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ABSTRACT

This paper introduces reconstructive visual instruction tuning (R0SS), a family of
Large Multimodal Models (LMMs) that exploit vision-centric supervision signals.
In contrast to conventional visual instruction tuning approaches that exclusively
supervise text outputs, ROSS prompts LMMs to supervise visual outputs via recon-
structing input images. By doing so, it capitalizes on the inherent richness and detail
present within input images themselves, which are often lost in pure text supervi-
sion. However, producing meaningful feedback from natural images is challenging
due to the heavy spatial redundancy of visual signals. To address this issue, ROSS
employs a denoising objective to reconstruct latent representations of input images,
avoiding directly regressing exact raw RGB values. This intrinsic activation design
inherently encourages LMMs to maintain image detail, thereby enhancing their
fine-grained comprehension capabilities and reducing hallucinations. Empirically,
ROSS consistently brings significant improvements across different visual encoders
and language models. In comparison with extrinsic assistance state-of-the-art
alternatives that aggregate multiple visual experts, ROSS delivers competitive per-
formance with a single SigL.IP visual encoder, demonstrating the efficacy of our
vision-centric supervision tailored for visual outputs.

1 INTRODUCTION

The success of GPT-style Large Language Models (LLMs) (Radford et al., 2018; 2019; Brown et al.,
2020; OpenAl, 2023b; Yang et al., 2024a; Touvron et al., 2023; Chiang et al., 2023; Dubey et al., 2024)
has motivated researchers to adapt LLMs to understand multimodal inputs (Liu et al., 2023a; 2024a;
Dai et al., 2023; Bai et al., 2023). Notably, visual instruction tuning approaches (Liu et al., 2023a)
demonstrate superior performance with cost-efficient training recipes. Some approaches (Chen et al.,
2024b; Li et al., 2024c) even surpass GPT-4V (ision) (OpenAl, 2023a) on benchmark evaluations.

Typically, these Large Multimodal Models (LMMs) based on visual instruction tuning adopt a plug-in
architecture, as depicted in Figure 1a, where pre-trained vision-language foundation models such as
CLIP (Radford et al., 2021) are responsible for projecting images into visual tokens. They serve as
prefix tokens for multimodal comprehension. However, this type of design, i.e., visual encoder —
connector — LLM <= language instructions, where “<" indicates supervision, is primarily LLM-
centric: (i) visual comprehension largely depends on vision-to-text alignment and the selected vision
models, and (ii) supervision derives exclusively from text data. As a result, they exhibit systematic
visual shortcomings such as recognizing specific visual patterns (Tong et al., 2024b).

Until very recently, some concurrent works proposed vision-centric solutions (Tong et al., 2024a;b).
Ilustrated in Figure 1b, their solutions leverage extrinsic assistance via aggregating several different
visual experts. Inspired by the evolution in image recognition, from manually designed visual
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Figure 1: Conceptual comparison between different pipelines. (a) Typical visual instruction
tuning approaches (Liu et al., 2023a; 2024a) follow a LLM-centric design that solely leverage text
supervision. (b) Aggregated visual instruction tuning alternatives (Tong et al., 2024a;b) leverages
extrinsic assistance via combining several visual experts, requiring a careful selection of visual experts.
(c) Our RoOSS, with a single visual encoder, e.g., CLIP (Radford et al., 2021) and SigLIP (Zhai
et al., 2023), designs extra vision-centric reconstructive supervision as intrinsic activation. In this
way, LMMs are required to preserve every detail of input images, thereby enhancing multimodal
comprehension capabilities and reducing hallucinations.

features (Sanchez & Perronnin, 2011) to learnable deep convolutional models (Krizhevsky et al.,
2012), we suggest that intrinsic activation offers a more viable path forward. Just as deep models
automatically learn hierarchical and abstract features from raw data, we believe intrinsic activation
methods are similarly more adaptable for multimodal comprehension, reducing reliance on hand-
crafted engineering, thereby enhancing both generalization and performance. Therefore, we aim to
explore intrinsic activation solutions based on the following principles:

1. Supervise Visual Outputs. Current LMMs solely supervise text outputs, neglecting a signif-
icant amount of visual outputs unused. For instance, LLaVA-v1.5 (Liu et al., 2024a) utilizes
576 visual tokens to represent a single 336 x 336 image, yet their corresponding outputs
remain unsupervised. Intuitively, since input images themselves inherently provide rich and
detailed information, we regard LMMs reconstructing input images as the supervision of
those visual outputs. This approach encourages LMMs to maintain low-level details, thereby
enhancing their fine-grained comprehension abilities and reducing hallucinations.

2. Explore the Optimal Formulation. Designing this self-supervised task effectively is not
straightforward. Motivated by the success of masked autoencoder (He et al., 2022) compared
to its basic version denoising autoencoder (Vincent et al., 2008), we identify handling heavy
spatial redundancy of visual signals as the underlying key factor. To this end, we formulate
our approach as follows: (i) for reconstruction targets, instead of raw RGB pixels, we
make LMMs reconstruct latent visual tokens, and (ii) for reconstruction objectives, to avoid
directly regressing exact token values, we adopt per-token denoising.

To this end, we propose ROSS, termed of reconstructive visual instruction tuning, which utilizes
input images as direct supervision signals illustrated in Figure 1c. Technically, to address the spatial
redundancy inherent in natural visual signals (He et al., 2022), we train a small denoising network,
which takes high-level visual outputs x as conditions to recover low-level fine-grained visual tokens
z, representing an underlying distribution p(z|x). These latent tokens z are derived from a frozen
teacher tokenizer such as continuous VAE (Kingma, 2013) and discrete VQGAN (Esser et al., 2021).
Unlike extrinsic assistance solutions (Tong et al., 2024a;b), our intrinsic activation solution naturally
maintains a lightweight inference procedure. More importantly, when adapting to new visual domains,
our solution avoids a careful choice of new domain-specific experts, e.g., MiDaS-3.0 (Birkl et al.,
2023) for understanding depth maps, which is more efficient and easier to implement.

Empirically, ROSS achieves top performance across a wide range of multimodal comprehension
benchmarks. Notably, our ROSS excels in fine-grained vision-centric benchmarks (Tong et al.,
2024b; Masry et al., 2022) and hallucination benchmarks (Guan et al., 2024; Li et al., 2023c). To be
specific, with a single SigLIP (Zhai et al., 2023) as the visual encoder, ROSS-7B achieves 57.3 on
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HallusionBench (Guan et al., 2024) and 54.7 on MM VP (Tong et al., 2024b), significantly outperforms
state-of-the-art alternatives with similar model sizes which aggregate several visual experts as extrinsic
assistance, e.g., Cambrian-1-8B (Tong et al., 2024a). In-depth analysis demonstrates the effectiveness
of RoOSS for directing focus towards visual elements and understanding depth maps. We hope our
research will inspire future work in designing supervision signals for large multimodal models.

2 RELATED WORK

Visual Instruction Tuning. Most visual instruction tuning-based LMMs adopt a plug-in architec-
ture (Liu et al., 2023a; 2024a; Bai et al., 2023; Wang et al., 2024c), where a language-supervised
visual encoder (Radford et al., 2021; Zhai et al., 2023) is responsible for extracting visual tokens. A
connector is used to map those visual representations into the LLM space, e.g., Resamplers (Alayrac
et al., 2022), Q-Formers (Li et al., 2023b; Dai et al., 2023; Bai et al., 2023; Ge et al., 2024a), and
MLPs (Liu et al., 2023a; 2024a; Li et al., 2024c; Liu et al., 2024b; Li et al., 2024a). These LMMs
usually follow a two-stage training recipe. During the alignment stage, the connector is trained
on high-quality caption data. Next, the full model is trained on single-image visual instruction
tuning data. However, only text outputs are supervised. ROSS, on the other hand, introduces novel
vision-centric supervision via reconstructing fine-grained visual tokens conditioned on visual outputs.

Visual Encoders for LMMs. As the original CLIP (Radford et al., 2021) adopted by conventional
visual instruction tuning approaches is trained on noisy image-text pairs, it exhibits specific visual
shortcomings, and thus stronger backbones (Fang et al., 2024; Zhai et al., 2023; Chen et al., 2024c)
have been introduced to LMMs. Some concurrent works (Tong et al., 2024b;a) leverage extrinsic
assistance, which further utilizes vision-only self-supervised models (Oquab et al., 2023; Wang
et al., 2023a;b;c; He et al., 2022; Caron et al., 2021) and domain experts (Kirillov et al., 2023; Birkl
et al., 2023; Shen et al., 2023; Gu et al., 2024; Zhang et al., 2024a; Wang et al., 2022; 2024a;b).
RoOSS, from a new intrinsic activation perspective, aims to catalyze enhanced comprehension through
reconstructing input images with no extra visual experts.

Generative Objectives for LMMs. Another line of work introduces pre-trained text-to-image
diffusion models (Rombach et al., 2022) to make LMMs capable of both comprehension and gen-
eration (Dong et al., 2024; Ge et al., 2024a; Sun et al., 2024b; Ge et al., 2024b; Sun et al., 2023;
Ren et al., 2025). Our ROSS, with a totally different motivation, targets to catalyze multimodal
comprehension via reconstruction. Specifically, conditions are different, where Dong et al. (2024)
and Sun et al. (2024b) take outputs corresponding to learnable queries as conditions, while our
RoOSS takes outputs corresponding to visual inputs. Those methods are generative while ROSS is
reconstructive. The detailed pipeline comparison can be found in Appendix C.

3 PRELIMINARIES

Large Multimodal Models. In the literature (Radford et al., 2018; 2019), a §-parameterized LLM
models the canonical causal distribution of each rext token x; as py(x) = HiTz1 po(x;|T<;), where
{x;}]_, represents a sequence of text tokens. To make LLMs understand visual contents, typical
plug-in style LMMs (Liu et al., 2023a; 2024a) regard a sequence of visual tokens as prefix tokens.
Specifically, an input image I € R¥*Wx3 is first projected into a sequence of visual tokens by a
&-parameterized visual encoder G¢ such as CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023),
where (H, W) indicates the spatial resolution. Then, a ¢-parameterized multimodal projector 4
is utilized to project these visual tokens into the feature space of LLMs. As a result, the canonical
causal distribution in a multimodal sentence containing an image I becomes

T
po(@) = [[po(@ilz<i,v), v="Hso0G(I), ¢))
=1

where © = {0, £, ¢} is the parameters and v € RV < indicates the projected visual tokens. N is
the number of visual tokens and D indicates the feature channel. The visual encoder G¢ could be
either frozen (Liu et al., 2023a; 2024a; Tong et al., 2024a) or fine-tuned (Liu et al., 2024b; Bai et al.,
2023; Li et al., 2024c; Wang et al., 2024e).

Training Recipes for LMMs. LMMs almost follow a two-stage training recipe (Liu et al., 2023a),
i.e., the pre-training stage (or the alignment stage) and the supervised fine-tuning stage (or the
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instruction tuning stage). The instruction (supervision) comes from languages such as the answers to
VQA tasks, maximizing the log-likelihood of text outputs:

T—-N

T
> logpe(@ilw<i,v), 2
i=N+1

Eiel\)jltM(e = {9,£,¢},$,I) =

where NV represents the number of visual tokens and visual outputs (one input token corresponds to
one visual output). From Equation (2), we can tell that only text outputs x;~ y are supervised.

4 ROSS: RECONSTRUCTIVE VISUAL INSTRUCTION TUNING

In this section, we first provide an overview of our reconstructive visual instruction tuning (ROSS).
Then, we discuss our explorations towards the optimal formulation in the following subsections,
with the ultimate goal of handling spatial redundancy of visual signals to provide meaningful visual
supervision. Our explorations mainly include reconstruction targets and the training objective.

Overview. Illustrated in Figure 2, the over-
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Figure 2: Overview of ROSS. Given an input image
and the corresponding text to this image, ROSS aims to
supervise visual outputs by reconstruction.

Variants of R0OSS. Evidently, different choices of F and M contribute to different variants. F
controls the reconstruction target while M defines the objective:

1. Towards the target, F can be the pachify operation (Dosovitskiy et al., 2021), resulting in
pixel-level reconstruction, or pre-trained fine-grained visual tokenizers such as VAE (Kingma,
2013) and VQGAN (Esser et al., 2021), leading to latent-level reconstruction. F could even
be vision-only models such as DINOv2 (Oquab et al., 2023), making LMMs learn specific
visual patterns from F, which is also a type of latent-level reconstruction.

2. Towards the objective, the most straightforward choice of M is MSE or cosine similarity for
regressing raw pixel values or latent features, respectively. We also explore the denoising
objective (Ho et al., 2020) to avoid being overwhelmed by fitting exact values.

We introduce our explorations step by step in the following sections. The ultimate goal of our
exploration is to design an appropriate self-supervised reconstructive pre-text task that provides
meaningful vision-centric supervision signals to LMMs, where handling the spatial redundancy of
visual signals (He et al., 2022) becomes the crux.

4.1 ROSSR: REGRESSING AS RECONSTRUCTIVE VISUAL INSTRUCTION

In this section, we introduce straightforward variants, i.e., regressing as reconstructive visual in-
struction. As shown in Figure 3, depending on the choice of F, it mainly has three variants: (a)
RossR-Pixel, (b) Ross®-Latent, and (c) RossR-Latent2Pixel.
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Figure 3: Variants of ROSSR, where regression objectives are either computed on raw RGB values in
(a) and (c), or specific latent space determined by F in (b). We adopt MSE as M for pixel regression
in (a) and (c), and cosine-similarity for latent regression in (b), respectively.

Directly Regressing Raw RGB Values. The most straightforward variant is to directly regress raw
RGB values illustrated in Figure 3a, called “ROSS®-Pixel”. Under such a setting, F is the patchify
operation (Dosovitskiy et al., 2021), reshaping the image I € R¥>*W >3 into a sequence of flattened

2D patches I, € RV (3P%) where (P, P) is the resolution of each image patch and N = HW/P?
indicates the resulting number of patches. 7, can be a simple MLP, mapping the dimension of visual
outputs ;< from D to 3P2. The measurement M is MSE. However, as visual signals suffer from
heavy spatial redundancy (He et al., 2022), such a design may not provide meaningful supervision to
LMMs. An intuitive alternative to avoid directly regressing raw RGB values while still reconstructing
the image is to urge LMMs to reconstruct latent tokens, introduced as follows.

Regressing Latent Tokens. Illustrated in Figure 3b, ROSSR-Latent aims to regress fine-grained
latent tokens extracted by the teacher tokenizer. F can be models trained with discriminative tasks
such as DINOvV2 (Oquab et al., 2023) and DEIT-III (Touvron et al., 2022). The encoder part of
models trained with reconstruction tasks such as VQGAN (Esser et al., 2021) and VAE (Kingma,
2013) are also capable. M here is the consine-similarity. Intuitively, the decoder part of the latter
is able to remap latent tokens into the pixel space. Therefore, supervising in the pixel space via
decoding becomes another valid variant introduced as follows.

Regressing RGB Values via Decoding. Shown in Figure 3¢, ROSS®-Latent2Pixel requires a decoder
to project predicted latent tokens 2 into the RGB pixel space, resulting in predicted image I LetF!
be the decoder part of VQGAN (Esser et al., 2021) or VAE (Kingma, 2013), and the regressive MSE
objective M is performed on pixel-space. Note that we simply use F ! to represent the decoding
process, which is actually not the inverse function of 7 mathematically.

Discussion. Recall that we need to find the optimal solution to address the spatial redundancy of
natural visual signals, the target-level exploration above achieves this goal partially, as the objective
is limited to vanilla regression. To this end, inspired by Ho et al. (2020) and Li et al. (2024e), we
further incorporate a novel denoising objective in the following section.

4.2 ROSSP: DENOISING AS RECONSTRUCTIVE VISUAL INSTRUCTION

As an objective for handling heavy spatial redundancy to provide meaningful vision-centric super-
vision signals, denoising is better than vanilla regressing, since the introduction of noise into the
training data acts as an implicit form of data augmentation and regularization. The denoising process
encourages the model to focus on the underlying data manifold rather than memorizing specific
instance values (Chen et al., 2023c; Song & Ermon, 2019; Karras et al., 2022; Yang et al., 2024b).

Techinically, as illustrated in Figure 4a, our final ROSSP takes high-level visual outputs z;<y
as conditions to recover clean fine-grained tokens zy from noisy tokens z;. Specifically, clean
tokens zo = F(I) are obtained from the teacher tokenizer F. By default, we utilize a continuous
VAE (Kingma, 2013) regularized by Kullback-Leibler (KL) divergence provided by Rombach et al.
(2022), since it is believed to capture sufficient image details. The training procedure of the denoiser
Jr follows a diffusion process (Ho et al., 2020):

l:‘I]Jll\S/FISII(@ = {9,§,¢,7T},:I),I) = Et,e [err(zt;xigN,t) - 6||2] . (4)

The denoiser J, actually estimates the conditional expectation E[e ~ N'(0,I)|z;]. More details
about the background knowledge of diffusion models can be found in Appendix A.
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Figure 4: Illustration of (a) the training procedure of ROSSP and (b) the detailed architecture of
the denoiser 7. (a) ROSSP introduces visual guidance via denoising fine-grained visual tokens z
conditioning on visual outputs T;< . (b) The denoiser takes noisy tokens z;, current timesteps ¢, and
conditions ;< as inputs and outputs the predicted noise €;. Each denoiser block consists of three
linear projection layers and a standard self-attention block (Vaswani et al., 2017).

Architecture of the Denoiser. As conditions x;<  are causal, we introduce a self-attention module
to model the inter-token dependencies illustrated in Figure 4b. Specifically, the architecture of the
denoiser 7 is a stack of Transformer Encoder blocks (Vaswani et al., 2017) and each block contains
three extra projections for conditions ;< v, inputs z;, and timesteps ¢, respectively.

Choices of the Teacher Tokenizer. By default, we adopt latent denoising and we take a continuous
tokenizer provided by Rombach et al. (2022) as JF, since it manages to reconstruct input images
with a low rFID (Heusel et al., 2017) and thus it is expected to preserve many low-level details of
input images. This extra reconstructive objective, however, is not limited to any certain tokenizer
F. Discrete tokenizers such as VQGAN (Esser et al., 2021), and vision self-supervised models
such as DINOv2 (Oquab et al., 2023), are also qualified to be the tokenizer. Even the patchify
operation (Dosovitskiy et al., 2021) is capable, resulting in pixel denoising.

5 EXPERIMENTS

5.1 ABLATION STUDY

Implementation Details. All ablation studies are implemented based on LLaVA-v1.5 (Liu et al.,
2024a). The visual encoder G¢ is CLIP-ViT-L/14@336 (Radford et al., 2021) and the base LLM
is Qwen2-7B-Instruct (Yang et al., 2024a). The training data is LLaVA-558K (Liu et al., 2023a)
and Cambrian-737K (Tong et al., 2024a) for the pre-training stage and the instruction tuning stage,
respectively. We evaluate our each variant of ROSS mainly on (i) hallucination: POPE (Li et al.,
2023c) and HallusionBench (Guan et al., 2024), (ii) fine-grained comprehension: MMVP (Tong
et al., 2024b) and ChartQA (Masry et al., 2022), and (iii) general comprehension: MMBench (Liu
et al., 2023b) English dev split. All evaluations are conducted with VLMEvalKit (Duan et al., 2024).
Evaluation prompts can be found in Appendix B.

Pixel Regression v.s. Latent Regression. Starting from the visual instruction tuning baseline (Liu
et al., 2023a; 2024a), we first explore the effectiveness of using regression as the objective for
our reconstructive visual instruction tuning. We utilize a continuous VAE (Kingma, 2013) with an
encoder-decoder architecture provided by Rombach et al. (2022), where the encoder part serves as F
for RossR-Latent while the decoder part is 7! for ROSSR-Latent2Pixel. As illustrated in Figure 5,
our vision-centric regression supervision outperforms the visual instruction tuning baseline in most
cases. Moreover, latent regression performs the best since regressing raw RGB pixels fails to provide
meaningful supervision signals, regardless of whether utilizing a decoder or not.

Choices of 7. We study the effectiveness across different latent teacher tokenizers F in Figure 0,
including KL-16 provided by Rombach et al. (2022), which is a continuous VAE (Kingma, 2013) with
Kullback—Leibler (KL) divergence, self-supervised DINOv2 (Oquab et al., 2023), fully-supervised
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Figure 5: Pixel Regression v.s. Latent Regression. The teacher tokenizer F for ROSSR-Latent is the
encoder of a continuous VAE (Kingma, 2013) provided by Rombach et al. (2022), while its decoder
serves as F ! for ROSSR-Latent2Pixel. Our vision-centric reconstructive supervision surpasses the
visual instruction tuning baseline in most cases. Among three regression variants, ROSSR-Latent
performs the best, as it avoids explicitly regressing redundant raw RGB values.
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Figure 6: Choices of the latent teacher tokenizer /. KL-16 (Rombach et al., 2022) is the
best tokenizer as it is originally used for reconstruction, and it is expected to preserve the most
image details. Other alternatives are utilized for classification (Touvron et al., 2022), instance-level
representation learning (Oquab et al., 2023), and language alignment (Fang et al., 2024), respectively.
884 - = s - Visual Instruction Tuning
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Figure 7: Regression v.s. Denoising. With KL-16 as the tokenizer, the denoising objective introduced
in Equation (4) brings significant improvements over vanilla regression using MSE as it avoids
overfitting exact latent token values, even if ROSSR-Latent (KL-16) has already outperformed the
visual instruction tuning baseline by a large margin.

[ | Is there a lemon inside the drink in the

00 o2 o4 o® o8 1o cup or are all the lemons outside?
From which angle is this image taken?  Are all easter eggs placed in a container? (a) There is one inside.
(a) Front.  (b) Side. (a) Yes.  (b) No. (b) All are outside.
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Figure 8: Qualitative comparison on attention maps on MMVP (Tong et al., 2024b), where we
keep the same LLLM and training data. With extra vision-centric supervision signals, ROSS urges the
model to focus on specific image contents corresponding to the question with higher attention values.

DEIT-III (Touvron et al., 2022), and language-supervised EVAO2CLIP (Fang et al., 2024). Among
them, KL-16 is the best choice. One intuitive explanation is that it is expected to preserve the most
image details, since it was originally designed to accurately reconstruct input images.

Regression v.s. Denoising. In Figure 7, we study the effectiveness of the denoising objective over
vanilla regression across different tokenizers, i.e., KL-16 (Rombach et al., 2022) and DINOv2 (Oquab
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Table 2: Generative v.s. Reconstructive. Following Sun et al. (2024b) and Dong et al. (2024),
we adopt 576 learnable latent tokens to query the LMM and utilize the corresponding outputs as
conditions to the denoiser for generative cases. Extra 102K caption data from ShareGPT4V (Chen
et al., 2023b) is introduced to the original SFT data, facilitating text-to-image creation. Reconstructive
objectives boost comprehension while generative alternatives cannot.

Method SFT Data w/ Lysual Hallucination Fine-Grained General
737K 102K POPE Halluu MMVP ChartQA MMB™
Baseline 737K + Caption 102K - - 862  55.1 32.0 30.9 74.4
Reconstructive 737K + Caption 102K v v 87.6 58.0 38.7 40.4 75.2
Reconstructive 737K + Caption 102K - v 87.6 56.3 373 39.7 74.9
Generative 737K + Creation 102K - v 854 520 30.0 31.2 73.9

Table 3: The effectiveness of the vision-centric supervision among various LLMs and visual
encoders, where £} manages to bring significant improvements consistently.

Language Model  £yi8!  POPE Hallu. MMVP ChartQA  OCRBench MMBEN
Visual Encoder: CLIP-ViT-L/14@336
Vicuna-7B-vL5 - 86.3 525 28.0 32.9 339 67.0
v 872109 558133 3607180 3987169 3507111 67.6 1 0.6
87.9 55.0 293 34.0 363 73.8

Qwen2-7B-Instruct —  gg'41 05 567117 4201127 371131 381118 7527 1.4

Visual Encoder: SigLIP-ViT-SO400M/14 @384

Vicuna-7B-v1.5 - 86.0 50.4 273 36.2 354 64.5
’ v 868108 5327128 38.0710.7 41.6754 365711 65.7 1 1.2
88.5 57.3 40.7 44.4 432 76.3

Qwen2-7B-Instruct - g7 05 582100 493186 463119 448116 7697 0.6

et al., 2023). Notably, even if ROSSR-Latent (KL-16) has already outperformed the visual instruction
tuning baseline by a large margin, ROSSP manages to bring significant improvements by replacing
regression with denoising. Therefore, denoising is better at handling visual spatial redundancy.

Finally, we leverage the insights and conclusions from all our previous studies to train our ROSS.
Specifically, we regard the optimal formulation ROSSP (KL-16), i.e., denoising with the KL-16
tokenizer, as our final ROSS. Please refer to Appendix C.2 for ablations on the architecture of the
denoiser, continuous tokenizer v.s. discrete tokenizer, and the denoising schedule.

5.2 IN-DEPTH ANALYSIS

Attention Analysis. We compute the attention scores  Table 1: Quantitative comparison on atten-
of the last token with respect to all visual tokens on  tjon values. We conduct a T-test (Student,
MMVP (Tong et al., 2024b). Quantitative and qualita- 1908) to compare the means and a Mann-
tive comparisons between the visual instruction tuning  Whitney U test (Mann & Whitney, 1947) to
baseline (LLaVA) (Liu et al., 2024a) and our ROSS  compare the medians of the two distributions.
are provided in Table 1 and Figure 8, respectively. The mean and median of ROSS are both sig-
Table | reveals that the attention scores achieved by  nificantly higher than those of LLaVA.

RoOSS are significantly higher than those of LLaVA,
indicating that the inclusion of vision-centric recon- Statistic (x10™*) LLaVA Ross  P-value

structive objective E‘ﬁiﬁ‘ﬁl effectively directs focus Mean 203 236 127x1077
towards input images, thereby enhancing the compre-  25th Percentile  1.50  1.81 -
hending visual signals. Similarly, Figure 8 demon- Median 190 226 4.39x107°

visual

strate that the implementation of L }i{; enables the ~ 75th Percentile 242 276 -
alignment of attention closely with the relevant visual =~ 95th Percentile ~ 3.51  3.69 -
elements corresponding to the text query.

Generative v.s. Reconstructive. We ablate the effectiveness of reconstruction over generation in
Table 2. Similar to Sun et al. (2024b) and Dong et al. (2024), for generative cases, we adopt 576
learnable latent tokens to guery the LMM and utilize the corresponding outputs as conditions to the
denoiser. The detailed pipeline of these two methods can be found at Figure 11 in Appendix C.2.
However, generative methods require specific creation data and can not be naively implemented on
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Table 4: Comparison to state-of-the-art LMMs. A mixture of 2M caption data and 1.2M instruction
tuning data are utilized for pre-training and fine-tuning, respectively. Our model outperforms them
in most of the settings. We evaluate these models on: POPE (Li et al., 2023c) averaged accuracy,
Hallu.: HallusionBench (Guan et al., 2024) average accuracy, MMBEN: MMBench (Liu et al., 2023b)
English dev split, MMBEN: MMBench (Liu et al., 2023b) Chinese dev split, SEED!: SEED-Bench-1
(Li et al., 2023a) with image accuracy, MMMU (Yue et al., 2024) validation split, MMVP (Tong
et al., 2024b), GQA (Hudson & Manning, 2019) test-dev-balanced split, and AI2D (Hiippala et al.,
2021) test split. *We evaluate the official checkpoint/api using VLMEvalKit (Duan et al., 2024).

Model POPE Hallu. MMB®™N MMB®N SEED' MMMU MMVP GQA AI2D

GPT-4V-1106 (OpenAl, 2023a) 754 65.8% 75.8 7514 716 538 50.0 36.8 782
Gemini-1.5 Pro (Team et al., 2023) — - 73.6 - 70.7 479 - -
MM-1-8B (McKinzie et al., 2024) 86.6 — 72.3 - 699 37.0 - 72.6 -

Mini-Gemini-8B (Li et al., 2024f) — - 727 - 732 373 187 645 735
DeepSeek-VL-7B (Lu et al., 2024) 85.8% 44.1% 732 728 704 366 - - 64.9*
Cambrian-1-8B (Tong et al., 2024a) 87.4% 48.7% 759 68.9 747 427 513 646 73.0

ROss-7B 883 57.1 79.1 77.1 736 466 567 655 79.3

Base LLM: Vicuna-7B-v1.5
LLaVA-v1.5-7B* (Liu et al., 2024a) 862 47.5 65.5 58.5 660 344 200 620 554
LLaVA-v1.6-7B* (Liu et al., 2024b) 86.5 358 674  60.1 702 3538 373 642 67.1

ROSS-7Byicuns 88.2 552 67.7  61.3 676 369 393 637 693

Base LLM: Vicuna-13B-v1.5

LLaVA-v1.5-13B¥ (Liu et al.,, 2024a) 82.5 449 688 63.6 682  36.6 320 633 60.8

LLaVA-v1.6-13B¥ (Liu et al, 2024b) 862 367 700  64.1 719 362 353 654 724
Mini-Gemini-13B (Li et al., 2024f) — - 68.6 - 732 373 19.3 63.7 70.1
Cambrian-1-13B (Tong et al., 2024a) 85.7¢ 54.0% 75.7 65.9* 744 400 413 643 73.6

ROSS-13Byicuns 88.7 564 736 674 71.1 413 447 652 738

the original SFT data. To build creation data, we utilize GPT-40 to transfer 102K caption into text-to-
image creation data from ShareGPT4V (Chen et al., 2023b) and combine them with the original SFT
data. From Table 2, we can tell that reconstructive objectives boost comprehension while generative
alternatives cannot. An intuitive explanation of this evidence can be found in Appendix C.2.

Ross with Different LLMs and Visual Encoders. To demonstrate the effectiveness of our vision-
centric supervision £Y$12l adopted by our ROSS, we conduct systematic experiments across different
base LLMs and visual encoders. From Table 3, ROSS contributes to significant improvements
consistently, especially on fine-grained comprehension benchmarks, i.e., MMVP (Tong et al., 2024b)
and ChartQA (Masry et al., 2022). Extended experiments on more representative benchmarks can be

found at Table 12 in Appendix C.2.

Reconstruction Results. We fine-tune the denoiser to recover latent tokens from a frozen KL-16
provided by Rombach et al. (2022) conditioned on ROSS-7B features on ImageNet-1K (Deng et al.,
2009) for only five epochs, where the denoiser manages to produce reasonable reconstruction results
as illustrated at Figure 9 in Appendix C.1. This interesting finding demonstrates that high-level
ROsSS-7B features actually contain image details. We hope this finding will inspire future work.

Computational Overhead. The denoising process introduces a negligible increase in training time
(=10% compared to the baseline), while the benefits outweigh the minor additional costs. Please
refer to Table 10 in Appendix B for details.

5.3 COMPARISON WITH STATE-OF-THE-ARTS

RoOSS utlizes a single SigLIP-ViT-SO400M/14 @384 (Zhai et al., 2023) as the visual encoder. ROSS-
7B utilizes Qwen2-7B-Instruct (Yang et al., 2024a) and R0OSS-13Bycyna adopts Vicuna-13B-v1.5 (Chi-
ang et al., 2023) as the base LLM. The implementation almost follows LLaVA-v1.5 (Liu et al., 2024a)
without the high-resolution image-slicing technique (Liu et al., 2024b). Thus, our primary compar-
ison of ROSS with alternative methods focuses on benchmarks that do not require exceptionally
high-resolution inputs. We use a mixture of 2M caption data for the pre-training stage, which consists
of 1246K from ShareGPT4V (Chen et al., 2023b) and 707K from ALLaVA (Chen et al., 2024a). The
instruction tuning data is a mixture of Cambrian-737K (Tong et al., 2024a) and SMR-473K (Zhang
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Table 5: Transfer learning on SpatialBench (Cai et al., 2024). “RGB” indicates using only RGB
images for testing, while “RGB + D” represents taking depth maps as extra inputs. The performance
of GPT-4o is obtained from Cai et al. (2024). LMMs can better comprehend depth maps with LY S5,

Method Test Inputs £y383 MiDaS Size Reaching  Position  Existence  Counting Average
RGB - - 20.0 51.7 58.8 70.0 74.6 55.0
LLava RGB+D . ~ 217117 4500167 588 650,50 777131 53614
RGB - v 21.7 60.0 64.7 80.0 84.1 62.1
RGB +D - v 21.7 517183 70.6159 650]150 91.177.0 60.0]2.1
ROSS RGB v - 25.0 53.3 64.7 70.0 75.3 57.7
RGB +D v - 2837133 65.0111.7 67.6729 8507150 84.6718.7 66.1184

et al., 2024b). We further incorporate our ROSS with the “anyres” technique (Liu et al., 2024b) and
compare with others on high-resolution benchmarks at Table 13 in Appendix C.3.

[lustrated in Table 4, we compare our ROSS with both private models (OpenAl, 2023a; Team et al.,
2023; McKinzie et al., 2024) and open-sourced alternatives (Liu et al., 2024a;b; Tong et al., 2024a;
Li et al., 2024f; Lu et al., 2024). The previous open-source state-of-the-art Cambrian-1 (Tong et al.,
2024a) leverages extrinsic assistance that aggregates CLIP (Radford et al., 2021), SigLIP (Zhai et al.,
2023), DINOv2 (Oquab et al., 2023), and ConvNext (Liu et al., 2022). On the other hand, our ROSS
stands for intrinsic activation. With only a single SigL.IP (Zhai et al., 2023) model as the visual
encoder, our ROSS surpasses Cambrian-1 (Tong et al., 2024a), under most cases, without a careful
choice of the visual experts and naturally maintains a lightweight inference procedure. ROSS is also
data-efficient compared with Cambrian-1 (Tong et al., 2024a), since it requires 7M instruction tuning
data. Notably, ROSS-7B even surpasses GPT-4V-1106 and Gemini-1.5 Pro on several benchmarks
such as POPE (Li et al., 2023c), MMBench (Liu et al., 2023b), and MMVP (Tong et al., 2024b).

5.4 APPLICATIONS

Transfer Learning on Understanding Depth Maps. We further evaluate the transfer learning
capability of our ROSS on SpatialBench (Cai et al., 2024), which requires the model to understand
depth maps. We compare our ROSS with the visual instruction tuning baseline, with the same training
data and model architecture. Also, we compare the effectiveness of the extrinsic assistance solution,
i.e., combining a depth expert MiDaS-3.0 (Birkl et al., 2023) to visual instruction tuning, with our
intrinsic activation solution. Specifically, the pre-training data is LLaVA-558K (Liu et al., 2023a) and
the fine-tuning data is SpatialQA-853K (Cai et al., 2024), where each conversation contains the RGB
image and the depth maps extracted by ZoeDepth (Bhat et al., 2023). The visual encoder is CLIP-
ViT-L/14@336 (Radford et al., 2021) and the base LLM is Qwen2-7B-Instruct (Yang et al., 2024a).
As demonstrated in Table 5, our ROSS manages to make use of the extra depth map, as consistent
and significant improvements are observed when taking “RGB + D” inputs for testing. Extrinsic
assistance approaches cannot take advantage of extra depth maps when testing. Even GPT-40 cannot
fully understand depth maps. Qualitative results can be found at Figure 16 in Appendix C.5.

6 CONCLUSION

This paper introduces reconstructive visual instruction tuning (R0OSS), leveraging a vision-centric
reconstructive objective to supervise visual outputs. To avoid being overwhelmed by heavily redun-
dant raw RGB values, we train a denoiser to recover clean latent visual representations conditioning
on visual outputs. Experimentally, the proposed objective indeed brings enhanced comprehension
capabilities and reduced hallucinations. ROSS outperforms the state-of-the-art under most cases with
only a single SigLIP (Zhai et al., 2023) as the visual encoder. The in-depth analysis demonstrates that
high-level features from ROSS-7B actually contain sufficient details for low-level image reconstruc-
tion. This finding reveals the possibility of equipping comprehension LMMs with the ability of naive
generation without the help of generation experts such as Stable Diffusion (Rombach et al., 2022).
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APPENDIX

A LATENT DIFFUSION MODELS

Given a set of clean latent tokens zo drawn from p(z), the forward diffusion process is a Markov
chain that gradually adds random Gaussian noise to the original sample:

a(zt|ze-1) = N(V1 = Brzi-1, Be]), (%)
where A/ (i, X) denotes the Gaussian distribution, and ¢ indicates discrete timesteps. 3; € (0,1)
indicates a pre-defined time-dependent variance schedule. According to Ho et al. (2020), to admit
sampling z; at an arbitrary timestep ¢ directly from z, this transition can be reformulated as

q(zt|z0) = N(Varzo, (1 — ay)I),
zi = Vayzg +V1 — aze, €~ N(0,1),

where ay =1 — 5, and oy = szl ay. A latent diffusion model learns to reverse this progressive
noise addition process for latent tokens. Specifically, to iteratively generate clean tokens zy from
pure noise zp conditioned on C, we need to reverse the forward process by

Q)

1 1-— (673
(2 ==Y e (20,8 , 7
Zt—1 \/@ (Zt me (Zt )> +Ut€ ( )

where a m-parameterized neural network € is trained to predict the added noise during the forward
process. o, indicates the posterior noise variance. The training objective of €, is

L(m,z0) = By [||ex(Varzo + V1 — ar€;C,t) — e||2] . ®)

B IMPLEMENTATION DETAILS

Table 6: Hyperparameters of ROSS. We obtain most of the configurations from Liu et al. (2024a).

Config Stage 1

Stage II

Trainable parts

Frozen parts

Global batch size 256
Batch size per GPU 16
Accumulated steps 2
DeepSpeed zero stage 2
Learning rate 1x1073

Learning rate schedule
Warmup ratio

Weight decay

Epoch

Optimizer

Precision

projector + denoiser
visual encoder + LLM + teacher tokenizer

projector + LLM + denoiser
visual encoder + teacher tokenizer

128
4
4
3
2x107°
warmup + cosine decay
0.03
0
1
AdamW
bf16

Table 7: Details of the instruction tuning
dataset provided by Tong et al. (2024a).

Dataset # Samples
LLaVA (Liu et al., 2023a) 158K
ShareGPT (Team, 2023) 40K
VQAV2 (Goyal et al., 2017) 83K
GQA (Hudson & Manning, 2019) 72.1K
OKVQA (Marino et al., 2019) 9K
OCRVQA (Mishra et al., 2019) 80K
A-OKVQA (Schwenk et al., 2022) 50K
TextVQA (Singh et al., 2019) 21.9K
RefCOCO (Kazemzadeh et al., 2014) 30K
VG (Krishna et al., 2017) 86.4K
DVQA (Kafle et al., 2018) 13K
DocVQA (Mathew et al., 2021) 15K
ChartQA (Masry et al., 2022) 28.1K

AI2 Diagrams (Kembhavi et al., 2016) 15.5K

Table 8: Details of the instruction tuning
dataset provided by Zhang et al. (2024b).

Dataset # Samples
ScienccQA (Saikh et al., 2022) 9K
TextbookQA (Kembhavi et al., 2017) 9.5K

AI2 Diagrams (Kembhavi et al., 2016) 12.4K
ChartQA (Masry et al., 2022) 28.3K
DVQA (Kafle et al., 2018) 200K
ArxivQA (Li et al., 2024d) 100K
GeoQA3 (Chen et al., 2021) 5K
Geometry3K (Lu et al., 2021) 2.1K
GeoQA+ (Cao & Xiao, 2022) 72.3K
MathVision (Wang et al., 2024d) 2.7K
TabMWP (Lu et al., 2022) 30.7K
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Table 9: Summary of the evaluation benchmarks. Prompts are mostly borrowed from
VLMEvalKit (Duan et al., 2024) and Imms-eval (Li et al., 2024b).

Benchmark Response formatting prompts

POPE (Li et al., 2023c) -

HallusionBench (Guan et al., 2024) Answer the question using a single word or phrase.

MMBench (Liu et al., 2023b) Answer with the option’s letter from the given choices directly.
SEED-Bench (Li et al., 2023a) Answer with the option’s letter from the given choices directly.
MMMU (Yue et al., 2024) Answer with the option’s letter from the given choices directly.
MMVP (Tong et al., 2024b) Answer with the option’s letter from the given choices directly.
AI2D (Hiippala et al., 2021) Answer with the option’s letter from the given choices directly.
RealWorldQA (xAl, 2024) Answer with the option’s letter from the given choices directly.
GQA (Hudson & Manning, 2019) Answer the question using a single word or phrase.

ChartQA (Masry et al., 2022) Answer the question using a single word or phrase.
OCRBench (Liu et al., 2023c) Answer the question using a single word or phrase.

DocVQA (Mathew et al., 2021) Answer the question using a single word or phrase.

InfoVQA (Biten et al., 2022) Answer the question using a single word or phrase.

TextVQA (Singh et al., 2019) Answer the question using a single word or phrase.

Table 10: Comparisons on computational costs during the instruction tuning stage with Cambrian-
737K (Tong et al., 2024a), where evaluations are conducted using 8 A100 GPUs with a global batch
size of 128. Due to the limited GPU memory, we accumulate 4 gradient steps and the batch size per
GPU is 4. The whole stage requires 5757 training steps. GPU memories are averaged over 8 GPUs
with DeepSpeed Zero 3.

.. visual Trainable . . GPU
Vision Base LLM Lyisual Parameters Speed (s/iter) Time Memory
CLIP-L/336  Qwen2-7B-Instruct - 7.63B 8.31 13h 17min 4534 G
CLIP-L/336  Qwen2-7B-Instruct v 7.68 B 9.02 (1.09x) 14h 25min 46.62 G (1.03x)
CLIP-L/336  Vicuna-13B-v1.5 - 13.05B 13.33 21h 19min 48.62 G
CLIP-L/336  Vicuna-13B-v1.5 v 13.11B 14.69 (1.10x) 23h 30min 49.07 G (1.01x)
SigLIP-L./384 Qwen2-7B-Instruct - 7.63 B 8.77 14h Imin  47.08 G
SigLIP-L/384 Qwen2-7B-Instruct v 7.68 B 948 (1.08x) 15h9min  52.07 G (1.11x)
SigLIP-L/384 Vicuna-13B-v1.5 - 13.05B 14.22 22h 44min 48.80 G
SigLIP-L/384 Vicuna-13B-v1.5 v 13.11B 15.32 (1.08x) 24h 30min 52.68 G (1.08x)

Hyperparameters. The hyperparameters of ROSS are provided in Table 6. We simply borrow most
configurations from LLaVA-v1.5 (Liu et al., 2024a) without further tuning, as we find it works well
with our ROSS, even if we adopt SigLIP (Zhai et al., 2023) and Qwen2 (Yang et al., 2024a) while the
original LLaVA-v1.5 (Liu et al., 2024a) utilized CLIP (Radford et al., 2021) and Vicuna-v1.5 (Chiang
et al., 2023). As SigLIP represents a single 384 x 384 image with 729 tokens and the downsampling
ratio of the teacher tokenizer KL-16 (Rombach et al., 2022) is 16, we set the input resolution of the
teacher tokenizer as 432 = /729 x 16 to produce 729 fine-grained tokens as denoising targets.

Instruction Tuning Data. When comparing with state-of-art LMMs in Table 4, our ROSS is trained
on approximately 1.2M instruction tuning data, which is a mixture of Cambrian-737K (Tong et al.,
2024a) and SMR-473K (Zhang et al., 2024b). Details of these two instruction tuning datasets are
listed in Table 7 and Table 8, respectively. There might be some overlap but we simply concat these
two datasets as it is already empirically effective.

Evaluation Prompts. We provide a thorough examination of all evaluation benchmarks utilized in
this paper in Table 9. Notably, for MM VP (Tong et al., 2024b), which is not officially supported by
VLMEvalKit (Duan et al., 2024), we follow Cambrian-1 (Tong et al., 2024a) to reformat the original
question into a multiple-choice format and compute the accuracy using exact matching.

Computational Costs. As demonstrated in Table 10, the denoising process introduces a negligible
increase in training time (=10% compared to the baseline), while the benefits outweigh the minor
additional costs.
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Figure 9: Reconstruction results on ImageNet-1K (Deng et al., 2009) validation set. For each tuple,
we show the input image (left) and the reconstructed image (right). Reasonable reconstruction results
demonstrate that high-level features of ROSS-7B can be projected back into the pixel space.

59.1 27
88.4 762
588 404 757 756
39.7 752 750

87.6 . s s2 541 u7 . s . 3x w/ SelfAttn (55M)
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Figure 10: The architecture of the denoiser and the choice of fine-grained tokenizer. The self-
attention module illustrated in Figure 4b is crucial since orange bars consistently outperform others on
hallucination and fine-grained comprehension benchmarks, while maintaining similar performances
on the general understanding benchmark. KL-16 provided by Rombach et al. (2022) is better than
VQ-16 provided by Sun et al. (2024a), as quantization may lead to information loss.

C MORE EXPERIMENTS

C.1 RECONSTRUCTION RESULTS

We fine-tune the denoiser to recover latent tokens from a frozen KL-16 provided by Rombach et al.
(2022) conditioned on frozen ROSS-7B features on ImageNet-1K (Deng et al., 2009) for only five
epochs, where the denoiser manages to produce reasonable reconstruction results as illustrated in
Figure 9. This interesting finding demonstrates that high-level ROSS-7B features actually contain
image details.

C.2 MORE ABLATIONS

KL-16 v.s. VQ-16. Our default tokenizer is a continuous VAE (Kingma, 2013) with Kullback-Leibler
(KL) divergence trained by Rombach et al. (2022). We further conduct experiments with a discrete
tokenizer provided by Sun et al. (2024a), which is a VQGAN (Esser et al., 2021), i.e., VQVAE (Oord
et al., 2017) with additional perceptual loss (Zhang et al., 2018) and adversarial loss (Goodfellow
et al., 2014). As demonstrated in Figure 10, KL-16 outperforms VQ-16. One intuitive explanation is
that KL-16 preserves more low-level details than VQ-16 since quantization may lead to information
loss. Moreover, quantitatively, on ImageNet (Deng et al., 2009) 256x256 validation set, KL-16
achieves 0.87 rFID (Heusel et al., 2017) while the rFID (Heusel et al., 2017) of VQ-16is 2.19.

Architecture of the Denoiser. Illustrated in Figure 10, the self-attention module is crucial, as
original visual outputs x;< x are actually causal and we need to model inter-token discrepancy via
self-attention. The number of trainable parameters is not the crux.

Schedule of 5. We study the effectiveness of different schedules of 8 in Table 11. From the
table, we can tell that even with different schedules of 3, ROSS consistently improves the baseline,
demonstrating its robustness to the denoising schedule.
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Table 11: Ablations on different schedules of 5. ROSS consistently improves the baseline, demon-
strating its robustness to the denoising schedule.

Schedule of 3 POPE Hallu. MMVP ChartQA ~ MMB™
- 87.9 55.0 29.3 34.0 73.8
Linear (Ho et al., 2020) 88.1102 573123 42071124 392152 751113

Scaled Linear (Rombach et al., 2022) 88.41 0.5 583133 40.07104 40.776.7 7537115
GLIDE Softmax (Nichol et al., 2022) 88.47 0.5 59.114.1 42717134 4047164 752714
GeoDiff Sigmoid (Xu et al., 2022) 8827103 577127 4137117 389149 7557117
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Figure 11: Pipeline comparison between reconstructive and generative. The reconstructive
objective (left) does not require specific data formulations and can be easily combined with current
visual instruction tuning data. However, the generative objective (right) needs specific fext-fo-image
creation data, which could be converted by image-to-text caption data.

Generative v.s. Reconstructive. We offer a detailed pipeline comparison in Figure 11. Experimental
results have already been provided in Table 2. The implementation of generative methods is similar
to Sun et al. (2024b) and Dong et al. (2024), where we adopt 576 learnable queries as inputs and take
the corresponding outputs as conditions for the denoiser.

We hypothesize that the underlying reason for the lower performance of generative methods in
comprehension tasks is the weak correspondence between inputs and supervision under generative
settings, which typically arises from both the (1) data and the (2) design of these methods.

(1) Typical generative methods that explore the synergy of comprehension and generation, usually
leverage image generation conditioned on text instructions on (i) text-to-image datasets or (ii)
interleaved datasets as extra supervision. However, (i) text-to-image datasets are typically designed
to generate high-aesthetic samples rather than text-aligned ones, and (ii) interleaved datasets aim to
enable few-shot learning via interleaving independent supervised examples, where reasoning becomes
more important than alignment. Therefore, there exists a clear disconnect where the supervision
(image) has little to do with the input (text instruction). For example, the CLIP-Score (Hessel et al.,
2021), which measures the similarity between text and images, is only 0.3043 for the LAION-Art
dataset (Schuhmann et al., 2022) and 0.2842 for the MMC4 dataset (Zhu et al., 2023), indicating that
these datasets are not well-suited for tasks requiring strong text-image alignment.

(2) Even when we attempt to ensure image-text alignment by converting aligned caption data into
creation data for supervision, the results demonstrated in Table 2 remain unsatisfactory. This suggests
that the design of generative objectives itself does not inherently require a strong correspondence
between inputs and supervision targets.

In contrast, reconstructive methods like ROSS leverage the original input images as auxiliary super-
vision, ensuring a strong and direct correspondence, which is crucial for tasks requiring accurate
comprehension and interpretation of multimodal data, leading to significantly improved performance.

Extended Ablations on Different LL.Ms and Visual Encoders. We extend the ablation in Table 3 by
incorporating more benchmarks, providing a more balanced and representative distribution of tasks.
Empirical results in Table 12 demonstrate that our proposed vision-centric supervision utilized by
ROSS leads to significant improvements in most cases. Moreover, we found ROSS contributes more

21



Published as a conference paper at ICLR 2025

Table 12: Extended ablations on The effectiveness of the vision-centric supervision £} ¥3%& among
various LLMs and visual encoders. Pre-training data is LLaVA-558K (Liu et al., 2023a) and
instruction tuning data is Cambrian-737K (Tong et al., 2024a). Evaluations of POPE (Li et al., 2023c),
HallusionBench (Guan et al., 2024), MMBench (Liu et al., 2023b), SEED-Bench-1 (Li et al., 2023a),
MMMU (Yue et al., 2024), MMVP (Tong et al., 2024b), AI2D (Hiippala et al., 2021), OCRBench (Liu
et al., 2023c), and RealWorldQA (xAl, 2024) are conducted with VLMEvalKit (Duan et al., 2024),
while evaluations of ChartQA (Masry et al., 2022), DocVQA (Mathew et al., 2021), InfoVQA (Biten
et al., 2022), and TextVQA (Singh et al., 2019) are conducted with Imms-eval (Li et al., 2024b).

CLIP-ViT-L/14@336 SigLIP-ViT-SO400M/14 @384

Vicuna-7B-v1.5  Qwen2-7B-Instruct Vicuna-7B-v1.5  Qwen2-7B-Instruct
Benchmark LLaVA Ross LLaVA RosSs LLaVA RosSs LLaVA  RoSS
POPE,. 86.3 87.270.9 87.9 88.4710.5 86.0 87.7711.7 88.5 88.7 1 0.2
HallusionBenchyace 52.5 55.813.3 550 59.174.1 504 5387134 57.3 58.210.9
MMBench-ENgey 67.0 67.6 7 0.6 73.8 752714 64.5 69.2714.7 76.3 76.9 1 0.6
MMBench-CNgey 60.0 59.8 0.2 729 173.710.8 63.1 63.470.3 75.7 76371 0.7
SEEDjng 66.7 66.4]0.3 703  70.7 1 0.4 68.2 69.070.8 723 721,102
MMMU ey 30.0 34.0 7 4.0 440 453713 333 38.0 1 4.7 38.7 4137 2.6
MMMU 35.3 36.0 1 0.7 419 42.6 1 0.7 342 3547112 41.8 43.87 2.0
MMVP 28.0 36.0 1 8.0 29.3 42.7 1134 27.3 38.0 1 10.7 40.7 49.37 8.6
AI2Dyes 61.2 61.410.2 719 7337114 62.6 624102 74.0 74.570.5
ChartQA st 329 39.876.9 36.2 41.6 154 34.0 48.2714.2 444 4697125
DocVQA. 334 41.6 1 8.2 31.1 44.7 1 13.6 404 40.7 17 0.3 39.2 39.3170.1
InfoVQAa 21.2 2641752 22.1 3937 16.2 22.8 233705 240 25.171.1
TextVQA v 55.7 58.71 3.0 520 541721 60.5 62.6 7 2.1 563 575112
OCRBench 339 350111 363 381718 354 3657111 432 448 116
RealWorldQA 527 83.210.5 56.7 57.4710.7 550 571721 579 591112
Average 47.8 50.6 1 2.8 52.1 564143 492 524732 554 5691 1.5

Table 13: Comparison to state-of-the-art LMMs on benchmarks requires high-resolution inputs.
We evaluate models on: ChartQA (Masry et al., 2022), DocVQA (Mathew et al., 2021) val set,
InfoVQA (Biten et al., 2022) val set, TextVQA (Singh et al., 2019) val set, OCRBench (Liu et al.,
2023c), and RealWorldQA (xAl, 2024). ¥We evaluate the official checkpoint.

Model ChartQA DocVQA InfoVQA TextVQA OCRBench RealWorldQA

GPT-4V-1106 (OpenAl, 2023a)  78.5 88.4 - 78.0 645 61.4
Gemini-1.5 Pro (Team et al., 2023) 81.3 86.5 - 78.1 - 67.5
Grok-1.5 (xAIL 2024)  76.1 85.6 - 78.1 - 68.7
LLaVA-v1.5-7B¥ (Liu et al., 2024a)  18.2 28.1 25.7 58.2 317 54.9
LLaVA-v1.6-7B¥ (Liu et al., 2024b)  65.5 74.4 37.1 64.8 532 57.6
Cambrian-1-8B (Tong et al., 2024a)  73.3 77.8 - 71.7 624 64.2
ROSS-7TBanyres  76.9 81.8 50.5 72.2 607 66.2

significant improvements over fine-grained comprehension datasets, such as HallusionBench (Guan
et al., 2024), MMVP (Tong et al., 2024b), and ChartQA (Masry et al., 2022).

C.3 COMPARISON ON HIGH-RESOLUTION BENCHMARKS

We incorporate the “anyres” technique proposed by LLaVA-v1.6 (Liu et al., 2024b) into our ROSS.
Specifically, for each image, we employ a grid configuration of 384 x {2x2, 1x{2,3,4}, {2,3,4} x1}
to identify the input resolution, resulting in a maximum of 5x729 = 3,645 visual tokens. Each
384 x384 crop is required to reconstruct the original input via the denoising objective proposed by
RoOSS. In Table 13, our ROSS-7B,yres surpasses LLaVA-v1.6-7B (Liu et al., 2024b) and Cambrian-1-
8B (Tong et al., 2024a) under most cases. These results indicate that ROSS not only performs well at
lower resolutions but also maintains its competitive edge at higher resolutions, making it a robust and
versatile method.
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Table 14: Evaluations on language performance. We evaluate multi-modal benchmarks that mainly
require general knowledge following Tong et al. (2024a). Furthermore, we incorporate representative
language benchmarks, including general understanding on MMLU (Hendrycks et al., 2020) and
HellaSwag (Zellers et al., 2019), and instruction-following on IFEval (Zhou et al., 2023). ROSS does
not harm language capabilities as it brings improvements in most cases.

CLIP-ViT-L/14@336 SigLIP-ViT-SO400M/14 @384

Vicuna-7B-v1.5 Qwen2-7B-Instruct ~ Vicuna-7B-v1.5 Qwen2-7B-Instruct
Benchmark LLaVA Ross LLaVA Ross LLaVA Ross LLaVA Ross
Vision-Language Benchmarks on Knowledge
ScienceQA est 68.5 69.070.5 76.5 774709 69.6 7131 1.7 78.3 785710.2
MMMU ey 30.0 34.0 1 4.0 440 453713 33.3 38.014.7 38.7 41.3712.6
MMMU 353 36.0710.7 419 42.670.7 342 354112 41.8 43.812.0
AlI2Dest 61.2 61.470.2 719 733714 62.6 624102 740 745705
Language Benchmarks
MMLU 26.5 2747109 57.1 60.7 1 3.6 26.0 259 0.1 60.9 61.0 1 0.1
HellaSwagacc-norm 27.0 269,0.1 464 462 0.2 271 27.0/0.1 455 46.6 1 1.1
IFEvalguict-inst 41.2 44.6 134 47.1 49.271 2.1 43.6 43.870.2 47.8 48.170.3
IFEvalgiict-prompt 28.7 353716.7 35.1 37.011.9 32,5 33.170.6 35.3 362109
Average 39.8 41.872.0 525 54.011.5 41.1 421710 52.8 53.81 1.0

Table 15: Model scaling of ROSS. We take Qwen2.5 series (Team, 2024) as the base language
model and CLIP-ViT-L/14@336 (Radford et al., 2021) as the visual encoder. Pre-training data is
LLaVA-558K (Liu et al., 2023a) and the instruction tuning data is LLaVA-665K (Liu et al., 2024a).
ROSS brings improvements over the baseline across different model sizes in most cases.

0.5B 1.5B 3B 7B
Benchmark
LLaVA RoOss LLaVA Ross LLaVA Ross LLaVA Ross

POPE,. 50.0 60.4 7 10.4 853 879124 87.3 88.170.8 879 88.470.5
HallusionBench;acc 45.8 48.0 1 2.2 48.7 49.6 1 0.9 522 522 48.7 53.71 5.0
MMBench-ENgey 552 604152 67.5 68.27 1.7 70.6 7147 0.8 75.0 75.771 0.7
MMBench-CNgey 45.6 48.913.3 624 6397 1.5 68.0 69.1 7 1.1 73.6 73.510.1
SEEDjmg 55.8 556,102 66.3 66.8 7 0.5 68.2 68.470.2 70.6 71.0 7 0.4
OCRBench 229 248 1 19 291 298 17 313 308 |5 334 358124
MMMU gey 352 36.010.8 447 45.010.3 48.7 49.0 17 0.3 48.0 48.0
MMMU,y 38.0 4037 1.7 41.8 43.6 7 1.8 41.6 42.7 1 1.1 47.3 48.0 1 0.7
AI2Dest 453  46.0 7 0.7 59.0 59.570.5 62.9 63.270.3 68.3 68.57 0.2
RealWorldQA 45.1 4641 1.3 50.5 53.573.0 55.7 579122 59.5 599704
Average 439 46.7 7128 553 56871 1.5 58.9 5937104 612 6237 1.1

Table 16: Data scaling of R0OSS. We take Qwen2-7B-Instruct (Yang et al., 2024a) as the base
language model and CLIP-ViT-L/14@336 (Radford et al., 2021) as the visual encoder. ROSS
consistently brings significant improvements as the training data scale increases.

PT SFT Lyl POPE Hallu. ChartQA  OCRBench MMBEN  AI2D

879 55.0 34.0 363 738 724
358K TITK . g8 4105 59.1 141 4047164 380117 7527 1.4 7337109
885 573 37.0 389 75.7 745
8K L2M o ge 8103 57.810.5 420150 39213 76871 1.1 7477102
M vk - 881 55.6 373 384 762 723
V883102 5627106 419145 398114  77.0108 73471 1.1
M 1o - 883 538 412 388 76.5 73.9
: /8897104 573125 43212.0 405117 7807 1.5 741102

C.4 MORE ANALYSIS

Language Capabilities. One possible concern of ROSS is that this type of low-level reconstruction
may harm the high-level language capabilities. To investigate this issue, we evaluate multi-modal
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From the camera’s perspective, is the spider web very dense or relatively sparse?
(a) Very dense (b) Relatively sparse

1,000t Steps 3,000t Steps 5,000t Steps 7,000t Steps 9,000t Steps
Training Evolution

Figure 12: Qualitative comparison using GradCAM (Selvaraju et al., 2020) on MMVP (Tong
et al., 2024b). We visualize the gradient of the second-to-last block of the LMM using the option of
the ground-truth answer as the target class. Equipped with our proposed vision-centric supervision
signals, ROSS provides more reasonable gradients and urges LMMs to focus on relevant regions (the

spider web) as the training evolves.
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According to the image, is New York the only U.S. state that shares a
. . . border with Lake Huron?
Is the right orange circle smaller than the left orange circle?
No, New York is not the only U.S. state that shares a border with Lake
Huron. The image shows that the Great Lakes region includes the

LLaVA-v1.5-7B  Yes, the right orange circle is smaller than the left orange circle. 1B
LLaVAV15-78 states of Michigan, Ohio, Indiana, Illinois, Wisconsin, and
Cambrian-1-8B Yes, the right orange circle is smaller than the left orange circle. Minnesota, all of which share borders with Lake Huron
The orange circles in both the left and right images are actually the N Based on the image, New York is not the only U.S. state that shares a
- . : - : H Cambrian-1-8B :
same size. This is a visual illusion where the surrounding circles border with Lake Huron.

influence the perceived size of the central orange circle. In the left . )
No, the image does not show New York as bordering Lake Huron. It

GPT-4v image, the smaller blue circles make the orange circle appear larger,
whereas in the right image, the larger blue circles make the orange GPT-4v suggests that New York borders lakes Ontario and Erie, but Lake
circle appear smaller. Huron does not share a border with New York.
Yes, New York is the only U.S. state that shares a border with
ROSs-7B No, the right orange circle is larger than the left orange circle. ROSs-78 Lake Huron.

Figure 13: Qualitative comparisons on HallusionBench (Guan et al., 2024).

benchmarks that mainly require general knowledge following (Tong et al., 2024a), including Sci-
enceQA (Saikh et al., 2022), MMMU (Yue et al., 2024), and AI2D (Hiippala et al., 2021). Fur-
thermore, we incorporate representative language benchmarks, including general understanding on
MMLU (Hendrycks et al., 2020) and HellaSwag (Zellers et al., 2019), and instruction-following
on IFEval (Zhou et al., 2023). Empirical results in Table 14 demonstrate that ROSS does not harm
language capabilities as it brings improvements in most cases.

Model Scaling Properties. To study the stability and scalability of ROSS across different model
sizes, we use the Qwen2.5 series (Team, 2024) with varying sizes as the base language model while
keeping the CLIP-ViT-L/14@336 (Radford et al., 2021) as the visual encoder. The pre-training data
is LLaVA-558K (Liu et al., 2023a), and the instruction tuning data is LLaVA-665K (Liu et al., 2024a).
The results, shown in Table 15, demonstrate that ROSS brings improvements over the baseline
(LLaVA) across different model sizes in most cases.

Data Scaling Properties. To study the impact of the training data scale, we used Qwen2-7B-
Instruct (Yang et al., 2024a) as the base language model and CLIP-ViT-L/14@336 (Radford et al.,
2021) as the visual encoder. We compared the performance of ROSS and the baseline under different
scales of training data. Table 16 demonstrates that ROSS consistently brings significant improvements
as the training data scale increases.

Gradient Analysis. To better explain the reasoning behind how the vison-centric supervision
enables the model to focus on relevant areas of the image during VQA tasks, we provide qualitative
comparison using GradCAM (Selvaraju et al., 2020) on MMVP (Tong et al., 2024b) in Figure 12,
since GradCAM helps in understanding which parts of the image the model is focusing on, making
the model’s decision-making process more transparent. In our analysis, we visualize the gradient of
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What is the name of the place shown? Which image shows the highest contrast? What direction is Italy in the Mediterranean Sea?
A. New Hampshire A. Upper left A. East
B. Connecticut B. Upper right B. South
C. New York C. Down left C. West
D. Rhode Island D. Down right D. North
LLaVA-v1.5-7B A LLaVA-v1.5-7B B LLaVA-v1.5-7B C
Cambrian-1-8B A Cambrian-1-8B D Cambrian-1-8B B
GPT-4v C. New York GPT-4v D. Down right GPT-4V C. West
ROss-7B D ROsSs-7B A ROss-7B D

Figure 14: Qualitative comparisons on MMbench (Guan et al., 2024) English dev split.
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Cambrian-1-8B B Cambrian-1-8B A Cambrian-1-8B A
ROSS-7B A ROSS-7B B ROSS-7B B
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v see on the animal? H vehicles?
A. Erect A. One . A Yes
B. Drooping B. Two B. No
LLaVA-v1.5-7B A LLaVA-v1.5-7B B LLaVA-v1.5-7B A
Cambrian-1-8B A Cambrian-1-8B B Cambrian-1-8B A
ROSs-7B B ROsSs-7B A ROSs-7B B

Figure 15: Qualitative comparisons on MMVP (Tong et al., 2024b).

the second-to-last block of the LMM, regarding the option of the ground-truth answer as the target
class. Specifically in this case, where the providing question is about the spider web, our proposed
vision-centric supervision signals provide more reasonable gradients and urge LMMs to focus on
relevant regions, i.e., the spider web, as the training evolves.

C.5 QUALITATIVE COMPARISONS

We provide sufficient qualitative comparisons in Figure 13, Figure 14, Figure 15, and Figure 16 on
HallusionBench (Guan et al., 2024), MMBench (Liu et al., 2023b) English dev split, MMVP (Tong
et al., 2024b), and SpatialBench (Cai et al., 2024), respectively. In Figure 13, Figure 14, and Figure 15,
we compare our ROSS-7B with the instruction tuning baseline LLaVA-v1.5-7B (Liu et al., 2024a), the
state-of-the-art open-source method using extrinsic assistance Cambrian-1-8B (Tong et al., 2024a),
and GPT-4V (OpenAl, 2023a).

As demonstrated in Figure 13, where we highlight the wrong parts of each prediction in red, our
ROSS manages to correctly answer the question with reduced hallucinations even when GPT-4V
fails. Cambrian-1 (Tong et al., 2024a) even fails to follow the instructions in the second example.
This could be because a super huge SFT data (7M) may harm the instruction-following abilities of
LMMs. Qualitative results shown in Figure 14 demonstrate both enhanced reasoning abilities (the
first example), low-level comprehension capabilities (the second example), and spatial understanding
skills (the third example). Figure 15 illustrates that our ROSS is good at recognizing various visual
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In real world, which dog is smaller in size? What is the positional relationship between the

A. The dog closer to the camera. group of people with the flag and the black car?

B. The dog further to the camera. A. Behind the black car.

C. They seem to be equally large. B. Left of the black car.

D. It can not be decided from the image because C. Right of the black car.

information given is not enough. D. In front of the black car. Has the man touched the elephant?
LLavA A LLaVA D LLaVvA Yes.

LLaVA (w/ MiDasS) A LLaVA (w/ MiDaS) A LLaVA (w/ MiDaS) Yes.

ROss B ROsS D ROSS No.

Figure 16: Qualitative comparisons on SpatialBench (Cai et al., 2024). We take RGB + D inputs
when testing. Notably, the extra depth expert MiDaS-3.0 (Birkl et al., 2023) sometimes harms
comprehension (see the second example).

patterns, implying that the introduced reconstructive vision-centric objective indeed makes up the
visual shortcomings of the original visual encoder.

Figure 16 provides qualitative results on SpatialBench (Cai et al., 2024). The extra depth understand-
ing visual expert, i.e., MiDaS (Birkl et al., 2023), fails to help LMMs understand depth maps both
quantitatively in Table 5 and qualitatively in Figure 16.

D DISCUSSION

One limitation is that ROSS does not have generation capabilities, since ROSS is designed for
enhanced multimodal comprehension, without the need to generate photorealistic aesthetic images.
Furthermore, the gap in training data between comprehension and generation methods also matters.
For instance, PixArt-a (Chen et al., 2023a), which is one of the most efficient text-to-image models,
was trained on nearly 400M images to model the pixel discrepancy just in the first training stage.
By contrast, our ROSS is only trained on nearly 3M images for one epoch. Future topics include
achieving photorealistic text-to-image generation via incorporating more training samples.
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