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a b s t r a c t 

Microstructures are critical to the physical properties of materials. Stochastic microstructures are com- 

monly observed in many kinds of materials (e.g., composite polymers, multiphase alloys, ceramics, etc.) 

and traditional descriptor-based image analysis of them can be challenging. In this paper, we introduce 

a powerful and versatile score-based framework for analyzing nonstationarity in stochastic materials mi- 

crostructures. The framework involves training a parametric supervised learning model to predict a pixel 

value using neighboring pixels in images of microstructures (as known as micrographs), and this predic- 

tive model provides an implicit characterization of the stochastic nature of the microstructure. The basis 

for our approach is the Fisher score vector, defined as the gradient of the log-likelihood with respect to 

the parameters of the predictive model, at each micrograph pixel. A fundamental property of the score 

vector is that it is zero-mean if the predictive relationship in the vicinity of that pixel remains unchanged, 

which we equate with the local stochastic nature of the microstructure remaining unchanged. Conversely, 

if the local stochastic nature changes, then the mean of the score vector generally differs from zero. In 

light of this, our framework analyzes how the local mean of the score vector varies across one or more 

image samples to: (1) monitor for nonstationarity by indicating whether new samples are statistically 

different than reference samples and where they may differ and (2) diagnose nonstationarity by identi- 

fying the distinct types of stochastic microstructures that are present over a set of samples and labeling 

accordingly the corresponding regions of the samples. Unlike feature-based methods, our approach is al- 

most completely general and requires no prior knowledge of the nature of the nonstationarities or the 

microstructure itself. Using a number of real and simulated micrographs, including polymer composites 

and multiphase alloys, we demonstrate the power and versatility of the approach. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Motivation and Introduction 

The physical properties of materials depend strongly on their 

icrostructures. The discovery and design of materials with cer- 

ain complex microstructures and superior or desirable properties 

re boosted by advances in fabrication and imaging techniques. In 

eneral, microstructures can be nonstationary in the sense that the 

ature of the microstructure varies across a single image or multi- 

le image samples, due to variation in processing conditions, in- 

ut materials, environmental conditions, etc. For example, state- 

f-the-art additive manufacturing (AM) gives unprecedented con- 

rol of the microscopic phases of composite materials to customize 

he properties resulting in increasingly sophisticated multiphase 

icrostructures [1] . After fabricating materials, advanced imaging 
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pproaches can be used to non-intrusively and efficiently collect 

assive amount of 2D and 3D microscopic image data, exam- 

les of which include transmission electron microscopy (TEM) [2] , 

canning tunneling electron microscopy (STEM) [3] , synchrotron- 

ased tomography [4] , magnetic resonance imaging [5] , and con- 

ocal microscopy [6] . Recent literature shows that such advances 

ave led to fast-growing image databases of complex microstruc- 

ures of materials (also known as micrographs) [7–15] , which in 

urn incentivizes further effort to design general, automated, and 

fficient workflows to process the micrographs. 

An important problem for materials scientists and manufactur- 

ng/processing engineers is to automatically analyze nonstationar- 

ty of microstructure image samples for quality control purposes 

e.g., to detect instability in the material processing that inadver- 

ently results in changes in the microstructure and material prop- 

rties) and, more generally, to more fully understand the nature 

f the material being produced [16–20] . By “nonstationarity”, we 

ean that the stochastic nature of the microstructure varies spa- 

https://doi.org/10.1016/j.actamat.2021.116818
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2021.116818&domain=pdf
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Fig. 1. Examples of micrographs of microstructures. (a) A TEM image of silica particles in Polymethyl methacrylate (PMMA). (b) A SEM image of dual-phase steel ( [38] . 

(c)-(d) Two images of simulated microstructures. 
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ially, either within a single image sample or across multiple im- 

ge samples. For example, Fig. 1 b is an SEM image of steel show-

ng two distinct phases, each of which corresponds to a distinct 

tochastic nature. And Fig. 1 c and 1 d show two simulated mi- 

rostructure samples that, although stationary within each sample, 

re nonstationary across the two samples. In Sections 2 and 3 , we 

ore formally define nonstationarity in the context of a predictive 

upervised learning model fitted to the micrograph. 

For microstructures whose behavior depends predominantly on 

learly defined geometric features (e.g., particle size, volume frac- 

ions, particle distance, or simple inclusion shapes, etc.), one could 

irectly apply a number of standard quality control monitoring 

ethods [21] and/or profile monitoring methods [22–24] . However, 

uch methods lack generality in the sense that they monitor only a 

pecific set of predefined features and cannot detect more general 

hanges in the microstructure, and they are often not applicable to 

ommon microstructures with more stochastic natures [25] , for ex- 

mples metals [26] , polymer composites [27] , ceramics [28,29] , etc. 

uch stochastic microstructures do not have well-defined features 

hat provide a complete characterization of the microstructure, as 

llustrated in Fig. 1 . 

Previous approaches to analyzing these types of stochastic mi- 

rostructures, such as N-point correlation functions, lineal path 

unctions, spectral density through Fourier transformation, and 

oint probability functions [30–35] use certain statistical features. 

hese methods provide a richer representation of the stochastic 

ature than geometric and descriptor-based features, but have seri- 

us limitations [36] . First, the statistical features are only summary 

tatistics for the full joint distribution of the stochastic microstruc- 

ure and do not provide a sufficiently complete representation for 

ome complex microstructures. For example, a 2-point correlation 

unction is an incomplete statistical description and can also be 

omputationally prohibitive for large images [37] , and multi-point 

orrelation functions are even more computationally prohibitive 

hile still not providing a complete characterization. In general, 

here is a fairly severe tradeoff that must be balanced between 

enerality and completeness of the statistical representation on the 

ne hand, versus tractability and computational feasibility achieved 

y working with only a subset of the statistical features on the 

ther hand; and balancing this tradeoff is complicated by the fact 

hat the most appropriate subset of features is always material- 

ependent. Second, the most common statistical features are global 

eatures in the sense that they are computed over an entire image 

ample (or at least a sufficiently large subregion of the sample) and 

herefore cannot capture local behavior that varies on a finer scale. 

In contrast, the score-based framework that we introduce in 

his paper is almost completely general and, in theory, entails 

 complete statistical representation of even the most complex 

tochastic microstructures. It also provides a pixel-by-pixel mea- 
2 
ure of nonstationarity and can monitor fine-scale local changes 

n the microstructure. Finally, because the score vectors are auto- 

atic by-products of the predictive model training, the computa- 

ional expense is reasonable. 

One component of our framework uses the approach 

f [39] and [16,17] to characterize the stochastic nature of 

icrostructures. More specifically, the conditional distribution of 

ach pixel value given its neighboring pixels is approximated by 

raining a supervised learning model to predict the pixel value. 

n other words, the extremely high-dimensional joint distribution 

f the stochastic microstructure is implicitly represented by a 

rained supervised learning model for predicting an individual 

ixel value given its neighbors. For monitoring for global changes 

n the stochastic nature from sample to sample, [16] trained a 

eparate supervised learning model on each image sample and 

hen used a form of generalized likelihood ratio test to detect 

hanges (i.e., nonstationarity) in the stochastic nature from sample 

o sample. However, their approach cannot monitor or diagnose 

onstationarity within a sample, in addition to being computa- 

ionally expensive due to the need to fit a separate supervised 

earning model for each sample. For detecting local anomalies 

r defects, [17] fitted a single supervised learning model to a 

eference image sample. They then computed various statistics on 

he residuals of the predictive model (each pixel has a predicted 

alue and a residual error) to detect local defects like voids, tears, 

tc. However, their approach cannot monitor or diagnose general 

onstationarity beyond the presence of certain types of local 

efects. 

In this study, we develop a powerful and versatile framework 

ased on Fisher score vector concepts to analyze general nonsta- 

ionarity within and across samples. The Fisher score vector is de- 

ned as the gradient of the log-likelihood with respect to the pa- 

ameters of the fitted predictive model, and each pixel is associ- 

ted with its own score vector. In Section 3 , we discuss a funda-

ental property of the score vectors that provides the basis for 

ur approach. Namely, under fairly general conditions, the score 

ector is zero-mean if the predictive relationship in the vicinity of 

he pixel remains unchanged from the training sample on which 

he predictive model was fitted, and it is nonzero-mean other- 

ise. Because we equate changes in the stochastic nature of the 

icrostructure with changes in the predictive model that implic- 

tly represents the stochastic nature, our framework for analyzing 

onstationarity reduces to analyzing the local mean of the score 

ector as it varies spatially across one or more image samples. 

e apply these concepts to two different but related contexts in 

ections 4 and 5 . In Section 4 , we develop a nonstationarity mon- 

toring (NM) method, the purpose of which is to indicate whether 

ew samples are stationary and statistically equivalent to some ref- 

rence samples and, if they are not, at which spatial locations they 



K. Zhang, D.W. Apley and W. Chen Acta Materialia 211 (2021) 116818 

m

(

o

o

t  

u

o

2

M

s

[

t

d  

v

w

n

b

m

f

a

m

[

T

b  

n

e  

n

t

a  

f  

w

s

t

I

r

t

d

p

t

a

v

P

a

3

M

s

r

o

c

f

T

h

a

F  

l

c

U

w

p

l

w

i

t

s

t

s

i

a

r

m

i

g

t

i

c

v

[

−  

φ
−  

h  

S

3

S

P

n

m

o

a

i  

s

a  

v

a

c

σ
p

r

t

m

X

n

d

a

v

l  

d

c

m

b

g

t

v

t

ay differ. In Section 5 , we develop a nonstationarity diagnostic 

ND) method, the purpose of which is to identify the distinct types 

f stochastic microstructure behavior present over a single sample 

r set of samples and label each region of the samples according to 

he microstructure type. Using real (e.g., Figs. 1 a and 1 b) and sim-

lated (e.g., Figs. 1 c and 1 d) material examples, we illustrate use 

f the framework and demonstrate its power and versatility. 

. Background on Characterizing the Stochastic Nature of 

icrostructures via Supervised Learning 

In this section, we review a general approach for modeling the 

tochastic nature of microstructures with micrographs of materials 

39] . For stochastic microstructures, we can view each microstruc- 

ure image sample as a realization of some underlying spatial ran- 

om process. Let X = [ X 1 , X 2 , · · · , X m 

] T denote the concatenated

ector of pixel values of a micrograph (or set of micrographs), 

here m is the number of pixels in the micrograph(s). Let P (X ) de- 

ote the joint distribution of X . If it were available, the joint distri- 

ution P (X ) completely characterizes the stochastic nature of the 

icrostructure sample X , and distinguishing two statistically dif- 

erent samples amounts to distinguishing their joint distributions. 

Directly modeling the distribution is of course computation- 

lly prohibitive. Two assumptions that reduce the problem to a 

ore tractable one are the Markov locality property and stationarity 

30,40] over the sample or at least over a subregion of the sample. 

he Markov locality property assumes that the conditional distri- 

ution of the i th pixel value X i , given some appropriate set of its

eighboring pixels N(X i ) , does not depend on the remaining pix- 

ls in the sample, i.e., that P i (X i | X −i ) ≡ P i (X i | N(X i )) , where X −i de-

otes the vector X but excluding the entry X i . Stationarity means 

hat the conditional distribution is independent of the location of 

 pixel, i.e., P i (X i = y | N(X i ) = x ) ≡ P (X i = y | N(X i ) = x ) is the same

unction of the tuple (y, x ) for all locations i in the region over

hich the image is stationary. Then, we can think of a stationary 

ample X as being a realization generated by the conditional dis- 

ribution P (X| N(X )) via a mechanism analogous to Gibbs sampling. 

n other words, the compact predictive model P (X| N(X )) implicitly 

epresents the stochastic nature of the micrograph X and can be 

reated as the “fingerprint” of a microstructure. Modeling this con- 

itional distribution by fitting some supervised learning model to 

redict X given N(X ) is a tractable problem, and if we can effec- 

ively learn this model through image sample data, we can detect 

nd analyze changes in the stochastic nature of the microstructure 

ia detecting and analyzing changes in the conditional distribution 

 (X| N(X )) . The remainder of the paper develops our approach for 

ccomplishing this. 

. Fundamental Theory for Score-Based Nonstationarity 

onitoring and Diagnostics 

In this section, we first relate microstructure nonstationarity to 

tationarity of the parametric supervised learning model that rep- 

esents P (X| N(X )) in Section 3.1 . Then, the main concepts behind 

ur score-based framework for analyzing nonstationarity are dis- 

ussed in Section 3.2 . We discuss a spatial smoothing technique 

or estimating the local mean of the score vectors in Section 3.3 . 

hroughout this section, we illustrate the statistical concepts be- 

ind our method with a simple and transparent simulation ex- 

mple with micrographs generated similarly to those depicted in 

ig. 1 c and 1 d. The images were generated according to the fol-

owing spatial autoregressive (AR) model to generate stochastic mi- 

rostructures. The model is (for i ∈ { 1 , 2 , · · · , m } ): 

 r i ,c i = c 0 + 

l g ∑ 

r=0 

l g ∑ 

c=0 

φr,c U r i −r,c i −c + εr i ,c i 
3 
εr i ,c i ∼ NID (0 , σ 2 
AR ) 

X i = h (U r i ,c i ) (1) 

here (r i , c i ) are the row and column coordinates of the i th 

ixel; c 0 is an intercept parameter; U r i ,c i ’s are latent variables; 

 g is the length scale of data generation window; { φr,c } l g r,c=0 

ith φ0 , 0 = 0 are the AR coefficients; σ 2 
AR 

is the variance of 

.i.d Gaussian noise random variable εr i ,c i ; and the function h (·) 
akes a latent variable U r i ,c i and outputs a pixel value X i . The 

imulated micrographs are generated with some randomly ini- 

ialized edges and later those edges are cut off so that only 

tationary pixels remain. Note that the two micrographs shown 

n Figs. 1 c and 1 d are generated by two sets of coefficients 

nd a nonlinear h (·) function and they appear similar to some 

eal stochastic microstructures of materials, e.g., the sandstone 

icrographs in [41] and silica-filled rubber matrix micrographs 

n [39] . Denote by φ(CL) and φ(M) the 2D AR coefficients for 

enerating micrographs for the CL-selection data (like Fig. 1 c) and 

he monitoring data (like Fig. 1 d) (which will be formally defined 

n Section 4 ), respectively. The parameters and configurations are: 

 0 = 0 . 1 ; σAR = 1 ; the row-by-row concatenated AR coefficient 

ectors [ φ(CL) 
0 , 0 

, φ(CL) 
0 , 1 

, φ(CL) 
0 , 2 

, φ(CL) 
1 , 0 

, φ(CL) 
1 , 1 

, φ(CL) 
1 , 2 

, φ(CL) 
2 , 0 

, φ(CL) 
2 , 1 

, φ(CL) 
2 , 2 

] = 

0 , 3 . 59 e − 01 , 1 . 07 e − 01 , 9 . 98 e − 03 , −1 . 82 e − 03 , 1 . 72 e − 05 , 3 . 51 e 

01 , 4 . 21 e − 02 , 1 . 76 e − 03] and [ φ(M) 
0 , 0 

, φ(M) 
0 , 1 

, φ(M) 
0 , 2 

, φ(M) 
1 , 0 

, φ(M) 
1 , 1 

,

(M) 
1 , 2 

, φ(M) 
2 , 0 

, φ(M) 
2 , 1 

, φ(M) 
2 , 2 

] = [0 , 3 . 59 e − 01 , 1 . 07 e − 01 , 9 . 98 e − 03 , 

1 . 82 e − 03 , 1 . 72 e − 05 , 3 . 12 e − 1 , 4 . 21 e − 02 , 1 . 76 e − 03] ; and

 (u ) = u . This data set will also be used in Fig. 5 b and 6 b in

ection 6.1.2 . 

.1. Representing Microstructure Nonstationarity via a Parametric 

upervised Learning Model 

As discussed in Section 2 , the conditional distribution 

 (X| N(X )) can be treated as a “fingerprint” of the stochastic 

ature of the microstructure. To model P (X| N(X )) , we fit a para- 

etric supervised learning model to the data { (X i , N(X i )) } m 

i =1 from 

ne or more training micrographs, which we will temporarily treat 

s stationary. The approximated (learned) conditional distribution 

s denoted as P (y | x ; θ) , where θ is the vector of parameters of the

upervised learning model (e.g., the set of weights for all nodes in 

 neural network), y is the value of a target pixel, and x are the

alues of its neighboring pixels. Consider grayscale images, which 

re a common form of microstructure image data. We model the 

onditional distribution as normal with mean g(x ; θ) and variance 
2 , where g(x ; θ) is the parametric supervised learning model for 

redicting the mean of the pixel, and σ 2 is the variance of the 

esidual errors of the predictions. 

The normality assumption here only means that the condi- 

ional distribution of pixel X , given its neighbors N(X ) , is nor- 

ally distributed. Intuitively, this means that the prediction errors 

 − g(N(X ) ; θ) are assumed normally distributed. Note that it does 

ot imply that the marginal distribution of each pixel is normally 

istributed, or that the joint distribution of all pixels is multivari- 

te normal, which are assumptions that would often be strongly 

iolated in practice. Because of the nonlinearity of the supervised 

earning model g(x ; θ) as a function of x , the joint and marginal

istributions of all pixels can be far from normal even though their 

onditional distributions are normal. For our assumption of a nor- 

al conditional distribution, even if it is violated in practice, we 

elieve the resulting nonstationarity monitoring statistics and al- 

orithm still remain meaningful and valid. In this sense, we view 

he conditional normality assumption as only a tractable and con- 

enient means to an end. 

Under certain identifiability assumptions, it is reasonable to 

reat the parameter vector θ of a given parametric model as the 
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fingerprint” of the microstructure. If we define θi , i ∈ { 0 , 1 } , as

he “true” values of parameters for two micrographs or two re- 

ions within one micrograph, nonstationarity (stationarity) across 

he two regions can be represented as θ0 � = θ1 ( θ0 = θ1 ). There are

 number of desirable aspects of this modeling procedure. First, 

he model provides a concise representation of the microstruc- 

ure regardless of the size of the training data and can be eas- 

ly applied to new image samples. Second, it can represent gen- 

ral stochastic microstructures and does not require or involve any 

icrostructure-specific knowledge or features. Third, it provides 

 well-defined mathematical representation of nonstationarity of 

tochastic microstructures that is flexible in the sense that it can 

e used in conjunction with any parametric supervised learning 

odel that suitably models the microstructure. Lastly, the score 

ectors (defined in Section 3.2 ) of each observation can be eas- 

ly computed and are by-products of model training or fine-tuning 

ia the popular stochastic gradient descent (SGD) or related algo- 

ithms, which results in our framework having reasonable compu- 

ational expense. We elaborate on these aspects in subsequent sec- 

ions. One should really view the functional form of g(x ; θ) , along 

ith θ, as the fingerprint. This is especially true if different mi- 

rostructure phases in different regions are best represented with 

ifferent functional forms of g(x ; θ) . However, it would be diffi- 

ult to extend our score-based approaches to allow multiple func- 

ional forms. Hence, we recommend choosing a functional form for 

(x ; θ) that is sufficiently rich and flexible (e.g., a neural network) 

o represent the stochastic nature of all microstructure phases that 

re present. 

Returning to the illustrative example, suppose one fit the linear 

egression supervised learning model 

(x ; θ) = θT x , (2) 

o a set of micrograph training data (details and guidelines for 

tting the model are discussed in Section 3.3 ). Although one 

ould typically fit a more complex model like a neural network 

or g(x ; θ) , it is helpful to illustrate the concepts with a linear

odel, since the subsequent computations become more trans- 

arent. Note also that for these AR simulation data generated via 

1) with h (u ) = u , the conditional distribution P (X | N(X ) ; θ) actu-

lly is Gaussian with conditional mean g(x ; θ) = θT x . In the exam- 

les of Section 6 , we consider more complex microstructures and 

onlinear models for g(x ; θ) , including real data examples and also 

 version of (1) with nonlinear h (u ) . 

In this study, we demonstrate our framework with grayscale 

icrostructure images, for which predicting pixel values is a re- 

ression problem. The framework can be easily extended to clas- 

ification problems which correspond to micrographs for which 

ach pixel has been converted to categorical values that indicate 

o which phase the pixel belongs. In this classification setting, the 

upervised learning model directly produces P (X| N(X )) , which are 

he multinomial probabilities of the pixel being in each phase. 

.2. The Score Vector and Its Zero-Mean Property Under Stationarity 

Our framework for microstructure nonstationarity analysis is 

nspired by recent work on score-based concept drift monitor- 

ng [42] for detecting temporal changes in predictive relationships 

ith data collected over time. For a given model P (X| N(X )) , the 

core function/vector associated with an individual pixel X (hav- 

ng value y and neighborhood values x ) is formally defined as the 

radient of the log-likelihood: 

 

(
θ; y, x 

)
= ∇ θ log P 

(
X = y | N ( X ) = x ; θ

)
(3) 

here P (X = y | N(X ) = x ; θ) is our parametric conditional likeli-

ood for an individual observation (y, x ) and ∇ θ is the gradient 
4 
perator with respect to the parameters θ. According to a funda- 

ental property of score functions (Proposition 3.4.4 from [43] if 

ertain regularity and identifiability conditions are met and if the 

arametric likelihood is the correct model with a true parameter 

ector θ, then the expectation of the score function evaluated at 

he true parameter is zero, i.e., 

 θ

[
s 
(
θ; X, N ( X ) 

)| N ( X ) 
]

:= 

∫ 
s 
(
θ; y, N ( X ) 

)
P 
(
y | N ( X ) ; θ

)
dy = 0 . 

(4) 

n other words, assuming that the reference micrographs are real- 

zations of the same stationary spatial random process whose con- 

itional distribution is correctly represented by P (y | x ; θ) , the ex- 

ectation of the score vector for each pixel is zero. Note that the 

xpectation in Eq. (4) is conditioned on a specific set of neighbor 

ixels N(X ) , and Eq. (4) holds for any such N(X ) . Consequently 

he unconditional expectation is also zero, i.e., 

 θ

[
s 
(
θ; X, N ( X ) 

)]
= 0 (5) 

In real data sets, the expectation in Eq. (5) is replaced by the 

mpirical mean, which should also be 0 : 

ˆ E θ

[ 
s 

(
ˆ θ; X, N ( X ) 

)] 
:= 

1 

m 

m ∑ 

i =1 

s 

(
ˆ θ; y i , x i 

)
= 0 , where 

ˆ θ := argma x θ ˆ E θ
[
log P 

(
X | N ( X ) ; θ

)]
:= argma x θ

1 

m 

m ∑ 

i =1 

log P 
(
X = y i | N ( X ) = x i ; θ

)
, (6) 

nd the operator ˆ E θ denotes a sample average over the training 

ata { (y i , x i ) } m 

i =1 
(here, y i is the observed value of the i th pixel, and

 i is the vector of observed values of all pixels in the neighbor- 

ood of the i th pixel, and m is the number of pixels in the ref-

rence training micrographs that are enough far away from the 

mage boundary to have full neighborhoods) generated under the 

rue parameter vector θ, and 

ˆ θ is the maximum-likelihood estima- 

or (MLE) of θ for the training data. 

Eq. (6) generally holds for training micrographs no matter 

hether the parametric conditional distribution (or model) is cor- 

ect. That is because the estimated parameter vector ˆ θ is the opti- 

um solution when the empirical mean of the log-likelihood is 

aximized, the gradient of which is the empirical mean of the 

core vectors at ˆ θ, which will be the zero vector since ˆ θ is the 

aximizer. When micrographs or micrograph regions are statisti- 

ally different from the training/reference micrographs, the param- 

ters ˆ θ estimated for the reference micrograph generally no longer 

rovide the best fit for the statistically different regions. In such 

egions the score vector, which is also collinear to the gradient 

ector of the log-likelihood for individual observations, is gener- 

lly not zero-mean. This underscores the generality of the score- 

ased framework described below for monitoring nonstationarity 

y monitoring for changes in the local mean of the score vec- 

ors, because when characterizing stochastic microstructures, we 

an choose from among a wide range of parametric models for 

he mean function g(x ; θ) that are flexible and convenient to work 

ith, without requiring that the model exactly represents the true 

istribution. In our study in Section 6 , we found that for com- 

lex materials, linear models often provide nonstationarity anal- 

ses that are nearly as effective as those for nonlinear models like 

eural networks, but at a much cheaper training cost. 

Based on the rationale discussed in Section 2 , define and rep- 

esent nonstationarity as the change in the parameters of the con- 

itional distribution P (X| N(X ) ; θ) . This and Eq. (5) or (6) imply a

eneral method for analyzing nonstationarity through monitoring 

he mean behavior of the score vectors defined in Eq. (3) . More 
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pecifically, as shown in [42] for monitoring for temporal nonsta- 

ionarity, under fairly general conditions, when the true parameter 

ector changes from θ to a different vector θ′ , the expected score 

ector in Eq. (5) or (6) differs from zero, i.e., E θ’ [ s (θ; X, N(X ))] � =
 or ˆ E θ’ [ s ( ̂  θ; X, N(X ))] � = 0 . Since our formulation equates θ′ � = θ

n the vicinity of a pixel with the microstructure in the vicin- 

ty of that pixel having a different distribution than that of the 

raining/reference microstructure, we can monitor and visualize 

he mean of the score vector (details for which are provided in 

ections 4 and 5 ) to signal when statistically different microstruc- 

ures are encountered and specifically where those differences are. 

Returning again to the illustrative example with micrographs 

enerated via (1) and fitted linear regression supervised learning 

odel (2) , the mathematical expressions for the conditional distri- 

ution and the score vectors are: 

P 
(
X = y | N ( X ) = x ; θ

)
= 

1 √ 

2 πσ 2 
exp 

{
−‖ y − θT x ‖ 

2 
2 

2 σ 2 

}
s 
(
θ; y, x 

)
= 

(
y − θT x 

)
x . (7) 

f the fitted model g(x ; θ) = θT x captures the conditional mean 

i.e., y = θT x + ε with zero-mean ε), then after applying the model 

o newly collected micrographs that have the same stochastic be- 

avior (i.e., generated by the same model with the same param- 

ters θ′ = θ), the expectation of the score vectors in Eq. (7) is 

 θ′ [ s (θ; y, x )] = E θ′ [(θ′ T x + ε − θT x ) x ] = E[ xx T ](θ′ − θ) = 0 (a vec-

or of zeros of the same length as θ). In contrast, if the newly col-

ected micrographs have different stochastic behavior (e.g., follow 

he same conditional mean model y = θ′ T x + ε but with different 

arameters θ′ � = θ), then the expectation of the score vector will 

iffer from the zero vector. 

.3. Training the Model and Estimating the Local Mean of the Score 

ector 

To train a supervised learning model g(x ; θ) to represent mi- 

rostructures, we first need to choose the neighborhood N(X ) 

or each pixel X . As shown in Figs. 2 a and 2 b, there are

wo basic choices: a causal or a non-causal neighborhood win- 

ow (excluding the target pixel colored as red). For station- 

ry microstructures with the Markov locality property, either 

 causal or a non-causal neighborhood window can serve to 

mplicitly characterize the joint distribution P (X ) of the pixels 

n the micrograph (the former via the decomposition P (X ) = 

 (X 1 ) P (X 2 | X 1 ) P (X3 | X 1 , X 2 ) · · · P (X m 

| X 1 , · · · , X m −1 ) , and the latter via

 mechanism akin to Gibbs sampling). In general, the choice de- 

ends on the purpose of using the trained model. For compu- 

ational reasons, in certain applications the causal neighborhood 

indow is usually chosen if the goal is to generate new samples of 

icrostructures with the trained model [39] . Also for some specific 

pplications, a causal neighborhood window may result in better 

erformance than a non-causal neighborhood window [16,17] . For 

ur purposes within our score-based monitoring framework, we 

hoose a non-causal neighborhood window, because it obviously 

rovides more accurate prediction of the pixel values, and it re- 

ulted in better monitoring performance with roughly the same 

omputational cost for our usage. Intuitively, a pixel X should de- 

end on its neighbors in all directions, which suggests a non-causal 

eighborhood window will lead to more accurate prediction of X . 

After choosing a proper neighborhood for each pixel, training 

 model is simply fitting the corresponding model to the data 

et { (X i , N(X i )) } m 

i =1 . Regarding the size of the neighborhood win- 

ow, this can be chosen empirically via cross-validation. Using 

he trained parametric likelihood (based on the trained supervised 

earning model g(x ; θ) ), the score vectors s ( ̂  θ; X, N(X )) can be cal-

ulated for any set of image pixels. In SGD algorithms, the score 
5 
ectors are by-products produced during training or predicting 

e.g., for training data, s ( ̂  θ; y i , x i ) = ∇ θ log (P (X i = y i | N(X i ) = x i ; ˆ θ))

nd are automatically computed as the gradient for (y i , x i ) ), which

s a main reason why our score-based approach is computationally 

easonable. 

After obtaining the score vectors, directly monitoring the indi- 

idual score vectors would be an ineffective way to monitor mean 

hanges, because the individual vectors are noisy. To handle the 

oise issue and estimate the local mean of the score vectors as it 

aries spatially across the image sample, we employ ideas similar 

o multivariate exponentially weighted moving average (EWMA) 

ontrol chart concepts. A multivariate EWMA is of the most effec- 

ive methods for monitoring for changes in the mean of general 

andom vectors [21] over temporal or spatial domains. Monitoring 

or spatial nonstationarity (within or across samples) reduces to 

onitoring for changes in the mean of score vectors over regions 

f one sample or across multiple samples. 

Similar to the temporal EWMA, we calculate the spatial 

eighted moving average (WMA) of the score vectors s ( ̂  θ; y, x ) to

mooth out noise and estimate the local mean, where ˆ θ is the MLE 

f the parameters computed over the entire training data. Specif- 

cally, we calculate the weighted average of the score vectors of 

ixels in a WMA window that is shown as the square with blue 

dges in Fig. 2 c, with the weight function being a truncated 2D 

ormal distribution centered at the target pixel over the WMA 

indow (including the target pixel colored as red) as illustrated 

n Fig. 2 d. The standard deviation σw 

(defined below) of this trun- 

ated normal distribution governs how fast this dependency de- 

ays away from a target pixel in different directions. Notice that to 

istinguish the two windows, one for training a model for condi- 

ional distribution (neighborhood window), N(X ) , and the other for 

MA smoothing, we use different colors, shadings, and notations 

n Fig. 2 . 

To mathematically define the WMA, let z r i ,c i denote the score 

ector at a pixel X i smoothed by the WMA window with row 

nd column coordinates of X i denoted by (r i , c i ) ; and use (r, c) as

he row and column coordinates of neighboring pixels over which 

e calculate z r i ,c i . For notational simplicity, also define s r i ,c i := 

 ( ̂  θ; X i , N(X i )) , and denote the truncated bivariate Gaussian den-

ity function by p(r, c; (r i , c i , σw 

)) , which is viewed as a function of

r, c) with the distribution centered at (r i , c i ) and having bivariate

ovariance matrix σ 2 
w 

I with I the 2 × 2 identity matrix. Our score 

ector WMA is defined as 

 r i ,c i = 

r i + l w ∑ 

r= r i −l w 

c i + l w ∑ 

c= c i −l w 

p(r, c; (r i , c i , σw 

)) s r,c (8) 

here the window size is 2 l w 

+ 1 as shown in Fig. 2 c. Note that

he weights p(r, c; (r i , c i , σw 

)) sum to one over the WMA window,

y definition of the truncated distribution. 

In all of our examples, we use l w 

= σw 

. Regarding choice of 

he hyper-parameter σw 

, we recommend choosing it to be larger 

han the size of normal microstructure features that are present 

ithin stationary phases of the microstructure, but not so large 

hat neighboring regions that have different microstructure char- 

cteristics (and that should be viewed as two distinct microstruc- 

ure phases) will be smeared together. In general, using a larger σw 

ill smooth out more noise and false alarms that result from the 

icrostructure transitioning between features that are part of nor- 

al stationary single-phase behavior. This allows better detection 

f small-magnitude microstructure differences that are sustained 

ver larger spatial regions; but it will also tend to smooth out 

ocalized variations that are best viewed as nonstationarities and 

hat one would like to detect. In contrast, using a smaller σw 

will 

e more sensitive to detecting variation in localized characteristics 

hat are truly indicative of nonstationarities; but it will also result 
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Fig. 2. Illustration of various windows used in computing and monitoring the score vectors. (a) Causal neighborhood window (excluding the red target pixel) for modeling 

the mean of P(X| N(X )) , i.e., g(x ; θ) and (b) Non-causal neighborhood window (excluding the red target pixel) with the side length as 2 l s + 1 pixels for modeling the mean 

of P(X| N(X )) , i.e., g(x ; θ) (patches with brown dashed edges) for modeling the conditional distribution of X i (the red pixel) given the neighboring pixels in those windows. 

(c) WMA window (including the red target pixel) with the side length as 2 l w + 1 pixels for spatially smoothing score vectors. WMA window for spatially smoothing the 

score vectors to estimate their local mean. To differentiate it from the neighborhood window, we use blue solid lines as the edges here. (d) Truncated Gaussian distribution 

over the WMA window. A 2D Gaussian distribution centered (at the red pixel) and truncated over the WMA window. The height is proportional to the density value of the 

truncated distribution. 
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n a noisier z r i ,c i and will therefore less accurately detect small- 

agnitude but sustained differences. Proper choice of σw 

will in- 

vitably involve some user subjectivity. Fortunately, it is computa- 

ionally inexpensive to try different σw 

and visually compare the 

esults of characterizing nonstationarity, which can be done after 

tting and tuning the supervised learning model and computing 

he score vectors over the entire micrograph. We recommend that 

sers do this and plot the monitoring statistics, which will be dis- 

ussed in details in Section 4 , on top of the micrograph image 

e.g., as in Figs. 7 and 8 ) to visually assess the most appropriate

w 

. Complicating any purely quantitative choice of σw 

is the fact 

hat the notion of microstructure stationarity is inextricably linked 

o the scale of interest. At a sufficiently fine scale (e.g., atomic or 

ubatomic levels) and hypothetically small micrograph sizes, vir- 

ually all microstructures can be viewed as nonstationary; and at 

 sufficiently coarse scale (e.g., product level) and hypothetically 

arge micrograph sizes, most can be viewed as stationary. For addi- 

ional discussion on the relationship between nonstationarity, fea- 

ure size, and window size/scale, see, e.g., [30,39,44–47] . 

For the same illustrative example with linear supervised learn- 

ng model (2) , training the model means simply fitting a linear 

egression model to estimate the regression coefficients θ. In this 

ase, the score vectors for each pixel are calculated via Eq. (7) , and

hen the mean of the score vector in Eq. (6) at any spatial loca-

ion can be approximated by averaging the score vectors through- 

ut the WMA window in Fig. 2 d. 

. Nonstationarity Monitoring (NM) 

The goal of this monitoring is to determine whether a given 

et of micrograph samples are statistically equivalent to a given 

eference sample or samples, where, for example, the reference 
6 
ample(s) represent normal conditions; and to potentially provide 

ome interpretation if nonstationarity is detected. One practical 

roblem falling into this category in materials fabrication or man- 

facturing is when we have available image samples from batches 

f materials that were produced under normal or well-calibrated 

onditions, and the goal is to determine whether subsequently pro- 

uced batches of materials are statistically equivalent to the refer- 

nce batch(es), based on image samples collected periodically from 

he subsequent batches. 

In order to monitor for local changes in the mean of the score 

ectors via a control chart, we use a Hotelling T 2 [4 8,4 9] statistic

or z r i ,c i : 

 

2 
i = (z r i ,c i − s̄ ) T ̂ �−1 (z r i ,c i − s̄ ) (9) 

here s̄ and 

̂ � are the empirical mean vector and covariance ma- 

rix of the training score vectors { s r i ,c i } m 

i =1 
over the entire training 

ata, respectively. Notice that we first apply the WMA smoothing 

indow and then calculate the Hotelling T 2 statistic for z r i ,c i as 

pposed to the Hotelling T 2 statistic for the individual score vec- 

or s r i ,c i . This reduces the adverse effects of noise and gives a more 

ccurate estimate of the local score vector mean, so that, with a 

roper choice of moving window size, the control limits (defined 

elow) are tighter and the control chart is more sensitive to the 

ean change in score vectors. 

In the supervised learning model g(x ; θ) , if we view the resid- 

al standard deviation parameter σ as an additional parameter 

long with θ, then changes in θ and/or σ indicate nonstationar- 

ty of the microstructure. Consequently, we compute and monitor 

he score vector with respect to both θ and σ . Since changes in θ
ersus changes in σ represent different types of changes in the mi- 

rostructure, we have found it more effective to compute a score 

ector for θ and a score vector for σ and treat them jointly but 
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istinctly, as described below. This is relative to computing the T 2 

tatistic for the score vector for (θ, σ ) together. 

As mentioned above, we approximate the conditional distribu- 

ion of the i th pixel value X i given its neighboring pixels N(X i ) as a

ormal distribution: 

P 
(
X i = y | N ( X i ) = x ; θ, σ

)
= 

1 √ 

2 πσ
exp 

{ 

−
[
y − g 

(
x ; θ

)]2 

2 σ 2 

} 

l 
(
θ, σ ; y, x 

)
:= log 

(
P 
(
y | x ; θ, σ 2 

))
= − log ( σ ) −

[
y − g 

(
x ; θ

)]2 

2 σ 2 
+ Const . (10) 

The score vectors for θ and σ , evaluated at the MLEs ˆ θ and ˆ σ
omputed from the entire training data { y i , x } m 

i =1 , are defined as 

 θ,i := 

∂ l(θ, σ ; y i , x i ) 

∂θ

∣∣∣∣
(θ,σ )=( ̂ θ, ̂ σ ) 

= 

1 

ˆ σ 2 
[ y i − g(x i ; ˆ θ)] ∇ θg(x i ; ˆ θ) 

(11) 

 σ,i := 

∂ l(θ, σ ; y i , x i ) 

∂σ

∣∣∣∣
(θ,σ )=( ̂ θ, ̂ σ ) 

= − 1 

ˆ σ
+ 

[ y i − g(x i ; ˆ θ)] 2 

ˆ σ 3 
. (12) 

ince a fixed ˆ σ in Eqs. (11) and (12) drops out of the T 2 statistic

n Eq. (9) , it can be ignored, in which case monitoring for changes

n the means of s θ and s σ reduces to monitoring for changes in 

he mean of [ y − g(x ; θ)] ∇ θg(x ; θ) and changes in the mean of [ y −
(x ; θ)] 2 . 

The goal is to detect local changes in the mean of s θ,i and/or the

ean of s σ,i . Analogous to Eqs. (8) and (9) , we define the WMAs 

 θ,r i ,c i 
= 

r i + l w ∑ 

r= r i −l w 

c i + l w ∑ 

c= c i −l w 

p(r, c; (r i , c i , σw 

)) s θ,r,c (13) 

 σ,r i ,c i = 

r i + l w ∑ 

r= r i −l w 

c i + l w ∑ 

c= c i −l w 

p(r, c; (r i , c i , σw 

)) s σ,r,c (14) 

nd the T 2 statistics 

 

2 
θ,i 

= (z θ,r i ,c i 
− s̄ θ) 

T ̂ �−1 
θ

(z θ,r i ,c i 
− s̄ θ ) , (15) 

here s̄ θ and 

̂ �θ are the empirical mean vector and covariance 

atrix of the training score vectors { s θ,r i ,c i 
} m 

i =1 
. Because s θ,i is a

ector and T 2 
θ,i 

is intended to detect a mean change in s θ,i away 

rom s̄ θ in any direction in the θ space, the control chart for T 2 
θ,i 

has 

nly an upper control limit ( UCL θ), the purpose of which is to sig-

al a change if T 2 
θ,i 

> UCL θ . Since s σ,i is a scalar, its WMA chart de-

ects a change in its mean if either z σ,r i ,c i < LCL σ or z σ,r i ,c i > UCL σ ,

here LCL σ and UCL σ denote its lower and upper control limits, 

espectively. 

We use a multi-chart to monitor for mean changes in either 

 θ,i or s σ,i . A change in either in the vicinity of pixel X i indicates

hat the stochastic nature of the microstructure has changed in the 

icinity of this pixel, relative to the reference microstructure sam- 

les. The multi-chart is defined as signaling either if T 2 
θ,i 

> UCL θ or 

f z σ,r i ,c i < LCL σ or z σ,r i ,c i > UCL σ . To display the control chart re-

ults in a single 3D plot (e.g., as in Fig. 5 , later), we define the

lotted scaled statistics from the two component charts as 

 θ,i = 

2 T 2 
θ,i 

UCL θ
− 1 (16) 

 σ,i = 

z σ,r i ,c i − UC L σ + LC L σ
2 

UC L σ −LC L σ
, (17) 
2 

7 
hich would individually signal if either C θ,i > 1 or | C θ,i | > 1 . The

lotted statistic in the multi-chart statistic is then defined as 

 M,i = sign (C θ,i + C σ,i ) × max (| C θ,i | , | C σ,i | ) , (18) 

nd the multi-chart signals nonstationarity in the vicinity of pixel 

 i if C M,i falls outside the range [ −1 , 1] . 

The three control limits ( UC L θ, LC L σ , and UC L σ ) are determined

mpirically, as follows. We divide the reference data { (y i , x i ) } M 

i =1 
nto two sets { (y i , x i ) } m 

i =1 
(which we refer to as the training data)

nd { (y i , x i ) } M 

i = m +1 
(which we refer to as the CL-selection data).

e fit the predictive model g(x ; θ) to the training data, and then 

or each pixel X i in the CL-selection data we compute the chart 

tatistics { T 2 
θ,i 

, z σ,r i ,c i } M 

i = m +1 
. We then compute the empirical cdfs of 

 T 2 
θ,i 

} M 

i = m +1 
and { z σ,r i ,c i } M 

i = m +1 
. The UC L θ , LC L σ , and UCL σ are deter-

ined such that (1) the two component charts for C θ,i and C σ,i 

ach have the same empirical false alarm rate over the CL-selection 

ata, and (2) the multi-chart has an empirical false alarm rate 

ver the CL-selection data that is equal to some user-specified de- 

ired false alarm rate. The three control limit values can be effi- 

iently found via searching for the required empirical false alarm 

ate (denoted by αθ,σ ) over the CL-selection data for the two com- 

onent charts (i.e., for s θ and s σ individually) so that the empirical 

alse alarm rate (denoted by αM 

) of the multi-chart over the CL- 

election data is the desired value. This can be accomplished via 

inary search algorithm by noting that αM 

is monotonically non- 

ecreasing with αθ,σ . In the sequel, we denote these two com- 

onent charts and the multi-chart by as SWMA- θ, SWMA- σ , and 

WMA-M, where the “S” stands for “score-based”. 

Selecting a benchmark method to which to compare our score- 

ased approach is difficult, because there are very few existing 

ethods that have been developed to monitor for nonstationar- 

ty on a pixel-by-pixel basis. To the best of our knowledge, the 

losest existing method is the residual-based method in [17] . Al- 

hough it was more intended to detect local defects in the images, 

t can easily be adapted to monitor for nonstationarity on a pixel- 

y-pixel basis. To adapt the method for this purpose, we monitor 

he residuals (i.e., prediction errors) r i = X i − g( N (X i ) ; ˆ θ) for each

ixel. The control charts for residuals (which we refer to as the 

WMA) have both a LCL and an UCL , which we choose based on 

he empirical distribution of the residuals over the same set of CL- 

election data, similarly to how we determine the control limits for 

he score-based charts. 

The following summarizes the steps of the NM approach. 

• Step 1 (Training) : The data { (y i , x i ) } M 

i =1 
obtained from ref-

erence micrograph/micrographs is split into the two subsets 

{ (y i , x i ) } m 

i =1 
and { (y i , x i ) } M 

i = m +1 
. The first subset { (y i , x i ) } m 

i =1 
is

used to train the parametric supervised learning model g(x ; θ) , 

mean of the conditional likelihood P (y | x ; ˆ θ) of the individual 

pixels (y, x ) , which implicitly represents the underlying joint 

distribution of the micrograph pixels. During training, we com- 

pute the (regularized) MLE ˆ θ by minimizing the cost function, 

− ∑ m 

i =1 l(θ, σ ; y i , x i ) + J (θ) , where J (θ) is a regularization term

(in this study we use J(θ) = λ|| θ|| 2 
L 2 

) with all hyper-parameters 

(including the neighborhood window size l s ) chosen by cross- 

validation. As discussed in [42] , including regularization in the 

training loss function does not affect the salient point that the 

mean of the score functions changes if and only if the predic- 

tive relationship is nonstationary. 

• Step 2 (CL-selection) : The supervised learning model from Step 

1 is applied to the second subset { (y i , x i ) } M 

i = m +1 
to obtain the

score vectors { s θ,i , s σ,i } M 

i = m +1 
(and the residuals { r i } M 

i = m +1 
for the 

residual-based benchmark) and to select the control limits as 

described above to provide an empirical false alarm rate that 
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is equal to some user-specified desired false alarm rate α (e.g., 

0.01 or 0.001). 

• Step 3 (Monitoring) : New micrograph samples are collected 

and, converted to a monitoring data set { (y i , x i ) } i>M 

, for each 

pixel of which the same score vectors, residuals, and monitor- 

ing statistics { C θ,i , C σ,i , C M,i , r i } are computed and compared to

their respective control limits. For a particular chart, if a sig- 

nificant portion of the charted statistics fall beyond its control 

limit, we conclude that the new sample is nonstationary in the 

sense that its microstructure differs stochastically from the ref- 

erence sample. 

Before fitting the predictive model g(x ; θ) to the training data 

nd applying it to the CL-selection or monitoring image data to 

ompute the score vectors or residuals, we always scale each mi- 

rograph to have zero mean and unit variance, because a change 

n the mean or variance of the pixel grayscale values across dif- 

erent micrographs could be due to the different light exposure 

r contrast levels, which should not be treated as nonstationar- 

ty. If one suspects that such mean or variance changes could be 

he net result of actual nonstationarity of the microstructure, then 

ne could supplement our score-based multi-chart with additional 

omponent charts that monitor a local WMA estimate of the pixel 

ean and variance. For the monitoring micrograph(s) (i.e., the new 

et of micrographs to be monitored and compared to the refer- 

nce micrographs), we define the power (i.e., probability of cor- 

ectly detecting nonstationarity) for a control chart as the percent- 

ge of pixels in the monitoring samples for which the control chart 

ignaled, i.e., for which the control chart statistic fell outside its 

ontrol limit(s). The larger the power, the more clearly the con- 

rol chart correctly indicated nonstationarity, when the monitoring 

icrographs are truly nonstationary. In Section 6.1 , we apply and 

emonstrate this NM approach on a real and simulated materials 

ata. 

. Nonstationarity Diagnostics (ND) 

The NM approach in Section 4 is intended to (1) indicate 

hether the samples are nonstationary in the sense that a mon- 

toring sample or part of a monitoring sample is different than the 

L-selection reference sample(s); and (2) if nonstationary, highlight 

egions that are most likely to be different. If there are multiple 

hases in a nonstationary sample (or samples), a related impor- 

ant objective is to identify and demark the regions of the sam- 

le that correspond to the different phases (i.e., different distinct 

ypes of microstructure stochastic behavior). We refer to this ob- 

ective as nonstationarity diagnostics (ND) to distinguish it from 

he NM objective. In this section, we develop an approach for this 

hat can be used as a follow-up to NM, e.g., if the NM indicates a

ample is nonstationary, to determine how many material phases 

here are and, more generally, what is the nature of the nonsta- 

ionarity. Alternatively, our ND approach can be used as a stand- 

lone approach in which we are given a single sample or multi- 

le samples and want to know the nature of the nonstationarity. 

or example, suppose a materials scientist has just created a new 

ample of material in the laboratory using some new processing 

echnique or settings, and one goal is to understand the nature of 

he new material and whether there are multiple material phases 

ixed together. Or suppose that engineers in a commercial-scale 

rocess have just implemented a new processing method and want 

o know the same. 

The intuition behind our score-based method for ND is as fol- 

ows. If a micrograph is a realization of a stationary random pro- 

ess, then the same value of θ will represent the microstructure 

ehavior everywhere in the micrograph. In this case, in addition to 

q. (6) holding, the sample score vectors { s ( ̂  θ; y i , x i ) } m 

i =1 
will have
8 
ocal empirical mean close to zero over every local region, provid- 

ng the region is large enough that the noise in the score vectors 

verages out. In contrast, if the micrograph has multiple phases in 

t as in Figs. 1 a and 1 b, there will be multiple θ’s, say { θ(l) } k l=1 , rep-

esenting the stochastic nature of the k different phases. If we hy- 

othetically had a priori pixel-wise phase labels to serve as ground 

ruth for all k phases in the micrograph/micrographs, we would 

rain k different supervised learning models to represent the k 

ifferent conditional distributions { P (y | x ; θ(l) ) } k 
l=1 

for the k differ-

nt phases. For each phase, as in Eq. (5) or (6) , we would have

 θ(l) [ s (θ(l) ; X, N(X ))] = 0 or ˆ E θ(l) [ s ( ̂  θ(l) ; X, N(X ))] = 0 , where ˆ θ(l) is

he MLE of θ(l) over its corresponding region. In reality, we do not 

ave such labels a priori , and even though we fit a single model to

he entire training data with multiple phases present, there is no 

ingle parameter vector θ that can represent the multiphase mi- 

rostructure. However, we can still leverage the preceding concepts 

hat distinguish from the case of a stationary microstructure to di- 

gnose the nonstationarity in the micrographs. More specifically, 

e can train a single model for the entire set of training data, in 

hich case the empirical (sample) mean of the score vectors over 

he entire training data is zero, i.e., 
∑ m 

i =1 s ( ̂
 θ; y i , x i ) ∼= 

0 , where ˆ θ is

he MLE over the entire training data. But locally, within regions 

hat fall inside any of the k single phases, the score vectors will 

ave nonzero mean. This is because each individual phase has dif- 

erent stochastic behavior than the mixture of all k phases, and the 

atter is what ˆ θ represents. 

As an alternative interpretation, score vectors are the updat- 

ng vectors in a SGD algorithm to fit the model to maximize the 

og-likelihood function, i.e., ˆ θt+1 = 

ˆ θt + ηs ( ̂  θt ; y i , x i ) , at iteration t

f the algorithm. The score vectors from within any particular sta- 

ionary phase from among the k phases, say the l th phase, will tend 

o steer the current parameter values ˆ θ towards θ(l) . If the k phases 

re sufficiently different, then { θ(l) } k 
l=1 

will be sufficiently differ- 

nt in the high-dimensional space, and so the mean vectors of the 

 score vectors, s ( ̂  θ; y (l) , x (l) ) , l ∈ { 1 , 2 , · · · , k } should generally be

ifferent and non-zero, where (y (l) , x (l) ) represents the values of 

 pixel and its neighborhood from within the l th phase. Based on 

his intuition, our score-based ND approach uses k-means cluster- 

ng on the score vectors { s ( ̂  θ; y i , x i ) } m 

i =1 
(or some transformed ver-

ion thereof) to diagnose the spatial nonstationarity of microstruc- 

ures. 

To reduce the effects of noise in the score vectors and improve 

he clustering performance by taking into account spatial proxim- 

ty information, we conduct clustering on { z r i ,c i } m 

i =1 
in Eq. (8) in- 

tead of original score vectors, as follows. First, as a visualization 

ool to help approximately estimate the number k of phases in 

he sample, we developed a 3D plot in which the two horizontal 

xes represent the 2D spatial coordinates of the micrograph, and 

he vertical axis represents the magnitude of the vectors { z r i ,c i } m 

i =1 
. 

oreover, the red-green-blue color of this plotted surface repre- 

ents the first 3 principal components analysis (PCA) scores. See 

ig. 8 a, later, as an example of this plot. In this plot, the pixels

alling into different phases can be distinguished based on hav- 

ng different vertical axes height and/or different color, because 

he smoothed score vectors from different phases have different 

agnitudes and directions. From this plot, the estimated number 
ˆ 
 of phases is taken, roughly, to be the number of patches with 

ifferent heights and different colors. This ˆ k is then used in set- 

ing the number of centroids in the k-means clustering algorithm. 

 3D scatter plot of the top-3 PCA scores of { z r i ,c i } m 

i =1 
along with

heir clustering labels can be constructed, and those labels can be 

lso overlaid on the initial micrograph to show regions of different 

hases. In Section 6.2 , we demonstrate this ND approach on real 

nd simulated materials data. 
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Fig. 3. Example of (a) reference and (b) subsequent nonstationary micrographs of 

silica particles dispersed in PMMA. 
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. Experimental Results 

In this section, we present the results of our score-based 

ramework using real and simulated micrograph data for NM 

 Section 6.1 ) and ND ( Section 6.2 ). 

.1. Results for the NM Approach 

We consider two data sets: a PMMA data set and a simulated 

D AR data set shown in Fig. 3 and 1 c- 1 d, respectively. The former

s a real data set that consists of TEM images of silica particles in

MMA with octyl functional modification. How densely those par- 

icles are dispersed in the matrix can be controlled by various pro- 

essing conditions, and the dispersion density can affect the phys- 

cal properties (e.g., the breakdown stress or dielectric constant of 

he material). We select two sets of samples with different disper- 

ion densities and treat one as the reference data and the other 

s the monitoring data to be monitored for nonstationarity. The 

imulation data are generated via a 2D spatial autoregressive (AR) 

odel with various choice of AR coefficients. The 2D AR model al- 

ows us to generate many Monte Carlo replicates of data sets to 

nvestigate and compare the false alarm rate and the power of the 

arious control charts. We show that our score-based charts are far 

ore effective than the residual-based chart, and its performance 

s further enhanced by the multi-chart. 

.1.1. PMMA Data Analysis 

We trained two different supervised learning models g(x ; θ) , 

 linear regression model and a fully-connected neural network 

odel with one hidden-layer having 10 nodes, to serve as the 

ean function of the conditional distribution. The L 2 regulariza- 

ion parameter, λ = 0 . 01 , was chosen via cross-validation. The re- 

ults for the PMMA micrographs in Figs. 3 are shown in Fig. 4 

or the neural network model. Although the linear model results 

n much less accurate prediction of each pixel value, it provided 

imilar monitoring results as the neural network and so is omitted 

ere. 

Figs. 4 a and 4 b show 3D control charts and 2D heat-maps, re-

pectively, of the results. In the 3D control charts shown in Fig. 4 a,

e plot the UCL for the SWMA- θ chart and the LCL and UCL for 

he RWMA chart as horizontal planes, calculated from CL-selection 

icrographs. For comparison, the first monitoring micrograph is a 

eference micrograph, and the other two monitoring micrographs 

re from nonstationary micrographs which are statistically differ- 

nt from reference ones (so we would like the chart to signal for 

hese micrographs). 

From the control charts in Fig. 4 a, we can see that the SWMA- θ
hart out-performs the RWMA chart in terms of the power (i.e., 

he out-of-control percentage of signals for the two nonstation- 
φ

9 
ry images). For the heat-maps in Fig. 4 b, we used the follow- 

ng convention: (1) for all heat-maps of each monitoring statistic 

each row), we apply the same color scheme, meaning the color 

ars correspond to the same range of numbers, the minimum and 

aximum values of which correspond to the two extremes of the 

onitoring statistic values of all the heat-maps in that row; and 

2) the color bars of different rows share the same colors, but cor- 

espond to different ranges of numbers. In this way, within each 

ow, we can map the relative differences in metric values to the 

ifferences of colors in heat-maps. And then we can compare the 

elative differences across rows. We observe the SWMA- θ chart 

as the best performance in terms of best distinguishing the two 

onitoring images from the reference image. Besides the global 

onstationarity, the score-based method seems to be also effec- 

ive in detecting local nonstationarity, based on the peaks in the 

eat-maps coinciding with what appear to be somewhat unusual 

ocal agglomerations. Here, we only consider the SWMA- θ chart 

ut not the SWMA- σ chart, because the latter generally requires 

he CL-selection data to be of larger size, as in the example in 

ection 6.1.2 . This is perhaps because the scores for the SWMA- σ
hart are the squares of the residuals, which typically have higher 

ariability than the scores for the SWMA- θ chart. 

.1.2. 2D AR Data Analysis 

In order to access the power of the score-based methods on 

ifferent kinds of nonstationarity, we continue to use the 2D AR 

odel (1) to generate stochastic microstructures. For the micro 

tructures in Figs. 5 a and 6 a, the parameters and configurations 

re: c 0 = 0 . 01 ; σAR = 1 ; the row-by-row concatenated AR 

oefficient vectors [ φ(CL) 
0 , 0 

, φ(CL) 
0 , 1 

, φ(CL) 
0 , 2 

, φ(CL) 
1 , 0 

, φ(CL) 
1 , 1 

, φ(CL) 
1 , 2 

, φ(CL) 
2 , 0 

, φ(CL) 
2 , 1 

,

(CL) 
2 , 2 

] = [0 , 3 . 59 e − 01 , 1 . 07 e − 02 , 3 . 90 e − 01 , 4 . 21 e −02 , 1 . 76 e −03 , 

 . 98 e − 02 , −1 . 82 e − 03 , 1 . 72 e − 05] and [ φ(M) 
0 , 0 

, φ(M) 
0 , 1 

, φ(M) 
0 , 2 

, φ(M) 
1 , 0 

,

(M) 
1 , 1 

, φ(M) 
1 , 2 

, φ(M) 
2 , 0 

, φ(M) 
2 , 1 

, φ(M) 
2 , 2 

] = [0 , 2 . 74 e − 1 , 2 . 93 e − 2 , 4 . 31 e −
 , 1 . 50 e − 1 , −1 . 17 e − 2 , 4 . 52 e − 2 , −2 . 96 e − 2 , −2 . 41 e − 1] ; and

 (u ) = min (5 , max (0 . 05 , exp (u ))) . For the microstructures in

ig. 5 b and 6 b, the parameters and configurations are as specified 

n Section 3 . 

The control charts in Fig. 5 show the results of the NM ap- 

roach. We again fit a neural network model for g(x ; θ) , using a 

ingle hidden-layer with 10 nodes. Because here we can generate 

n arbitrary number of samples, we increase the number of CL- 

election micrographs to 4 with each micrograph of size 256 × 256 , 

hich will allow us to more accurately control the false alarm rate 

hen the CL-selection and monitoring micrographs are statistically 

quivalent (we only show a single CL-selection micrograph and a 

ingle monitoring micrograph in Fig. 5 for brevity). We see that in 

erms of the power, the SWMA- θ chart performs better than the 

WMA- σ chart in Fig. 5 a, and the SWMA- σ chart performs better 

han the SWMA- θ chart in Fig. 5 b. In both figures, the SWMA-M 

hart achieves the best performance of the SWMA- θ chart and the 

WMA- σ chart and is much better than the baseline RWMA chart. 

To more comprehensively investigate both the power and the 

alse alarm rate of our score-based approach, we gradually in- 

rease the difference between the CL-selection and monitoring mi- 

rographs. More specifically, we denote the two sets of 2D AR 

oefficients used to generate any pair of CL-selection and mon- 

toring micrographs in Fig. 5 as φ(p) = { φ(p) 
r,c } l g r,c=0 

with φ(p) 
0 , 0 

= 0 

nd p ∈ { 0 , 1 } , where p = 0 and p = 1 denote reference and non-

tationary micrographs, respectively. Then, we define a parameter 

, which governs how different the CL-selection micrographs are 

rom the monitoring micrographs via: 

(CL) = φ(0) 

(M) = (1 − γ ) φ(0) + γφ(1) (19) 
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Fig. 4. Control charts of SWMA- θ and RWMA on the PMMA data set from the neural network model. The window length scale for training is l s = 5 , and the WMA window 

length scale l w = 30 . 
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hen γ = 0 , micrographs in the CL-selection and monitoring data 

re generated by the same 2D AR model so that they are sta- 

istically equivalent, in which case the power is the false alarm 

ate α. As γ increases from 0 to 1, the images become increas- 

ngly statistically different. The results in Fig. 5 correspond to 

= 1 . 0 . 
10 
In practice, if the sizes (in terms of total number of pixels) of 

he CL-selection data and the monitoring data are both sufficiently 

arge, then the false alarm rate during monitoring will be approxi- 

ately the desired value of α specified when selecting the control 

imits using the CL-selection data. This would give a common basis 

or comparison of the power of the different control charts. For all 
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Fig. 5. Spatial WMA control chart results for the 2D AR data. Top row shows two pairs of microstructures. The left micrograph in each pair (panel (a) or panel (b)) is 

representative of the reference images, and the right micrograph is statistically different and representative of the monitoring images. The training and WMA window length 

scales are l s = 5 and l w = 30 . 
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f our simulation experiments, we achieved a common false alarm 

ate differently, by bypassing the CL-selection data and selecting 

he control limits to directly control (at least approximately) the 

alse alarm rate over a large set of monitoring data. From Fig. 6 ,

hich plots the power of the different control charts as a function 

f γ , we can see that between the two component score-based 

harts, sometimes the SWMA- θ chart has higher power than the 

WMA- σ chart, and sometimes vice-versa. And the SWMA-M chart 

lways performs similarly to the best of the two component score- 

ased control charts. In contrast, for this example the RWMA chart 
11 
s completely ineffective at detecting the change and has a power 

hat is not much higher than the false alarm rate even for the 

arger γ values. Note that when γ ∼= 

0 . 2 in Fig. 6 , the difference

f microstructures are difficult to discern with the human eye (we 

mit the micrographs for brevity), but our score-based method can 

till detect the differences with reasonable power, which further 

emonstrates its effectiveness. 

We also trained and used linear models for g(x ; θ) and found 

hat the score-based method performed almost as well (in terms 

f power at detecting nonstationarity) as the neural network mod- 
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Fig. 6. Comparison of the statistical power of the four control charts in detecting 

nonstationarity of micrographs corresponding to the Fig. 5 example, as γ varies 

from 0 to 1. The power for γ = 0 is the false alarm rate. Panels (a) and (b) are for 

the AR models corresponding to Figs. 5 a and 5 b, respectively. For each value of γ , 

the box plots are the power values across ten Monte Carlo replicates. 

Fig. 7. Results of our score-based method applied to an SEM image of a dual-phase 

steel sample. We used a neural network model with a single hidden-layer having 10 

neurons and parameters l s = 5 and l w = 30 . The color-coded predicted labels (top- 

right panel) are overlapped (bottom-left panel) with the mask showing the “true”

phases provided by [38] . The bottom-right panel is the original SEM micrograph 

overlaid with the labels from our ND approach. The top-left plot are the first three 

PCA score for the set of score vectors, color-coded by ND phase labeling, which is 

useful for understanding the distribution of PCA components of score vectors in a 

high-dimensional space and debugging the data preprocessing and calculations of 

score vectors. The electronic version has color images of higher resolution. 
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12 
ls, and so we omit the results for brevity. This is an interesting 

bservation, because even though a linear model is not a correct 

odel structure for g(x ; θ) for this example (because of the non- 

inear transformation h (·) ), our score-based framework still works 

easonably well. Based on this observation, one potential strategy 

s to initially use a simpler model to take advantage of the lower 

omputational expense of fitting the model and computing the 

core vectors, and then switch to a more complex model to get a 

etter performance and interpretation if the simpler model signals 

 change. 

.2. Results for the ND Approach 

We apply the ND approach to examples involving two differ- 

nt sets of micrograph data. The first data set consists of SEM im- 

ges of dual-phase steel [38] , in which there are some martensite 

slands in ferrite matrix. Diagnosing/segmenting such multiphase 

thus nonstationary) images is important for quality control and 

or understanding properties of steel samples. The second data set 

onsists of TEM images of silica particles dispersed in PMMA with 

ctyl functional modification. We choose images with different dis- 

ersion density and paste them together to form some artificial 

onstationary microstructures and represent the practical prob- 

em of segmenting micrographs with multiple phases in each sam- 

le. Automatically segmenting regions with different microstruc- 

ure characteristics like particle density is of interest to materials 

esearchers, because the microstructure affects physical properties 

f the materials. We note that the ND approach can be applied 

o analyze and segment the different microstructures in a single 

ultiphase micrograph sample or in a collection of nonstationary 

icrograph samples. 

.2.1. Dual-Phase Steel Data Set 

Fig. 1 b shows an SEM image of dual-phase steel consisting of 

 ferrite matrix with martensite in the form of islands. This mi- 

rograph is especially challenging to analyze because some parts 

f the martensite regions are similar to parts of the ferrite re- 

ions and because the martensite areas are not connected. A hu- 

an attempt to draw boundaries around the phase regions is very 

ime-consuming, tedious, and error-prone. In contrast, the results 

f our score-based method shown in Fig. 7 are very effective at 

dentifying the multiple phases that are present and distinguish- 

ng them, in addition to being fully automated. In particular, the 

oundaries obtained from our score-based method are smooth and 

losely aligned with the true boundaries between the phases. Note 

hat the true boundaries in Fig. 7 were determined in [38] via vari- 

us thresholding, smoothing, and post-processing methods that re- 

uired a substantial amount of manual processing and human ex- 

ertise. In addition, the non-connected regions of martensite are 

uccessfully detected. The phase labels from our ND method are 

onsistent with the mask, which can be treated as the ground 

ruth, except that the boundaries of our labeled phase regions 

re smoothed to some extent. Similarly, some of the small is- 

ands of martensite have been smoothed out. The smoothing is 

he inevitable consequence of our WMA window and the neighbor- 

ood window having size larger than a single pixel. We emphasize 

hat our score-based method is highly automated and uses mini- 

al human intervention, while the method of [38] requires many 

teps and heavy human-involved pre-processing, tuning, and post- 

rocessing. 

Note that the width of the unlabeled region around the bor- 

ers of the bottom images in Fig. 7 is equal to size of the neigh-

orhood window plus WMA window ( l s + l w 

). In order to produce 

hase labels for each pixel in the micrograph, we need to substan- 

ially modify/extend the current approach, which we are currently 

nvestigating. 
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Fig. 8. Results of our score-based method applied to a TEM image with nonstationarity generated by pasting together silica-PMMA materials samples with different particle 

dispersion densities. Here, we use parameters l s = 5 and l w = 20 . The electronic version has color images of higher resolution. 
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.2.2. PMMA Data Set 

The second data set consists of TEM images of silica parti- 

les dispersed in PMMA, some of which were shown in Fig. 1 a 

nd analyzed in Section 6.1 . We created nonstationary micrographs 

y pasting a micrograph with low particle dispersion density to 

he upper left quadrant and three micrographs with higher parti- 

le dispersion density to the other three quadrants. As shown in 

ig. 8 a, the result of our visualization method with 3D height and 

olor mapping described in Section 5 implies there are mainly two 

inds of microstructures in the sample. With this information, we 

pplied our ND score clustering method with two clusters. Fig. 8 b 

nd 8 c show that our score-based ND approach with either the lin- 

ar model or the neural network as the supervised learner g(x ; θ) 

an effectively diagnose the nonstationarity and accurately label 

he phases within the micrograph. The 3D clustering figures also 

elp visualize the distribution of PCA components of score vectors 

n a high-dimensional space to help understand how score vectors 

re different for different material phases and also help in debug- 

ing the data preprocessing and calculations of score vectors. 

In our investigation, we found that compared with the 

core-based ND approach, the score-based NM approach in 

ection 4 tends to indicate differences between different phases 

b

13 
ith higher power. This makes sense, because when the model 

s trained on a stationary micrograph(s) of a single phase, the 

ariance of the score vectors will typically be smaller than when 

he model is trained on nonstationary micrograph(s) with multi- 

le phases, and hence it becomes easier to detect differences be- 

ween a new phase and the reference phase. On the other hand, 

he NM approach requires more data in the sense that one must 

ave one or more reference micrographs available. Moreover, the 

D approach provides more diagnostic information than the NM 

pproach and explicitly identifies the micrograph regions corre- 

ponding to the multiple phases. 

. Conclusions 

In this study, we have developed a powerful and versatile score- 

ased framework for nonstationarity analysis of stochastic mi- 

rostructures of materials. This problem is of increasing impor- 

ance due to the increasing availability of complex multiphase mi- 

rograph data and the lack of effectiveness of traditional meth- 

ds. Modeling the stochastic nature through parametric supervised 

earning models and analyzing nonstationarity through our score- 

ased framework have a solid theoretical foundation and, as we 
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emonstrated with a number of examples, are effective and effi- 

ient at monitoring and diagnosing nonstationarity. We have devel- 

ped two components in our framework: nonstationarity monitor- 

ng and nonstationarity diagnostics, which are intended for use in 

wo common related but different practical scenarios. The consis- 

ently good performance across our examples and the higher sta- 

istical power that we demonstrated through Monte Carlo simu- 

ations are evidences of the effectiveness of our score-based ap- 

roach and its advantages over the residual-based benchmark ex- 

sting approach. The framework has substantial potential for au- 

omating and improving image analysis of materials microstruc- 

ures and can be combined with other state-of-the-art machine 

earning and deep learning techniques, e.g., classification and seg- 

entation deep learning networks, which we are currently inves- 

igating as extensions. 

Another potential extension of the approach is to aid in deter- 

ining the appropriate representative volume element (RVE) size 

or subsequent numerical simulation (e.g., finite element) of mate- 

ial properties. We anticipate that the smallest WMA window size 

or which our averaged score vector is stable (i.e., only varies “neg- 

igibly” across the microstructure) constitutes an upper-bound on 

he RVE size. We are currently investigating this as future work. 

Our approach is a parametric one in that the predictive super- 

ised learning model g(x ; θ) has a set of estimated parameters 

. Many parametric supervised learning models (like the neural 

etworks we have used in our examples) can have so many pa- 

ameters that one may view them as virtually nonparametric, in 

erms of the flexibility they provide in capturing even the most 

omplex nonlinear behavior. We are currently investigating extend- 

ng our approach to the case of extremely high-dimensional θ and 

lso to truly nonparametric models. Related to this, in other areas 

f microstructure analysis such as microstructure synthesis, non- 

arametric methods such as Markov random fields have shown 

uch success (e.g., [50] . We view our nonstationarity monitoring 

pproach not as a competitor to, but as something that could be 

sed in conjunction with, nonparametric microstructure synthesis 

ethods. One would first use our approach to identify whether 

he microstructure is stationary and, if not, to identify micrograph 

ub-regions within which the microstructure is stationary. One 

ould then use existing microstructure reconstruction algorithms 

ntended for stationary microstructures within each sub-region. In- 

egration of the approaches is a topic that warrants further re- 

earch. 
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