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ABSTRACT

Microstructures are critical to the physical properties of materials. Stochastic microstructures are com-
monly observed in many kinds of materials (e.g., composite polymers, multiphase alloys, ceramics, etc.)
and traditional descriptor-based image analysis of them can be challenging. In this paper, we introduce
a powerful and versatile score-based framework for analyzing nonstationarity in stochastic materials mi-
crostructures. The framework involves training a parametric supervised learning model to predict a pixel
value using neighboring pixels in images of microstructures (as known as micrographs), and this predic-
tive model provides an implicit characterization of the stochastic nature of the microstructure. The basis
for our approach is the Fisher score vector, defined as the gradient of the log-likelihood with respect to
the parameters of the predictive model, at each micrograph pixel. A fundamental property of the score
vector is that it is zero-mean if the predictive relationship in the vicinity of that pixel remains unchanged,
which we equate with the local stochastic nature of the microstructure remaining unchanged. Conversely,
if the local stochastic nature changes, then the mean of the score vector generally differs from zero. In
light of this, our framework analyzes how the local mean of the score vector varies across one or more
image samples to: (1) monitor for nonstationarity by indicating whether new samples are statistically
different than reference samples and where they may differ and (2) diagnose nonstationarity by identi-
fying the distinct types of stochastic microstructures that are present over a set of samples and labeling
accordingly the corresponding regions of the samples. Unlike feature-based methods, our approach is al-
most completely general and requires no prior knowledge of the nature of the nonstationarities or the
microstructure itself. Using a number of real and simulated micrographs, including polymer composites
and multiphase alloys, we demonstrate the power and versatility of the approach.

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Motivation and Introduction

The physical properties of materials depend strongly on their
microstructures. The discovery and design of materials with cer-
tain complex microstructures and superior or desirable properties
are boosted by advances in fabrication and imaging techniques. In
general, microstructures can be nonstationary in the sense that the
nature of the microstructure varies across a single image or multi-
ple image samples, due to variation in processing conditions, in-
put materials, environmental conditions, etc. For example, state-
of-the-art additive manufacturing (AM) gives unprecedented con-
trol of the microscopic phases of composite materials to customize
the properties resulting in increasingly sophisticated multiphase
microstructures [1]. After fabricating materials, advanced imaging
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approaches can be used to non-intrusively and efficiently collect
massive amount of 2D and 3D microscopic image data, exam-
ples of which include transmission electron microscopy (TEM) [2],
scanning tunneling electron microscopy (STEM) [3], synchrotron-
based tomography [4], magnetic resonance imaging [5], and con-
focal microscopy [6]. Recent literature shows that such advances
have led to fast-growing image databases of complex microstruc-
tures of materials (also known as micrographs) [7-15], which in
turn incentivizes further effort to design general, automated, and
efficient workflows to process the micrographs.

An important problem for materials scientists and manufactur-
ing/processing engineers is to automatically analyze nonstationar-
ity of microstructure image samples for quality control purposes
(e.g., to detect instability in the material processing that inadver-
tently results in changes in the microstructure and material prop-
erties) and, more generally, to more fully understand the nature
of the material being produced [16-20]. By “nonstationarity”, we
mean that the stochastic nature of the microstructure varies spa-
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Fig. 1. Examples of micrographs of microstructures. (a) A TEM image of silica particles in Polymethyl methacrylate (PMMA). (b) A SEM image of dual-phase steel ([38].

(c)-(d) Two images of simulated microstructures.

tially, either within a single image sample or across multiple im-
age samples. For example, Fig. 1b is an SEM image of steel show-
ing two distinct phases, each of which corresponds to a distinct
stochastic nature. And Fig. 1c and 1d show two simulated mi-
crostructure samples that, although stationary within each sample,
are nonstationary across the two samples. In Sections 2 and 3, we
more formally define nonstationarity in the context of a predictive
supervised learning model fitted to the micrograph.

For microstructures whose behavior depends predominantly on
clearly defined geometric features (e.g., particle size, volume frac-
tions, particle distance, or simple inclusion shapes, etc.), one could
directly apply a number of standard quality control monitoring
methods [21] and/or profile monitoring methods [22-24]. However,
such methods lack generality in the sense that they monitor only a
specific set of predefined features and cannot detect more general
changes in the microstructure, and they are often not applicable to
common microstructures with more stochastic natures [25], for ex-
amples metals [26], polymer composites [27], ceramics [28,29], etc.
Such stochastic microstructures do not have well-defined features
that provide a complete characterization of the microstructure, as
illustrated in Fig. 1.

Previous approaches to analyzing these types of stochastic mi-
crostructures, such as N-point correlation functions, lineal path
functions, spectral density through Fourier transformation, and
joint probability functions [30-35] use certain statistical features.
These methods provide a richer representation of the stochastic
nature than geometric and descriptor-based features, but have seri-
ous limitations [36]. First, the statistical features are only summary
statistics for the full joint distribution of the stochastic microstruc-
ture and do not provide a sufficiently complete representation for
some complex microstructures. For example, a 2-point correlation
function is an incomplete statistical description and can also be
computationally prohibitive for large images [37], and multi-point
correlation functions are even more computationally prohibitive
while still not providing a complete characterization. In general,
there is a fairly severe tradeoff that must be balanced between
generality and completeness of the statistical representation on the
one hand, versus tractability and computational feasibility achieved
by working with only a subset of the statistical features on the
other hand; and balancing this tradeoff is complicated by the fact
that the most appropriate subset of features is always material-
dependent. Second, the most common statistical features are global
features in the sense that they are computed over an entire image
sample (or at least a sufficiently large subregion of the sample) and
therefore cannot capture local behavior that varies on a finer scale.

In contrast, the score-based framework that we introduce in
this paper is almost completely general and, in theory, entails
a complete statistical representation of even the most complex
stochastic microstructures. It also provides a pixel-by-pixel mea-

sure of nonstationarity and can monitor fine-scale local changes
in the microstructure. Finally, because the score vectors are auto-
matic by-products of the predictive model training, the computa-
tional expense is reasonable.

One component of our framework uses the approach
of [39] and [16,17] to characterize the stochastic nature of
microstructures. More specifically, the conditional distribution of
each pixel value given its neighboring pixels is approximated by
training a supervised learning model to predict the pixel value.
In other words, the extremely high-dimensional joint distribution
of the stochastic microstructure is implicitly represented by a
trained supervised learning model for predicting an individual
pixel value given its neighbors. For monitoring for global changes
in the stochastic nature from sample to sample, [16] trained a
separate supervised learning model on each image sample and
then used a form of generalized likelihood ratio test to detect
changes (i.e., nonstationarity) in the stochastic nature from sample
to sample. However, their approach cannot monitor or diagnose
nonstationarity within a sample, in addition to being computa-
tionally expensive due to the need to fit a separate supervised
learning model for each sample. For detecting local anomalies
or defects, [17] fitted a single supervised learning model to a
reference image sample. They then computed various statistics on
the residuals of the predictive model (each pixel has a predicted
value and a residual error) to detect local defects like voids, tears,
etc. However, their approach cannot monitor or diagnose general
nonstationarity beyond the presence of certain types of local
defects.

In this study, we develop a powerful and versatile framework
based on Fisher score vector concepts to analyze general nonsta-
tionarity within and across samples. The Fisher score vector is de-
fined as the gradient of the log-likelihood with respect to the pa-
rameters of the fitted predictive model, and each pixel is associ-
ated with its own score vector. In Section 3, we discuss a funda-
mental property of the score vectors that provides the basis for
our approach. Namely, under fairly general conditions, the score
vector is zero-mean if the predictive relationship in the vicinity of
the pixel remains unchanged from the training sample on which
the predictive model was fitted, and it is nonzero-mean other-
wise. Because we equate changes in the stochastic nature of the
microstructure with changes in the predictive model that implic-
itly represents the stochastic nature, our framework for analyzing
nonstationarity reduces to analyzing the local mean of the score
vector as it varies spatially across one or more image samples.
We apply these concepts to two different but related contexts in
Sections 4 and 5. In Section 4, we develop a nonstationarity mon-
itoring (NM) method, the purpose of which is to indicate whether
new samples are stationary and statistically equivalent to some ref-
erence samples and, if they are not, at which spatial locations they



K. Zhang, D.W. Apley and W. Chen

may differ. In Section 5, we develop a nonstationarity diagnostic
(ND) method, the purpose of which is to identify the distinct types
of stochastic microstructure behavior present over a single sample
or set of samples and label each region of the samples according to
the microstructure type. Using real (e.g., Figs. 1a and 1b) and sim-
ulated (e.g., Figs. 1c and 1d) material examples, we illustrate use
of the framework and demonstrate its power and versatility.

2. Background on Characterizing the Stochastic Nature of
Microstructures via Supervised Learning

In this section, we review a general approach for modeling the
stochastic nature of microstructures with micrographs of materials
[39]. For stochastic microstructures, we can view each microstruc-
ture image sample as a realization of some underlying spatial ran-
dom process. Let X =[X;,X5,---,Xn|T denote the concatenated
vector of pixel values of a micrograph (or set of micrographs),
where m is the number of pixels in the micrograph(s). Let P(X) de-
note the joint distribution of X. If it were available, the joint distri-
bution P(X) completely characterizes the stochastic nature of the
microstructure sample X, and distinguishing two statistically dif-
ferent samples amounts to distinguishing their joint distributions.

Directly modeling the distribution is of course computation-
ally prohibitive. Two assumptions that reduce the problem to a
more tractable one are the Markov locality property and stationarity
[30,40] over the sample or at least over a subregion of the sample.
The Markov locality property assumes that the conditional distri-
bution of the i pixel value X;, given some appropriate set of its
neighboring pixels N(X;), does not depend on the remaining pix-
els in the sample, i.e., that P(X;|X_;) = P,(X;IN(X;)), where X_; de-
notes the vector X but excluding the entry X;. Stationarity means
that the conditional distribution is independent of the location of
a pixel, ie, P(X; = yIN(X;) =x) = P(X; = yIN(X;) = &) is the same
function of the tuple (y,x) for all locations i in the region over
which the image is stationary. Then, we can think of a stationary
sample X as being a realization generated by the conditional dis-
tribution P(X|N (X)) via a mechanism analogous to Gibbs sampling.
In other words, the compact predictive model P(X|N (X)) implicitly
represents the stochastic nature of the micrograph X and can be
treated as the “fingerprint” of a microstructure. Modeling this con-
ditional distribution by fitting some supervised learning model to
predict X given N(X) is a tractable problem, and if we can effec-
tively learn this model through image sample data, we can detect
and analyze changes in the stochastic nature of the microstructure
via detecting and analyzing changes in the conditional distribution
P(X|N(X)). The remainder of the paper develops our approach for
accomplishing this.

3. Fundamental Theory for Score-Based Nonstationarity
Monitoring and Diagnostics

In this section, we first relate microstructure nonstationarity to
stationarity of the parametric supervised learning model that rep-
resents P(X|N(X)) in Section 3.1. Then, the main concepts behind
our score-based framework for analyzing nonstationarity are dis-
cussed in Section 3.2. We discuss a spatial smoothing technique
for estimating the local mean of the score vectors in Section 3.3.
Throughout this section, we illustrate the statistical concepts be-
hind our method with a simple and transparent simulation ex-
ample with micrographs generated similarly to those depicted in
Fig. 1c and 1d. The images were generated according to the fol-
lowing spatial autoregressive (AR) model to generate stochastic mi-
crostructures. The model is (for i € {1,2,---,m}):

I I

Ur.c, = Co+ Z Z OrcUrrei—c + €rc

r=0 c=0
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€r.c. ~ NID(0,0%)
Xi = h(Ur,-,c,-) (1)

where (r;,¢;) are the row and column coordinates of the ith
pixel; ¢ is an intercept parameter; Uy, ’s are latent variables;

I is the length scale of data generation window; {d)r_c}’fc=0
with ¢po=0 are the AR coefficients; OKR is the variance of
iid Gaussian noise random variable €, ; and the function h(.)
takes a latent variable Uy, . and outputs a pixel value X;. The
simulated micrographs are generated with some randomly ini-
tialized edges and later those edges are cut off so that only
stationary pixels remain. Note that the two micrographs shown
in Figs. 1c and 1d are generated by two sets of coefficients
and a nonlinear h(-) function and they appear similar to some
real stochastic microstructures of materials, e.g., the sandstone
micrographs in [41] and silica-filled rubber matrix micrographs
in [39]. Denote by ¢L) and ¢™ the 2D AR coefficients for
generating micrographs for the CL-selection data (like Fig. 1c) and
the monitoring data (like Fig. 1d) (which will be formally defined
in Section 4), respectively. The parameters and configurations are:
co=0.1; oag =1; the row-by-row concatenated AR coefficient
vectors (¢ 5. #7055 915" AT 015 050 47 4351 =
[0,3.59e — 01, 1.07e — 01, 9.98e — 03, —1.82e — 03, 1.72e — 05, 3.51e
~01,421e-02.1.76e - 03] and [f). &5 . 6. 6. o1 .

. 0. M. ¢ =[0.3.59% — 01, 1.07e — 01,9.98¢ — 03,
—1.82e —03,1.72e — 05,3.12e — 1,4.21e — 02, 1.76e — 03]; and
h(u) = u. This data set will also be used in Fig. 5b and 6b in

Section 6.1.2.

3.1. Representing Microstructure Nonstationarity via a Parametric
Supervised Learning Model

As discussed in Section 2, the conditional distribution
P(X|N(X)) can be treated as a “fingerprint” of the stochastic
nature of the microstructure. To model P(X|N(X)), we fit a para-
metric supervised learning model to the data {(X;, N(X;))}2, from
one or more training micrographs, which we will temporarily treat
as stationary. The approximated (learned) conditional distribution
is denoted as P(y|x; @), where 6 is the vector of parameters of the
supervised learning model (e.g., the set of weights for all nodes in
a neural network), y is the value of a target pixel, and x are the
values of its neighboring pixels. Consider grayscale images, which
are a common form of microstructure image data. We model the
conditional distribution as normal with mean g(x; #) and variance
o2, where g(x; 0) is the parametric supervised learning model for
predicting the mean of the pixel, and o2 is the variance of the
residual errors of the predictions.

The normality assumption here only means that the condi-
tional distribution of pixel X, given its neighbors N(X), is nor-
mally distributed. Intuitively, this means that the prediction errors
X —g(N(X); 0) are assumed normally distributed. Note that it does
not imply that the marginal distribution of each pixel is normally
distributed, or that the joint distribution of all pixels is multivari-
ate normal, which are assumptions that would often be strongly
violated in practice. Because of the nonlinearity of the supervised
learning model g(x;#) as a function of ¥, the joint and marginal
distributions of all pixels can be far from normal even though their
conditional distributions are normal. For our assumption of a nor-
mal conditional distribution, even if it is violated in practice, we
believe the resulting nonstationarity monitoring statistics and al-
gorithm still remain meaningful and valid. In this sense, we view
the conditional normality assumption as only a tractable and con-
venient means to an end.

Under certain identifiability assumptions, it is reasonable to
treat the parameter vector 6 of a given parametric model as the
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“fingerprint” of the microstructure. If we define ;,i< {0, 1}, as
the “true” values of parameters for two micrographs or two re-
gions within one micrograph, nonstationarity (stationarity) across
the two regions can be represented as 6y # 6; (g = 6,). There are
a number of desirable aspects of this modeling procedure. First,
the model provides a concise representation of the microstruc-
ture regardless of the size of the training data and can be eas-
ily applied to new image samples. Second, it can represent gen-
eral stochastic microstructures and does not require or involve any
microstructure-specific knowledge or features. Third, it provides
a well-defined mathematical representation of nonstationarity of
stochastic microstructures that is flexible in the sense that it can
be used in conjunction with any parametric supervised learning
model that suitably models the microstructure. Lastly, the score
vectors (defined in Section 3.2) of each observation can be eas-
ily computed and are by-products of model training or fine-tuning
via the popular stochastic gradient descent (SGD) or related algo-
rithms, which results in our framework having reasonable compu-
tational expense. We elaborate on these aspects in subsequent sec-
tions. One should really view the functional form of g(x; #), along
with 6, as the fingerprint. This is especially true if different mi-
crostructure phases in different regions are best represented with
different functional forms of g(x; #). However, it would be diffi-
cult to extend our score-based approaches to allow multiple func-
tional forms. Hence, we recommend choosing a functional form for
g(x; 0) that is sufficiently rich and flexible (e.g., a neural network)
to represent the stochastic nature of all microstructure phases that
are present.

Returning to the illustrative example, suppose one fit the linear
regression supervised learning model

g2(x;0) =0"x, (2)

to a set of micrograph training data (details and guidelines for
fitting the model are discussed in Section 3.3). Although one
would typically fit a more complex model like a neural network
for g(x; ), it is helpful to illustrate the concepts with a linear
model, since the subsequent computations become more trans-
parent. Note also that for these AR simulation data generated via
(1) with h(u) = u, the conditional distribution P(X|N(X); @) actu-
ally is Gaussian with conditional mean g(x; #) = 7x. In the exam-
ples of Section 6, we consider more complex microstructures and
nonlinear models for g(x; #), including real data examples and also
a version of (1) with nonlinear h(u).

In this study, we demonstrate our framework with grayscale
microstructure images, for which predicting pixel values is a re-
gression problem. The framework can be easily extended to clas-
sification problems which correspond to micrographs for which
each pixel has been converted to categorical values that indicate
to which phase the pixel belongs. In this classification setting, the
supervised learning model directly produces P(X|N (X)), which are
the multinomial probabilities of the pixel being in each phase.

3.2. The Score Vector and Its Zero-Mean Property Under Stationarity

Our framework for microstructure nonstationarity analysis is
inspired by recent work on score-based concept drift monitor-
ing [42] for detecting temporal changes in predictive relationships
with data collected over time. For a given model P(X|N(X)), the
score function/vector associated with an individual pixel X (hav-
ing value y and neighborhood values x) is formally defined as the
gradient of the log-likelihood:

5(0:y.X) = Vglog P(X = y|N(X) = x; 0) (3)

where P(X = y|N(X) = x;0) is our parametric conditional likeli-
hood for an individual observation (y,x) and V, is the gradient
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operator with respect to the parameters 6. According to a funda-
mental property of score functions (Proposition 3.4.4 from [43] if
certain regularity and identifiability conditions are met and if the
parametric likelihood is the correct model with a true parameter
vector #, then the expectation of the score function evaluated at
the true parameter is zero, i.e.,

Eg[s(0: X.N(X))IN(X)] := /s(a;y, N(X))P(yIN(X); §)dy = 0.
(4)

In other words, assuming that the reference micrographs are real-
izations of the same stationary spatial random process whose con-
ditional distribution is correctly represented by P(y|x; #), the ex-
pectation of the score vector for each pixel is zero. Note that the
expectation in Eq. (4) is conditioned on a specific set of neighbor
pixels N(X), and Eq. (4) holds for any such N(X). Consequently
the unconditional expectation is also zero, i.e.,

Eg[s(6:X.N(X))] =0 (5)

In real data sets, the expectation in Eq. (5) is replaced by the
empirical mean, which should also be 0:

m

E,,[s(é; X, N(X))] = %Zs(é;yi,xi) — 0, where

i=1
0 := argmaxyE, [log P(XIN(X); 0)]

1 m
= argmaxy Y logP(X = yiIN(X) = x;; 6), (6)
io1

and the operator 1?0 denotes a sample average over the training
data {(y;, x;)}I", (here, y; is the observed value of the ith pixel, and
x; is the vector of observed values of all pixels in the neighbor-
hood of the ith pixel, and m is the number of pixels in the ref-
erence training micrographs that are enough far away from the
image boundary to have full neighborhoods) generated under the
true parameter vector 6, and 6 is the maximum-likelihood estima-
tor (MLE) of @ for the training data.

Eq. (6) generally holds for training micrographs no matter
whether the parametric conditional distribution (or model) is cor-
rect. That is because the estimated parameter vector 0 is the opti-
mum solution when the empirical mean of the log-likelihood is
maximized, the gradient of which is the empirical mean of the
score vectors at @, which will be the zero vector since @ is the
maximizer. When micrographs or micrograph regions are statisti-
cally different from the training/reference micrographs, the param-
eters @ estimated for the reference micrograph generally no longer
provide the best fit for the statistically different regions. In such
regions the score vector, which is also collinear to the gradient
vector of the log-likelihood for individual observations, is gener-
ally not zero-mean. This underscores the generality of the score-
based framework described below for monitoring nonstationarity
by monitoring for changes in the local mean of the score vec-
tors, because when characterizing stochastic microstructures, we
can choose from among a wide range of parametric models for
the mean function g(x; #) that are flexible and convenient to work
with, without requiring that the model exactly represents the true
distribution. In our study in Section 6, we found that for com-
plex materials, linear models often provide nonstationarity anal-
yses that are nearly as effective as those for nonlinear models like
neural networks, but at a much cheaper training cost.

Based on the rationale discussed in Section 2, define and rep-
resent nonstationarity as the change in the parameters of the con-
ditional distribution P(X|N(X); @). This and Eq. (5) or (6) imply a
general method for analyzing nonstationarity through monitoring
the mean behavior of the score vectors defined in Eq. (3). More
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specifically, as shown in [42] for monitoring for temporal nonsta-
tionarity, under fairly general conditions, when the true parameter
vector changes from € to a different vector @, the expected score
vector in Eq. (5) or (6) differs from zero, i.e., Eg[s(0; X, N(X))] #
0 or I::ov[s(ég X,N(X))] #0. Since our formulation equates 6" # 6
in the vicinity of a pixel with the microstructure in the vicin-
ity of that pixel having a different distribution than that of the
training/reference microstructure, we can monitor and visualize
the mean of the score vector (details for which are provided in
Sections 4 and 5) to signal when statistically different microstruc-
tures are encountered and specifically where those differences are.

Returning again to the illustrative example with micrographs
generated via (1) and fitted linear regression supervised learning
model (2), the mathematical expressions for the conditional distri-
bution and the score vectors are:

T |2
P(X =yIN(X) =x:0) = _||y—0x||2}

NZTeh { 202
s(0:y.x) = (y — 0"x)x. (7)

If the fitted model g(x;0) =6Tx captures the conditional mean
(i.e., y = 0Tx + € with zero-mean ¢), then after applying the model
to newly collected micrographs that have the same stochastic be-
havior (i.e., generated by the same model with the same param-
eters 6 =0), the expectation of the score vectors in Eq. (7) is
Eg[s(0;y,%)] =Eg[(0'Tx+€ —0Tx)x] = E[xxT](0' —0) =0 (a vec-
tor of zeros of the same length as #). In contrast, if the newly col-
lected micrographs have different stochastic behavior (e.g., follow
the same conditional mean model y = §'Tx + ¢ but with different
parameters 6’ # ), then the expectation of the score vector will
differ from the zero vector.

3.3. Training the Model and Estimating the Local Mean of the Score
Vector

To train a supervised learning model g(x; @) to represent mi-
crostructures, we first need to choose the neighborhood N(X)
for each pixel X. As shown in Figs. 2a and 2b, there are
two basic choices: a causal or a non-causal neighborhood win-
dow (excluding the target pixel colored as red). For station-
ary microstructures with the Markov locality property, either
a causal or a non-causal neighborhood window can serve to
implicitly characterize the joint distribution P(X) of the pixels
in the micrograph (the former via the decomposition P(X) =
P(X1)P(X5|X1)P(X3|X1,X3) - - - P(Xm|Xq, - - - . Xin_1), and the latter via
a mechanism akin to Gibbs sampling). In general, the choice de-
pends on the purpose of using the trained model. For compu-
tational reasons, in certain applications the causal neighborhood
window is usually chosen if the goal is to generate new samples of
microstructures with the trained model [39]. Also for some specific
applications, a causal neighborhood window may result in better
performance than a non-causal neighborhood window [16,17]. For
our purposes within our score-based monitoring framework, we
choose a non-causal neighborhood window, because it obviously
provides more accurate prediction of the pixel values, and it re-
sulted in better monitoring performance with roughly the same
computational cost for our usage. Intuitively, a pixel X should de-
pend on its neighbors in all directions, which suggests a non-causal
neighborhood window will lead to more accurate prediction of X.

After choosing a proper neighborhood for each pixel, training
a model is simply fitting the corresponding model to the data
set {(X;, N(X;))}I",. Regarding the size of the neighborhood win-
dow, this can be chosen empirically via cross-validation. Using
the trained parametric likelihood (based on the trained supervised
learning model g(x; #)), the score vectors s(é; X,N(X)) can be cal-
culated for any set of image pixels. In SGD algorithms, the score
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vectors are by-products produced during training or predicting
(e.g., for training data, s(@; Vi, X;) = Vg log(P(X; = yiIN(X;) = x;; 9))
and are automatically computed as the gradient for (y;, x;)), which
is a main reason why our score-based approach is computationally
reasonable.

After obtaining the score vectors, directly monitoring the indi-
vidual score vectors would be an ineffective way to monitor mean
changes, because the individual vectors are noisy. To handle the
noise issue and estimate the local mean of the score vectors as it
varies spatially across the image sample, we employ ideas similar
to multivariate exponentially weighted moving average (EWMA)
control chart concepts. A multivariate EWMA is of the most effec-
tive methods for monitoring for changes in the mean of general
random vectors [21] over temporal or spatial domains. Monitoring
for spatial nonstationarity (within or across samples) reduces to
monitoring for changes in the mean of score vectors over regions
of one sample or across multiple samples.

Similar to the temporal EWMA, we calculate the spatial
weighted moving average (WMA) of the score vectors s(é; y,X) to
smooth out noise and estimate the local mean, where @ is the MLE
of the parameters computed over the entire training data. Specif-
ically, we calculate the weighted average of the score vectors of
pixels in a WMA window that is shown as the square with blue
edges in Fig. 2c, with the weight function being a truncated 2D
normal distribution centered at the target pixel over the WMA
window (including the target pixel colored as red) as illustrated
in Fig. 2d. The standard deviation oy, (defined below) of this trun-
cated normal distribution governs how fast this dependency de-
cays away from a target pixel in different directions. Notice that to
distinguish the two windows, one for training a model for condi-
tional distribution (neighborhood window), N(X), and the other for
WMA smoothing, we use different colors, shadings, and notations
in Fig. 2.

To mathematically define the WMA, let z, ., denote the score
vector at a pixel X; smoothed by the WMA window with row
and column coordinates of X; denoted by (rj, ¢;); and use (r,c) as
the row and column coordinates of neighboring pixels over which
we calculate z, .. For notational simplicity, also define sy, :=

s(é; X;,N(X;)), and denote the truncated bivariate Gaussian den-
sity function by p(r, ¢; (i, ¢;, ow)), which is viewed as a function of
(r, c) with the distribution centered at (r;, ¢;) and having bivariate
covariance matrix 021 with I the 2 x 2 identity matrix. Our score
vector WMA is defined as

ritly  Citlw

Zr = Z Z p(r. ¢; (17, i, Ow))Src (8)

r=ri—ly c=ci—ly

where the window size is 2l + 1 as shown in Fig. 2c. Note that
the weights p(r, c; (, ¢;, ow)) sum to one over the WMA window,
by definition of the truncated distribution.

In all of our examples, we use l, = oy. Regarding choice of
the hyper-parameter oy, we recommend choosing it to be larger
than the size of normal microstructure features that are present
within stationary phases of the microstructure, but not so large
that neighboring regions that have different microstructure char-
acteristics (and that should be viewed as two distinct microstruc-
ture phases) will be smeared together. In general, using a larger oy
will smooth out more noise and false alarms that result from the
microstructure transitioning between features that are part of nor-
mal stationary single-phase behavior. This allows better detection
of small-magnitude microstructure differences that are sustained
over larger spatial regions; but it will also tend to smooth out
localized variations that are best viewed as nonstationarities and
that one would like to detect. In contrast, using a smaller oy, will
be more sensitive to detecting variation in localized characteristics
that are truly indicative of nonstationarities; but it will also result
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(a) (b)

(d)

(c)

Fig. 2. Illustration of various windows used in computing and monitoring the score vectors. (a) Causal neighborhood window (excluding the red target pixel) for modeling
the mean of P(X|N(X)), i.e., g(x; @) and (b) Non-causal neighborhood window (excluding the red target pixel) with the side length as 2I; 4 1 pixels for modeling the mean
of P(X|N(X)), i.e., g(x; @) (patches with brown dashed edges) for modeling the conditional distribution of X; (the red pixel) given the neighboring pixels in those windows.
(c) WMA window (including the red target pixel) with the side length as 2I, + 1 pixels for spatially smoothing score vectors. WMA window for spatially smoothing the
score vectors to estimate their local mean. To differentiate it from the neighborhood window, we use blue solid lines as the edges here. (d) Truncated Gaussian distribution
over the WMA window. A 2D Gaussian distribution centered (at the red pixel) and truncated over the WMA window. The height is proportional to the density value of the

truncated distribution.

in a noisier Zr, and will therefore less accurately detect small-
magnitude but sustained differences. Proper choice of oy, will in-
evitably involve some user subjectivity. Fortunately, it is computa-
tionally inexpensive to try different oy, and visually compare the
results of characterizing nonstationarity, which can be done after
fitting and tuning the supervised learning model and computing
the score vectors over the entire micrograph. We recommend that
users do this and plot the monitoring statistics, which will be dis-
cussed in details in Section 4, on top of the micrograph image
(e.g., as in Figs. 7 and 8) to visually assess the most appropriate
ow. Complicating any purely quantitative choice of oy, is the fact
that the notion of microstructure stationarity is inextricably linked
to the scale of interest. At a sufficiently fine scale (e.g., atomic or
subatomic levels) and hypothetically small micrograph sizes, vir-
tually all microstructures can be viewed as nonstationary; and at
a sufficiently coarse scale (e.g., product level) and hypothetically
large micrograph sizes, most can be viewed as stationary. For addi-
tional discussion on the relationship between nonstationarity, fea-
ture size, and window size/scale, see, e.g., [30,39,44-47].

For the same illustrative example with linear supervised learn-
ing model (2), training the model means simply fitting a linear
regression model to estimate the regression coefficients 6. In this
case, the score vectors for each pixel are calculated via Eq. (7), and
then the mean of the score vector in Eq. (6) at any spatial loca-
tion can be approximated by averaging the score vectors through-
out the WMA window in Fig. 2d.

4. Nonstationarity Monitoring (NM)

The goal of this monitoring is to determine whether a given
set of micrograph samples are statistically equivalent to a given
reference sample or samples, where, for example, the reference

sample(s) represent normal conditions; and to potentially provide
some interpretation if nonstationarity is detected. One practical
problem falling into this category in materials fabrication or man-
ufacturing is when we have available image samples from batches
of materials that were produced under normal or well-calibrated
conditions, and the goal is to determine whether subsequently pro-
duced batches of materials are statistically equivalent to the refer-
ence batch(es), based on image samples collected periodically from
the subsequent batches.

In order to monitor for local changes in the mean of the score
vectors via a control chart, we use a Hotelling T2 [48,49] statistic
for z;, .

T2 = (z,,c, — §)" 2 (2., — §) (9)

where § and ¥ are the empirical mean vector and covariance ma-
trix of the training score vectors {sy, ¢}, over the entire training
data, respectively. Notice that we first apply the WMA smoothing
window and then calculate the Hotelling T2 statistic for Zp ¢ as
opposed to the Hotelling T2 statistic for the individual score vec-
tor sy, ;. This reduces the adverse effects of noise and gives a more
accurate estimate of the local score vector mean, so that, with a
proper choice of moving window size, the control limits (defined
below) are tighter and the control chart is more sensitive to the
mean change in score vectors.

In the supervised learning model g(x; @), if we view the resid-
ual standard deviation parameter o as an additional parameter
along with 6, then changes in @ and/or o indicate nonstationar-
ity of the microstructure. Consequently, we compute and monitor
the score vector with respect to both # and o. Since changes in 6
versus changes in o represent different types of changes in the mi-
crostructure, we have found it more effective to compute a score
vector for # and a score vector for o and treat them jointly but
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distinctly, as described below. This is relative to computing the T2
statistic for the score vector for (#, o) together.

As mentioned above, we approximate the conditional distribu-
tion of the ith pixel value X; given its neighboring pixels N(X;) as a

normal distribution:
2
L | 8 0)]
2ro 202

P(Xi =yIN(X;) =%:0,0) =

1(0.0:y.x) :=log (P(y|x; 0. %))
2
—log (o) — % + Const. (10)

The score vectors for # and o, evaluated at the MLEs 6 and 6
computed from the entire training data {y;, x}I",, are defined as

01(0,0;y;, x; 1 ~ N
sp, 1= 1Y) = L1y 5x: D)1 Vag(x: )
0.0)=(0.6)
(11)
VX 1 _o(x- 02
o.i ‘:W :_g—i_[ylggﬁ' (‘12)
0.0)=(0.6)

Since a fixed & in Eqs. (11) and (12) drops out of the T2 statistic
in Eq. (9), it can be ignored, in which case monitoring for changes
in the means of sy and s, reduces to monitoring for changes in
the mean of [y — g(x; 0)]Vyg(x; #) and changes in the mean of [y —
2(x:0)]%.

The goal is to detect local changes in the mean of sy ; and/or the
mean of s, ;. Analogous to Eqs. (8) and (9), we define the WMAs

rithy  citlw
Zprc = Z Z p(r, ¢; (1;, Ci, Ow))Sp r.c (13)
r=ri—ly c=Ci—lyw
ri+lw  Cit+lw
Zo.1,.6 = Z Z p(r,c; (11, i, Ow))So rc (14)

r=ri—ly c=ci—ly
and the T2 statistics
T;i = (za,ﬂxc,‘ — S_o)ngl (zo,Ti,C,' — S_o), (15)

where $p and fa are the empirical mean vector and covariance
matrix of the training score vectors {So‘ri.ci}fir Because sp; is a
vector and T2. is intended to detect a mean change in sp; away
from §j in any direction in the @ space, the control chart for T2 has
only an upper control limit (UCLy), the purpose of which is to sig-
nal a change if T‘)Zl. > UCLy. Since s, ; is a scalar, its WMA chart de-
tects a change in its mean if either Zo 1.c; < ICLg OF Zg 1, ¢; > UCLg,
where [CL, and UCL, denote its lower and upper control limits,
respectively.

We use a multi-chart to monitor for mean changes in either
Sg; O S5 ;. A change in either in the vicinity of pixel X; indicates
that the stochastic nature of the microstructure has changed in the
vicinity of this pixel, relative to the reference microstructure sam-
ples. The multi-chart is defined as signaling either if Tozj > UCLy or
if Zo1,.c; < LCLs OF Zg 1, c; > UCLy. To display the control chart re-
sults in a single 3D plot (e.g., as in Fig. 5, later), we define the
plotted scaled statistics from the two component charts as

2
Co.i 2o _ (16)
! UCLG
Zorc — UCLU;—LCLU
CU.i :W) (17)
2
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which would individually signal if either Cy; > 1 or |Cy;| > 1. The
plotted statistic in the multi-chart statistic is then defined as

CM! _Slgl'l(Co,+CU,) X max(|C9, (18)
and the multi-chart signals nonstationarity in the vicinity of pixel
X; if Gy; falls outside the range [-1, 1].

The three control limits (UCLy, LCL,, and UCL, ) are determined
empirically, as follows. We divide the reference data {(yi,xi)}{.‘i 1
into two sets {(y;, %)}, (which we refer to as the training data)
and {(y,-,;v«',')}{.‘imJr1 (which we refer to as the CL-selection data).
We fit the predictive model g(x; @) to the training data, and then
for each pixel X; in the CL-selection data we compute the chart

statlstlcs {T2 2o 1 }f"’ m+1- We then compute the empirical cdfs of

{12 0 1 M and {zor, Cl}l mle The UCLy, LCLy, and UCL, are deter-
mined such that (1) the two component charts for Cy; and C, ;
each have the same empirical false alarm rate over the CL-selection
data, and (2) the multi-chart has an empirical false alarm rate
over the CL-selection data that is equal to some user-specified de-
sired false alarm rate. The three control limit values can be effi-
ciently found via searching for the required empirical false alarm
rate (denoted by g ) over the CL-selection data for the two com-
ponent charts (i.e., for sy and s, individually) so that the empirical
false alarm rate (denoted by o) of the multi-chart over the CL-
selection data is the desired value. This can be accomplished via
binary search algorithm by noting that o, is monotonically non-
decreasing with @y ;. In the sequel, we denote these two com-
ponent charts and the multi-chart by as SWMA-0, SWMA-o, and
SWMA-M, where the “S” stands for “score-based”.

Selecting a benchmark method to which to compare our score-
based approach is difficult, because there are very few existing
methods that have been developed to monitor for nonstationar-
ity on a pixel-by-pixel basis. To the best of our knowledge, the
closest existing method is the residual-based method in [17]. Al-
though it was more intended to detect local defects in the images,
it can easily be adapted to monitor for nonstationarity on a pixel-
by-pixel basis. To adapt the method for this purpose, we monitor
the residuals (i.e., prediction errors) r; = X; — g\ (X;); ) for each
pixel. The control charts for residuals (which we refer to as the
RWMA) have both a LCL and an UCL, which we choose based on
the empirical distribution of the residuals over the same set of CL-
selection data, similarly to how we determine the control limits for
the score-based charts.

The following summarizes the steps of the NM approach.

+ Step 1 (Training): The data {(yl,x,)}M , obtained from ref-
erence micrograph/micrographs is spllt into the two subsets
{2}, and {(yi,x,-)}?imﬂ. The first subset {(y;, %)}, is
used to train the parametric supervised learning model g(x; @),
mean of the conditional likelihood P(y|x; é) of the individual
pixels (y,x), which implicitly represents the underlying joint
distribution of the micrograph pixels. During training, we com-
pute the (regularized) MLE 0 by minimizing the cost function,
=110, 0;y;, %) +](0), where J(#) is a regularization term
(in this study we use J(@) = k||0||fz) with all hyper-parameters
(including the neighborhood window size I;) chosen by cross-
validation. As discussed in [42], including regularization in the
training loss function does not affect the salient point that the
mean of the score functions changes if and only if the predic-
tive relationship is nonstationary.

Step 2 (CL-selection): The supervised learning model from Step
1 is applied to the second subset {(y,,xl)}l ms+1 to obtain the

score vectors {Sg ;, Sy, ,}l m (and the residuals {r;}M i g for the
residual-based benchmark) and to select the control limits as
described above to provide an empirical false alarm rate that
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is equal to some user-specified desired false alarm rate o (e.g.,
0.01 or 0.001).

Step 3 (Monitoring): New micrograph samples are collected
and, converted to a monitoring data set {(y;, X;)};.. for each
pixel of which the same score vectors, residuals, and monitor-
ing statistics {Cp;, Cy i, Cyj. 13} are computed and compared to
their respective control limits. For a particular chart, if a sig-
nificant portion of the charted statistics fall beyond its control
limit, we conclude that the new sample is nonstationary in the
sense that its microstructure differs stochastically from the ref-
erence sample.

Before fitting the predictive model g(x; #) to the training data
and applying it to the CL-selection or monitoring image data to
compute the score vectors or residuals, we always scale each mi-
crograph to have zero mean and unit variance, because a change
in the mean or variance of the pixel grayscale values across dif-
ferent micrographs could be due to the different light exposure
or contrast levels, which should not be treated as nonstationar-
ity. If one suspects that such mean or variance changes could be
the net result of actual nonstationarity of the microstructure, then
one could supplement our score-based multi-chart with additional
component charts that monitor a local WMA estimate of the pixel
mean and variance. For the monitoring micrograph(s) (i.e., the new
set of micrographs to be monitored and compared to the refer-
ence micrographs), we define the power (i.e., probability of cor-
rectly detecting nonstationarity) for a control chart as the percent-
age of pixels in the monitoring samples for which the control chart
signaled, i.e., for which the control chart statistic fell outside its
control limit(s). The larger the power, the more clearly the con-
trol chart correctly indicated nonstationarity, when the monitoring
micrographs are truly nonstationary. In Section 6.1, we apply and
demonstrate this NM approach on a real and simulated materials
data.

5. Nonstationarity Diagnostics (ND)

The NM approach in Section 4 is intended to (1) indicate
whether the samples are nonstationary in the sense that a mon-
itoring sample or part of a monitoring sample is different than the
CL-selection reference sample(s); and (2) if nonstationary, highlight
regions that are most likely to be different. If there are multiple
phases in a nonstationary sample (or samples), a related impor-
tant objective is to identify and demark the regions of the sam-
ple that correspond to the different phases (i.e., different distinct
types of microstructure stochastic behavior). We refer to this ob-
jective as nonstationarity diagnostics (ND) to distinguish it from
the NM objective. In this section, we develop an approach for this
that can be used as a follow-up to NM, e.g., if the NM indicates a
sample is nonstationary, to determine how many material phases
there are and, more generally, what is the nature of the nonsta-
tionarity. Alternatively, our ND approach can be used as a stand-
alone approach in which we are given a single sample or multi-
ple samples and want to know the nature of the nonstationarity.
For example, suppose a materials scientist has just created a new
sample of material in the laboratory using some new processing
technique or settings, and one goal is to understand the nature of
the new material and whether there are multiple material phases
mixed together. Or suppose that engineers in a commercial-scale
process have just implemented a new processing method and want
to know the same.

The intuition behind our score-based method for ND is as fol-
lows. If a micrograph is a realization of a stationary random pro-
cess, then the same value of  will represent the microstructure
behavior everywhere in the micrograph. In this case, in addition to
Eq. (6) holding, the sample score vectors {s(é; ¥i. %)}, will have
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local empirical mean close to zero over every local region, provid-
ing the region is large enough that the noise in the score vectors
averages out. In contrast, if the micrograph has multiple phases in

it as in Figs. 1a and 1b, there will be multiple ’s, say {0(’)};;1, rep-
resenting the stochastic nature of the k different phases. If we hy-
pothetically had a priori pixel-wise phase labels to serve as ground
truth for all k phases in the micrograph/micrographs, we would
train k different supervised learning models to represent the k
different conditional distributions {P(y|x; 81)}k | for the k differ-
ent phases. For each phase, as in Eq. (5) or (6), we would have
Egn[S(00; X, N(X))] = 0 or £y [s(@D; X, N(X))] = 0, where 80 is
the MLE of ) over its corresponding region. In reality, we do not
have such labels a priori, and even though we fit a single model to
the entire training data with multiple phases present, there is no
single parameter vector @ that can represent the multiphase mi-
crostructure. However, we can still leverage the preceding concepts
that distinguish from the case of a stationary microstructure to di-
agnose the nonstationarity in the micrographs. More specifically,
we can train a single model for the entire set of training data, in
which case the empirical (sample) mean of the score vectors over
the entire training data is zero, i.e., Y1, s(é; ¥i» X)) =0, where 0is
the MLE over the entire training data. But locally, within regions
that fall inside any of the k single phases, the score vectors will
have nonzero mean. This is because each individual phase has dif-
ferent stochastic behavior than the mixture of all k phases, and the
latter is what § represents.

As an alternative interpretation, score vectors are the updat-
ing vectors in a SGD algorithm to fit the model to maximize the
log-likelihood function, i.e., ém =6+ ns((;’t;yl-,x,-), at iteration t
of the algorithm. The score vectors from within any particular sta-
tionary phase from among the k phases, say the I phase, will tend
to steer the current parameter values 6 towards 0. If the k phases
are sufficiently different, then {#}¢_ will be sufficiently differ-
ent in the high-dimensional space, and so the mean vectors of the
k score vectors, s(f; y®,xD) 1e{1,2,.-  k} should generally be
different and non-zero, where (y,x(®) represents the values of
a pixel and its neighborhood from within the " phase. Based on
this intuition, our score-based ND approach uses k-means cluster-
ing on the score vectors {s(6; yi.%)}", (or some transformed ver-
sion thereof) to diagnose the spatial nonstationarity of microstruc-
tures.

To reduce the effects of noise in the score vectors and improve
the clustering performance by taking into account spatial proxim-
ity information, we conduct clustering on {z, }", in Eq. (8) in-
stead of original score vectors, as follows. First, as a visualization
tool to help approximately estimate the number k of phases in
the sample, we developed a 3D plot in which the two horizontal
axes represent the 2D spatial coordinates of the micrograph, and
the vertical axis represents the magnitude of the vectors {z ¢}7" ;.
Moreover, the red-green-blue color of this plotted surface repre-
sents the first 3 principal components analysis (PCA) scores. See
Fig. 8a, later, as an example of this plot. In this plot, the pixels
falling into different phases can be distinguished based on hav-
ing different vertical axes height and/or different color, because
the smoothed score vectors from different phases have different
magnitudes and directions. From this plot, the estimated number
k of phases is taken, roughly, to be the number of patches with
different heights and different colors. This k is then used in set-
ting the number of centroids in the k-means clustering algorithm.
A 3D scatter plot of the top-3 PCA scores of {zy }"; along with
their clustering labels can be constructed, and those labels can be
also overlaid on the initial micrograph to show regions of different
phases. In Section 6.2, we demonstrate this ND approach on real
and simulated materials data.
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(a) (b)

Fig. 3. Example of (a) reference and (b) subsequent nonstationary micrographs of
silica particles dispersed in PMMA.

6. Experimental Results

In this section, we present the results of our score-based
framework using real and simulated micrograph data for NM
(Section 6.1) and ND (Section 6.2).

6.1. Results for the NM Approach

We consider two data sets: a PMMA data set and a simulated
2D AR data set shown in Fig. 3 and 1c-1d, respectively. The former
is a real data set that consists of TEM images of silica particles in
PMMA with octyl functional modification. How densely those par-
ticles are dispersed in the matrix can be controlled by various pro-
cessing conditions, and the dispersion density can affect the phys-
ical properties (e.g., the breakdown stress or dielectric constant of
the material). We select two sets of samples with different disper-
sion densities and treat one as the reference data and the other
as the monitoring data to be monitored for nonstationarity. The
simulation data are generated via a 2D spatial autoregressive (AR)
model with various choice of AR coefficients. The 2D AR model al-
lows us to generate many Monte Carlo replicates of data sets to
investigate and compare the false alarm rate and the power of the
various control charts. We show that our score-based charts are far
more effective than the residual-based chart, and its performance
is further enhanced by the multi-chart.

6.1.1. PMMA Data Analysis

We trained two different supervised learning models g(x; @),
a linear regression model and a fully-connected neural network
model with one hidden-layer having 10 nodes, to serve as the
mean function of the conditional distribution. The L, regulariza-
tion parameter, A = 0.01, was chosen via cross-validation. The re-
sults for the PMMA micrographs in Figs. 3 are shown in Fig. 4
for the neural network model. Although the linear model results
in much less accurate prediction of each pixel value, it provided
similar monitoring results as the neural network and so is omitted
here.

Figs. 4a and 4b show 3D control charts and 2D heat-maps, re-
spectively, of the results. In the 3D control charts shown in Fig. 4a,
we plot the UCL for the SWMA-0 chart and the LCL and UCL for
the RWMA chart as horizontal planes, calculated from CL-selection
micrographs. For comparison, the first monitoring micrograph is a
reference micrograph, and the other two monitoring micrographs
are from nonstationary micrographs which are statistically differ-
ent from reference ones (so we would like the chart to signal for
these micrographs).

From the control charts in Fig. 4a, we can see that the SWMA-0
chart out-performs the RWMA chart in terms of the power (i.e.,
the out-of-control percentage of signals for the two nonstation-
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ary images). For the heat-maps in Fig. 4b, we used the follow-
ing convention: (1) for all heat-maps of each monitoring statistic
(each row), we apply the same color scheme, meaning the color
bars correspond to the same range of numbers, the minimum and
maximum values of which correspond to the two extremes of the
monitoring statistic values of all the heat-maps in that row; and
(2) the color bars of different rows share the same colors, but cor-
respond to different ranges of numbers. In this way, within each
row, we can map the relative differences in metric values to the
differences of colors in heat-maps. And then we can compare the
relative differences across rows. We observe the SWMA-6 chart
has the best performance in terms of best distinguishing the two
monitoring images from the reference image. Besides the global
nonstationarity, the score-based method seems to be also effec-
tive in detecting local nonstationarity, based on the peaks in the
heat-maps coinciding with what appear to be somewhat unusual
local agglomerations. Here, we only consider the SWMA-0 chart
but not the SWMA-o chart, because the latter generally requires
the CL-selection data to be of larger size, as in the example in
Section 6.1.2. This is perhaps because the scores for the SWMA-o
chart are the squares of the residuals, which typically have higher
variability than the scores for the SWMA-@ chart.

6.1.2. 2D AR Data Analysis

In order to access the power of the score-based methods on
different kinds of nonstationarity, we continue to use the 2D AR
model (1) to generate stochastic microstructures. For the micro
structures in Figs. 5a and 6a, the parameters and configurations
are: ¢ =0.01; ]} 1; the row-by-row concatenated AR
coefficient vectors [qb L, 3C1L),¢3C2L),¢<CL’ ¢1(C1L),¢(CL) ¢(CL) ¢2(C1L),

5 1=10. 3.59¢ — 01,1.07e — 02, 3.90¢ — 01, 4.21e—02, 1.76e—03,

9.98¢ — 02, -1.82e - 03,1.72¢ — 05] and [$3). 4. ¢35 . 1"

0,1°70,2 71,0
M oM. o0 ¢, M) ] =[0,2.74e — 1,2.93¢ — 2,4.31e —

1150e—1—117e—2 4526—2 —2.96e — 2, -2.41e - 1]; and
h(u) = min(5, max(0.05, exp(u))). For the microstructures in
Fig. 5b and 6b, the parameters and configurations are as specified
in Section 3.

The control charts in Fig. 5 show the results of the NM ap-
proach. We again fit a neural network model for g(x; ), using a
single hidden-layer with 10 nodes. Because here we can generate
an arbitrary number of samples, we increase the number of CL-
selection micrographs to 4 with each micrograph of size 256 x 256,
which will allow us to more accurately control the false alarm rate
when the CL-selection and monitoring micrographs are statistically
equivalent (we only show a single CL-selection micrograph and a
single monitoring micrograph in Fig. 5 for brevity). We see that in
terms of the power, the SWMA-6 chart performs better than the
SWMA-o chart in Fig. 53, and the SWMA-o chart performs better
than the SWMA-@ chart in Fig. 5b. In both figures, the SWMA-M
chart achieves the best performance of the SWMA-@ chart and the
SWMA-o chart and is much better than the baseline RWMA chart.

To more comprehensively investigate both the power and the
false alarm rate of our score-based approach, we gradually in-
crease the difference between the CL-selection and monitoring mi-
crographs. More specifically, we denote the two sets of 2D AR
coefficients used to generate any pair of CL-selection and mon-
itoring micrographs in Fig. 5 as ¢ = {¢)(”)}’gc_0 with ¢ép0) =
and p e {0,1}, where p=0 and p=1 denote reference and non-
stationary micrographs, respectively. Then, we define a parameter
y, which governs how different the CL-selection micrographs are
from the monitoring micrographs via:

¢ = 0)

6M = (1-9)¢© + M (19)
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Fig. 4. Control charts of SWMA-0 and RWMA on the PMMA data set from the neural network model. The window length scale for training is Iy = 5, and the WMA window

length scale I,, = 30.

When y = 0, micrographs in the CL-selection and monitoring data
are generated by the same 2D AR model so that they are sta-
tistically equivalent, in which case the power is the false alarm
rate «. As y increases from O to 1, the images become increas-
ingly statistically different. The results in Fig. 5 correspond to

y =1.0.

10

In practice, if the sizes (in terms of total number of pixels) of
the CL-selection data and the monitoring data are both sufficiently
large, then the false alarm rate during monitoring will be approxi-
mately the desired value of « specified when selecting the control
limits using the CL-selection data. This would give a common basis
for comparison of the power of the different control charts. For all
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Fig. 5. Spatial WMA control chart results for the 2D AR data. Top row shows two pairs of microstructures. The left micrograph in each pair (panel (a) or panel (b)) is
representative of the reference images, and the right micrograph is statistically different and representative of the monitoring images. The training and WMA window length

scales are Iy =5 and I, = 30.

of our simulation experiments, we achieved a common false alarm
rate differently, by bypassing the CL-selection data and selecting
the control limits to directly control (at least approximately) the
false alarm rate over a large set of monitoring data. From Fig. 6,
which plots the power of the different control charts as a function
of y, we can see that between the two component score-based
charts, sometimes the SWMA-@ chart has higher power than the
SWMA-o chart, and sometimes vice-versa. And the SWMA-M chart
always performs similarly to the best of the two component score-
based control charts. In contrast, for this example the RWMA chart

1

is completely ineffective at detecting the change and has a power
that is not much higher than the false alarm rate even for the
larger y values. Note that when y = 0.2 in Fig. 6, the difference
of microstructures are difficult to discern with the human eye (we
omit the micrographs for brevity), but our score-based method can
still detect the differences with reasonable power, which further
demonstrates its effectiveness.

We also trained and used linear models for g(x; @) and found
that the score-based method performed almost as well (in terms
of power at detecting nonstationarity) as the neural network mod-
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Fig. 6. Comparison of the statistical power of the four control charts in detecting
nonstationarity of micrographs corresponding to the Fig. 5 example, as y varies
from O to 1. The power for y =0 is the false alarm rate. Panels (a) and (b) are for
the AR models corresponding to Figs. 5a and 5b, respectively. For each value of y,
the box plots are the power values across ten Monte Carlo replicates.
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Fig. 7. Results of our score-based method applied to an SEM image of a dual-phase
steel sample. We used a neural network model with a single hidden-layer having 10
neurons and parameters Is =5 and l,, = 30. The color-coded predicted labels (top-
right panel) are overlapped (bottom-left panel) with the mask showing the “true”
phases provided by [38]. The bottom-right panel is the original SEM micrograph
overlaid with the labels from our ND approach. The top-left plot are the first three
PCA score for the set of score vectors, color-coded by ND phase labeling, which is
useful for understanding the distribution of PCA components of score vectors in a
high-dimensional space and debugging the data preprocessing and calculations of
score vectors. The electronic version has color images of higher resolution.
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els, and so we omit the results for brevity. This is an interesting
observation, because even though a linear model is not a correct
model structure for g(x; @) for this example (because of the non-
linear transformation h(-)), our score-based framework still works
reasonably well. Based on this observation, one potential strategy
is to initially use a simpler model to take advantage of the lower
computational expense of fitting the model and computing the
score vectors, and then switch to a more complex model to get a
better performance and interpretation if the simpler model signals
a change.

6.2. Results for the ND Approach

We apply the ND approach to examples involving two differ-
ent sets of micrograph data. The first data set consists of SEM im-
ages of dual-phase steel [38], in which there are some martensite
islands in ferrite matrix. Diagnosing/segmenting such multiphase
(thus nonstationary) images is important for quality control and
for understanding properties of steel samples. The second data set
consists of TEM images of silica particles dispersed in PMMA with
octyl functional modification. We choose images with different dis-
persion density and paste them together to form some artificial
nonstationary microstructures and represent the practical prob-
lem of segmenting micrographs with multiple phases in each sam-
ple. Automatically segmenting regions with different microstruc-
ture characteristics like particle density is of interest to materials
researchers, because the microstructure affects physical properties
of the materials. We note that the ND approach can be applied
to analyze and segment the different microstructures in a single
multiphase micrograph sample or in a collection of nonstationary
micrograph samples.

6.2.1. Dual-Phase Steel Data Set

Fig. 1b shows an SEM image of dual-phase steel consisting of
a ferrite matrix with martensite in the form of islands. This mi-
crograph is especially challenging to analyze because some parts
of the martensite regions are similar to parts of the ferrite re-
gions and because the martensite areas are not connected. A hu-
man attempt to draw boundaries around the phase regions is very
time-consuming, tedious, and error-prone. In contrast, the results
of our score-based method shown in Fig. 7 are very effective at
identifying the multiple phases that are present and distinguish-
ing them, in addition to being fully automated. In particular, the
boundaries obtained from our score-based method are smooth and
closely aligned with the true boundaries between the phases. Note
that the true boundaries in Fig. 7 were determined in [38] via vari-
ous thresholding, smoothing, and post-processing methods that re-
quired a substantial amount of manual processing and human ex-
pertise. In addition, the non-connected regions of martensite are
successfully detected. The phase labels from our ND method are
consistent with the mask, which can be treated as the ground
truth, except that the boundaries of our labeled phase regions
are smoothed to some extent. Similarly, some of the small is-
lands of martensite have been smoothed out. The smoothing is
the inevitable consequence of our WMA window and the neighbor-
hood window having size larger than a single pixel. We emphasize
that our score-based method is highly automated and uses mini-
mal human intervention, while the method of [38] requires many
steps and heavy human-involved pre-processing, tuning, and post-
processing.

Note that the width of the unlabeled region around the bor-
ders of the bottom images in Fig. 7 is equal to size of the neigh-
borhood window plus WMA window (Is + L). In order to produce
phase labels for each pixel in the micrograph, we need to substan-
tially modify/extend the current approach, which we are currently
investigating.
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(a) Visualization of the score vectors of a linear model from side (left panel)

and top views (right panel).
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Fig. 8. Results of our score-based method applied to a TEM image with nonstationarity generated by pasting together silica-PMMA materials samples with different particle
dispersion densities. Here, we use parameters I; = 5 and l,, = 20. The electronic version has color images of higher resolution.

6.2.2. PMMA Data Set

The second data set consists of TEM images of silica parti-
cles dispersed in PMMA, some of which were shown in Fig. 1a
and analyzed in Section 6.1. We created nonstationary micrographs
by pasting a micrograph with low particle dispersion density to
the upper left quadrant and three micrographs with higher parti-
cle dispersion density to the other three quadrants. As shown in
Fig. 8a, the result of our visualization method with 3D height and
color mapping described in Section 5 implies there are mainly two
kinds of microstructures in the sample. With this information, we
applied our ND score clustering method with two clusters. Fig. 8b
and 8c show that our score-based ND approach with either the lin-
ear model or the neural network as the supervised learner g(x; 6)
can effectively diagnose the nonstationarity and accurately label
the phases within the micrograph. The 3D clustering figures also
help visualize the distribution of PCA components of score vectors
in a high-dimensional space to help understand how score vectors
are different for different material phases and also help in debug-
ging the data preprocessing and calculations of score vectors.

In our investigation, we found that compared with the
score-based ND approach, the score-based NM approach in
Section 4 tends to indicate differences between different phases

with higher power. This makes sense, because when the model
is trained on a stationary micrograph(s) of a single phase, the
variance of the score vectors will typically be smaller than when
the model is trained on nonstationary micrograph(s) with multi-
ple phases, and hence it becomes easier to detect differences be-
tween a new phase and the reference phase. On the other hand,
the NM approach requires more data in the sense that one must
have one or more reference micrographs available. Moreover, the
ND approach provides more diagnostic information than the NM
approach and explicitly identifies the micrograph regions corre-
sponding to the multiple phases.

7. Conclusions

In this study, we have developed a powerful and versatile score-
based framework for nonstationarity analysis of stochastic mi-
crostructures of materials. This problem is of increasing impor-
tance due to the increasing availability of complex multiphase mi-
crograph data and the lack of effectiveness of traditional meth-
ods. Modeling the stochastic nature through parametric supervised
learning models and analyzing nonstationarity through our score-
based framework have a solid theoretical foundation and, as we
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demonstrated with a number of examples, are effective and effi-
cient at monitoring and diagnosing nonstationarity. We have devel-
oped two components in our framework: nonstationarity monitor-
ing and nonstationarity diagnostics, which are intended for use in
two common related but different practical scenarios. The consis-
tently good performance across our examples and the higher sta-
tistical power that we demonstrated through Monte Carlo simu-
lations are evidences of the effectiveness of our score-based ap-
proach and its advantages over the residual-based benchmark ex-
isting approach. The framework has substantial potential for au-
tomating and improving image analysis of materials microstruc-
tures and can be combined with other state-of-the-art machine
learning and deep learning techniques, e.g., classification and seg-
mentation deep learning networks, which we are currently inves-
tigating as extensions.

Another potential extension of the approach is to aid in deter-
mining the appropriate representative volume element (RVE) size
for subsequent numerical simulation (e.g., finite element) of mate-
rial properties. We anticipate that the smallest WMA window size
for which our averaged score vector is stable (i.e., only varies “neg-
ligibly” across the microstructure) constitutes an upper-bound on
the RVE size. We are currently investigating this as future work.

Our approach is a parametric one in that the predictive super-
vised learning model g(x;#) has a set of estimated parameters
0. Many parametric supervised learning models (like the neural
networks we have used in our examples) can have so many pa-
rameters that one may view them as virtually nonparametric, in
terms of the flexibility they provide in capturing even the most
complex nonlinear behavior. We are currently investigating extend-
ing our approach to the case of extremely high-dimensional # and
also to truly nonparametric models. Related to this, in other areas
of microstructure analysis such as microstructure synthesis, non-
parametric methods such as Markov random fields have shown
much success (e.g., [50]. We view our nonstationarity monitoring
approach not as a competitor to, but as something that could be
used in conjunction with, nonparametric microstructure synthesis
methods. One would first use our approach to identify whether
the microstructure is stationary and, if not, to identify micrograph
sub-regions within which the microstructure is stationary. One
could then use existing microstructure reconstruction algorithms
intended for stationary microstructures within each sub-region. In-
tegration of the approaches is a topic that warrants further re-
search.
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