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Abstract

Causal discovery aims to learn a causal graph from observational data. To date, most causal
discovery methods require data to be stored in a central server. However, data owners
gradually refuse to share their personalized data to avoid privacy leakage, making this task
more troublesome by cutting off the first step. A puzzle arises: how do we infer causal
relations from decentralized data? In this paper, focusing on the additive noise models (ANMs)
assumption of data, we take the first step in developing a gradient-based learning framework
named DAG-Shared Federated Causal Discovery (DS-FCD), which can learn the causal
graph without directly touching the local data and naturally handle the data heterogeneity
caused by causal mechanism or noise shift. DS-FCD benefits from a two-level structure of
each local model. The first level structure learns the causal graph and communicates with
the server to get the model information from other clients during the learning procedure,
while the second level structure approximates the causal mechanisms and personally updates
from its own data to accommodate the data heterogeneity. Moreover, DS-FCD formulates
the overall learning task as a continuous optimization problem by taking advantage of an
equality acyclicity constraint, which can be solved by gradient descent methods. Extensive
experiments on both synthetic and real-world datasets verify the efficacy of the proposed
method.

1 Introduction

The discovery of causal relations among concerned variables is a fundamental and challenging problem in
various fields, such as econometrics (Heckman, 2008), epidemiology (Greenland et al., 1999), and biological
sciences (Imbens & Rubin, 2015). The requirement comes from the need of excavating the generation process
behind data, guiding actions and policies, learning from the past (Pearl et al., 2016). To achieve this goal, a
reliable way is to conduct randomized controlled (control) trials, which, however, may face difficulty or even
be ethically forbidden in some cases (Resnik, 2008; Nardini, 2014). By leveraging the use of directed acyclic
graphs (DAGs) to represent the cause-effect relations among variables, causal discovery, which directly infers
the causal relations from observational data by learning a DAG, brings a new solution to this problem and
has received a great deal of attention (Peters et al., 2017; Glymour et al., 2019).

Various methods (Spirtes et al., 2001; Chickering, 2002; Shimizu et al., 2006; Zheng, 2020) for learning causal
relations from purely observational data have been proposed over the recent decades. In practice, however,
finite sample problem bears the brunt of performance decrease of causal discovery method. Regularly, (1)
collecting data from various sources and then (2) designing a causal discovery algorithm on all collected data
can serve as a straightforward and common pipeline to alleviate this issue in this field. However, owing to the
issue of data privacy, data owners gradually prefer not to share their personalized data1 with others (Kairouz
et al., 2021). Naturally, the new predicament, how do we infer causal relations from decentralized data? has
arisen. In statistical learning problems such as regression and classification, federated learning (FL) has been
proposed to learn from locally stored data (McMahan et al., 2017). Inspired by the developments in FL, we
aim to develop a federated causal discovery (FCD) framework that enables to learn DAG from decentralized
data. Compared to the traditional FL methods in statistical learning, FCD, a structural learning task, has
the following two main differences:

1In this paper, we restrict our scope to define the privacy leakage by sharing the raw data of users.
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Figure 1: (a) Visualization of heterogeneous data, where different colors represent data from different sources
while each sub-figure includes the distribution of one fixed dimension of data from all clients. (b) Normalized
structural hamming distances (SHDs) (↓) of three methods, where MCSL (Sep) (Ng et al., 2022b) separately
trains model on local data while MCSL (All) trains one model on all data, which, however, is forbidden in FL.

• Learning objective difference. Most of the previous FL researches focus on learning an estimator to
estimate the conditional distribution P (Y |X) in supervised learning tasks, e.g., image classification (McMa-
han et al., 2017), sequence tagging (Lin et al., 2022), and feature prediction (Kairouz et al., 2021). However,
FCD, an unsupervised learning task, tries to find the underlying causal structure among the concerned
variables and the causal mechanisms estimator to fit with the joint distribution of observations.

• Data heterogeneity difference. FL mainly cares data heterogeneity, which is assumed to be caused
by some specific distribution shift types such as label shift (the shift of P (Y )) Lipton et al. (2018) or
covariate shift (the shift of P (X)) Reisizadeh et al. (2020), while FCD handles a generative model where
data heterogeneity can admit the joint distribution shift of all variables (as shown in Figure 1(a)), which
would bring more challenges compared to the model design in the federated learning paradigm.

To overcome the aforementioned problem, we present DAG-Shared Federated Causal Discovery (DS-FCD), a
gradient-based framework for learning the underlying causal graph and causal mechanisms from decentralized
data, including the case of heterogeneous data caused by causal mechanism or noise shift. (1) To alleviate the
data leakage problem, DS-FCD inherits the merits of FL, which proposes to separately deploy a local model
to each client and collaboratively learn a joint model at the server end. Instead of sharing raw data, DS-FCD
exchanges model-info among clients and the server to achieve collaboration. (2) Taking into consideration
of the first main difference between FCD and FL, a two-level structure consisting of causal graph learning
(CGL) part and causal mechanisms approximating (CMA) part respectively, is adopted as the local model. (3)
Benefiting from this separated structure, the second difference between FL and FCD can naturally be handled
by only sharing CGL parts of clients during FL and locally updating CMA to get with data heterogeneity.
Moreover, we provide the identifiability conditions for learning the causal graph from decentralized data. Our
contributions are summarized as follows:

• We introduce FCD, under the assumption that the underlying causal graph among different datasets
remains invariant, while causal mechanisms and noises distributions are allowed to vary. We also show the
identifiability conditions of causal discovery from decentralized data.

• We propose DS-FCD, which separately learns the causal mechanisms on local data and jointly learns the
causal graph to elegantly handle data heterogeneity. Meanwhile, since 0 bits of raw data is shared but
only parameters of the CGL parts of models, the requirement of the privacy protection is guaranteed and
the communication pressure is quite low.

• We evaluate our proposed method with data following an SEM with an additive noise structure on a
variety of experimental settings, including simulations and real dataset, against recent state-of-the-art
algorithms for showing its superior performance and the ability to use one model for all settings.

2



Under review as submission to TMLR

1.1 Potential applications of FCD.

Compared to traditional causal discovery methods, the IID setting of our FCD just brings one more assumption
that local data cannot be directly collected owing to the consideration of privacy leakage. Then, we further
extend our model to heterogeneous data, where causal mechanism and noise distributions may also vary
among different local data. Therefore, our method could be directly applied to the applications of causal
discovery where privacy is also very important.

The first example can come from medical science. Exploring causal relations from healthcare data can help
to understand the disease mechanisms and causes (Yang et al., 2013). However, in real medical scenarios, the
clinical data of patients are extremely sensitive and absolutely related to personal privacy, which faces very
strict data protection regulations, such as HIPAA regulations (Annas, 2003). For some rare diseases, each
hospital may own finite clinical data, which, however, is not enough for causal discovery. How can hospitals
cooperate to analyze the pathology while preventing sharing the privacy information (raw diagnostic data)?
Naturally, this challenge can be addressed by our method. Depending on how each hospital collects the data,
e.g., medical devices, and survey design, the data in each hospital may not share the same distribution.

The second example can come from the recommendation system (RS) (Wang et al., 2020b; Yang et al.,
2020). Introducing causal model into RS is becoming prevail since leveraging causality can perform robust
recommendation by de-confounding some spurious relations. As users pay more attention to privacy and
governments also exacerbate many strict regulations like the General Data Protection Regulation (GDPR), it
brings increasing difficulties to collect the personal raw data to the server. Accordingly, we think that RS can
also benefit from FCD.

2 Preliminaries

Additive Noise Models (ANMs). We consider a specific structural causal model (SCM), which is defined
as a tripleM = ⟨X , E ,F⟩, where E is a set {ϵ1, ϵ2, · · · , ϵd} of exogenous variables and X = {X1, X2, · · · , Xd}
is a set of endogenous variables. F = {f1, f2, · · · , fd} is a set of functions, where each fi, called the causal
mechanism of Xi, maps ϵi ∪ PAi to Xi, i.e., Xi = fi(PAi, ϵi), where the PAi corresponds to the set
including all direct parents of Xi. M can be leveraged to describe how nature assigns values to variables of
interest (Pearl et al., 2016). In this paper, we narrow our focus to a commonly used model named ANMs.
They assume that

Xi = fi(PAi) + ϵi, i = 1, 2, · · · , d, (1)

where ϵi is always taken as a random noise, which is independent of variables in PAi and mutually independent
with any ϵj for i ̸= j.

Probabilistic Causal Graphical Models (PCGM). Let X = (X1, X2, · · · , Xd) be a vector that includes
all variables in X with index set V := {1, 2, · · · , d} and P (X) with the probability density function p(X) be a
marginal distribution induced from M. A DAG G = (V,E) consists of a nodes set V and an edge set E ⊆ V2.
Every causal model M can be associated with a DAG GM, in which each node i corresponds to the variable
Xi and directed edges point from PAi to Xi

2 for i ∈ [d]3. A PCGM is defined as a pair ⟨P (X),GM⟩. Then
GM is called the causal graph associated with M and P (X) is Markovian to GM. Throughout the main text,
we assume the causal sufficiency condition4 (no hidden variable) (Spirtes et al., 2001) and then p(X) can be
factorized as

p(X) =
d∏

i=1
p(Xi|Xpai) (2)

according to GM (Lauritzen, 1996). Xpai
is the parental vector that includes all variables in PAi.

Characterizations of Acyclicity. A DAG G with d nodes can be represented by a binary adjacency matrix
B = [B:,1|B:,2| · · · |B:,d] with B:,i ∈ {0, 1}d for ∀i ∈ [d]. NOTEARS (Zheng et al., 2018) first formulates a

2In the intact causal graph of ANMs, we just fix directed edges from ϵi to Xi and assume the distribution of ϵi. Therefore, in
this paper, G is only defined over the endogenous variables.

3For simplicity, we use [d] = {1, 2, · · · , d} to represent the set of all integers from 1 to d.
4This assumption can be relaxed to some restricted cases with hidden variables. See Appendix C.4 for details.
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sufficient and necessary condition for B representing a DAG by an equality constraint. The formulation is as
follows:

Tr[eB]− d = 0, (3)

where Tr[·] means the trace of a given matrix. e(·), here, is the matrix exponential operation. However,
NOTEARS is only designed to solve the linear Guassian models, which assume that all the causal mechanisms
are linear. Therefore, the causal graph and causal mechanisms can be modeled together by a weighted
matrix. To extend NOTEARS to the non-linear cases, MCSL (Ng et al., 2022b) proposes to use a mask M ,
parameterized by a continuous proxy matrix U , to approximate the adjacency matrix B. To enforce the entries
of M to approximate the binary form, i.e., 0 or 1, a two-dimensional version of Gumbel-Softmax (Jang et al.,
2017) approach named Gumbel-Sigmoid is designed to reparameterize U and to ensure the differentiability of
the model. Then, M can be obtained element-wisely by

Mij = 1
1 + exp(−log(Uij + Gumbij)/τ) , (4)

where τ is the temperature, Gumbij = g1
ij − g0

ij , g1
ij and g0

ij are two independent samples from Gumbel(0, 1).
For simplicity but equivalence, g1

ij and g0
ij also can be sampled from −log(log(a)) with a ∼ Uniform(0, 1).

See Appendix D in (Ng et al., 2022b). MCSL names Eq. (4) as Gumbel-Sigmoid w.r.t. U and temperature τ ,
which is written as gτ (U). Then, the acyclicity constraint can be reformulated as

Tr[e(gτ (U))]− d = 0. (5)

3 Problem definition

Here, we first describe the property of decentralized data and the data distribution shift among different
clients if there exists data heterogeneity (Huang et al., 2020b; Mooij et al., 2020; Zhang et al., 2020). Then,
we define the problem, federated causal discovery, considered in this paper.

Decentralized Data and Probability distribution set. Let C = {c1, c2, · · · , cm} be the client set which
includes m different clients and s be the only server. The data Dck ∈ Rnck

×d, in which each observation
Dck

i for ∀i ∈ [nck
] independently sampled from its corresponding probability distribution P ck (X), represents

the personalized data owned by the client ck. nck
is the number of observations in Dck . The dataset

D = {Dc1 ,Dc2 , · · · ,Dcm} is called a decentralized dataset and P C(X) = {P c1(X), P c2(X), · · · , P cm(X)} is
defined as the decentralized probability distribution set. If P ck1 (X) = P ck2 (X) for ∀ k1, k2 ∈ [m], then D is
defined as an independent and identically distributed (IID) decentralized dataset throughout this paper. The
heterogeneous decentralized dataset is defined by assuming that there exists at least two clients, e.g., ck1 and
ck2 , on which the local data are sampled from different distributions, i.e., P ck1 (X) ̸= P ck2 (X).
Assumption 3.1. (Invariant DAG) For ∀ck, P ck (X) ∈ P C(X) admits the product factorization of Eq. (2)
relative to the same DAG G.
Remark 3.2. If P C(X) satisfies Assumption 3.1, then, each P ck (X) ∈ P C(X) is Markov relative to G.

According to the general definition of mechanism change in (Tian & Pearl, 2001), interventions can be seen
as a special case of distribution changes, where the external influence involves fixing certain variables to some
predetermined values. Actually, in general, the external influence may be milder to just merely change the
conditional probability of certain variables given its causes. In this paper, we restrict our scope by assuming
that distribution shift across P ck (X) comes from the changes of causal mechanisms in F or distributions
shift of the exogenous variables in E (see Appendix F.1 for detailed discussion).
Assumption 3.3. For ∀ck1 , ck2 , if P ck1 (X) ̸= P ck2 (X), the distribution shift is caused by (1) ∃ i ∈ [d],
P ck1 (Xi|Xpai

) ̸= P ck2 (Xi|Xpai
), i.e., f

ck1
i ̸= f

ck2
i (2) ∃ i ∈ [d], P ck1 (ϵi) ̸= P ck2 (ϵi).

Federated Causal Discovery. Given the decentralized dataset D consisting of data from m clients while
the corresponding P C(X) satisfies Assumptions 3.1 and 3.3, the aim of federated causal discovery is to identify
the underlying DAG G from D.
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Figure 2: An overview of DS-FCD. Each solid-line box includes the local model for each client. For client
ck, the CGL part includes a continuous proxy U ck and gτ (·), the Gumbel-Sigmoid function, which maps
U ck to approximate the binary adjacency matrix. The CMA part uses Φck , including d neural networks, to
approximate the causal mechanisms. Xck represents observations on ck and X̂ck is the predicted data. Xck

firstly goes through the CGL part to select the parental variables and then the CMA part to get X̂ck . The
server coordinates the FL procedures by leveraging U among clients.

3.1 Identifiability result

Condition 3.4. (Causal Minimality) Given the joint distribution P (X), P (X) is Markovian to a DAG G
but not Markovian to any sub-graph of G.
Assumption 3.5. Let a distribution P (X) with X = (X1, X2, · · · , Xd) be induced from a restricted ANM
with graph G, and P (X) satisfies causal minimality w.r.t G.
Assumption 3.6. Let P C(X) satisfy Assumption 3.1. At least one distribution P ck (X) ∈ P C(X) meets
Assumption 3.5 and the other distributions are faithful to G.
Proposition 3.7. Given P C(X) satisfying Assumption 3.6, and then, G can be identified up from P C(X).

The detailed descriptions and the proof of Proposition 3.7 can be found in Appendix A.

4 Methodology

To solve the aforementioned problem, we formulate a continuous score-based method named DAG-shared
federated causal discovery (DS-FCD). Firstly, we define an objective function that guides all models from
different clients to federally learn the underlying causal graph G (or adjacency matrix B), and at the same
time also to learn personalized causal mechanisms for each client. As shown in Figure 2, for each client
ck, the local model consists of a causal graph learning part and a causal mechanisms approximation part.
The CGL part is parameterized by a matrix U ck ∈ Rd×d, which would be exactly the same for all clients
finally5. To make every entry of U ck to approximate the binary entry of adjacency matrix, a Gumbel-Sigmoid
method (Jang et al., 2017; Ng et al., 2022b) represented as gτ (U ck ), is further leveraged to transform U ck

to a differentiable approximation of the adjacency matrix. The causal mechanisms f ck
1 , f ck

2 , · · · , f ck

d are
parameterized by d sub-networks, each of which has d inputs and one output. In the learning procedure,
the CGL parts (specifically U ck ) of participating clients are shared with the server s. Then, the processed
information is broadcast to each client for self-updating its own matrix. The details of our method are
demonstrated in the following subsections.

5Please notice that CGL parts of different clients may not be the same during the training procedure. So we index them.
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4.1 The overall learning objective

Now we present the overall learning objective of FCD as the following optimization problem:

arg max
Φ,U

m∑
k=1
Sck (Dck , Φck , U)

subject to gτ (U) ∈ DAGs ⇔ h(U) = Tr[e(gτ (U))]− d = 0,

(6)

where Φck := {Φck
1 , Φck

2 , · · · , Φck

d } represents the CMA part of the model on ck. Sck (·) is the scoring function
for evaluating the fitness of local model of client ck and observations Dck . For score-based causal discovery,
selecting a proper score function such as BIC score (Schwarz, 1978), generalized score function (Huang et al.,
2018) or equivalently taking the likelihood of P (X) with a penalty function on model parameters (Zheng
et al., 2018; Ng et al., 2022b; Zheng et al., 2020; Lachapelle et al., 2020) can guarantee to identify up the
underlying ground-truth causal graph G because G is supposed to have the maximal score over Eq. (6).
Throughout all experiments in this paper, we assume the noise type are Gaussian with equal variance for
each local distribution. And, the overall score function utilized in this paper is as follows,

Sck (Dck , Φck , U ck ) = − 1
2nk

nk∑
i=1

d∑
j

∥Dck
ij −Φck

j (gτ (U ck
j,: ) ◦ D

ck
i )∥2

2 − λ∥gτ (U)∥1 (7)

In our score function, we take the negative Least Squares loss and a sparsity term, which corresponds to
the model complexity penalty in the BIC score (Schwarz, 1978).6 However, the global minimum is hard to
reach by using gradient descent method due to the non-convexity of h(U). More details on discussions of the
optimization results can be found in the Appendix. C.

In this paper, instead of directly taking the likelihood of P (X), we leverage the well-known results on the
density transformation to model the distribution of P (E), i.e., maximizing the likelihood P ck (E|Fck ,G) for
∀ck ∈ C. According to Eq. (1), we have ϵi = Xi − fi(PAi). That is to say, modelling P (E) can be achieved
by an auto-regressive model. To get ϵi, the first step is to select the parental set PAi for Xi. This can be
realized by B[:, i] ◦X, where ◦ means the element-wise product. In our paper, for client ck, we predict the
noise by ϵi = Xi −Φi(gτ (U)[:, i] ◦X), where gτ (U) is to approximate B and Φi(·) is parameterized by a
neural network to approximate fi. The specific formulation of Sck would depend on the assumption of noise
distributions.

4.2 DAG-shared learning

As suggested in NOTEARS (Zheng et al., 2018), the hard-constraint optimization problem in Eq. (6) can
be addressed by an Augmented Lagrangian Method (ALM) to get an approximate solution. Similar to
the penalty methods, ALM transforms a constrained optimization problem by a series of unconstrained
sub-problems and adds a penalty term to the objective function. ALM also introduces a Lagrangian multiplier
term to avoid ill-conditioning by preventing the coefficient of penalty term from going too large. To solve
Eq. (6), the sub-problem can be written as

arg max
Φ,U

m∑
k=1
Sck (Dck , Φck , gτ (U))− αth(U)− ρt

2 h(U)2
, (8)

where αt and ρt are the Lagrangian multiplier and penalty parameter of the t-th sub-problem, respectively.
These parameters are updated after the sub-problem is solved. Since neural networks are adopted to fit
the causal mechanisms in our work, there is no closed-form solution for Eq. (8). Therefore, we solve it
approximately via Adam (Kingma & Ba, 2015). The method is described in Algorithms 1 and 2. And in
Algorithm 1, we share the same coefficients updating strategy as in (Ng et al., 2022b).

Each sub-problem as Eq. (8) is solved mainly by distributing the computation across all local clients. Since
data is prevented from sharing among clients and the server, each client owns its personalized model, which

6The consistency of BIC score for learning graphs on ANMs is discussed in Appendix C.5.
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Algorithm 1 DAG-Shared Federated Causal Discovery
1: Input: D, C, Parameter-list = {αinit, ρinit, htol, itmax, ρmax, β, γ, r }
2: Output: Egτ (Ut), Φt

3: #Parameter Initializing
4: t← 1, αt ← αinit, ρt ← ρinit

5: while t ≤ itmax and h(Ut) ≥ htol and ρ ≤ ρmax do
6: #Sub-problem Solving
7: Ut+1, Φt+1 ← SPS(D, C, αt, ρt, itin, itfl, r)
8: #Coefficients Updating
9: αt+1 ← αt + ρtE[h(Ut+1)], t← t + 1

10: if E[h(Ut+1)] > γE[h(Ut)] then
11: ρt+1 = βρt

12: else
13: ρt+1 = ρt

14: end if
15: end while

Algorithm 2 Sub-Problem Solver (SPS) for DS-FCD
1: Input: D, C, Parameter-list = {αt, ρt, itin, itfl, r}
2: Output: Unew, Φitin

3: Define SPck = Sck − αth(U ck )− ρt

2 h(U ck )2

4: for i in (1, 2, · · · , itin) do
5: for each client ck do
6: #Self-updating
7: U i,ck , Φi,ck ← arg maxΦck ,Uck SPck

8: end for
9: if i (% itfl) = 0 or i = itin then

10: #Aggregating: randomly select r clients and collect their Us into U, then, send U to the server
11: U← Agg(r, C)
12: #Server Updating: average U ∈ U
13: Unew ← Avg(U)
14: #Broadcasting: distribute Unew to all clients
15: C ← BD(Unew)
16: for each client ck do
17: #Clients Updating
18: U i,ck ← Unew

19: end for
20: end if
21: end for

is only trained on its personalized data. The server communicates with clients by exchanging the parameters
information of models and coordinates the joint learning task. To achieve so, our method alternately updates
the server and clients in each communication round.

Client Update. For each model of client ck, there are two main parts, named CGL part parameterized by
U ck and CMA part parameterized by Φck , respectively. Essentially, the joint objective in Eq. (8) guides the
learning process. In the self-updating as described in Algorithm 2, the clients firstly receive the updated
penalty coefficients αt and ρt and the averaged parameter Unew. Then, the renewed learning personalized
score of client ck is defined as SPck = Sck − αth(U ck ) − ρt

2 h(U ck )2. itfl times of local gradient-based
parameter updates are operated to maximize its personalized score.

Server Update. After itfl local updates, the server randomly chooses r clients to collect their Us to the
set U. Then, Us in U are averaged to get Unew. The other operation on the server is updating the αt, ρt to
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αt+1, ρt+1. The detailed calculating rules are described at lines 8− 14 in Algorithm 1. Then, the new penalty
coefficients and parameter are broadcast to all clients. Notice that with assuming that data distribution
across clients is IID, Φck of the chosen r clients can also be collected and averaged to update the local models
of client in the same way, which is named as All-Shared FCD (AS-FCD) in this paper. It is worth noting that
AS-FCD can further enhance the performance in the IID case but introduce some additional communication
costs.

4.3 Thresholding

For continuous optimization, as illustrated in the previous work (Ng et al., 2022b), we leverages Gumbel-
Sigmoid to approximate the binary mask. That is to say, the exact 0 or 1 is hard to get. The other issue is
raised by ALM since the solution of ALM just satisfies the numerical precision of the constraint. This is
because we set htol and itmax maximally but not infinite coefficients of penalty terms to formulate the last
sub-problem. Therefore, some entries of the output M = Egτ (U) will be near but not exactly 0 or 1. To
alleviate this issue, ℓ1 sparsity is added to the objective function. In our method, since all mask values are in
[0, 1], we just take the middle value 0.5 as the threshold to prune the edges, which follows the same way in
our baseline method MCSL (Ng et al., 2022b). The iterative thresholding method is also taken to deal with
the case that the learned graph is cyclic. This may happen if the number of variables is large (40 variables in
our paper). Because, in the numerical optimization, the constraint penalty exponentially decreases with the
number of variables. To deal with the cyclic graph, we one-by-one cut edge with the minimum value until the
graph is acyclic. To our knowledge, until now, all continuous search methods for causal discovery suffer from
these two problems. It is an interesting future direction to be investigated.

4.4 Privacy and Costs Discussion

Privacy issues of DS-FCD. The strongest motivation of FL is to avoid personalized raw data leakage. To
achieve this, DS-FCD proposes to exchange the parameters for modelling the causal graph. Here, we argue
that the information leakage of local data is rather limited. The server, receiving parameters with client
index, may infer some data property. However, according to the data generation model (1), the distribution
of local data is decided by (1) causal graph, (2) noise types/strengths and (3) causal mechanisms. The
gradient information of the shared matrix is decided by (1) the type of learning objective and (2) model
architecture, which are agnostic to the server. Especially for the network part, clients may choose different
networks to make the inference more complex. Moreover, if the causal graph is also private information for
clients, this problem can be easily solved by selecting a client to serve as the proxy server. For the proxy
server, it needs to play two roles, including training its own model and taking the server’s duties. Then, in
the communication round, other clients communicate with the proxy server instead of a real server. Moreover,
the aim of our work, and federated learning in general, is not to provide a full solution to privacy protection.
Instead, it is a first step towards this goal, i.e., no sharing of data between clients. To further protect privacy,
more constraints need to be added to the federated learning framework, such as the prevention of information
leakage from gradient sharing, which are studied under the privacy umbrella. To further enhance privacy
protection, our method can also include more advanced privacy protection techniques (Wei et al., 2020b),
which would be an interesting work to be investigated.

Communication cost. Since DS-FCD requires exchanging parameters between the server and clients,
additional communication costs are raised. In our method, however, we argue that DS-FCD only brings
rather small additional communication pressures. For the case of d variables, a single communication only
exchanges a d× d matrix twice (sending and receiving). For the IID setting, which assumes that local data
are sampled from the same distribution, one can also transmit the neural network together to further improve
the performance since causal mechanisms are also shared among clients. The trade-off between performance
and communication costs can also be controlled by r in Algorithm 2, i.e., enlarging or reducing r. Surprisingly,
we find that reducing r does not harm the performance severely (see Table 16 in Appendix D for detailed
results). Moreover, the partial communication method, which only chooses some clients to exchange training
information, is also leveraged to address the issue that not all clients are always online at the same time.
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5 Experimental Results

In this section, we study the empirical performances of DS-FCD on both synthetic and real-world data. More
detailed ablation experiments also can be found in Appendix D.

Baselines We compare our method with various baselines including some continuous search methods, named
NOTEARS (Zheng et al., 2018), NOTEARS-MLP (N-S-MLP, for short) (Zheng et al., 2020), DAG-GNN (Yu
et al., 2019) and MCSL (Ng et al., 2022b), and also two traditional combinatorial search methods named PC
(Spirtes et al., 2001) and GES (Chickering, 2002). The comparison results with another method named causal
additive models (CAM) (Bühlmann et al., 2014) are put in Appendix D.6. Furthermore, we also include a
concurrent work named NOTEARS-ADMM (Ng & Zhang, 2022), which also considers learning Bayesian
network in the federated setup. Since NOTEARS-ADMM focus more on the IID and linear settings and pays
less attention to the nonlinear cases, we only include the results on linear cases of NOTEARS-ADMM in the
main paper for fair comparisons. More detailed comparisons are shown in Appendix D.7. Moreover, we also
compare our FCD with a voting method (Na & Yang, 2010) in Appendix D.5, which also tries to learn DAG
from decentralized data. We provide two training ways for these compared methods. The first way is using
all data to train only one model, which, however, is not permitted in FCD since the ban of data sharing in
our setting. For the IID data, the results on this setting can be an approximate upper bound of our method
but unobtainable. The second one is separately training each local model over its personalized data, of which
the performances reported are the average results of all clients.

Metrics. We report two metrics named Structural Hamming Distance (SHD) and True Positive Rate
(TPR) averaged over 10 random repetitions to evaluate the discrepancies between estimated DAG and the
ground-truth graph G. See more details about SHD, TPR in Appendix B.2 Notice that PC and GES can
only reach the completed partially DAG (CPDAG, or MEC) at most, which shares the same Skelton with
the ground-truth DAG G. When we evaluate SHD, we just ignore the direction of undirected edges learned
by PC and GES. That is to say, these two methods can get SHD 0 if they can identify the CPDAG. The
implementation details of all methods are detailed in Appendix B.

5.1 Synthetic data

The synthetic data we consider here is generated from Gaussian ANMs (Model (1)). Two random graph
models named Erdős-Rényi (ER) and Scale-Free (SF) (detailed definitions are shown in Appendix B.1.)
are adopted to generate causal graph G. And then, for each node Vi corresponding to Xi in G, we sample
a function from the given function sets to simulate fi. Finally, data are generated according to a specific
sampling method. In the following experiments, we take 10 clients and each with 600 observations (unless
otherwise specified in some ablation studies.) throughout this paper. According to Assumption 3.1, data
across all clients share the same causal graph for both IID and heterogeneous data settings. Due to the
space limit, more ablation experiments, such as uneven distributed observations, varying clients, dense graph,
different non-linear functions, and different number of observations, etc., are put in Appendix D. All detailed
discussions on the experimental results are in Appendix E.

5.1.1 IID setting

Results on linear model. For fair comparison, here, we also provide the linear version of our method.
Since linear data are parameterized with an adjacency matrix, we can directly take the adjacency matrix
as our model instead of a CGL part and a CMA part. During training, the matrix are communicated and
averaged by the server to coordinate the joint learning procedures.

NOTEARS-ADMM is also a causal discovery method designed for learning Bayesian network from decentralized
data. Different from our average strategy to exchange training information among clients, ADMM is used for
address this issue. From Table 1, we find that our method can consistently show its advantage on the linear
case. In the ER2 with 10 nodes setting, our AS-FCD is even better than NOTEARS with all training data.
While it is possible and the detailed explanation can be found in Appendix E.
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Table 1: Results on the linear model (IID).

ER2 with 10 nodes SF2 with 10 nodes ER2 with 20 nodes SF2 with 20 nodes
SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑

NOTEARS-All 1.6± 1.6 0.93± 0.06 1.4± 1.1 0.92± 0.05 3.0± 2.7 0.94± 0.06 6.9± 7.0 0.86± 0.12
NOTEARS-Sep 3.0± 2.2 0.85± 0.08 3.6± 2.1 0.83± 0.10 4.1± 2.4 0.91± 0.05 10.2± 5.9 0.82± 0.10

NOTEARS-ADMM 4.7± 3.9 0.89± 0.12 4.4± 3.0 0.86± 0.09 7.9± 5.9 0.89± 0.07 10.7± 5.3 0.82± 0.08
AS-FCD 1.3± 1.5 0.94± 0.07 1.6± 0.97 0.91± 0.06 3.9± 3.1 0.91± 0.06 9.4± 6.7 0.82± 0.12

Table 2: Results on nonlinear ANM with GP (IID).

ER2 with 10 nodes SF2 with 10 nodes ER2 with 40 nodes SF2 with 40 nodes
SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑

A
ll

da
ta

PC 15.3± 2.6 0.37± 0.10 14.1± 4.3 0.44± 0.20 84.9± 13.4 0.40± 0.08 95.0± 10.4 0.36± 0.07
GES 13.0± 3.9 0.50± 0.18 9.6± 4.4 0.71± 0.17 59.0± 9.8 0.53± 0.08 73.8± 11.9 0.47± 0.10
NOTEARS 16.5± 2.0 0.05± 0.04 14.5± 1.1 0.09± 0.07 71.2± 7.2 0.08± 0.03 70.8± 2.3 0.07± 0.03
N-S-MLP 8.1± 3.8 0.56± 0.17 8.3± 2.8 0.51± 0.16 45.3± 6.8 0.43± 0.08 49.2± 7.7 0.39± 0.09
DAG-GNN 16.2± 2.1 0.07± 0.06 15.2± 0.8 0.05± 0.05 73.0± 7.7 0.06± 0.03 72.4± 1.6 0.05± 0.02
MCSL 1.9± 1.5 0.90± 0.08 1.6± 1.2 0.91± 0.07 25.4± 13.1 0.68± 0.14 31.6± 10.0 0.59± 0.13

Se
p

da
ta

PC 14.1± 2.4 0.31± 0.06 13.6± 2.7 0.30± 0.10 83.8± 7.4 0.24± 0.03 86.1± 4.6 0.23± 0.04
GES 12.7± 2.7 0.37± 0.09 12.7± 2.4 0.33± 0.11 71.0± 6.7 0.29± 0.03 73.2± 4.4 0.29± 0.05
NOTEARS 16.5± 2.0 0.06± 0.04 14.6± 1.0 0.09± 0.06 71.1± 7.3 0.08± 0.03 70.7± 2.0 0.07± 0.03
N-S-MLP 8.5± 2.9 0.56± 0.13 8.7± 2.9 0.53± 0.16 51.0± 6.9 0.41± 0.06 53.6± 5.5 0.39± 0.08
DAG-GNN 15.7± 2.3 0.11± 0.05 14.5± 1.0 0.10± 0.06 71.5± 7.5 0.08± 0.02 70.8± 1.8 0.07± 0.02
MCSL 7.1± 3.2 0.83± 0.08 6.9± 2.8 0.84± 0.08 77.3± 19.8 0.64± 0.11 72.9± 16.4 0.58± 0.13
DS-FCD 2.4± 2.0 0.86± 0.13 2.7± 2.2 0.86± 0.13 36.5± 12.1 0.65± 0.15 46.4± 10.4 0.57± 0.13
AS-FCD 1.8± 2.0 0.89± 0.12 2.5± 2.7 0.85± 0.15 30.0± 12.3 0.74± 0.15 31.5± 10.0 0.59± 0.13

Results on nonlinear model. For the IID setting, all data are generated by an ANM and divided into 10
pieces. Each fi is sampled from a Gaussian Process (GP) with RBF kernel of bandwidth one (See Table 13
and Table 14 in Appendix. D for results of other functions.) and noises are sampled from one zero-mean
Gaussian distribution with fixed variance. We consider graphs of d nodes and 2d expected edges.

Experimental results are reported in Table 2 with nodes 10 and 40. Since all local data are IID, here, we
also provide another effective training method named AS-FCD, in which the CMA parts are also shared
among clients. In all settings, AS-FCD shows a better performance than DS-FCD due to that more model
information are shared during training. While DS-FCD can also show a consistent advantage over other
methods. When separately training local models, all models suffer from data scarcity. Therefore, we can
observe that both DS-FCD and AS-FCD perform better than other methods in the fashion of separate
training. NOTEARS and DAG-GNN, as continuous search methods, obtain unsatisfactory results due to
the weak model capacity and improper model assumption. While BIC score of GES gets a linear-Gaussian
likelihood, which is incapable to deal with non-linear data7. With the number of nodes increasing, DS-FCD
still shows better results than the closely-related baseline method MCSL. However, NOTEAES-MLP can
show a comparable result with DS-FCD owing to the advantage over MCSL.

5.1.2 Heterogeneous data setting

As defined in Section 3, the heterogeneous data property of data across clients come from the changes of causal
mechanisms or the shift of noise distributions. To simulate the heterogeneous data, we firstly generate a DAG
shared by all clients and then decide the types of causal mechanisms f ck

i and noises ϵi for i ∈ [d] for each
client ck. In our experiments, We allow that f ck can be linear or non-linear for each client. If being linear,
f ck here is a weighted adjacency matrix with coefficients sampled from Uniform ([−2.0,−0.5] ∪ [0.5, 2.0]),
with equal probability. If being non-linear, f ck

i is independently sampled from GP, GP-add, MLP or MIM
functions (Yuan, 2011), randomly. Then, a fixed zero-mean Gaussian noise is set to each client with a
randomly sampled variance from {0.8, 1}.

7Please find the ablation experiment with linear data and more discussions of the experimental results in Appendix D.
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Table 3: Results on ANMs with heterogeneous data.

ER2 with 10 nodes SF2 with 10 nodes ER2 with 40 nodes SF2 with 40 nodes
SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑

A
ll

da
ta

PC 22.3± 4.2 0.41± 0.11 21.0± 3.6 0.41± 0.12 151.9± 14.2 0.27± 0.08 152.5± 5.4 0.26± 0.04
GES 26.4± 6.2 0.53± 0.14 25.4± 4.6 0.54± 0.13 NaN NaN NaN NaN
NOTEARS 20.4± 4.1 0.49± 0.14 18.7± 3.3 0.45± 0.11 164.8± 47.4 0.39± 0.07 178.1± 33.0 0.40± 0.10
N-S-MLP 22.8± 5.0 0.87± 0.07 24.7± 3.3 0.88± 0.07 344.4± 71.9 0.92± 0.08 325.0± 50.2 0.85± 0.08
DAG-GNN 21.2± 6.0 0.39± 0.11 16.6± 3.0 0.48± 0.18 146.6± 41.6 0.29± 0.08 168.2± 34.2 0.31± 0.09
MCSL 19.4± 4.4 0.75± 0.19 19.0± 4.0 0.81± 0.14 118.6± 18.1 0.68± 0.11 126.9± 16.5 0.59± 0.12

Se
p

da
ta

PC 12.5± 2.7 0.45± 0.07 11.0± 2.1 0.49± 0.07 65.7± 11.0 0.43± 0.06 73.7± 5.5 0.36± 0.05
GES 12.9± 2.6 0.58± 0.07 10.3± 2.8 0.60± 0.09 68.2± 20.8 0.65± 0.09 77.2± 13.8 0.60± 0.07
NOTEARS 7.6± 2.6 0.60± 0.11 7.6± 1.8 0.58± 0.09 34.9± 12.7 0.63± 0.11 43.4± 8.4 0.53± 0.10
N-S-MLP 5.2± 1.4 0.80± 0.05 6.1± 1.6 0.76± 0.05 46.0± 10.2 0.73± 0.08 56.0± 9.5 0.66± 0.09
DAG-GNN 8.2± 2.9 0.67± 0.12 8.4± 2.1 0.67± 0.09 45.7± 13.5 0.64± 0.11 52.7± 8.4 0.60± 0.11
MCSL 9.2± 1.8 0.72± 0.06 8.9± 2.0 0.71± 0.08 76.1± 13.7 0.53± 0.09 78.1± 6.3 0.47± 0.07
DS-FCD 1.9± 1.6 0.99± 0.02 2.6± 1.3 0.93± 0.07 24.3± 10.2 0.86± 0.09 33.9± 10.9 0.73± 0.09

We can see that the conclusion of experimental results on the heterogeneous data setting is rather similar to
that of the IID. As can be read from Table 3, DS-FCD always shows the best performances across all settings.
If taking all data together to train one model using other methods, we can see that data heterogeneity would
put great trouble to all compared methods while DS-FCD plays pretty well. Moreover, DS-FCD shows
consistent good results with different numbers of observations on each client (see Table 15). NOTEARS
takes second place at the setting of 40 nodes because there are some linear data among clients, which is also
the reason that DS-FCD shows lower SHDs on heterogeneous data in Table 3 than Table 2. Compared with
Non-linear models, NOTEARS easily fits well with even fewer linear data.

5.2 Real data

We consider a real public dataset named fMRI Hippocampus (Poldrack et al., 2015) to discover the causal
relations among six brain regions. This dataset records signals from six separate brain regions in the resting
state of one person in 84 successive days and the anatomical structure provides 7 edges as the ground truth
graph (see Figure 10 in Appendix D). Herein, we separately select 500 records in each of 10 days (see Figure 12
for the normalized data distribution in Appendix D), which can be regarded as different local data. It is
worth noting that though this data does not have a real data privacy problem, we can use this dataset to
evaluate the learning accuracy of our method. Here, in Table 4 we show part of the experimental results while
others lie in Table 17 (Appendix D). AS-FCD shows the best performance over all criterion while DS-FCD
also performs better than most of the other methods.

Table 4: Empirical results on fMRI Hippocampus dataset (Part 1).

All data Separate data DS-FCD AS-FCD
PC NOTEARS MCSL PC NOTEARS MCSL

SHD ↓ 9.0± 0.0 5.0± 0.0 9.0± 0.6 8.7± 1.3 8.0± 1.9 8.3± 1.7 6.4± 0.9 5.0± 0.0
NNZ 11.0± 0.0 4.0± 0.0 12.0± 0.6 7.6± 1.3 5.4± 1.5 9.0± 1.7 6.8± 0.6 5.0± 0.0
TPR ↑ 0.43± 0.00 0.29± 0.00 0.44± 0.04 0.26± 0.11 0.19± 0.18 0.35± 0.15 0.27± 0.12 0.29± 0.00
FDR ↓ 0.73± 0.00 0.50± 0.00 0.74± 0.03 0.76± 0.10 0.78± 0.19 0.73± 0.11 0.72± 0.11 0.60± 0.00

6 Related work

Two mainstreams named constraint-based and score-based methods push the development of causal discovery.
Constraint-based methods, including PC and fast causal inference (FCI) (Spirtes et al., 2001), take conditional
independence constraints induced from the observed distribution to decide the graph skeleton and part of
the directions. Another branch of methods (Chickering, 2002) define a score function, which evaluate the
fitness between the distribution and graph, and identify the graph G with the highest score after searching
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the DAG space. To avoid solving the combinatorial optimization problem, NOTEARS (Zheng et al., 2018)
introduces an equivalent acyclicity constraint and formulates a fully continuous optimization for searching the
graph. Following this work, many works leverages this constraint to non-linear case (Ng et al., 2019; Zheng
et al., 2020; Lachapelle et al., 2020; Zhu et al., 2020; Wang et al., 2021; Gao et al., 2021; Ng et al., 2022b),
low-rank graph (Fang et al., 2020), interventional data (Brouillard et al., 2020; Ke et al., 2019; Scherrer et al.,
2021), time-series data (Pamfil et al., 2020), incomplete data (Gao et al., 2022; Geffner et al., 2022) and
unmeasured confounding (Bhattacharya et al., 2021). GOLEM (Ng et al., 2020) leverages the full likelihood
and soft constraint to solve the optimization problem. Ng et al. (2022a), DAG-NoCurl (Yu et al., 2021) and
NOFEARS (Wei et al., 2020a) focus on the optimization aspect.

The second line of related work is on the Overlapping Datasets (OD) (Danks et al., 2009; Tillman & Spirtes,
2011; Triantafillou & Tsamardinos, 2015; Huang et al., 2020a) problem in causal discovery. However, OD
assumes that each dataset owns observations of partial variables and targets learning the integrated DAG
from multiple datasets. In these works, data from different sites need to be collected on a central server.

The last line is on federated learning (Yang et al., 2019; Kairouz et al., 2021), which provides the joint
training paradigm to learn from decentralized data while avoiding sharing raw data during the learning
process. FedAvg (McMahan et al., 2017) first formulates and names federated learning. FedProx (Li et al.,
2020) studies the Non-IID case and provides the convergence analysis results. SCAFFOLD leverages variance
reduction by correcting client-shift to enhance the training efficiency. Besides these fundamental problems in
FL itself, this novel learning way has been widely co-operated with or applied to many real-world tasks such as
healthcare (Sheller et al., 2020), recommendation system (Yang et al., 2020), and smart transport (Samarakoon
et al., 2019).

6.1 Concurrent work (NOTEARS-ADMM)

In NOTEARS-ADMM (Ng & Zhang, 2022), the authors also consider the totally same setting that how to
discover the causal relations from distributed data owing to privacy and security concerns.

The main advantage of our FCD over NOTEARS-ADMM is to handle with heterogeneous data, which is
very common in real applications. Then, NOTEARS-ADMM mainly consider the linear case, which actually
share the same learning object with our method. Instead of taking average to share training information,
ADMM is taken to make the adjacency matrix close. More detailed experimental comparisons can be found
in Appendix D.7, from which we can see that our FCD shows better performances in most of settings.

7 Conclusion and Discussions

Learning causal structures from decentralized data brings huge challenges to traditional causal discovery
methods. In this context, we have introduced the first federated causal discovery method called DS-FCD,
which uses a two-level structure for each local model. During the learning procedure, each client tries to
learn an adjacency matrix to approximate the causal graph and neural networks to approximate the causal
mechanisms. The matrix parts of some participating clients are aggregated and processed by the server and
then broadcast to each client for updating its personalized matrix. The overall problem is formulated as a
continuous optimization problem and solved by gradient descent methods. Structural identifiability conditions
are provided and extensive experiments on various data sets to show the effectiveness of our DS-FCD.

The first limitation of our framework is with the causal sufficiency assumption, which is seldom right in
real scenarios. While, as a general framework, the advanced methods (Bhattacharya et al., 2021), which
can handle the no observed confounder case, can be well incorporated with our method to deal with the
federated setup (More details can be seen in Appendix C.4). In federated learning, FedAvg with heterogeneous
data (Liang et al., 2020) are well analyzed. However, the non-convexity property of our FCD comes both
from the DAG constraint and nonlinear causal mechanisms. Therefore, the other interesting future work is to
investigate the convergence properties of our proposed method.
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A Structure identifiability

Besides exploring effective causal discovery methods, identifiability conditions of causal models (Spirtes et al.,
2001) are also important. In general, unique identification of the ground truth DAG is impossible from purely
observational data without some specific assumptions. However, accompanying some specific data generation
assumptions, the causal graph can be identified (Peters et al., 2011; Peters & Bühlmann, 2014; Zhang &
Hyvarinen, 2009; Shimizu et al., 2006; Hoyer et al., 2008). We first give the definition of identifiability in the
decentralized setting.
Definition A.1. Consider a decentralized distribution set P C(X) satisfying Assumption 3.1. Then, G is said
to be identifiable if P C(X) cannot be induced from any other DAG.
Condition A.2. (Cond. 19 in (Peters & Bühlmann, 2014)) The triple (fj , P (Xi), P (ϵj)) does not solve the
following differential equation for all xi, xj with v′′(xj − f(xi))f ′(xi) ̸= 0:

ξ′′′ = ξ′′
(
−ν′′′f ′

ν′′
+ f ′′

f ′

)
− 2ν′′f ′′f ′ + ν′f ′′′ + ν′ν′′′f ′′f ′

ν′′
− ν′ (f ′′)2

f ′
.

Here, f := fj and ξ := log P (Xi), and v := log P (ϵj) are the logarithms of the strictly positive densities.
Definition A.3. (Restricted ANM. Def. 27 in (Peters & Bühlmann, 2014)) Consider an ANM with d variables.
This SEM is called restricted ANM if for all j ∈ V, i ∈ PAj and all sets S ⊆ V with PAj\{i} ⊆ S ⊆ PAj\{i, j},
there is an xS with P (xS) > 0, s.t. the tripefj(xPAj\{i}, ·︸︷︷︸

Xi

), P (Xi | XS = xS) , P (ϵj)


satisfies ConditionA.2. Here, the under-brace indicates the input component of fj for variable Xi. In
particular, we require the noise variables to have non-vanishing densities and the functions fj to be continuous
and three times continuously differentiable.

A.1 Proof of Proposition 3.7

From Remark 3.2, we have P ck (X) ∈ P C(X) for ∀ck, is Markov with G. For each ck ∈ C with P ck (X) does
not satisfy Assumption 3.5, the Completed Partially DAG (CPDAG) Ĝ (Pearl, 2009), which represents the
CPDAG induced by G, can be identified (Spirtes et al., 2001). (1) That also says that these distributions can
be induced from any DAG induced from M(G), including G definitely. Notice that skeleton(Ĝ) = Skeleton(G)
and any Xi ← Xj in Ĝ is also existed in G. Then, for those ck with with P ck (X) satisfying Assumption 3.5,
G can be identified. (2) That is to say, distributions satisfying Assumption 3.5 can only be induced from G.
Then, two kinds of graph, Ĝ and G, are obtained. Therefore, G can be easily identified. With (1) and (2),
P ck (X) ∈ P C(X) for ∀ck can only be induced by G. Then, G is said to be identifiable ■

B Implementations

The comparing causal discovery methods used in this paper all have available implementations, listed below:

• PC and MCSL: Codes are available at gCastle https://github.com/huawei-noah/trustworthyAI/
tree/master/gcastle. The first author of MCSL added the implementation in this package.

• NOTEARS and NOTEARS-MLP: Codes are available at the first author’s GitHub repository https:
//github.com/xunzheng/notears

• NOTEARS-ADMM: Codes are available at the first author’s GitHub repository https://github.com/
ignavierng/notears-admm

• DAG-GNN: Codes are available at the author’s GitHub repository https://github.com/fishmoon1234/
DAG-GNN
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• GES: an implementation of GES is available at https://github.com/juangamella/ges

• CAM: the codes are available at CRAN R package repository https://cran.r-project.org/src/contrib/
Archive/CAM/

Our implementation is highly based on the existing Tool-chain named gCastle (Zhang et al., 2021), which
includes many gradient-based causal discovery methods.

B.1 Graph generation

To simulate DAG for generating observations, we introduce two kinds of graph generation methods named
Erdős-Rényi (ER) and Scale-Free (SF) graphs. To simulate the ER graph generation, we firstly randomly
sample a topological order and by adding directed edges were it is allowed independently with probability
p = 2s

d2−d where s is the number of edges in the resulting DAG. To generate Scale-free (SF) graphs, we firstly
take the Barabasi-Albert model and then add all nodes one by one. From the above descriptions, we can find
that the degree distribution of ER graphs follows a Poisson distribution, and the degree of SF graphs follows
a power law: few nodes, often called hubs, have a high degree (Lachapelle et al., 2020).

B.2 Detailed metrics

SHD is kind of measurement which is defined to calculate the Hamming distance two partially directed acyclic
graphs (PDAG) by counting the number of edge for which the edge type differs in both PDAGs. In PDAG,
there exist four kinds of edges between two nodes: i→ j, i← j, i− j and i j. SHD just counts the different
edges between the two graphs. SHD is defined over the space of PDAGs, so we can, of course, use it to
calculate distances in DAG and CPDAG spaces.

True Positive Rate (TPR) and False Discovery Rate (FDR) are two common metrics in the machine learning
community. True positive rate, also referred to sensitivity or recall, is used to measure the percentage of
actual positives which are correctly identified. The False Discovery Rate is defined as the expected proportion
of errors committed by falsely rejecting the null hypothesis. Let TP be true positives (samples correctly
classified as positive), and FN be false negatives (samples incorrectly classified as negative), FP be false
positives (samples incorrectly classified as positive), and TN be true negatives (samples correctly classified as
negative). Then, TPR = T P

T P +F N and FDR = F P
F P +T P .

B.3 Hyper-parameters setting

In all experiments, there is no extra hyper-parameter to adjust for PC (with Fisher-z test and p-value 0.01) and
GES (BIC score). For NOTEARS, NOTEARS-MLP and DAG-GNN, we use the default hyper-parameters
provided in their papers/codes. For MCSL, the hyper-parameters need to be modified are ρinit and β.
Specifically, if experimental settings (10 variables and 20 variables) are the same as those in their paper, we
just take all the recommended hyper-parameters. For settings not implemented in their paper (40 variables
exactly), we have two kinds of implementations. The first one is taking a linear interpolation for choosing the
hyper-parameters. The second one is taking the same parameters as ours. We find that the second choice
always works better. In our experiment, we report the experimental results done in the second way. Notice
that CAM pruning is also introduced to improve the performance of MCSL, which however can not guarantee
a better result in our settings. For simplicity and fairness, we just take the direct outputs of MCSL.

Similar to MCSL (Ng et al., 2022b) and GraN-DAG (Lachapelle et al., 2020), we implement several experiments
on simulated data with known causal graphs to search for the hyper-parameters and then use these hyper-
parameters for all the simulated experiments. Specifically, we use seeds from 1 to 10 to generate the simulated
data to search for the best combination of hyperparameters while all our experimental results reported in
this paper are all conducted using seeds from 2021 to 2030.
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B.4 Hyper-parameters in real-data setting

Most CSL methods have hyper-parameters, more or less, which need to be decided prior to learning.
Moreover, NN-based methods are especially sensitive to the selection of hyper-parameters. For instance,
Gran-DAG (Lachapelle et al., 2020) defines a really large hyper-parameters space for searching the optimal
combination, which even uses different learning rates for the first subproblem and the other subproblems.
MCSL and DS-FCD are sensitive to the selection of ρinit and β when constructing and solving the subproblem.
As pointed out in (Kairouz et al., 2021), NOTEARS focus more on optimizing the scoring term in the early
stage and pays more attention to approximate DAG in the late stage. If NOTEARS cannot find a graph near
G in the early stage, then, it would lead to a worse result.

To alleviate this problem, one may choose to (1) enlarge the learning rate or take more steps when solving
the first few subproblems as Gran-DAG; (2) reduce the value of coefficient ρinit to let the optimizer pay
more attention to the scoring term in the early stages as MCSL. The other trick we find when dealing with
real data is increasing ℓ1. This mostly results from that real data may not fit well with the data generation
assumptions in most papers. Therefore, we choose to conduct a grid search to find the best combination of
ρinit, β, ℓ1 for causal discovery on real data.

In the practice of causal discovery, it is impossible to have G to select the hyper-parameters. One common
approach is trying multiple hyper-parameter combinations and keeping the one yielding the best score
evaluated on a validation set (Koller & Friedman, 2009; Ng et al., 2022b; Lachapelle et al., 2020). However,
the direct use of this method may not work for some algorithms, such as MCSL, NOTEARS-MLP, and
DS-FCD. This mainly lies in the similar explanations of the property of the traditional solution of AL. In
the late stage of optimization, the optimizer focuses heavily on finding a DAG by enlarging the penalty
coefficient ρ. Then, the learning of causal mechanisms would be nearly ignored. To address this problem, we
firstly report the DAG directly learned by a combination of hyper-parameters. And then, we replace the
parameters part for describing the causal graph with the learned DAG. Afterwards, we just take the score
without DAG constraint to optimize the causal mechanism approximation part (which may not be the same
name in the other algorithms). Finally, the validation set is taken to evaluate the learned model. The final
hyper-parameters used on the real dataset in our paper is as follows:

Table 5: The hyper-parameters used on real data.

Parameters ρinit β λℓ1

Values 0.008 2 0.3

B.5 Model parameters

The CGL part in each local model is parameterized by a d× d matrix named U and the Gumbel-Sigmoid
approach is leveraged for approximating the binary form. Each entry in U is initialized as 0. The temperature
τ is set to 0.2 for all settings. Then, for the causal mechanism approximation part, we use 4 dense layers
with 16 variables in each hidden layer. All weights in the Network are initialized using the Xavier uniform
initialization.

B.6 Training prameters

Our AS-FCD and DS-FCD reach this point and are implemented with the following hyper-parameters. We
take Adam (Kingma & Ba, 2015) with learning rate 3 × 10−2 and all the observational data Dck on each
client are used for computing the gradient. And the detailed parameters used in Algorithms 1 and 2 are listed
in Table 6.

Notice that as illustrated in MCSL (Ng et al., 2022b), the performance of the algorithm is affected by the
initial value of ρinit and the choice of β. Since a small initial of ρinit and β would result in a rather long
training time. As said in (Kaiser & Sipos, 2021), MLE plays an important role in the early stage of training

21



Under review as submission to TMLR

Table 6: The hyper-parameters used on simulated data in this paper.

Parameters αinit htol itmax itinner itfl γ ρmax λℓ1

Values 0 1× 10−10 25 1000 200 0.25 1× 1014 0.01
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Figure 3: The sensitivity analysis of hyper-parameters

and highly affects the final results. Therefore, carefully picking a proper combination of ρinit and β will lead
to a better result. In our method, we tune these two parameters via the same scale of experiment with seeds
1 ∼ 10. For each variable scale and training type, the parameters are adjusted once and are applied to all
other experiments with the same variable scale. We find the combinations of the following parameters in
Table 7 work well in our method. Our method also adopts a ℓ1 sparsity term on gτ (U), where the sparsity
coefficient λℓ1 is chosen as 0.01 for all settings.

Table 7: The combinations of ρinit and β on simulated data in our method.

10 nodes 20 nodes 40 nodes
ρinit β ρinit β ρinit β

AS-FCD 6× 10−3 10 1× 10−5 20 1× 10−11 120
DS-FCD 6× 10−3 10 6× 10−5 20 1× 10−11 120

B.7 Sensitivity analysis of hyper-parameters

Here, we show the sensitivity analysis of itfl, αinit, and λl1 . From the experimental results in Figure 3, we
find that our method is relatively robust to itfl. That is to say, the itfl can be reduced to alleviate the
pressure of communication costs while the performance can be well kept. λl1 is the coefficient of l1 sparsity,
which will affect the final results. Because we have no sparsity information of the underlying causal graph,
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we set λl1 = 0.01 in all settings. When dealing with real data, we recommend the audiences adjust this
parameter by using our parameter-tuning method provided in the Section B.4. The results of αinit are exactly
as expected. As discussed before, our method tries to maximize the likelihood term of the total loss in the
early stages, which is important to find the final ground-truth DAG. If setting a relatively large αinit, the
early learning stages would be affected. Therefore, we recommend directly taking αinit as 0 in all settings.

C Discussions on our method

C.1 Novelty and contributions

Firstly, we acknowledge the contribution of our baseline method MCSL (Ng et al., 2022b), which really
performs well in many settings and helps to guarantee the performances of our proposed method. We also
appreciate the excellent baseline method FedAvg (McMahan et al., 2017), which provides an efficient federated
learning way. Our FCD is highly inspired and benefits from these two works. The main contributions, which
can be taken by our proposed method, are (1) one of the first works that investigate the practical problem
of causal discovery in a federated setup and (2) further providing the DS-FCD approach that can guarantee
the privacy protection by avoiding the raw data leakage and allow the data heterogeneity across the
clients. Another concurrent work NOTEARS-ADMM (Ng & Zhang, 2022) also considers the same problem
while our DS-FCD can (1) gain better performances in most of the settings, (2) well handle the nonlinear
cases, (3) allow non-IID data, and (4) provide a quite flexible federated causal discovery framework.

Discussions on the simple averaging Even though averaging is the simplest way to aggregating and
exchanging information, we find it is quite an effective way to solve the federated causal discovery problem,
which is definitely an advantage of our method. For the IID cases, our simple averaging can nearly approach
the same performance as using all data. For the non-IID cases, DS-FCD can still obtain satisfactory results.
While, as the future work, more advanced information aggregation methods (Wang et al., 2020a) can be well
incorporated into our framework to further boost the performances.

C.2 Difference with graph neural network (GNN) learning

There are four main reasons, which make CD and GNN two different research lines. (1) Nodes in causal
graph represent variables and directed edges describe the cause-effect relation between different variables. In
GNN, graph talks more about the graph-type data, such as social networks, protein networks, and traffic
networks. (2) Networks in CD are leveraged to learn the causal mechanisms while networks in GNN are taken
to achieve node embedding and feature extraction. (3) Learned causal graph can be taken for interventional
and counterfactual reasoning. (4) CD cares more about identifiability. That is to say, it is important to
exactly identify the true causal process underlying the observations.

C.3 Broader impact statement

In FL, the server and some clients participate in this process. While as we talked about above, the DAG
is shared among all clients. The FCD is motivated by "data on each client is not enough for identifying
up the ground-truth DAG". That is to say, the causal graph information is not private for clients. For the
server, it depends. In our previous motivations, we actually only care about the "raw data leakage" problem
but did not take the privacy of the causal graph into consideration. In real-world scenarios, some of the
causal relations can be public such as diseases research. For these cases, our method can still work. However,
causality structure sometimes may also be private information. This problem can also be easily solved by
picking one client as the proxy server.

C.4 DS-FCD as a framework

In this paper, we restrict our attention to the case that all concerned variables can be well observed. We
also only take MCSL (Ng et al., 2022b) as the baseline method. However, in practice, all gradient-based
methods can be incorporated into our AS-FCD framework to deal with the homogeneous/IID data. To deal
with the heterogeneous data, we prefer that the baseline methods can separately learn the causal graph
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and causal mechanisms. The other baseline methods that can be easily combined into our framework are
NOTEARS-MLP (Zheng et al., 2020) and DAG-GNN (Yu et al., 2019). Unfortunately, many works are not
in this fashion, such as GraN-DAG (Lachapelle et al., 2020), CD-RL (Zhu et al., 2020) and their following
works.

Latent variables. In this paper, we carry with causal sufficiency assumption, which assumes that there is
no unobserved common confounder. Handling latent confounder is a fundamentally important but really hard
problem in the traditional causal discovery not to mention the federated setup. Until now, the theoretical
results on the identifiability of causal discovery with latent confounder is always too weak to be used in practice
since too strict assumptions are taken. In the recent progress of the latent variables research, Bhattacharya
et al. (2021) takes the acyclic directed mixed graphs (ADMGs) to describe the causal graphs with latent
confounder. With different types of restrictions, three classes of proprieties named Ancestral graph, Acid
graph, and Bow-free graph, are given. According to different proprieties, different graph constraints are given.
For example, trace

(
eD
)
− d + sum(D ◦ B) = 0 is set for the Bow-free graph8, where D is the adjacency

matrix recording the directed edges and B records the double-directed edges. To incorporate this method in
our framework, we can directly replace the constraint. However, this method can only deal with the linear
Gaussian case, which is rather limited.

C.5 The consistency results by BIC score

Actually, for linear additive noise models with Gaussian noises, the consistency results for maximizing the BIC
score to identify the causal graph (Markov Equivalence Class or DAG) have been well established (Tian & Pearl,
2001; Huang et al., 2020a). For this case, with the DAG space constraint, the unique maximum of score function
Sck (Dck , Φck , U ck ) with BIC score corresponds to the ground-truth DAG. Even for the high-dimensional
consistency for linear Gaussian SEM in the case when the model is identifiable (Aragam et al., 2019). Since
the ground-truth G corresponds to each Sck , the global maximum arg maxΦ,U

∑m
k=1 Sck (Dck , Φck , U) with

DAG constraint can lead to the ground-truth causal graph. For nonlinear ANMs, however, even many
practical methods, e.g., MCSL (Ng et al., 2022b), NOTEARS-MLP (Zheng et al., 2020), and CD-RL (Zhu
et al., 2020), have been proposed to solve this problem by maximizing the BIC score, the theoretical results
of consistency is still lacking and would be an interesting future work to be investigated. Therefore, our
framework based on these methods inherits the theoretical limit for the nonlinear case. From our paper,
however, empirical results can still show the effectiveness of the method.

C.6 Does the global maximum of Eq. (6) correspond to the ground-truth DAG?

Firstly, for observations of identifiable ANMs on each client, the unique maximum of score function
Sck (Dck , Φck , U ck ) with BIC score corresponds to the ground-truth DAG (Zheng et al., 2018; Ng et al., 2022b).
Even for the high-dimensional consistency for linear Gaussian SEM in the case when the model is identifiable.
Since the ground-truth G corresponds to each Sck , the global maximum arg maxΦ,U

∑m
k=1 Sck (Dck , Φck , U ck )

with DAG constraint can lead to the ground-truth DAG.

C.7 Can Algorithms 1 and 2 solve Eq. (6)?

Unfortunately, the global maximum of Eq. (6) can not be well reached by the gradient-based optimization
methods, which is mainly caused by the non-convex property of the acyclicity constraint. Firstly, discovering
the ground-truth DAG is an NP-hard problem. Traditional methods like PC and GES search the discrete
DAG space to solve this problem, which are relatively time-consuming. Then, NOTEARS introduces an
equality constraint (3) to formulate the DAG search problem as a continuous optimization problem, which
can be easily solved by the gradient descent methods. However, the trade-off is that this equality constraint
is non-convex, which pushes us away from finding the ground-truth DAG (the global minima of (6)). That is
to say, using gradient descent to solve (6) only can reach the local minima of (6). This similar conclusion
stands for recent continuous optimization-based CD methods such as GraNDAG (Lachapelle et al., 2020),
DAG-GNN (Yu et al., 2019), and NOTEARS-MLP (Zheng et al., 2020).

8See more details at Section 4 in (Bhattacharya et al., 2021)
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C.8 Can U finally satisfy the acyclicity constraint in Eq. (3)?

In the following, for simplicity, please do not mind if we explain our method by setting some parameters
with specific values. Firstly, following NOTEARS (Zheng et al., 2018) and MCSL (Ng et al., 2022b), we
take Augmented Lagrangian Method (ALM) to covert the constrained optimization problem into a series of
sub-problems without the hard constraint but with two penalty terms. For the t-th sub-problem, the specific
formulation of Eq. (8) is related to αt and ρt. αt and ρt will be updated to αt+1 and ρt+1 after solving
the t-th sub-problem for 1000 steps (gradient descent step). When dealing with each sub-problem, each
client locally updates its personalized model with acyclicity penalty terms, which is indeed for the acyclicity
constraint. During the 1000 steps, Us are averaged every 200 steps (Yes, the simple average is nothing with
acyclicity). When finishing 1000 steps (also the 5-th 200 steps is just finished), a new Unew is obtained. Then,
αt and ρt are updated to αt+1 and ρt+1 to formulate the next sub-problem of ALM, which are described
in steps 5 ∼ 9 in Algorithm 1. Then, a new circulation begins. Therefore, we argue that (1) the acyclicity
constraint is guaranteed by taking the acyclicity penalty when solving each sub-problem. (2) the convergence of
U is supported by the convergence analysis of Personalized FedAvg of Non-IID data.

C.9 Convergence Analysis.

This is a new question brought up by our decentralized data setting. Let us quickly review our method. For
each client ck, the model parameters include Φck and U ck . Each client optimizes its parameters on their own
data Dck . The same as NOTEARS and its following works, our method can reach a stationary point instead
of the global maximum (the ground-truth DAG). Then, we separate our discussion into two types: IID data
and heterogeneous data.

C.9.1 IID data.

For IID setup, we have Φc1 = Φc2 = · · · = Φcm and U c1 = U c2 = · · · = U cm . Our method named AS-FCD
(All-Shared FCD) sets a central server, which regularly (1) receives all parameters (or U ck for DS-FCD), (2)
averages these parameters to get Φnew and Unew and (3) broadcasts Φnew and Unew to all clients during the
learning procedures. AS-FCD benefits from an advanced technique named FedAvg (McMahan et al., 2017)
for solving FL problem with IID setting. FedAvg solves the similar problem by averaging all parameters
learned from each client in the learning process.

C.9.2 Heterogeneous data.

Firstly, to solve the overall constraint-based problem, we take ALM to convert the hard constraint to a soft
constraint with a series of increasing penalty co-efficiencies. The convergence of ALM for non-convex problem
have been well studied (Nemirovski, 1999) and also be presented in NOTEARS (Zheng et al., 2018). Thus,
we only consider the convergence analysis of our method directly from the inner optimization, i.e., the t-th
sub-problem, as follows.

arg max
Φ,U

m∑
k=1
Sck (Dck , Φck , gτ (U))− αth(U)− ρt

2 h(U)2
, (9)

Here, for simplification, we just define that Ŝck (Φck , U) = −Sck (Dck , Φck , gτ (U)) + αth(U) + ρt

2 h(U)2.
Then, the overall optimization problem can be reformulated as follows.

arg min
Φ,U

Ŝ(U , Φ) :=
m∑

k=1
Ŝck (U , Φck ). (10)

Through the following part, we use ∇U and ∇Φ to represent the gradients of Ŝ(U , Φ) w.r.t U and Φck ,
respectively. And, we use ∇̃U and ∇̃Φ to represent the stochastic gradients calculated by a mini-batch of
observations w.r.t U and Φck , respectively.
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Definition C.1. (Partial Gradient Diversity). The gradient diversity among all local learning objectives as:

m∑
i=1

∥∥∥∇U Ŝck (U , Φck )−∇U Ŝ(U , Φ)
∥∥∥2
≤ δ2. (11)

Note that the notation of gradient diversity is introduced (Yin et al., 2018; Haddadpour & Mahdavi, 2019) as
a measurement to compute the similarity among gradients update on different clients.
Assumption C.2. (Smoothness and Lower Bound). The local objective function Ŝck (·) of the k-th client
is differentiable for all k ∈ [m]. Also, ∇U Ŝck (U , Φck ) is LU -Lipschitz w.r.t U and LUΦ w.r.t Φck , and
∇ΦŜck (U , Φck ) is LΦ-Lipschitz w.r.t Φck and LΦU w.r.t U . We also assume the overall objective function
can be bounded by a constant Ŝ∗ and denote ∆Ŝ0 = Ŝ(U0, Φ0)− Ŝ∗.

The relative cross-sensitivity of ∇U Ŝck w.r.t Φck and ∇ΦŜck w.r.t U with the scalar

χ := max {LUΦ, LΦU} /
√

LU LΦ. (12)

Assumption C.3. (Bounded Local Variance) For each local data Dck , k ∈ [m], we can independently sample
a batch of data denoted as ξ ⊂ Dck . Then, there exist constant δU and δΦ such that

E
[∥∥∥∇̃U Ŝck (Φck , U)−∇U Ŝck (U , Φck )

∥∥∥2
]
≤ σ2

U ,

E
[∥∥∥∇̃ΦŜck (Φck , U)−∇ΦŜck (U , Φck )

∥∥∥2
]
≤ σ2

Φ,

The bounded variance assumption is a standard assumption on the stochastic gradients (Haddadpour &
Mahdavi, 2019; Pillutla et al., 2022).
Theorem C.4. (Convergence of DS-FCD). For DS-FCD with all clients involved in the aggregation, for
all 0 ≤ it ≤ T − 1, under Assumptions C.2, C.3 and C.1, and the learning rate for the U part is set as
η/(LU itin) and the learning rate for the ϕ part is set as η/(Lϕitin). Then, for η depending on the problem
parameters, we have

1
T

T−1∑
it=0

(
1

LU
E
[∥∥∥∇U Ŝck (Φck

it , Uit)
∥∥∥2
]

+ 1
LΦ

E

[
1
m

m∑
i=1

∥∥∥∇U Ŝck (Φck
it , Uit)

∥∥∥2
])
≤

(∆Ŝ0σ2
fcd,1)1/2
√

T
+

(∆Ŝ2
0 σ2

fcd,2)1/3

T 2/3 +O( 1
T

).

(13)

where we define the effective variance terms

σ2
fcd,1 =

(
1 + χ2)( σ2

U

LU
+ σ2

Φ
LΦ

)
,

σ2
fcd,2 =

(
1 + χ2)( δ2

LU
+ σ2

U

LU
+ σ2

Φ
LΦ

)(
1− 1

itin

)
,

(14)

where itin is the total step of one inner loop used in lines 4− 21 in Algorithm 2.

From Theorem C.4, we can see that the gradients ∇U Ŝck (Φck
it , Uit) w.r.t U and ∇U Ŝck (Φck

it , Uit) w.r.t Φ at
the t-th step can be bounded if we choose a proper η, which affects the learning rates of the model.

The proof of Theorem C.4 can be borrowed from the proof of Theorem 2 in (Pillutla et al., 2022). Notice
that, in our theorem, we have assumed that all clients participate the aggregation for simplification and the
conclusion can be easily extended to the general partial participation case.
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Figure 4: Visualization of the learned graph during the optimization process. B − n means the learned graph
in the n steps. Best is the final estimated causal graph. BG is the ground-truth DAG.
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Figure 5: Parameters changing during the optimization process. The first three sub-figures include the
changes of penalty coefficients rho, alpha and the DAG constraint loss hloss. The fourth sub-figure records
the ℓ1 distance between two learned graphs on the different clients. The fifth sub-figure records the SHD
distance between two learned graphs on the different clients.

D Supplementary experimental details

D.1 Visualization of the learned DAG of FCD

Visualization of the learned DAG of FCD. We take an example of the AS-FCD optimization process on
linear Gaussian model with NOTEARS as the baseline method and plot the change in estimated parameters
in Fig. 4 and Fig. 5. In this example, the number of nodes is set as 10 and the edges are 10. The data is
simulated by ER graph and evenly assign 200 observations on two different clients. In Fig. 4, we can see that
the learned causal graph is asymptotically approximates the ground-truth DAG BG, including the existence
of edges and their weights. From Fig. 5, we can find that, with the increase of the penalty coefficients, the
hloss deceases quickly. For learned graphs on the different clients, we can see that the SHD distance is smaller
during the optimization procedures.

D.2 Uneven distributions

For federated learning problems in real world, different clients may own different amounts of observations. To
verify the stability of our method, we simulate the setting that uneven distributions in different clients. For
each client, the number of observations are randomly chosen from a list [20%, 40%, 60%, 80%]× n, where n is
the maximal observations. The experimental results are shown in Fig. 6, from which we can find that our
method show relatively stable performance in this setting.

D.3 Varying clients

In this setting, we now consider a fixed number of samples which are distributed across different number of
clients. We conduct experiments for (2, 4, 6, 8) clients and show the results in Fig. 7. With the increase of
clients number, our method can show better performances.

D.4 Dense graphs

Our method is also implemented on some denser graphs. Experimental results in Table 8 and Table 9. From
these experimental results, we can see that our method shows consistently better performance over other
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Figure 6: Results of uneven distributions on different clients.
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Figure 7: Results of performances with varying clients.

methods on the denser graph setting. For the IID case, both AS-DAG and DS-DAG obtain the nearly low
SHD as MCSL trained on all data and far better than all methods trained on separated data. For the Non-IID
case, our DS-FCD still shows the best performance. Compared to NOTEARS in 20 variables case, DS-FCD
shows similar SHD results but much better TPR result. Therefore, how to reduce the false discovery rate of
DS-FCD would be an interesting thing.

Table 8: Results on nonlinear ANM with dense graphs (IID).

ER4 with 10 nodes SF4 with 10 nodes ER4 with 20 nodes SF4 with 20 nodes
SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑

A
ll

da
ta PC 27.3± 3.2 0.29± 0.07 18.9± 4.9 0.37± 0.16 68.2± 9.5 0.23± 0.06 60.2± 9.3 0.30± 0.08

NOTEARS 34.3± 1.7 0.03± 0.02 22.7± 1.3 0.05± 0.05 71.8± 7.2 0.03± 0.01 62.8± 0.9 0.02± 0.01
MCSL 15.5± 5.9 0.57± 0.15 4.5± 3.1 0.83± 0.11 33.8± 10.4 0.55± 0.11 19.8± 7.5 0.69± 0.11

Se
p

da
ta PC 31.5± 2.1 0.14± 0.03 20.4± 0.58 0.21± 0.03 68.7± 8.1 0.13± 0.03 60.9± 2.8 0.15± 0.02

NOTEARS 34.3± 1.8 0.03± 0.01 22.7± 1.0 0.06± 0.04 70.1± 6.9 0.03± 0.01 62.3± 0.56 0.03± 0.01
MCSL 15.8± 3.3 0.61± 0.09 8.3± 4.3 0.78± 0.11 49.3± 11.8 0.63± 0.10 39.7± 5.6 0.73± 0.07
DS-FCD 16.9± 4.9 0.53± 0.12 5.4± 3.0 0.78± 0.12 35.4± 10.9 0.53± 0.11 20.7± 5.1 0.69± 0.08
AS-FCD 17.4± 4.8 0.53± 0.12 5.5± 2.8 0.79± 0.11 40.7± 4.8 0.57± 0.10 24.1± 5.8 0.71± 0.09

D.5 Voting method.

There is another interesting research line (Na & Yang, 2010), which also try to learn DAG from decentralized
data. We add a DAG combination method proposed in (Na & Yang, 2010), which proposes to vote for each
entry of the adjacency matrix to get the final DAG. From the experimental results in Table 10, we can find
that For PC and NOTEARS, the combining method seems to contribute little improvement. This is because
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Table 9: Results on nonlinear ANM with dense graphs (Non-IID).

ER4 with 10 nodes SF4 with 10 nodes ER4 with 20 nodes SF4 with 20 nodes
SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑

Se
p

da
ta PC 29.3± 1.3 0.23± 0.03 20.3± 2.1 0.31± 0.06 71.9± 8.1 0.19± 0.03 62.7± 2.8 0.22± 0.03

NOTEARS 20.5± 2.6 0.45± 0.08 12.2± 2.9 0.54± 0.11 43.2± 7.0 0.49± 0.08 39.4± 6.8 0.47± 0.10
MCSL 20.0± 3.2 0.52± 0.07 13.7± 2.2 0.65± 0.07 65.1± 7.7 0.33± 0.05 59.4± 5.3 0.31± 0.05
DS-FCD 8.5± 3.7 0.84± 0.09 4.5± 2.0 0.93± 0.07 40.7± 14.5 0.74± 0.07 39.9± 10.8 0.68± 0.07

the reported DAGs local clients are too bad to get a good result. For MCSL, this combing method works
really well for improving the performance. The reason is easy to be inferred from the results. For MCSL,
DAGs reported by local clients are of bad SHDs but good TPR, which means that the False Discovery Rates
(FDRs) are high. While the combing method can further reduce the FDRs and keep the TPRs still good.
Then, SHD can be further reduced. Luckily, our DS-FCD still shows the best performances in all settings.

Table 10: Comparison with the voting method.

IID-GP Non-IID
ER2 with 10 nodes ER2 with 20 nodes ER2 with 10 nodes ER2 with 20 nodes

SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑

Se
p

da
ta PC 14.1± 2.4 0.31± 0.06 32.7± 6.5 0.28± 0.07 12.5± 2.7 0.45± 0.07 28.5± 6.3 0.44± 0.07

NOTEARS 16.5± 2.0 0.06± 0.04 31.7± 6.0 0.11± 0.04 7.6± 2.6 0.60± 0.11 15.0± 3.1 0.62± 0.09
MCSL 7.1± 3.2 0.83± 0.08 24.8± 5.5 0.88± 0.07 9.2± 1.8 0.72± 0.06 23.3± 5.8 0.56± 0.08

Vo
tin

g PC 13.3± 3.0 0.27± 0.11 29.7± 5.9 0.22± 0.05 11.4± 3.4 0.36± 0.13 25.5± 6.8 0.29± 0.13
NOTEARS 15.6± 2.2 0.11± 0.06 32.6± 6.2 0.09± 0.05 7.8± 4.0 0.56± 0.20 18.4± 11.6 0.49± 0.30
MCSL 8.0± 3.1 0.85± 0.16 18.1± 7.8 0.88± 0.06 6.9± 2.2 0.71± 0.13 10.1± 4.6 0.79± 0.09
DS-FCD 2.4± 2.0 0.86± 0.12 6.2± 4.0 0.85± 0.10 1.9± 1.6 0.99± 0.02 6.2± 4.7 0.89± 0.09
AS-FCD 1.8± 2.0 0.89± 0.12 5.0± 4.2 0.88± 0.11 NaN NaN NaN NaN

D.6 Comparisons with CAM

Here, we add one more identifiable baseline named causal additive model (CAM) (Bühlmann et al., 2014),
which also serves as a baseline in MCSL (Ng et al., 2022b), GraNDAG (Lachapelle et al., 2020), and
DAG-GAN (Yu et al., 2019). From result in Table 11 and 12, we can see that our methods always show an
advantage over CAM. CAM also assumes a non-linear additive noise model for data generation. However,
CAM limits the non-linear function to be additive. In normal ANM, Xi = fi(Xpai

) + ϵi while CAM assumes
Xi =

∑
j∈X(pai) fi←j(Xj) + ϵi, which limits the capacity of its model. From the above experimental results,

we can see that our methods show consistent advantages over CAM.

Table 11: Comparisons with CAM on nonlinear ANM (IID-GP).

ER2 with 10 nodes SF2 with 10 nodes ER2 with 20 nodes SF2 with 20 nodes
SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑

All data CAM 9.5± 2.9 0.87± 0.09 9.1± 3.1 0.84± 0.10 21.4± 4.7 0.77,± 0.08 26.6± 6.1 0.75± 0.07
Sep data CAM 11.8± 2.6 0.40± 0.10 11.1± 1.5 0.38± 0.11 24.3± 5.8 0.40± 0.07 26.8± 2.0 0.36± 0.06

DS-FCD 2.4± 2.0 0.86± 0.12 2.7± 2.2 0.86± 0.13 6.2± 4.0 0.85± 0.10 14.7± 7.0 0.80± 0.11
AS-FCD 1.8± 2.0 0.89± 0.12 2.5± 2.7 0.85± 0.15 5.0± 4.2 0.88± 0.11 7.8± 5.5 0.80± 0.14

D.7 Comparisons with NOTEARS-ADMM

In this subsection, we give the experimental comparisons with NOTEARS-ADMM in detail to verify the
advantage of our averaging strategy is simple but effective. Firstly, we conduct the results on linear models,
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Table 12: Comparisons with CAM on nonlinear ANM (Non-IID).

ER2 with 10 nodes SF2 with 10 nodes ER2 with 20 nodes SF2 with 20 nodes
SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑

All data CAM 31.9± 4.8 0.39± 0.15 31.8± 4.4 0.31± 0.17 104.6± 15.4 0.46 ± 0.15 116.9± 13.8 0.35± 0.07
Sep data CAM 18.0± 1.7 0.52± 0.04 17.8± 2.1 0.51± 0.3 47.5± 9.2 0.52± 0.04 53.0± 6.1 0.50± 0.03

DS-FCD 1.9± 1.6 0.99± 0.02 2.6± 1.3 0.93± 0.07 6.2± 4.7 0.89± 0.09 11.5± 6.7 0.81± 0.14

which are the main part in Ng & Zhang (2022). As shown in Fig. 8, even on linear models, our AS-FCD can
consistently show its advantage over NOTEARS-ADMM. Then, for the nonlinear models, we consider two
different functions named MLP and Gaussian process (GP). The results are presented in Fig. 9, from which
we can see that FCD always show better performance over all settings. Since NOTEARS-ADMM can not
handle heterogeneous data, we do not give the results on Non-IID data for fair comparison.
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(a) ER1 with 10 nodes.
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(b) ER2 with 10 nodes.

20 40 60 80 100
Observations on each client

0

1

2

3

4

SH
D

NOTEARS-ADMM
AS-FCD

20 40 60 80 100
Observations on each client

0.850

0.875

0.900

0.925

0.950

0.975

1.000

1.025

TP
R

NOTEARS-ADMM
AS-FCD

(c) ER1 with 20 nodes.
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(d) ER1 with 20 nodes.

Figure 8: Comparisons with NOTEARS-ADMM on linear model (IID).

Table 13: Results on nonlinear ANM with different functions (IID, 10 nodes, ER2).

GP MIM MLP GP-add
SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑

A
ll

da
ta

PC 15.3± 2.6 0.37± 0.10 11.0± 4.9 0.60± 0.16 11.8± 4.3 0.61± 0.14 14.0± 4.7 0.49± 0.16
GES 13.0± 3.9 0.50± 0.18 9.6± 4.4 0.71± 0.17 15.8± 6.0 0.63± 0.14 14.4± 4.9 0.57± 0.17
DAG-GNN 16.2± 2.1 0.07± 0.06 13.7± 2.4 0.26± 0.10 18.2± 3.3 0.36± 0.12 13.3± 2.3 0.24± 0.10
NOTEARS 16.5± 2.0 0.05± 0.04 12.1± 3.2 0.34± 0.13 13.3± 3.4 0.35± 0.15 13.4± 2.2 0.23± 0.09
N-S-MLP 8.1± 3.8 0.56± 0.17 1.6± 1.3 0.95± 0.06 5.6± 1.3 0.81± 0.11 6.8± 4.0 0.65± 0.16
MCSL 1.9± 1.5 0.90± 0.08 0.7± 1.2 0.97± 0.06 12.7± 3.6 0.58± 0.24 1.9± 1.7 0.91± 0.07

Se
p

da
ta

PC 14.1± 2.4 0.31± 0.06 11.1± 3.6 0.48± 0.14 13.2± 3.6 0.42± 0.09 13.5± 3.2 0.37± 0.12
GES 12.7± 2.7 0.37± 0.09 10.6± 3.3 0.54± 0.12 14.6± 4.6 0.50± 0.13 12.0± 2.6 0.48± 0.08
DAG-GNN 15.7± 2.3 0.11± 0.05 11.7± 3.3 0.37± 0.12 17.7± 3.6 0.39± 0.11 13.0± 2.0 0.26± 0.10
NOTEARS 16.5± 2.0 0.06± 0.04 12.3± 3.0 0.33± 0.12 13.4± 3.4 0.35± 0.14 13.3± 2.3 0.24± 0.09
N-S-MLP 8.5± 2.9 0.56± 0.13 2.8± 1.5 0.93± 0.06 6.4± 1.3 0.81± 0.11 7.4± 2.9 0.67± 0.13
MCSL 7.1± 3.2 0.83± 0.08 4.4± 2.1 0.91± 0.06 13.4± 3.9 0.57± 0.21 6.5± 3.5 0.84± 0.07
DS-FCD 2.4± 2.0 0.86± 0.12 2.1± 1.4 0.91± 0.07 11.1± 3.1 0.57± 0.20 2.6± 1.6 0.87± 0.09
AS-FCD 1.8± 2.0 0.89± 0.12 1.7± 1.6 0.91± 0.08 10.5± 3.5 0.59± 0.22 2.4± 1.6 0.87± 0.08
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(a) ER1 with 10 nodes (GP).
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(b) ER2 with 10 nodes (GP).
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(c) ER1 with 10 nodes (MLP).
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(d) ER2 with 10 nodes (MLP).

Figure 9: Comparisons with NOTEARS-ADMM on nonlinear models (IID).

Table 14: Results on nonlinear ANM with different functions (IID, 20 nodes, ER2).

GP MIM MLP GP-add
SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑

A
ll

da
ta

PC 32.7± 9.4 0.48± 0.13 22.8± 5.8 0.60± 0.15 33.7± 12.3 0.50± 0.13 35.2± 8.0 0.50± 0.09
GES 27.1± 8.5 0.56± 0.11 21.5± 6.1 0.78± 0.09 44.9± 12.5 0.65± 0.11 41.7± 11.6 0.66± 0.08
DAG-GNN 32.5± 6.8 0.10± 0.08 26.7± 7.4 0.26± 0.13 32.1± 10.4 0.38± 0.08 27.2± 2.4 0.24± 0.08
NOTEARS 31.8± 6.0 0.11± 0.04 25.6± 6.1 0.29± 0.08 25.3± 8.0 0.40± 0.09 25.6± 3.9 0.28± 0.06
N-S-MLP 18.2± 4.5 0.52± 0.10 4.1± 2.0 0.95± 0.04 8.0± 3.9 0.86± 0.07 12.6± 2.2 0.70± 0.06
MCSL 4.6± 4.6 0.90± 0.13 1.7± 1.6 0.97± 0.04 18.1± 6.6 0.72± 0.14 3.1± 1.9 0.92± 0.05

Se
p

da
ta

PC 32.7± 6.5 0.28± 0.07 24.4± 5.6 0.46± 0.11 30.6± 8.0 0.41± 0.09 29.5± 5.6 0.42± 0.10
GES 28.6± 5.5 0.34± 0.06 20.5± 3.7 0.61± 0.06 34.4± 11.3 0.52± 0.09 29.3± 5.5 0.51± 0.07
DAG-GNN 31.7± 6.1 0.12± 0.04 26.8± 5.8 0.26± 0.06 34.1± 9.7 0.46± 0.07 26.5± 4.0 0.27± 0.05
NOTEARS 31.7± 6.0 0.11± 0.04 25.7± 5.9 0.29± 0.07 25.4± 7.4 0.42± 0.07 25.6± 3.8 0.29± 0.06
N-S-MLP 19.5± 4.7 0.52± 0.07 6.5± 1.9 0.92± 0.03 16.1± 8.6 0.86± 0.07 16.2± 3.3 0.70± 0.07
MCSL 24.8± 5.5 0.88± 0.07 20.4± 3.8 0.91± 0.05 30.2± 5.1 0.67± 0.12 16.2± 5.3 0.87± 0.05
DS-FCD 6.2± 4.0 0.85± 0.10 8.5± 2.8 0.93± 0.05 21.4± 7.9 0.71± 0.14 8.1± 3.2 0.85± 0.05
AS-FCD 5.0± 4.2 0.88± 0.11 3.3± 2.5 0.92± 0.07 20.1± 8.3 0.72± 0.14 5.6± 2.8 0.86± 0.06

E More discussions on the experimental results

E.1 Why do baseline methods perform not well?

Here, we give the detailed discussions on the experimental results in the paper. First of all, PC and GES can
only reach the CPDAG (or MEC) at most, which shares the same skeleton with the ground-truth DAG. When
we evaluate SHD, we just ignore the direction of undirected edges learned by PC and GES. That is to say,
these two methods can get SHD 0 if they can identify the CPDAG. Therefore, the final results are not caused
by unfair comparison. For PC, the independence test is leveraged to decode the (conditional) independence
from the data distribution. Therefore, the accuracy would be affected by (1) the amount of the observations
and (2) the effectiveness of the non-parametric kernel independence test method. GES leverages greedy
search with BIC score. However, the likelihood part of BIC in GES is Linear Gaussian, which is unsuitable
for data generated by the Non-linear model. NOTEARS is a linear model but the causal mechanisms are
non-linear. The reason will be the unfitness between data and model. Therefore, the comparisons with GES
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Table 15: Results on Non-IID setting with the different number of observations, (20nodes, ER2).

n =100 n =300 n =600 n =900
SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑

A
ll

da
ta

PC 55.5± 8.5 0.21± 0.06 57.3± 5.7 0.29± 0.07 60.4± 9.8 0.32± 0.11 62.4± 6.6 0.29± 0.10
GES 82.8± 13.7 0.38± 0.12 96.4± 14.9 0.48± 0.08 102.9± 13.6 0.51± 0.08 106.3± 14.3 0.50± 0.11
DAG-GNN 61.8± 14.7 0.39± 0.07 56.8± 9.7 0.37± 0.08 57.7± 12.0 0.38± 0.08 57.9± 12.1 0.32± 0.08
NOTEARS 58.7± 12.8 0.41± 0.12 57.6± 10.2 0.44± 0.06 57.3± 12.9 0.43± 0.08 59.4± 10.3 0.39± 0.10
N-S-MLP 111.2± 14.4 0.92± 0.10 101.0± 16.8 0.92± 0.05 100.8± 14.7 0.90± 0.10 97.6± 14.8 0.90± 0.07
MCSL 49.0± 8.1 0.62± 0.06 54.0± 10.0 0.70± 0.10 53.8± 9.6 0.73± 0.10 57.6± 11.6 0.73± 0.08

Se
p

da
ta

PC 31.2± 5.7 0.30± 0.05 29.0± 5.9 0.39± 0.06 28.5± 6.3 0.44± 0.07 27.9± 6.6 0.47± 0.08
GES 35.1± 8.3 0.48± 0.10 31.6± 9.8 0.57± 0.08 30.0± 8.0 0.62± 0.06 30.5± 10.7 0.64± 0.07
DAG-GNN 29.9± 7.2 0.66± 0.09 20.3± 5.0 0.67± 0.09 18.5± 4.9 0.67± 0.09 18.0± 5.2 0.66± 0.11
NOTEARS 16.3± 3.4 0.61± 0.08 15.5± 3.2 0.60± 0.08 15.0± 3.1 0.62± 0.09 15.2± 2.9 0.61± 0.09
N-S-MLP 68.0± 5.4 0.80± 0.04 22.6± 3.3 0.79± 0.06 12.7± 2.6 0.80± 0.05 11.8± 2.8 0.80± 0.05
MCSL 32.8,± 5.4 0.49± 0.08 26.4± 5.5 0.53± 0.09 23.3± 5.8 0.56± 0.08 23.1± 6.5 0.56± 0.07
DS-FCD 11.6± 5.6 0.83± 0.11 7.1± 6.1 0.90± 0.12 6.2± 4.7 0.89± 0.09 6.0± 5.5 0.91± 0.11

Table 16: Results on randomly selecting models-info of partial clients (Non-IID, 20nodes, ER2).

IID Non-IID
ER2 with 10 nodes ER2 with 20 nodes ER2 with 10 nodes ER2 with 20 nodes
SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑ SHD ↓ TPR ↑

r
m

10% 3.8± 2.4 0.78± 0.14 8.6± 4.8 0.77± 0.13 3.8± 1.4 0.93± 0.05 8.5± 5.4 0.89± 0.07
20% 3.2± 2.0 0.81± 0.12 6.7± 4.8 0.82± 0.13 2.5± 2.1 0.97± 0.04 8.2± 5.4 0.87± 0.09
50% 2.9± 1.8 0.83± 0.11 5.8± 4.4 0.85± 0.12 1.8± 1.4 0.99± 0.02 6.3± 5.1 0.89± 0.10
80% 2.7± 1.9 0.84± 0.12 6.0± 3.9 0.86± 0.10 1.8± 1.3 0.99± 0.02 5.9± 4.1 0.90± 0.08
100% 2.4± 2.0 0.86± 0.12 6.2± 4.0 0.85± 0.10 1.9± 1.6 0.99± 0.02 6.2± 4.7 0.89± 0.09

and NOTEARS on linear IID data are implemented in the Table 1. DAG-GNN is also a non-linear model.
However, the non-linear assumption of DAG-GNN is not the same as the data generation model ANMs
assumed in our paper. The second reason comes from its mechanisms approximation modules are compulsory
to share some parameters. Both NOTEARS-MLP and MCSL have their own advantages. Please refer to
Tables 13 and 14, you will find that NOTEARS-MLP performs better when the non-linear functions are MIM
and MLP while MCSL works better on GP and GP-add models.

E.2 Why does our method outperforms other methods even some baseline methods using all data for
training?

Let us first discuss the AS-FCD (All-Shared FCD), which shares all model parameters (both Φ and U)
among all clients. If we set itfl as 1 in AS-FCD, AS-FCD is totally the same as MCSL using all data for
training. For simplicity, we mark all parameters (actually Φ and U) of client ck together as θck . Let us
consider the t-th iteration when all clients receive the average parameters θt from the server and update their
parameters by θt.

For AS-FCD, firstly, we mark the gradients obtained by using the local data of client ck for k ∈ [m]
as gck

t . Then each client ck updates its parameters for one step by θck
t = θt − lr × gck

t , where lr is the
learning rate. Afterwards, the server collects all parameters and averages them to get θt+1 =

∑m

k=1
θ

ck
t

m =∑m

k=1
(θt−lr×g

ck
t )

m = θt− lr×
∑m

k=1
g

ck
t

m . For MCSL, there is only one θ. If MCSL uses full gradient information,

then θt+1 = θt − lr ×
∑m

k=1
g

ck
t

m (the full gradient is just the average of gradients from all samples). We can
find that the updated parameters are totally the same. Then if itfl > 1, we average all parameters every
itfl iterations. Even though the exact updating procedures are not the same, the expectations of updated
parameters are the same. This is why we say that MCSL trained on all data can serve as an approximate
upper bound of our method but unobtainable in our paper.
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Figure 10: Anatomical causal-effect relationships of fMRI Hippocampus dataset

Table 17: Empirical results on fMRI Hippocampus dataset (Part 2).

All data Separate data DS-FCD AS-FCD
GES N-S-MLP DAG-GNN GES N-S-MLP DAG-GNN

SHD ↓ 8.0± 0.0 9.0± 0.0 5.4± 0.5 8.3± 1.2 11.3± 1.0 8.2± 1.9 6.4± 0.9 5.0± 0.0
NNZ 11.0± 0.0 12.0± 0.0 3.3± 0.8 8.5± 1.1 14.4± 0.8 5.7± 1.4 6.8± 0.6 5.0± 0.0
TPR ↑ 0.43± 0.00 0.43± 0.00 0.23± 0.07 0.31± 0.17 0.44± 0.10 0.17± 0.18 0.27± 0.12 0.29± 0.00
FDR ↓ 0.73± 0.00 0.75± 0.00 0.52± 0.09 0.75± 0.12 0.78± 0.05 0.80± 0.18 0.72± 0.11 0.60± 0.00

In DS-FCD (DAG-Shared FCD) method, only all causal graphs are averaged. However, this partial information-
sharing mechanism also helps on benefiting information from other clients to find a better solution (Collins
et al., 2021).

F Discussions on Assumptions

F.1 Data heterogeneity

The general Non-IID setup should include the distribution shift caused by interventions. Since interventions
on some certain variables would also lead to heterogeneous distribution. Previous work (Huang et al., 2020b)
has investigated this case and proposes CD-NOD algorithm, which enhances the PC method, to learn from
heterogeneous data. However, CD-NOD need to identify some edge directions by capturing the changing
information among distributions. That is to say, this method which need to gather all data and cause the
raw data leakage, of course. In our paper, we restrict our attention to the ANMs, which care more about
the mechanisms and noises shift among different clients. Moreover, finding the identifiability conditions for
learning causal graph from the general heterogeneous data (both mechanisms shift and interventional data)
in the federated setup is a challenging but important problem, which is left for the future work.

F.2 Is our Invariant DAG assumption reasonable?

Firstly, let us skip the IID setting of FCD, which only assumes all SEMs are totally the same but data are
generated at different local clients. Then, we mainly talk about the Non-IID setting that assumes SEMs vary
but DAG is shared among different clients. Essentially, a SEM models the physical processes of a system and
the generation process behind observations. (1) Intuitively, different SEMs usually describe different systems.
Then, naturally, the DAGs may be different. Following this logic, we would say yes that the invariant DAG
assumptions among different SEMs are too strong. (2) The assumption that domain shifts can come from the
distribution shifts of the exogenous variables (noise terms in our paper) has been widely accepted, such as
IP (Peters et al., 2016) and IRM (Arjovsky et al., 2019). So there is no need to argue this one. Then, let us
come back to our FCD. We argue that different SEMs is a weak necessary condition of different systems but
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not the sufficient condition. Because a system can have various SEMs at different statuses (Huang et al.,
2020b). Here, we name this kind of system an unstable system. While in Non-IID setting of FCD, we assume
that all clients share an unstable system.

In practice, the first example can be fMRI recordings. As pointed in (Huang et al., 2020b), fMRI recordings
are usually non-stationary because information flows in the brain may change with stimuli, tasks and attention
of the subject. Our federated setting only has one more assumption that fMRI recordings among different
clients cannot be shared. The second example can be causal gene regulatory network inference (Omranian
et al., 2016). The causal direction among genes, i.e., which gene regulates which gene, is believed to be the
same. However, in each individual, the SEM mechanism could vary due to individual properties, such as age,
gender, etc.

G Data visualization
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Figure 11: The visualization of simulated Non-IID data with 10 variables, where 6 variables are randomly
selected and two of them are chosen for one sub-figure.
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Figure 12: Normalized distribution of real data used in this paper.
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