieve tremendous success in image
generation, video generation has also experienced significant breakthroughs, marking the field’s
evolution and growth. Inspired by image diffusion, pioneering works such as RVD Yang et al. (2022)
and VDM Ho et al. (2022b) explore video generation using diffusion methods. Utilizing temporal
attention and latent modeling mechanisms, video diffusion has advanced in terms of generation
quality, controllability, and efficiency Ho et al. (2022a); Singer et al. (2022); Zhou et al. (2022); He
et al. (2022); Zhang et al. (2023a); Guo et al. (2023); Wu et al. (2022); Wang et al. (2023). Notably,
Stable Video Diffusion Blattmann et al. (2023) and Sora Brooks et al. (2024) achieve some of the
most appealing results in the field.

Other diffusion acceleration works To achieve better results with fewer NFE steps, Consistency
Models Song et al. (2023) and Consistency Trajectory Models Kim et al. (2023) employ consistency
loss and novel training methods. Rectified Flow Liu et al. (2022), followed by Instaflow Liu et al.
(2023), introduces a new perspective to obtain straight ODE paths with enhanced noise schedule and
improved prediction targets, together with the reflow operation.

D VISUALIZATION

Comparisons to the baseline and other methods. The Fig. 8 compares our method (Ours) with the
baseline and other acceleration methods (P2 and Min-SNR) in terms of FID scores at various training
iterations (K). The baseline method starts with a high FID score of 335.2 and gradually decreases
to 12.8, showing slow convergence and less sharp final images. P2 begins with a slightly higher
FID score of 357.9 and reduces to 15.0, improving faster than the baseline but still exhibiting slower
convergence compared to Min-SNR and our method. Min-SNR starts with 334.1 and achieves a final
score of 12.2, producing clearer and higher quality images consistently compared to the baseline
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Figure 8: Comaprisons to the baseline and other acceleration methods.

and P2. Our method stands out, starting with a significantly lower FID score of 289.3 and rapidly
dropping to 9.9, demonstrating the fastest convergence and the best overall image quality. This rapid
decrease highlights the efficiency of our approach, requiring fewer iterations to produce high-quality
results. Overall, our method outperforms the baseline, P2, and Min-SNR in both speed and quality of
image generation, proving its effectiveness in accelerating the training of diffusion models.

Visualizations of the generated images. The figures above illustrate the quality of images gener-
ated by our method across various datasets, including CIFAR-10, FFHQ, MetFaces, and ImageNet-1K.
In Fig. 9, the generated images from the CIFAR-10 dataset display distinct and recognizable objects,
even for challenging categories. Fig. 10 presents generated images from the FFHQ dataset, showcas-
ing diverse and realistic human faces with varying expressions and features. Fig. 11 exhibits images
from the MetFaces dataset, depicting detailed and lifelike representations of artistic portraits. Finally,
Fig. 12 includes images from the ImageNet-1K dataset, featuring a wide range of objects and scenes
with excellent accuracy and visual fidelity. These results emphasize the superior performance of our
method in generating high-quality images across different datasets, indicating its potential for broader
applications in image synthesis and computer vision tasks.
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Figure 9: Generated images of CIFAR-10.

Figure 10: Generated images of FFHQ.

Figure 11: Generated images of MetFaces.
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Figure 12: Generated images of ImageNet-1K.

23


	Introduction
	Speeding Up Training from Process Increments at Time Steps
	Preliminaries of Diffusion Models
	Case Study on DDPM: A Closer Look at Time Steps
	General Cases Beyond DDPM: Dive into The Commonality.
	Overview of SpeeD 
	Asymmetric Sampling
	Change-Aware Weighting

	Experiments
	Visualization
	Implementation Details
	Comparisons with other strategies.
	Generalization Evaluation
	Compatibility with other acceleration methods
	Ablation Experiments

	Related Work
	Conclusion
	More Detail of Experiments
	Statement
	Instructions for code
	Architecture and Training Recipe.
	Datasets
	Detail of MDT + SpeeD Experiment
	Detail of FDM + SpeeD Experiment
	Text-to-Image Experiment Detail
	Theoretical Analysis
	Notations
	Auxiliary Lemma and Core Theorem
	Propositions
	Proof of Lemma 1
	Proof of Theorem 1


	More Experiment Results
	Additional Experiments
	100K iterations cut on FFHQ
	Guidance Scale
	DiT Architecture
	Detailed Training Process


	More Related Works
	Visualization

