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ABSTRACT

Current techniques for privacy auditing of large language models (LLMs) have
limited efficacy—they rely on basic approaches to generate canaries which leads
to weak membership inference attacks that in turn give loose lower bounds on the
empirical privacy leakage. We develop canaries that are far more effective than
those used in prior work under threat models that cover a range of realistic settings.
We demonstrate through extensive experiments on multiple families of fine-tuned
LLMs that our approach sets a new standard for detection of privacy leakage. For
measuring the memorization rate of non-privately trained LLMs, our designed
canaries largely surpassing the prior SOTA. For example, on the Qwen2.5-0.5B
model, our designed canaries achieves 26.0% TPR at 1% FPR, largely surpassing
the prior SOTA of 1.3% TPR at 1% FPR. Our method can be used to provide a
privacy audit of ε ≈ 1 for a model trained with theoretical ε of 4. To the best of our
knowledge, this is the first time that a privacy audit of LLM training has achieved
nontrivial auditing success in the setting where the attacker cannot train shadow
models, insert gradient canaries, or access the model at every iteration.

1 INTRODUCTION

Despite the growing success of massively pretrained Large Language Models (Brown et al., 2020;
OpenAI, 2023; Gemini-Team et al., 2023), there is also growing concern around the privacy risks of
their deployment (McCallum, 2023; Bloomberg, 2023; Politico, 2023), because they can memorize
some of their training data verbatim (Carlini et al., 2019; 2021; 2023b; Biderman et al., 2023a).

There is currently a discrepancy between memorization studies in large frontier models reports that
show very limited memorization and a line of research showing that data can be extracted from such
models (Carlini et al., 2021; 2023a; Nasr et al., 2023a). With the goal of understanding concerns
around the privacy risks of deploying LLMs, currently, model developers study the quantifiable
memorization of their models by inserting canary sequences and testing for memorization, and they
conclude that the models do not memorize much (Anil et al., 2023; Reid et al., 2024).

The gap between these two bodies of work is in the data being memorized. When developers
insert canaries, they are not necessarily inserting the canaries that are most likely to be memorized.
However, when researchers try to extract data, they are extracting the "most extractable" data,
which by definition was the most likely to be memorized. Without better design of canaries, model
developers will systematically underestimate the privacy leakage of their models. In this work, we
aim to develop stronger privacy audits by developing canaries that are more likely to be memorized.

We are primarily interested in understanding privacy leakage from LLMs through the lens of mem-
bership leakage of a canary dataset used in training an LLM (used to measure the privacy leakage).
Specifically, we want to understand how to construct the most easily memorized canaries for language
models. Qualitatively, if we find that membership information attacks (MIA) on these canaries for
LLMs can be very effective, this improves our understanding of the privacy leakage of LLMs.

Membership inference attacks are also used in auditing the privacy of differentially private models.
The effectiveness of privacy auditing hinges on the selection of optimal "canaries". We introduce
new methods for generating easy-to-memorize input space canaries, and use these improve the
performance of existing privacy auditing methods and obtain tighter empirical bounds on privacy
leakage. We provide the first privacy audit for the black-box setting for LLMs. Our audit achieves a
non-trivial lower bound of ε ≈ 1 for a model trained to an upper bound of ε = 4.
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2 BACKGROUND

2.1 MEMBERSHIP INFERENCE ATTACKS

Membership inference attacks (MIAs)(Shokri et al., 2017) are one of the simplest privacy threats in
machine learning: the goal is to predict whether a specific example was part of a model’s training
set (member) or not (non-member). MIAs exploit differences in model behavior on members vs non-
members, using signals such as the target sample’s loss(Yeom et al., 2018), the loss of neighboring
samples (Mattern et al., 2023), or information from reference models (Carlini et al., 2021).

The primary goal of our work is to estimate privacy leakage in models, independent of developing
new MIAs. Evaluating MIAs on synthetic canaries inserted into LLM training can inform both
memorization and generalization in LLMs (Gemini-Team et al., 2023; Reid et al., 2024; Anil et al.,
2023). With 1 as the indicator function, τ a tunable threshold, and A′ a confidence score function (in
Yeom et al. (2018) this is the model loss), membership is predicted as: A(x, y) = 1[A′(x, y) > τ ].

Recently, Duan et al. (2024) evaluated a range of MIAs(Yeom et al., 2018; Carlini et al., 2021;
Mattern et al., 2023; Shi et al., 2024) against large language models (LLMs) and found that MIAs
are largely ineffective in this context. They attribute this to factors such as the single-epoch training
typically used in LLMs. They argue that realistic MIA evaluations require high overlap between
members and non-members. However, prior work has often achieved MIA success by exploiting
distribution shifts between these groups. Related studies (Meeus et al., 2024; Das et al., 2024; Eichler
et al., 2024) confirm that distribution shift is the primary driver of MIA success.

In our work, our sampling process for member and non-member datapoints is IID across the dataset
that we draw them from. We detail this dataset in each section: in Section 4, this is validation data
and in Section 5, this dataset is random tokens. Therefore, the problem of distribution shifts identified
in Meeus et al. (2024); Duan et al. (2024) does not exist. This is different from prior work, which
requires the IID property to hold across the entire pretraining dataset that they consider.

There are three main avenues for improving MIAs: (1) selecting more separable data, (2) using better
statistics, and (3) designing improved tests based on those statistics. While prior work extensively
explored (2) and (3) without much success, Duan et al. (2024) showed that current MIAs cannot
reliably distinguish member from non-member data in LLMs. Our work focuses on (1), demonstrating
that selecting more separable data alone enables strong privacy audits, even when using the simple
loss-based attack proposed by Yeom et al. (2018). Our contribution is complementary to future work
on developing new MIAs, which could leverage our techniques.

2.2 AUDITING DIFFERENTIALLY PRIVATE LANGUAGE MODELS

We provide a concise overview of differential privacy (DP), private machine learning, and methods to
audit the privacy assurances claimed under DP. Differential privacy is the gold standard for providing
a provable upper bound on the privacy leakage of an algorithm (Dwork et al., 2006).

Definition 2.1 ((ε, δ)− Differential Privacy (DP)). Let D ∈ Dn be an input dataset to an algorithm,
and D′ be a neighboring dataset that differs from D by one element. An algorithm M that operates
on D and outputs a result in S ⊆ Range(M) is considered to be (ε, δ)-DP if: For all sets of events S
and all neighboring datasets D,D′, the following holds:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ (1)

Differentially Private Machine Learning. Differentially Private Stochastic Gradient Descent (DP-
SGD) (Song et al., 2013; Abadi et al., 2016) is the workhorse method for training neural networks on
private data.

Definition 2.2 (Differentially Private Stochastic Gradient Descent (DP-SGD)). For a batch size B,
learning rate η, clipping threshold C, and added noise standard deviation σ, the DP-SGD update rule
at iteration t on weights w is given by:

w(t+1) = w(t) − η

|B|

(∑
i∈B

1

C
clipC(∇ℓ(xi, w

(t))) + σξ

)
(2)
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DP-SGD does per-sample gradient clipping on top of SGD to limit the sensitivity of each sample,
and adds noise sampled i.i.d. from a d-dimensional normal distribution with standard deviation σ,
ξ ∼ N (0, Id).

Auditing DP-SGD. DP guarantees are expressed in terms of a failure probability δ and a privacy
budget ε. In machine learning, we can interpret the DP guarantee as an upper bound in terms of eε on
the adversary’s success rate in membership inference that holds with probability 1− δ. As shown
by Kairouz et al. (2015), if M is (ε, δ)-DP, it defines a privacy region such that an attacker’s TPR
and FPR (also Type I α and Type II β errors) cannot exceed the bounds of this region, given by
Definition 2.3 (Privacy Region of (ε, δ)-DP (Kairouz et al., 2015)). if M satisfies (ε, δ)-DP, then it
establishes a privacy region that bounds any adversary’s type I (α) and type II (β) errors. The privacy
region is define as follow:

R(ε, δ) = {(α, β) | α+ eεβ ≥ 1− δ ∧ eεα+ β ≥ 1− δ ∧
α+ eεβ ≤ eε + δ ∧ eεα+ β ≤ eε + δ} (3)

For differentially private machine learning, our objective in privacy auditing is to provide an empirical
lower bound on the privacy leakage from an algorithm M. Privacy audits are useful because they give
us information about how tight the upper bound is that we obtain from DP (Steinke et al., 2023), and
if the privacy audit produces a lower bound that is greater than the upper bound given by DP-SGD,
we can use this to find errors in the DP-SGD implementation (Tramer et al., 2022).

Steinke et al. (2023) propose a recent privacy auditing method that we use in this paper, which can
provide an audit without needing to train multiple models. However, they are not able to provide a
nontrivial result when training on real data in the black-box setting (where the canaries exist in the
input space and the attacker observes the loss of the model), and do not provide audits for language
models (they only provide audits for computer vision).

Summary of DP Background. DP-SGD provides a mathematical proof that gives an upper bound
on the privacy parameter. A privacy audit is a procedure that provides a lower bound on the privacy
parameter. Privacy audits can be used to ascertain the correctness of DP-SGD training and estimate
the tightness of analysis. Many privacy auditing methods have been proposed, but no privacy auditing
method has been able to provide a nontrivial lower bound of an LLM trained with a realistic DP
guarantee (ε < 10 on real data in the black-box setting in a single run).

3 CRAFTING CANARIES THAT ARE EASY TO SPOT

Previous research has consistently shown that some out-of-distribution (OOD) inputs are more prone
to memorization by machine learning models (Carlini et al., 2022a; Nasr et al., 2021; 2023b; Carlini
et al., 2022b). Leveraging this insight, existing methods for generating canaries in membership
inference attacks often focus on crafting OOD inputs so that they have a higher likelihood of being
memorized. In the context of large language models (LLMs), creating out-of-distribution (OOD)
inputs typically involves using random tokens. These inputs are assumed to be anomalies that the
model will easily memorized. However, previous works (Carlini et al., 2022a; Nasr et al., 2023b) have
shown that not all OOD examples are easily learned and memorized by the model. There is a wide
range of OOD examples that can be used in membership inference attacks. While basic approaches
have shown some success, there is potential for significant improvement.

To improve over this random canary baseline, we will show how an adversary can attack the tokenizer
to create canaries that are easier to spot (see Section 3.2). Next, we define what we mean by a canary.

3.1 THE CANARY SETUP

A canary is the concatenation of two sequences of tokens: a prefix and a secret both sampled from
some randomness (Carlini et al., 2019).

MIA method. All current MIAs for LLMs require the loss (Duan et al., 2024); thus, as we discussed
in Section 2, we use the simplest loss thresholding attack of Yeom et al. (2018) which predicts all
points (canaries) with loss less than or equal to some learned value τ as a member, and the rest as
non-members.

3
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Training objective. We first show results in Figure 1 with a standard supervised fine-tuning objective:
prefix language modeling (Raffel et al., 2020), which masks out the loss on the prefix that we don’t
want the model to learn. When we use the SFT objective, we only use the loss on the added token as
the MIA metric. In Figure 2 we consider a Next Word Prediction (NWP) objective, where the model
is trained to predict each next token in the training sequence simultaneously via teacher-forcing. This
is the standard pre-training objective. When we use the NWP objective, we use the loss on the entire
canary sequence (i.e., including the tokens preceding the canary that we add) as the MIA metric.

Comparing attack efficacy. There are many ways to compare attack efficacy each with pros and
cons. Following Carlini et al. (2022a), we use the true-positive rate (TPR) at low false-positive rate
(FPR), for which we pick FPR=1% (with ROC curves in the Appendix). When we audit DP, we use ε
lower bounds as is standard (Jagielski et al., 2020; Nasr et al., 2021; 2023b; Steinke et al., 2023);
these essentially define a region where the TPR and FPR must be bounded by Equation (3).

Canary size. Prior works (Anil et al., 2023; Gemini-Team et al., 2023) use many thousands of
canaries, with prefixes and secrets each constructed from 50 random tokens. We find that we only
need 1000 canaries for 3.6× 107 tokens in our finetuning dataset. Because each canary is generally
just a single token (secret) appended to a normal sample (prefix), just a small fraction (0.0027%) of
our dataset is constituted of canaries.

Selecting the canary prefix. As we previously mentioned, we want to ensure that we sample canaries
IID from some distribution so that our MIA success cannot be attributed simply to distribution shift,
as in Duan et al. (2024). Each canary prefix is generated using one of 1000 unique samples from the
test set; we use the test dataset for this to be more aligned with practical use cases where the prefix
contains semantic information. For simplicity and because this is the most challenging setting, we use
secrets that are one token in length. In Table 2, we show that our attacks still in general outperform
the baseline even when the number of secret tokens is increased.

3.2 SOME CANARIES SING LOUDER THAN OTHERS

The most important part of our canary design is the algorithm by which we generate the secret. The
choice in secret plays a large role in the attack success, as we will see.

Our main intuition in this design, as discussed at the beginning of this Section 3, is to craft canaries
that are OOD because this plays a large role in attack success. Yet, because we are focusing on
designing the more difficult input-space canaries, we have relatively less freedom (than say, gradient
canaries) to make the secret OOD. As we will see, our strategy will be to give the adversary increasing
strength in terms of their a priori knowledge of the training data distribution.

We begin by formalizing our goal. We desire a secret xt such that when given the prefix x1:t−1 the
model’s loss p(xt|x1:t−1) is high, i.e., it is unlikely to have been seen under the model. Importantly,
we must have an estimate on this a priori, i.e., before training the model p, as we will be injecting
these canaries into model training for auditing.

With this in mind, it is clear why random canaries (Anil et al., 2023; Gemini-Team et al., 2023), i.e,.
canaries with randomly chosen secrets are a strong baseline. A weak adversary with no knowledge of
the data distribution a priori can at best choose a random secret as this maximizes its entropy in the
limit of long secrets. It is this baseline from prior work which we seek to beat, and which we will do
so, by considering adversaries with increasing knowledge of the training data distribution a priori.

How to make adversaries stronger. First, recall that our goal is to design strong privacy audits.
A privacy audit, as discussed in Section 2.2, is a tool that model developers use to estimate the
worst-case privacy leakage, as measured by a lower-bound on the observed privacy leakage ϵ. When
audits can be trusted to be close to a ground-truth upper-bound (i.e., when DP training is used), they
can give a model developer faith that a model is private.

Privacy audits use as a core component the membership inference attack, and use the ROC curve
to get a lower bound on epsilon. But, because this audit is run by a model developer, and not by
a third-party attacker, adversaries should be assumed to be (reasonably) strong so as to adequately
measure the worst-case. For this reason, and as motivated above, we make the adversary stronger by
giving them a prior knowledge of the training data distribution. Notice that this is not unreasonable:
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LLMs are trained on the web and this data is publicly accessible. When models are fine-tuned on
private data, there may still exist public surrogates that can strengthen an adversary in this way.

We next give three methods by which an adversary can estimate p(xt|x1:t−1) a prior.

Unigram canaries.1 Given an approximate list of frequencies of tokens in the dataset, or in other
words a unigram model, the attacker can select the least common tokens and use them as secrets in
canaries. As we can see in Figure 1 (‘unigram’), this works quite well.

N-gram Canaries. Naturally, if we want to insert longer canaries, we can use an N-gram model
instead of a unigram to generate canaries. If we fit a bigram model, we can generate the pair of
tokens x, y such that y is unlikely to follow x and x is unlikely to follow the preceding token in the
document where it was inserted. We present the ‘bigram’ results in Figure 1.

Model-Based Canaries. A potential flaw in the above strategies is that they only account for the
distribution of the training dataset and not of the model’s distribution. If we want to audit finetuning,
then we may need to consider not only what tokens are seldom seen in the finetuning dataset but also
what tokens the model itself is unlikely to generate. If the attacker has black-box access to the model
before they insert the canary, they can just query the model to get the least likely continuation of their
prefix. However, this requires training two models or approximating it using a past model.

3.3 CANARIES VIA NEW TOKENS

Our underlying insight is that examples can be easily identified as members by the presence of tokens
that do not appear anywhere else in the training dataset. The embedding table in a language model is
both large, with, e.g., output dimension 256, 000 (Gemma-Team et al., 2024), and receives only a
sparse update for only the tokens seen in training. Thus, a model that has not received a gradient for a
given row will behave very differently when predicting that token than a model that has.

We consider the setting where a model developer wants to understand the worst case privacy leakage
of their model training, as in Chowdhery et al. (2022); Anil et al. (2023); Reid et al. (2024). The
worst case will still come from OOD data, but we take advantage of the model developer’s direct
access to the model to easily craft canaries that are guaranteed to be OOD instead of relying on
heuristics. Instead, the model developer can simply introduce new tokens that are guaranteed to be
OOD from the training dataset and are only used in the canary secrets. This is similar to other special
tokens that are used in training, e.g., beginning/end of sequence or control tokens that are reserved
for later use. Indeed, many recent LLMs are released with special tokens present in the embedding
that are untrained, e.g., Mistral (Jiang et al., 2023) and LLama (Touvron et al., 2023). Note that once
trained, the rows of the embedding matrix corresponding to these tokens can be easily removed or
reinitialized without affecting the model utility significantly.

As we show in Figure 1, introducing new tokens is an incredibly effective way to generate canaries
that can be used during pretraining without any accuracy degradation (the ‘new’ column). While new
token canaries contain less semantic information than other canaries in measuring the memorization
rate of LLMs because new tokens are added without concrete semantic information, this is a valid
privacy audit because the DP-SGD guarantees hold not only for random initialization but also for
any fixed initialization. We are generating these canaries to be as strong as possible, including in the
setting of DP, which is the most useful thing because we can now audit DP-SGD.

4 A SYSTEMATIC EVALUATION OF MEMORIZATION IN LLM TRAINING

Models. We use our designed canaries to evaluate the memorization rate across a wide range of model
series. We consider 6 model series and 12 models in total including GPT2 (Radford et al., 2019),
Pythia (Biderman et al., 2023b)], Qwen-2.5 (Team et al., 2024b; Team, 2024), Gemma (Gemma-
Team et al., 2024), Mistral (Jiang et al., 2023), and Llama3 (Team et al., 2024a). For our main
results, we train smaller models (parameter size ≤ 3B) with full fine-tuning (FFT) and larger models
with LoRA (Hu et al., 2022) for computational efficiency. When we do LoRA we still update the
embedding matrix, ablating this in Table 14, and use a rank of 8, ablating this in Table 13. More
details are in Appendix A. Our chosen set of models also spans the range of vocabulary sizes from

1Herein, we use ‘gram’ to mean token, despite it historically meaning characters.
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32k (Mistral), 50k (GPT2, Pythia), 128k (Llama), 150k (Qwen), up to 256k (Gemma), validating
that our methods are viable for all vocabulary sizes used in models today. Though prior works have
considered GPT2 (Li et al., 2022; Yu et al., 2022), we are also interested in more powerful models
like Llama, Mistral, Qwen, and Gemma because they are used in practice and understanding how
easily they memorize data can help us better understand how to audit frontier models.

Datasets. We finetuned the models on PersonaChat (Zhang et al., 2018) and E2E (Novikova et al.,
2017), which are used for DP evaluations in prior works (Li et al., 2022; Yu et al., 2022; Panda et al.,
2024). PersonaChat is a dataset that consists of conversations of people describing themselves. E2E
dataset is a natural language generation tasks that maps restaurant template information to review.
All experiments were conducted on a single A100 GPU. We finetuned models on Personachat with a
canary sub-sampling rate q = 0.01 and steps T = 100 to approximate the setting of single-epoch
training on the canary set. Note that this is a more challenging task as Duan et al. (2024) argues that
single-epoch training is one reason why membership inference is difficult in LLMs.

random unigram bigram model-based new

gpt2-small

gpt2-large

gpt2-xl

pythia-160m

pythia-410m

pythia-1.4b

Qwen2.5-0.5B

Qwen2.5-1.5B

Qwen2.5-3B

0.090 0.124 0.058 0.004 0.548

0.206 0.264 0.154 0.266 0.588

0.344 0.266 0.200 0.284 0.569

0.044 0.094 0.038 0.076 0.636

0.248 0.270 0.144 0.247 0.637

0.336 0.318 0.198 0.286 0.639

0.092 0.084 0.040 0.022 0.532

0.090 0.022 0.056 0.040 0.578

0.062 0.059 0.070 0.110 0.537

0.1

0.2

0.3

0.4

0.5

0.6

Figure 1: We visualize the True Positive Rate (TPR) of the membership inference attack (MIA) on
PersonaChat at a low false positive rate (FPR) of 1%. The New Token Canary excels.

Results. Figure 1 illustrates the True Positive Rate of membership inference attack at 1% False
Positive Rate for all canary crafting techniques across 3 model families and 3 sizes in each model
family. Across all models, the new token canary significantly outperforms all other approaches. Our
results suggest that current reports of privacy leakage that only rely on the random canaries, e.g.,
those in Anil et al. (2023); Gemini-Team et al. (2023), may underestimate the privacy leakage.

We presented results in Figure 1 with a Supervised Finetuning (SFT) objective where the prompts in
PersonaChat that contain information about the person are masked out. Finetuning tasks generally
use an SFT loss. In Figure 2 we present results with a Next Word Prediction (NWP) objective, as
would be used during pretraining. We find that this significantly decreases the effectiveness of the
attack for the smaller models. However, for the larger models, the new token canary still works
well. We leave the TPR for the model-based canary on the Gemma, Mistral, and Llama models as 0
because it is infeasible to run the model-based attack for larger models, or in the case of Gemma, a
model with such a large vocabulary; for the other families of models, we were able to transfer the
canary from the smallest model up to the largest model in that family.

In Table 1 we validate that our new token canary significantly outperforms the random canary baseline
on the E2E dataset (Novikova et al., 2017) across the GPT and Pythia models. In Table 2 we increase
the number of canary tokens that we append from 1 to 8 and find that this significantly increases the
MIA success for both the unigram and random canaries. Intuitively, longer canaries are easier to tell
apart.
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random unigram bigram model-based new

gpt2-small

gpt2-large

gpt2-xl

pythia-160m

pythia-410m

pythia-1.4b

Qwen2.5-0.5B

Qwen2.5-1.5B

Qwen2.5-3B

gemma-2-2b

Mistral-7B

Llama-3-8B

0.020 0.034 0.056 0.026 0.022

0.090 0.028 0.094 0.050 0.028

0.046 0.081 0.050 0.116 0.096

0.032 0.036 0.031 0.028 0.266

0.068 0.057 0.101 0.116 0.086

0.136 0.094 0.147 0.075 0.097

0.013 0.032 0.024 0.034 0.260

0.030 0.038 0.019 0.040 0.212

0.044 0.057 0.032 0.060 0.334

0.027 0.018 0.021 0.000 0.385

0.030 0.049 0.047 0.000 0.604

0.160 0.118 0.166 0.000 0.588
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 2: We ablate the SFT loss used in Figure 1 with a NWP loss, on PersonaChat. MIA TPR is
worse with a NWP loss, but the new token canary is still for the largest models (bottom rows).

Table 1: MIA results on E2E follow the trends on
PersonaChat, with new beating random.

Train Obj. Canary pythia gpt2

140m 410m 1.4b small large xl

NWP new 0.328 0.456 0.591 0.102 0.563 0.362
random 0.186 0.114 0.078 0.052 0.098 0.011

SFT new 0.656 0.653 0.643 0.642 0.654 0.613
random 0.030 0.048 0.050 0.102 0.096 0.090

Table 2: Increasing the number of canary tokens
significantly increases MIA success.

# Tokens. Canary gpt2 pythia

small large xl 140m 410m 1.4b

1 unigram 0.038 0.028 0.081 0.036 0.076 0.094
random 0.020 0.090 0.046 0.032 0.076 0.136

8 unigram 0.112 0.243 0.096 0.100 0.155 0.256
random 0.064 0.244 0.080 0.059 0.144 0.206

5 DP AUDITING EVALUATION

In Section 4, we showed the effectiveness of our attack for LLMs in the non-private setting, reporting
the TPR at a low FPR. We now present privacy auditing results for models trained with DP-SGD,
where we want to obtain the best lower bound on ε. We first discuss our auditing setup in Section 5.1.
We then present our main auditing results in Section 5.2.

5.1 SETUP

We use the privacy auditing procedure of (Steinke et al., 2023). This means that we randomly generate
1000 canaries, insert half of them, and try to do membership inference on the entire set. The accuracy
of our MIA then translates into a lower bound with a 95% (or 99%) confidence interval on ε, meaning
that the privacy loss is at least ε. This is the exact same implementation and confidence interval, etc.
as in (Steinke et al., 2023). One parameter in the method is the number of guesses that the adversary
makes. We find that 100 guesses is sufficient to get a useful metric for DP auditing. For 100 guesses,
the upper bound for empirical ε, i.e., getting 100 guesses correctly, is 2.99 for a 99% confidence
interval and δ = 10−5. Our canaries are always randomly sampled IID from their distribution.

We use the following terminology from Nasr et al. (2023b): the setting where the attacker has access
to all intermediate steps is “white-box”, and the setting where the attacker can only see the last
iteration is “black-box.” We always use the black-box setting where the attacker has to perform their
audit only using the final trained model. Furthermore, we consider the setting where the attacker only
has access to the logprobs of the final model given some input, and is not able to query the weights.
This is the most realistic setting because it matches the access that ordinary users have to frontier
models. Moreover, previous works (Morris et al., 2024; Carlini et al., 2024) show that it is possible
for the attacker to evaluate the logprobs in settings where they are not directly outputted by the APIs.

In this black-box setting, the SOTA single-run privacy audit (Steinke et al., 2023) shows an empirical
ε ≈ 1.3 for analytical ε = 4 under a 95% confidence interval when auditing a ResNet trained on
CIFAR10. We use this setting (1000 canaries, analytical ε = 4) for all of our privacy auditing
experiments, but additionally report both the 95%, 99% confidence intervals. Our objective is to show
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that our method can recover a similar audit (in experimental results we achieve empirical ε ≈ 1.3)
in the same setting, because there is no work that provides a method that can perform a nontrivial
privacy audit of LLMs in this setting ( Kazmi et al. (2024) does not provide a formal privacy audit).

Changes from MIA. In Section 4, we used prefixes randomly sampled from the validation set to
construct our canaries. However, for DP auditing, we instead use prefixes composed of randomly
sampled tokens to construct the canary. We find this design choice is essential to achieve non-trivial
auditing results for DP training of LLMs in Table 8. We use an SFT loss function for DP auditing,
because we found in the previous section that it leads to a much better MIA (Figure 1 vs. Figure 2),
and indeed we validate that the SFT objective is critical for tight DP auditing in Table 9.

In this section, we train models with DP-SGD under ε = 4 for T = 1000 steps with a subsampling
rate of q = 0.1. We report the empirical ε estimation both in 95% (the main setting in Steinke
et al. (2023)) and 99% confidence. By increasing the confidence level, we get a more conservative
empirical ε estimation. Across both confidence levels, our new token attack gives a tighter empirical
ε estimation, i.e., more close to the theoretical ε (higher is better), than the random canary baseline.

5.2 EVALUATION

Table 3: We compare the audited ε when training gpt2
with LoRA on PersonaChat, and FFT on PersonaChat
and E2E. Across all settings, the new token canary gives
us better auditing performance, at the cost of slightly
higher perplexity.

new bigram unigram model-based random

FFT-E2E
audit 95% 1.15 0.13 0.03 0.05 0.30
audit 99% 0.82 0.0 0.0 0.0 0.10

PPL 4.45 4.34 4.33 4.52 4.33

FFT-Pers. audit 95% 1.27 0.72 0.42 0.52 0.31
audit 99% 0.84 0.54 0.26 0.34 0.15

PPL 23.60 22.62 22.53 22.56 22.56

LoRA-Pers.
audit 95% 1.15 0.43 0.17 0.13 0.58
audit 99% 0.89 0.26 0.0 0.0 0.30

PPL 23.93 23.17 23.14 24.44 23.14

Main Results. We present the compari-
son of our proposed canaries and baseline
attack for auditing DP-SGD in Table 3,
where we train GPT2-small. We train on
both PersonaChat and the E2E dataset, with
FFT and LoRA. Somewhat surprisingly,
we find that LoRA finetuning obtains sim-
ilar auditing performance and perplexity to
FFT. We tried ranks between 4 and 256 and
found little difference, so we report results
with rank 8. Auditing results are also sim-
ilar across datasets; at a 99% CI, the new
token canary gives us an audited ε of 0.84
for FFT on PersonaChat, 0.82 for FFT on
E2E, and 0.89 for LoRA on PersonaChat.
This indicates that our new token canary can be used for an effective audit on different datasets.
Compared to the random canaries baseline, our proposed canary strategy (“new”) achieves a better
privacy estimation for DP trained models at ε = 4. Notably, we are able to show an empirical ε ≈ 1
for an analytical ε = 4 with input space canaries and a loss-based MIA without shadow models.

Table 4: We report the audited value of ε for different models,
all with the new token canary, on PersonaChat, with FFT.

gpt2 gpt2-large gpt2-xl Pythia-160M Pythia-410M qwen2.5-0.5B

audit 95% 1.27 1.28 1.29 0.40 0.67 0.96
audit 99% 0.84 1.08 1.00 0.25 0.46 0.86

PPL 23.60 14.18 13.05 86.99 21.19 14.44

Table 5: The impact of training steps T
on privacy audit in DP trained LLMs.

T = 10 T = 100 T = 1000

audit 95% 0 0.92 1.27
audit 99% 0 0.53 0.84

We present most of our results in this section on gpt2 because DP-SGD training adds memory
overhead that significantly increases our training time. In Table 4 we compare auditing performance
across 6 models. Interestingly, all 3 model sizes in the gpt2 family perform similarly, within 0.02 of
each other for the 95% audit, despite the perplexity improving significantly from gpt2 to gpt2-large.

Our Audit Does Not Compromise Clean Accuracy. In Table 6 we validate that our method does not
significantly degrade utility on the domain specific tasks, i.e., the Personachat eval set. We compare
the effect of adding our new token canaries on perplexity for both no privacy and the DPSGD training
with ε = 4. Table 6 shows that in both cases, adding canaries to the training dataset degrades our
perplexity (lower is better) by ≈ 1. For reference, Steinke et al. (2023) report an accuracy drop of
2% due to the canaries inserted for auditing, but this is not directly comparable because they only
report results on computer vision tasks. In Table 3 we observe that the new token canary degrades
perplexity, while the random, unigram, and bigram canaries don’t degrade perplexity. This can be
seen as a natural tradeoff between the model memorizing the canary and the model learning the clean
data distribution. We don’t remove the new token embedding when evaluating perplexity.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Perplexity on PersonaChat
eval set. Our method does not de-
crease the clean performance.

no canaries with canaries

no privacy 16.1 16.7
ε = 4 22.5 23.6

Table 7: The impact of sub-
sampling rate q on privacy
audit in DP trained LLMs.

q = 0.01 q = 0.1

audit 95% 0 1.27
audit 99% 0 0.84

Table 8: We compare random
tokens as a prefix vs test data
as a prefix.

Random Test Data

audit 95% 1.27 0.1
audit 99% 0.84 0

Higher Subsampling Rate is Better for Auditing. Prior work (Nasr et al., 2023b) has shown
that privacy auditing becomes substantially more difficult when the subsampling rate being audited
is low. This has a significant impact on the viability of an audit, because inserting 1000 canaries
into each iteration may present a nontrivial compute overhead or impact clean accuracy. Steinke
et al. (2023) also use q ≥ 0.1 for privacy auditing experiments. In Table 7 we ablate the choice of
smaller subsampling rates q while keeping the privacy budget constant at ε = 4 and training for steps
T = 1000 for each experiment run. Similar to (Nasr et al., 2023b; Steinke et al., 2023), Table 7
validates the necessity of a relative large subsampling rate, i.e. q = 0.1 in our main results.

Training for More Steps Improves Auditing. Our canaries can provide a good estimation for
memorization in Section 4 by approximately seeing each canary once. Our main results in DP
auditing is 1000 steps with q = 0.1 and therefore the model approximately sees each canary 100
times. We now vary the time steps T while keeping the privacy budget constant at ε = 4 (we
add more noise at each iteration), and keeping the subsampling rate q = 0.1 for each experiment
run. We present the results in Table 5. Table 5 shows that the one-time pass over the canary set is
challenging in DP auditing and audits fails. When increasing T 10 times more, i.e., T = 100, the DP
auditing via new token canaries could achieve non-trivial results empirical ε ≈ 1 for analytical ε = 4.
Comparing Table 7 and Table 5, while in (T, q) = (1000, 0.01) and (T, q) = (100, 0.1), the models
both see the canaries 10 times, the lower subsampling rate is more challenging for DP auditing.

Random Prefixes are Better Canaries than In-Distribution Data. We compare two approaches for
selecting canary prefixes: randomly sampled tokens versus samples from the test dataset. In Table 8,
we demonstrate that using random tokens as prefixes leads to more effective privacy auditing. This
can be explained by considering what associations the model needs to learn during supervised fine-
tuning. With test distribution prefixes, the model must balance learning two competing objectives:
(1) associating the prefix with its natural, in-distribution continuations, and (2) associating it with our
inserted canary token. This competition naturally reduces the probability of the model predicting the
canary token. In contrast, random (OOD) prefixes only require the model to learn a single, albeit
unusual, association with the canary token. This focused learning task makes the canary information
more distinguishable during privacy auditing, as the model’s prediction of the canary token becomes
a clearer signal of memorization. This may seem like a limitation, because it means that the attacker
conducting the MIA cannot get a clear signal on the in-distribution data with semantic meaning.
However, in Section 4 we used samples from the test dataset as prefixes throughout and showed that
when the model is not trained with DP, the attacker can correctly identify members. In the auditing
threat model, we can use random prefixes for the canaries without it being a limitation for our method.
However, this also shows a clear direction for future work to build on our method.

Table 9: Loss over target se-
quence only (SFT) vs. loss
over the full sequence (NWP).

SFT NWP

Audit 95% 1.27 0.63
Audit 99% 0.84 0.28

Impact of Loss Function on Auditing Performance. In Table 9 we
find that auditing is easier when we train with an SFT objective, in
line with the results in Section 4. This is because including the loss
over the prefix in the MIA statistic makes the auditing test noisier,
and we need very low FPR for a good audit. However, even with a
NWP objective the auditing performance is still nontrivial.

6 RELATED WORK

Privacy Attacks in Machine Learning. Membership Inference (Shokri et al., 2017; Choquette-Choo
et al., 2021; Carlini et al., 2022a; Jagielski et al., 2023a), attribute inference (Yeom et al., 2018;
Fredrikson et al., 2015), and data extraction (Carlini et al., 2019; 2023a;b; Biderman et al., 2023a;
Tirumala et al., 2022; Mireshghallah et al., 2022; Huang et al., 2022; Lukas et al., 2023; Jagielski
et al., 2023b; Ippolito et al., 2023; Anil et al., 2023; Kudugunta et al., 2023) are the three main attacks
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on privacy in machine learning. Our attacks are based on membership inference, and require the
logprobs of the model to compute the loss. Morris et al. (2024); Carlini et al. (2024) show that it
is still possible for the attacker to access the logprobs when the logprobs are not directly available.
Although we do not consider data extraction in this work, membership inference can lead to data
extraction by using knowledge of the “outlier” token to iteratively guide decoding. We believe that
using our method to improve existing data extraction attacks is an interesting future direction.

Membership Inference Attacks on LLMs. Shi et al. (2024) propose a new heuristic membership
inference attack Min-K% to detect pretraining data in LLMs and provide case studied on copyright
data detection, dataset contamination detection and machine unlearning verification. Kandpal et al.
(2023) show that membership inference can be extended to collections of user data, their so-called
“user inference”, leading to stronger privacy threats on LLMs.

We are concerned with attempting to maximize the success of a membership inference attack on
canary data; these works may attempt to extract data that already exists in the model. Membership
inference on canaries is no less important than membership inference of real training data, because
it provides us with an understanding of the worst-case privacy leakage. As we have discussed
throughout the paper, only doing membership inference of real training data may systematically
underestimate true privacy leakage, and the underlying vulnerability may only appear when training
data is extracted from a production LLM (Nasr et al., 2023a).

Privacy Auditing Methods. In this work we primarily use the method of Steinke et al. (2023)
because it can do privacy auditing in one run. However, a number of privacy auditing methods
have been proposed that our method is compatible with. Nasr et al. (2023b) obtain tight auditing
results, but require multiple runs. Pillutla et al. (2023) can re-use previous training runs to improve
efficiency. Annamalai & Cristofaro (2024) exploit the model initialization for better distinguishability.
Recently, Kazmi et al. (2024) propose a method for estimating privacy leakage. However, they do
not provide an audit, in that they do not show a lower bound on epsilon. In the paragraph titled
"Measurement Semantics" on page 6, they note: “the value PANORAMIA returns does not imply
a lower bound on epsilon.” In contrast, we return a provable lower bound on epsilon. To the best
of our knowledge, we are the first to provide the non-trivial auditing results on LLMs as well as the
systematic evaluation of the memorization rate in LLMs training from canary design perspective.

Privacy Preserving Language Models. DP-SGD has been used to pretrain (Anil et al., 2021;
Ponomareva et al., 2022) and fine-tune (Panda et al., 2024) LLMs. Our work is focused on auditing
any such DP training run, i.e., validate if the proposed guarantees are correct. Orthogonal to our
work are many that seek to improve DP-SGD’s adoption in LLMs. These include techniques that
improve compute- or memory-efficiency, such as parameter efficient techniques (Yu et al., 2022),
new clipping techniques (Li et al., 2022; He et al., 2023), better hyperparameter tuning (Panda
et al., 2024), and using zero-th order optimization (Tang et al., 2024a). There is also DP in-context-
learning (Duan et al., 2023; Wu et al., 2024; Tang et al., 2024b; Hong et al., 2024) which never
updates the model. Hanke et al. (2024) comprehensively evaluate the privacy-performance tradeoff
of these alternative methods. Concurrently, Anonymous (2024) note that fine-tuning models with
PEFT such as LoRA (that we evaluate in Table 3) may pose greater privacy risks than FFT, although
our results do not substantiate this.

7 DISCUSSION

Ever since Secret Sharer (Carlini et al., 2019), work that has evaluated privacy leakage of language
models via membership inference of inserted canaries has consistently found that memorization of
canaries is limited. For years, this line of work showing the limited success of membership inference
attacks on language models (Duan et al., 2024) has been at odds with another line of work on training
data extraction from language models (Carlini et al., 2021; Nasr et al., 2023a). In this work, we have
presented a simple change in the design of the canary that vastly increases the success of MIA. This
enables loss-based membership inference without shadow models, and therefore allows us to obtain
the first nontrivial privacy audit of an LLM trained on real data with a realistic DP guarantee with
input-space canaries. The trajectory of advancements in DP LLM training indicates that we can use
DP to adapt LLMs to tasks; yet, until now, privacy auditing of LLMs has lagged behind. Our work
provides an efficient privacy audit that can run alongside a regular DP training run and provide a
good lower bound of the privacy parameter.
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A EXPERIMENTAL DETAILS

A.1 EXPERIMENTAL SET-UP

Models. We evaluate GPT2 (Radford et al., 2019) (license: mit), Pythia (Biderman et al.,
2023b) (license: apache-2.0), Qwen-2.5 (Team et al., 2024b; Team, 2024) (license: apache-2.0),
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Table 10: Model parameter and tokenizer size for GPT2 and Pythia series in our experiments.
Model Gpt2 Gpt2-large Gpt2-xl Pythia-160m Pyhia-410m Pythia-1.4b

Parameters 124M 774M 1.5B 160M 410M 1.4B
Tokenizer 50257 50304

Table 11: Model parameter and tokenizer size for Qwen, Gemma, Mistral and LLama series in our
experiments.

Model Qwen2.5-0.5B Qwen2.5-1.5B Qwen2.5-3B Gemma-2B Mistral-7B Llama-3-8B

Parameters 0.5B 1.5B 3B 2B 7B 8B
Tokenizer 151936 256000 32000 128256

Gemma (Gemma-Team et al., 2024) (license: gemma), Mistral (Jiang et al., 2023) (license: apache-
2.0), and Llama3 (Team et al., 2024a) (license:llama3). We outline the parameter size and tokenizer
size for models we use in Tables 10 and 11.

Hyperparameters. We have 1000 canaries in total. Following Steinke et al. (2023), 500 of canaries
are randomly included as part of training set. We use batch size 1024 when training the models.
We search lr in [0.0001, 0.0002, 0.0005, 0.001] and conduct auditing on models that have the best
performance, i.e., lowest perplexity. We use AdamW optimizer with default settings. For memoriza-
tion evaluationg, we train for 100 steps. We use the clipping threshold = 1 to clip the averaged
gradients in each step. For DP auditing, we train for 1000 steps. We use the clipping norm C = 1 for
per-example clipping.

Impact of Learning Rate on Auditing Success. Our main results are presented with the default
learning rate in Huggingface’s implementation of AdamW, which is η = 1e− 3. We now present
results varying the learning rate. We observe that when the learning rate is larger, the model utility
may drop, but we can still get good auditing performance. When we decrease the learning rate
slightly, the auditing performance drops slightly. When we decrease the learning rate significantly,
the utility becomes worse and the auditing performance drops to 0. This indicates that there may be a
tradeoff between DP auditing performance and performance, but we emphasize that we are still able
to obtain nontrivial auditing performance without impacting clean utility.

Table 12: The auditing succeeds for a range of learning rates, but if the learning rate is too small then
the utility and auditing performance suffer.

Learning Rate 1e− 4 5e− 4 1e− 3 5e− 3

Utility 28 22 24 48
Audit 0 0.9 1.3 1.3

The CDFs we visualize in Figure 3 indicate that the unigram attack will be the most effective strategy
if the main criterion in attack success is how infrequent the canary token is relative to the entire
training dataset. This intuition is well validated by the new token attack being the most effective by
far. It also tracks the relative performance of the random, unigram, and model-based canaries as we
see in Figure 1. Despite requiring knowledge of the model parameters, the model-based canary does
not clearly dominate the simple unigram attack.

B ROC CURVES

We now provide the ROC Curves of results in Section 4 for all models with NWP loss.
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Table 13: Varying the LoRA rank hardly changes performance, with an AUC difference of just 0.02
between a rank of 4 and a rank of 512.

Rank 4 8 16 32 64 128 256 512 FFT

AUC 0.753 0.763 0.760 0.773 0.765 0.774 0.760 0.774 0.776

Table 14: In the main paper we always update embeddings when we do LoRA. Without updating
embeddings, neither the auditing works, nor do we get good performance.

Type new bigram unigram model-based random

Embeddings Updated
audit 95% 1.15 0.43 0.17 0.13 0.58
audit 99% 0.89 0.26 0.0 0.0 0.30

PPL 23.93 23.17 23.15 24.44 23.14

Embeddings Frozen
audit 95% 0.05 0 0 0 0.07
audit 99% 0 0 0 0 0

PPL 44.88 29.12 29.28 29.17 29.30

100 101 102 103 104 105

Frequency

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Unigram Canary
Model-Based Canary
Random Canary

Figure 3: Frequencies of tokens selected by each strategy. By design, the unigram strategy selects the
least frequent tokens.

.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

10 3 10 2 10 1 100

False Positive Rate

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e

gpt2-small

AUC = 0.57, bigram
AUC = 0.53, unigram
AUC = 0.58, random
AUC = 0.60, greedy
AUC = 0.58, model-based

Figure 4: GPT2-Small ROC Curves
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Figure 5: GPT2-Large ROC Curves
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Figure 6: GPT2-XL ROC Curves
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Figure 7: Pythia-160M ROC Curves

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

10 3 10 2 10 1 100

False Positive Rate

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e

pythia-410m

AUC = 0.70, bigram
AUC = 0.64, unigram
AUC = 0.68, random
AUC = 0.63, greedy
AUC = 0.59, model-based

Figure 8: Pythia-410M ROC Curves
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Figure 9: Pythia-1.4B ROC Curves
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Figure 10: Qwen-0.5B ROC Curves
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Figure 11: Qwen-1.5B ROC Curves
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Figure 12: Qwen-3B ROC Curves
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Figure 13: Gemma-2-2B ROC Curves
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Figure 14: Mistral-7B ROC Curves
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Figure 15: Llama-3-8B ROC Curves
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