Published as a conference paper at ICLR 2021

UNSUPERVISED REPRESENTATION LEARNING
FOR TIME SERIES WITH
TEMPORAL NEIGHBORHOOD CODING

Sana Tonekaboni* Danny Eytan
University of Toronto & Vector Institute The Hospital for Sick Children
The Hospital for Sick Children biliary.colic@gmail.com

stonekaboni@cs.toronto.edu

Anna Goldengerg

University of Toronto & Vector Institute
The Hospital for Sick Children
anna.goldenberg@utoronto.ca

ABSTRACT

Time series are often complex and rich in information but sparsely labeled and
therefore challenging to model. In this paper, we propose a self-supervised frame-
work for learning generalizable representations for non-stationary time series. Our
approach, called Temporal Neighborhood Coding (TNC), takes advantage of the
local smoothness of a signal’s generative process to define neighborhoods in time
with stationary properties. Using a debiased contrastive objective, our framework
learns time series representations by ensuring that in the encoding space, the
distribution of signals from within a neighborhood is distinguishable from the
distribution of non-neighboring signals. Our motivation stems from the medical
field, where the ability to model the dynamic nature of time series data is especially
valuable for identifying, tracking, and predicting the underlying patients’ latent
states in settings where labeling data is practically impossible. We compare our
method to recently developed unsupervised representation learning approaches
and demonstrate superior performance on clustering and classification tasks for
multiple datasets.

1 INTRODUCTION

Real-world time-series data is high dimensional, complex, and has unique properties that bring about
many challenges for data modeling (,). In addition, these signals are often sparsely
labeled, making it even more challenging for supervised learning tasks. Unsupervised representation
learning can extract informative low-dimensional representations from raw time series by leveraging
the data’s inherent structure, without the need for explicit supervision. These representations are
more generalizable and robust, as they are less specialized for solving a single supervised task.
Unsuperv1sed representatlon learning is well studied in domains such as vision (,
; , ; ,) and natural language processing (,
; ,), but has been underexplored in the literature for time
series settmgs Frameworks designed for time series need to be efficient and scalable because signals
encountered in practice can be long, high dimensional, and high frequency. Moreover, it should
account for and be able to model dynamic changes that occur within samples, i.e., non-stationarity of
signals.

The ability to model the dynamic nature of time series data is especially valuable in medicine. Health
care data is often organized as a time series, with multiple data types, collected from various sources
at different sampling frequencies, and riddled with artifacts and missing values. Throughout their stay
at the hospital or within the disease progression period, patients transition gradually between distinct

*http://www.cs.toronto.edu/~stonekaboni/

http://www.cs.toronto.edu/~stonekaboni/

Published as a conference paper at ICLR 2021

clinical states, with periods of relative stability, improvement, or unexpected deterioration, requiring
escalation of care that alters the patient’s trajectory. A particular challenge in medical time-series data
is the lack of well-defined or available labels that are needed for identifying the underlying clinical
state of an individual or for training models aimed at extracting low-dimensional representations of
these states. For instance, in the context of critical-care, a patient’s stay in the critical care unit (CCU)
is captured continuously via streaming physiological signals by the bedside monitor. Obtaining
labels for the patient’s state for extended periods of these signals is practically impossible as the
underlying physiological state can be unknown even to the clinicians. This further motivates the
use of unsupervised representation learning in these contexts. Learning rich representations can be
crucial in facilitating the tracking of disease progression, predicting the future trajectories of the
patients, and tailoring treatments to these underlying states.

In this paper, we propose a self-supervised framework for learning representations for complex
multivariate non-stationary time series. This approach, called Temporal Neighborhood Coding
(TNCQ), is designed for temporal settings where the latent distribution of the signals changes over time,
and it aims to capture the progression of the underlying temporal dynamics. TNC is efficient, easily
scalable to high dimensions, and can be used in different time series settings. We assess the quality
of the learned representations on multiple datasets and show that the representations are general and
transferable to many downstream tasks such as classification and clustering. We further demonstrate
that our method outperforms existing approaches for unsupervised representation learning, and it
even performs closely to supervised techniques in classification tasks. The contributions of this work
are three-fold:

1. We present a novel neighborhood-based unsupervised learning framework for non-stationary
multivariate time series data.

2. We introduce the concept of a temporal neighborhood with stationary properties as the
distribution of similar windows in time. The neighborhood boundaries are determined
automatically using the properties of the signal and statistical testing.

3. We incorporate concepts from Positive Unlabeled Learning, specifically, sample weight
adjustment, to account for potential bias introduced in sampling negative examples for the
contrastive loss.

2 METHOD

We introduce a framework for learning representations that encode the underlying state of a multi-
variate, non-stationary time series. Our self-supervised approach, TNC, takes advantage of the local
smoothness of the generative process of signals to learn generalizable representations for windows
of time series. This is done by ensuring that in the representation space, the distribution of signals
proximal in time is distinguishable from the distribution of signals far away, i.e., proximity in time is
identifiable in the encoding space. We represent our multivariate time series signals as X € RP*T,
where D is the number of features and 7' is the number of measurements over time. X [t—$,t+8]

represents a window of time series of length §, centered around time ¢, that includes measurements of
all features taken in the interval [t — g, t+ %] Throughout the paper, we refer to this window as W,
for notational simplicity. Our goal is to learn the underlying representation of W, and by sliding this
window over time, we can obtain the trajectory of the underlying states of the signal.

We define the temporal neighborhood (IV;) of a window W, as the set of all windows with centroids
t*, sampled from a normal distribution t* ~ A (¢,7 - §). Where A is a Gaussian centered at , ¢ is
the size of the window, and 7 is the parameter that defines the range of the neighborhood. Relying on
the local smoothness of a signal’s generative process, the neighborhood distribution is characterized
as a Gaussian to model the gradual transition in temporal data, and intuitively, it approximates the
distribution of samples that are similar to ;. The) parameter determines the neighborhood range
and depends on the signal characteristics and how gradual the time series’s statistical properties
change over time. This can be set by domain experts based on prior knowledge of the signal behavior,
or for more robust estimation, it can be determined by analyzing the stationarity properties of the
signal for every W;. Since the neighborhood represents similar samples, the range should identify
the approximate time span within which the signal remains stationary, and the generative process
does not change. For this purpose, we use the Augmented Dickey-Fuller (ADF) statistical test to

Published as a conference paper at ICLR 2021

determine this region for every window. Proper estimation of the neighborhood range is an integral
part of the TNC framework. If 7 is too small, many samples from within a neighborhood will overlap,
and therefore the encoder would only learn to encode the overlapping information. On the other
hand, if 7 is too big, the neighborhood would span over multiple underlying states, and therefore
the encoder would fail to distinguish the variation among these states. Using the ADF test, we can
automatically adjust the neighborhood for every window based on the signal behavior. More details
on this test and how it is used to estimate 7 is described in section 2.

Now, assuming windows within a neighborhood possess similar properties, signals outside of this
neighborhood, denoted as IV, are considered non-neighboring windows. Samples from N, are likely
to be different from W, and can be considered as negative samples in a context of a contrastive
learning framework. However, this assumption can suffer from the problem of sampling bias,
common in most contrastive learning approaches (,). This
bias occurs because randomly drawing negative examples from the data distribution may result in
negative samples that are actually similar to the reference. This can significantly impact the learning
framework’s performance, but little work has been done on addressing this issue (,).
In our context, this can happen when there are windows from N, that are far away from W;, but have
the same underlying state. To alleviate this bias in the TNC framework, we consider samples from N,
as unlabeled samples, as opposed to negative, and use ideas from Positive-Unlabeled (PU) learning to
accurately measure the loss function. In reality, even though samples within a neighborhood are all
similar, we cannot make the assumption that samples outside this region are necessarily different. For
instance, in the presence of long term seasonalities, signals can exhibit similar properties at distant
times. In a healthcare context, this can be like a stable patient that undergoes a critical condition, but
returns back to a stable state afterwards.

In PU learning, a classifier is learned using labeled data drawn from the positive class (P) and
unlabeled data (U) that is a mixture of posmve and negative samples with a positive class prior ™
,). Existing PU learning
methods fall under two categories based on how they handle the unlabeled data: 1) methods that
identify negative samples from the unlabeled cohort (,); 2) methods that treat the
unlabeled data as negative samples with smaller weights (,). In
the second category, unlabeled samples should be properly welghted in the 1oss term in order to train
an unbiased classifier. () introduces a simple and efficient way of approximating
the expectation of a loss function by assigning individual weights w to training examples from the
unlabeled cohort. This means each sample from the neighborhood is treated as a positive example
with unit weight, while each sample from [V is treated as a combination of a positive example with
weight w and a negative example with complementary weight 1 — w. In the original paper (
,), the weight is defined as the probability for a sample from the unlabeled set to be
a positive sample, i.e. w = p(y = 1|x) for x € U. In the TNC framework, this weight represents
the probability of having samples similar to W; in N. By incorporating weight adjustment into the
TNC loss (Equation 1), we account for possible positive samples that occur in the non-neighboring
distribution. w can be approximated using prior knowledge of the underlying state distribution or
tuned as a hyperparameter. Appendix A.6 explains how the weight parameter is selected for our
different experiment setups and also demonstrates the impact of weight adjustment on performance
for downstream tasks.

After defining the neighborhood distribution, we train an objective function that encourages a distinc-
tion between the representation of samples of the same neighborhood from the outside samples. An
ideal encoder preserves the neighborhood properties in the encoding space. Therefore representations
Z; = Enc(W;) of samples from a neighborhood W; € N, can be distinguished from representation
Zy, = Enc(Wy,) of samples from outside the neighborhood W}, € N;. TNC is composed of two
main components:

1. An Encoder Enc(W;) that maps W; € RP %9 to a representation Z, € RM in a lower
dimensional space (M < D x §), where D x § is the total number of measurements in W;.

2. A Discriminator D(Z;, Z) that approximates the probability of Z being the representation
of a window in /N;. More specifically, it receives two samples from the encoding space and
predicts the probability of those samples belonging to the same temporal neighborhood.

Published as a conference paper at ICLR 2021

I~ N(t,ns
‘g | | \ L] ‘/—-ﬁ\\
, s GG \ A \
A ! . / ¥ S ¥ \ ¥ L;_' \
é Representation
@
p(y)
(a) Neighborhood samples (b) Non-neighboring samples

Figure 1: Overview of the TNC framework components. For each sample window W, (indicated
with the dashed black box), we first define the neighborhood distribution. The encoder learns the
distribution of windows sampled from N; and [V, in the representation space. Then samples from
these distributions are fed into the discriminator alongside Z;, to predict the probability of the
windows being in the same neighborhood.

TNC is a general framework; therefore, it is agnostic to the nature of the time series and the
architecture of the encoder. The encoder can be any parametric model that is well-suited to the signal
properties (, ; ,). For the Discriminator D(Z;, Z) we
use a simple multi-headed binary cla551ﬁer that outputs 1 if Z and Z; are representations of neighbors
in time, and O otherwise. In the experiment section, we describe the architectural details of the models
used for our experiments in more depth.

Figure 1 provides a summary overview of the TNC framework. We formalize the objective function
of our unsupervised learning framework in Equation 1. In essence, we would like the probability
likelihood estimation of the Discriminator to be accurate, i.e., close to 1 for the representation of
neighboring samples and close to 0 for windows far apart. Samples from the non-neighboring region
(V) are weight-adjusted using the w parameters to account for positive samples in this distribution.

L= _EW):NX[]EWlNNt [logD(Zt7 Zl)]+]EWk~1Vt [(1_wt) XlOg (1 - D(Zta Zk))+wt XlogD(Zt7 Zk)]]
~—— —_——
D(Enc(Wy), Enc(Wy)) D(Enc(Wy), Enc(Wy,))
(1

We train the encoder and the discriminator hand in hand by optimizing for this objective. Note that
the Discriminator is only part of training and will not be used during inference. Similar to the encoder,
it can be approximated using any parametric model. However, the more complex the Discriminator,
the harder it becomes to interpret the latent space’s decision boundaries since it allows similarities to
be mapped on complex nonlinear relationships.

Defining the neighborhood parameter using the ADF test: As mentioned earlier, the neighbor-
hood range can be specified using the characteristics of the data. In non-stationary time series, the
generative process of the signals changes over time. We define the temporal neighborhood around
every window as the region where the signal is relatively stationary. Since a signal may remain in
an underlying state for an unknown amount of time, each window’s neighborhood range may vary
in size and must be adjusted to signal behavior. To that end, we use the Augmented Dickey-Fuller
(ADF) statistical test to derive the neighborhood range 7. The ADF test belongs to a category of tests
called "Unit Root Test", and is a method for testing the stationarity of a time series. For every W,
we want to find the neighborhood range around that window that indicates a stationary region. To
determine this, we start from 1 = 1 and gradually increase the neighborhood size 7, measuring the
p-value from the test at every step. Once p-value is above a threshold (in our setting 0.01), it means
that it fails to reject the null hypothesis and suggests that within this neighborhood region, the signal
is no longer stationary. This way, we find the widest neighborhood within which the signal remains
relatively stationary. Note that the window size ¢ is constant throughout the experiment, and during
ADF testing, we only adjust the neighborhood’s width.

Published as a conference paper at ICLR 2021

3 EXPERIMENTS

We evaluate our framework’s usability on multiple time series datasets with dynamic latent states
that change over time. We compare classification performance and clusterability against two state-of-
the-art approaches for unsupervised representation learning for time series: 1. Contrastive Predictive
Coding (CPC) (,) that uses predictive coding principles to train the encoder on
a probabilistic contrastive loss. 2. Triplet-Loss (T-Loss), introduced in (,),
which employs time-based negative sampling and a triplet loss to learn representations for time
series windows. The triplet loss objective ensures similar time series have similar representations
by minimizing the pairwise distance between positive samples (subseries) while maximizing it for
negative ones. (See Appendix A.2 for more details on each baseline.)

For a fair comparison and to ensure that the difference in performance is not due to the differences
in the models’ architecture, the same encoder network is used across all compared baselines. Our
objective is to compare the performance of the learning frameworks, agnostic to the encoder’s
choice. Therefore, we selected simple architectures to evaluate how each framework can use a simple
encoder’s limited capacity to learn meaningful representations. We assess the generalizability of the
representations by 1) evaluating clusterability in the encoding space and 2) using the representations
for a downstream classification task. In addition to the baselines mentioned above, we also compare
clusterability performance with unsupervised K-means and classification with a K-Nearest Neighbor
classifier, using Dynamic Time Warping (DTW) to measure time series distance. All models are
implemented using Pytorch 1.3.1 and trained on a machine with Quadro 400 GPU '. Below we
describe the datasets for our experiments in more detail.

3.1 SIMULATED DATA

The simulated dataset is designed to replicate very long, non-stationary, and high-frequency time
series for which the underlying dynamics change over time. Our generated time series consists of
2000 measurements for 3 features, generated from 4 different underlying states. We use a Hidden
Markov Model (HMM) to generate the random latent states over time, and in each state, the time
series is generated from a different generative process, including Gaussian Processes (GPs) with
different kernel functions and Nonlinear Auto-regressive Moving Average models with different sets
of parameters (« and [3). Besides, for it to further resemble realistic (e.g., clinical) time series, two
features are always correlated. More details about this dataset are provided in the Appendix A.1.
For this experimental setup, we use a two-directional, single-layer recurrent neural network encoder.
We have selected this simple architecture because it handles time series with variable lengths, and it
easily extends to higher-dimensional inputs. The encoder model encodes multi-dimensional signal
windows of § = 50 into 10 dimensional representation vectors. The window size is selected such
that it is long enough to contain information about the underlying state but not too long to span over
multiple underlying states. A more detailed discussion on the window size choice is presented in
Appendix A 4.

3.2 CLINICAL WAVEFORM DATA

For a real-world clinical experiment, we use the MIT-BIH Atrial Fibrillation dataset (,).
This dataset includes 25 long-term Electrocardiogram (ECG) recordings (10 hours in duration) of
human subjects with atrial fibrillation. It consists of two ECG signals; each sampled at 250 Hz. The
signals are annotated over time for the following different rthythm types: 1) Atrial fibrillation, 2)
Atrial flutter, 3) AV junctional rhythm, and 4) all other rhythms. Our goal in this experiment is to
identify the underlying type of arrhythmia for each sample without any information about the labels.
This dataset is particularly interesting and makes this experiment challenging due to the following
special properties:

e The underlying heart rhythm changes over time in each sample. This is an opportunity to
evaluate how different representation learning frameworks can handle alternating classes in
non-stationary settings;

LCode implementation can be found at Thttps://github.com/sanatonek/TNC_
representation_learning

https://github.com/sanatonek/TNC_representation_learning
https://github.com/sanatonek/TNC_representation_learning

Published as a conference paper at ICLR 2021

e The dataset is highly imbalanced, with atrial flutter and AV junctional rhythm being present
in fewer than 0.1% of the measurements. Data imbalance poses many challenges for down-
stream classification, further motivating the use of unsupervised representation learning;

e The dataset has samples from a small number of individuals, but over an extended period
(around 5 million data points). This realistic scenario, common in healthcare data, shows
that our framework is still powerful in settings with a limited number of samples.

The simple RNN encoder architecture used for other experiment setups cannot model the high-
frequency ECG measurements. Therefore, inspired by state-of-the-art architectures for ECG clas-
sification problems, the encoder Enc used in this experiment is a 2-channel, 1-dimensional strided
convolutional neural network that runs directly on the ECG waveforms. We use six convolutional
layers with a total down-sampling factor of 16. The window size is 2500 samples, meaning that
each convolutional filter covers at least half a second of ECG recording, and the representations are
summarized in a 64-dimensional vector.

3.3 HUMAN ACTIVITY RECOGNITION (HAR) DATA

Human Activity Recognition (HAR) is the problem of predicting the type of activity using temporal
data from accelerometer and gyroscope measurements. We use the HAR dataset from the UCI
Machine Learning Repository > that includes data collected from 30 individuals using a smartwatch.
Each person performs six activities: 1) walking, 2) walking upstairs, 3) walking downstairs, 4) sitting,
5) standing, and 6) laying. The time-series measurements are pre-processed to extract 561 features.
For our purpose, we concatenate the activity samples from every individual over time using the
subject identifier to build the full-time series for each subject, which includes continuous activity
change. Similar to the simulated data setting, we use a single-layer RNN encoder. The selected
window size is 4, representing about 15 seconds of recording, and the representations are encoded in
a 10-dimensional vector space.

4 RESULTS

In this section we present the results for clusterability of the latent representations and downstream
classification performance for all datasets and across all baselines. Clusterability indicates how well
each method recovers appropriate states, and classification assesses how informative our representa-
tions are for downstream tasks.

4.1 EVALUATION: CLUSTERABILITY

Many real-world time series data have underlying multi-category structure, naturally leading to
representations with clustering properties. Encoding such general priors is a property of a good
representation (s). In this section, we assess the distribution of the representations
in the encoding space. If information of the latent state is properly learned and encoded by the
framework, the representations of signals from the same underlying state should cluster together.
Figures 2a, 2b, and 2c show an example of this distribution for simulated data across compared
approaches. Each plot is a 2-dimensional t-SNE visualization of the representations where each data
point in the scatter plot is an encoding Z € R that represents a window of size § = 50 of a simulated
time series. We can see that without any information about the hidden states, representations learned
using TNC cluster windows from the same hidden state better than the alternative approaches. The
results show that CPC and Triplet Loss have difficulty separating time series that are generated from
non-linear auto-regressive moving average (NARMA) models with variable regression parameters.

To compare the representation clusters’ consistency for each baseline, we use two very common
cluster validity indices, namely, the Silhouette score and the Davies-Bouldin index. We use K-means
clustering in the representation space to measure these clusterability scores. The Silhouette score
measures the similarity of each sample to its own cluster, compared to other clusters. The values
can range from —1 to +1, and a greater score implies a better cohesion. The Davies-Bouldin Index

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+
using+smartphones

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

Published as a conference paper at ICLR 2021

TNC Triplet Loss CPC

(a) TNC representations (b) T-loss representations (c) CPC representations

Figure 2: T-SNE visualization of signal representations for the simulated dataset across all baselines.
Each data point in the plot presents a 10-dimensional representation of a window of time series of
size § = 50, and the color indicates the latent state of the signal window. See Appendix A.7 for
similar plots from different datasets.

measures intra-cluster similarity and inter-cluster differences. This is a positive index score, where
smaller values indicate low within-cluster scatter and large separation between clusters. Therefore, a
lower score represents better clusterability (more details on the cluster validity scores and how they
are calculated can be found in Appendix A.5).

Simulation ECG Waveform HAR
Method Silhouette 1 DBI | Silhouette 1 DBI | Silhouette 1 DBI |
TNC 0.71+0.01 0.36+0.01 0.44+0.02 0.74+0.04 0.61+0.02 0.5240.04
CPC 0.51+0.03 0.84+0.06 0.26+£0.02 1.44+£0.04 0.584+0.02 0.5740.05

T-Loss 0.61£0.08 0.64+0.12 0.25+0.01 1.30+0.03 0.17+0.01 1.76%0.20
K-means 0.01£0.019 7.23+0.14 0.194+0.11 3.65+0.48 0.12£0.40 2.66£0.05

Table 1: Clustering quality of representations in the encoding space for multiple datasets.

Table 1 summarizes the scores for all baselines and across all datasets, demonstrating that TNC is
superior in learning representations that can distinguish the latent dynamics of time series. CPC
performs closely to Triplet loss on waveform data but performs poorly on the simulated dataset,
where signals are highly non-stationary, and transitions are less predictable. However, for the
HAR dataset, CPC clusters the states very well because most activities are recorded in a specific
order, empowering predictive coding. Triplet loss performs reasonably well in the simulated setting;
however, it fails to distinguish states 0 and 2, where signals come from autoregressive models with
different parameters and have a relatively similar generative process. Performing K-means on the
original time series generally does not generate coherent clusters, as demonstrated by the scores.
However, the performance is slightly better in time series like the ECG waveforms, where the signals
are formed by consistent shapelets, and therefore the DTW measures similarity more accurately.

4.2 EVALUATION: CLASSIFICATION

We further evaluate the quality of the encodings using a classification task. We train a linear classifier
to evaluate how well the representations can be used to classify hidden states. The performance of all
baselines is compared to a supervised classifier, composed of an encoder and a classifier with identical
architectures to that of the unsupervised models, and a K-nearest neighbor classifier that uses DTW
metric. The performance is reported as the prediction accuracy and the area under the precision-recall
curve (AUPRC) score since AUPRC is a more accurate reflection of model performance for imbalance
classification settings like the waveform dataset.

Table 2 demonstrates the classification performance for all datasets. The performance of the classifiers
that use TNC representations are closer to the end-to-end supervised model in comparison to CPC
and Triplet Loss. This provides further evidence that our encodings capture informative parts of the
time series and are generalizable to be used for downstream tasks. In datasets like the HAR, where

Published as a conference paper at ICLR 2021

Simulation ECG Waveform HAR
Method AUPRC Accuracy AUPRC Accuracy AUPRC Accuracy
TNC 0.99+0.00 97.524+0.13 0.554+0.01 77.79+0.84 0.94+0.007 88.32+0.12
CPC 0.69£0.06 70.264+6.48 0.424+0.01 68.64+£0.49 0.93£0.006 86.43+1.41
T-Loss 0.78+£0.01 76.66+1.40 0.474+0.00 75.51+1.26 0.714+0.007 63.60+3.37
KNN 0.42£0.00 55.53+0.65 0.384+0.06 54.76+£5.46 0.75+0.01 84.851+0.84

Supervised 0.991+0.00 98.56+£0.13 0.67£0.01 94.81+0.28 0.98+£0.00 92.03+2.48

Table 2: Performance of all baselines in classifying the underlying hidden states of the time series,
measured as the accuracy and AUPRC score.

an inherent ordering usually exists in the time series, CPC performs reasonably. However, in datasets
with increased non-stationarity, the performance drops. Triplet Loss is also a powerful framework, but
since it samples positive examples from overlapping windows of time series, it is vulnerable to map
the overlaps into the encoding and, therefore, fail to learn more general representations. TNC, on the
other hand, samples similar windows from a wider distribution, defined by the temporal neighborhood,
where many of the neighboring signals do not necessarily overlap. The lower performance of the
CPC and Triplet Loss methods can also be partly because none of these methods explicitly account
for the potential sampling bias that happens when randomly selected negative examples are similar to
the reference W;.

4.3 EVALUATION: TRAJECTORY

Time series Sample Trajectory

il i
w\ \lm i (NS
O A V(u (| \ I

It

M wl \rl HH”W ,M")‘ M i l""’ i ‘“"‘ "" ‘l W (

| !
\

0 100 200 300 400 500

Figure 3: Trajectory of a signal encoding from the simulated dataset. The top plot shows the original
time series with shaded regions indicating the underlying state. The bottom plot shows the 10
dimensional encoding of the sliding windows WW; where § = 50.

This section investigates the trajectories of our learned encodings over time to understand how
the state transitions are captured and modeled in the representation space. This is an important
property for non-stationary time series where underlying states change over time, and capturing those
changes is critical in many application domains such as healthcare. Figure 3 shows a sample from the
simulated dataset. The top panel shows the signal measurements over time, and the shaded regions
indicate the underlying latent states. The bottom panel illustrates the 10-dimensional representation
of a sliding window W; estimated over time. From the bottom panel of Figure 3, we can see that
the encoding pattern changes at state transitions and settle into a different pattern, corresponding to
the new state. This change happens at every transition, and we can see the distinct patterns for all
4 underlying states in the representations. This analysis of the trajectory of change could be very
informative for the users’ post-analysis; for instance, in clinical applications, it could help clinicians
visualize the evolution of the patient state over time and plan treatment based on the state progression

Published as a conference paper at ICLR 2021

5 RELATED WORK

While integral for many applications, unsupervised representation learning has been far less studied
for time series (,), compared to other domains such as vision or natural language
processing (; ,

). One of the earhest approaches to unsupervrsed end-to-end representatron learnrng in time
series is the use of auto-encoders (s s

) and seq-to-seq models (,), with the objective to train an encoder jointly With
a decoder that reconstructs the input signal from its learned representation. Using fully generative
models like variational auto-encoders is also useful for imposing properties like disentanglement,
which help with the interpretability of the representations (,). However, in many
cases, like for high-frequency physiological signals, the reconstruction of complex time series can be
challenging; therefore, more novel approaches are designed to avoid this step. Contrastive Predictive
Coding (,) learns representations by predicting the future in
latent space, ehmmatrng the need to reconstruct the full input. The representatrons are such that the
mutual information between the original signal and the concept vector is maximally preserve using
a lower bound approximation and a contrastive loss. Very similarly, in Time Contrastive Learning
(,), a contrastive loss is used to predict the segment-ID of multivariate
time-series as a way to extract representation. () employs time-based negative
sampling and a triplet loss to learn scalable representations for multivariate time series. Some other
approaches use inherent similarities in temporal data to learn representations without supervision.
For instance, in similarity-preserving representation learning (,), learned encodings are
constrained to preserve the pairwise similarities that exist in the time domain, measured by DTW
distance. Another group of approaches combines reconstruction loss with clustering objectives to
cluster similar temporal patterns in the encoding space (,).

In healthcare, learning representation of rich temporal medical data is extremely important for

understanding patients’ underlying health conditions. However, most of the existing approaches for

learning representatrons are designed for specific downstream tasks and require labeling by experts

,). Examples of similar works to representation learning

in the field of clmrcal ML include computational phenotyping for discovering subgroups of patlents
with srmrlar underlying disease mechanisms from temporal clinical data (,

,), and disease progression modeling, for learning the hrdden vector

of comorbrdrtres representing a disease over time (, ; ,).

6 CONCLUSION

This paper presents a novel unsupervised representation learning framework for complex multivariate
time series, called Temporal Neighborhood Coding (TNC). This framework is designed to learn
the underlying dynamics of non-stationary signals and to model the progression over time by
defining a temporal neighborhood. The problem is motivated by the medical field, where patients
transition between distinct clinical states over time, and obtaining labels to define these underlying
states is challenging. We evaluate the performance of TNC on multiple datasets and show that our
representations are generalizable and can easily be used for diverse tasks such as classification and
clustering. We finally note that TNC is flexible to be used with arbitrary encoder architectures;
therefore, the framework is applicable to many time series data domains. Moreover, in addition to
tasks presented in this paper, general representations can be used for several other downstream tasks,
such as anomaly detection, which is challenging in supervised learning settings for time series data in
sparsely labeled contexts.

ACKNOWLEDGMENTS

Resources used in preparing this research were provided, in part, by the Government of Canada
through CIFAR, and companies sponsoring the Vector Institute. This research was undertaken, in part,
thanks to funding from the Canadian Institute of Health Research (CIHR) and the Natural Sciences
and Engineering Research Council of Canada (NSERC).

Published as a conference paper at ICLR 2021

REFERENCES

Ahmed Alaa and Mihaela van der Schaar. Attentive state-space modeling of disease progression.
2019.

Shahin Amiriparian, Michael Freitag, Nicholas Cummins, and Bjérn Schuller. Sequence to sequence
autoencoders for unsupervised representation learning from audio. In Proc. of the DCASE 2017
Workshop, 2017.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional and
recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798—1828,
2013.

Edward Choi, Mohammad Taha Bahadori, Elizabeth Searles, Catherine Coffey, Michael Thompson,
James Bost, Javier Tejedor-Sojo, and Jimeng Sun. Multi-layer representation learning for medical
concepts. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1495-1504, 2016a.

Edward Choi, Andy Schuetz, Walter F Stewart, and Jimeng Sun. Medical concept representation
learning from electronic health records and its application on heart failure prediction. arXiv
preprint arXiv:1602.03686, 2016b.

Youngduck Choi, Chill Yi-I Chiu, and David Sontag. Learning low-dimensional representations of
medical concepts. AMIA Summits on Translational Science Proceedings, 2016:41, 2016c¢.

Ching-Yao Chuang, Joshua Robinson, Lin Yen-Chen, Antonio Torralba, and Stefanie Jegelka. Debi-
ased contrastive learning. arXiv preprint arXiv:2007.00224, 2020.

Emily L Denton et al. Unsupervised learning of disentangled representations from video. In Advances
in Neural Information Processing Systems, pp. 4414-4423,2017.

Amir Dezfouli, Hassan Ashtiani, Omar Ghattas, Richard Nock, Peter Dayan, and Cheng Soon Ong.
Disentangled behavioural representations. In Advances in Neural Information Processing Systems,
pp- 2251-2260, 2019.

Jeff Donahue and Karen Simonyan. Large scale adversarial representation learning. In Advances in
Neural Information Processing Systems, pp. 10541-10551, 2019.

Marthinus C Du Plessis, Gang Niu, and Masashi Sugiyama. Analysis of learning from positive and
unlabeled data. In Advances in Neural Information Processing Systems, pp. 703-711, 2014.

Marthinus Christoffel Du Plessis and Masashi Sugiyama. Class prior estimation from positive and
unlabeled data. IEICE TRANSACTIONS on Information and Systems, 97(5):1358-1362, 2014.

Charles Elkan and Keith Noto. Learning classifiers from only positive and unlabeled data. In
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 213-220, 2008.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
Muller. Deep learning for time series classification: a review. Data Mining and Knowledge
Discovery, 33(4):917-963, 2019.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable representation
learning for multivariate time series. In Advances in Neural Information Processing Systems, pp.
4652-4663, 2019.

Michael U Gutmann and Aapo Hyvirinen. Noise-contrastive estimation of unnormalized statistical
models, with applications to natural image statistics. Journal of Machine Learning Research, 13
(Feb):307-361, 2012.

Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ICA. In Advances in Neural Information Processing Systems, pp. 3765-3773, 2016.

10

Published as a conference paper at ICLR 2021

Ryuichi Kiryo, Gang Niu, Marthinus C Du Plessis, and Masashi Sugiyama. Positive-unlabeled
learning with non-negative risk estimator. In Advances in Neural Information Processing Systems,
pp. 16751685, 2017.

Martin Langkvist, Lars Karlsson, and Amy Loutfi. A review of unsupervised feature learning and
deep learning for time-series modeling. Pattern Recognition Letters, 42:11-24, 2014.

Thomas A Lasko, Joshua C Denny, and Mia A Levy. Computational phenotype discovery using
unsupervised feature learning over noisy, sparse, and irregular clinical data. PloS one, 8(6), 2013.

Wee Sun Lee and Bing Liu. Learning with positive and unlabeled examples using weighted logistic
regression. In International Conference on Machine Learning, volume 3, pp. 448—455, 2003.

Qi Lei, Jinfeng Yi, Roman Vaculin, Lingfei Wu, and Inderjit S Dhillon. Similarity preserving
representation learning for time series clustering. In IJCAI, volume 19, pp. 2845-2851, 2019.

Xiaoli Li and Bing Liu. Learning to classify texts using positive and unlabeled data. In IJCAI,
volume 3, pp. 587-592, 2003.

Sindy Lowe, Peter O’Connor, and Bastiaan Veeling. Putting an end to end-to-end: Gradient-isolated

learning of representations. In Advances in Neural Information Processing Systems, pp. 3039-3051,
2019.

Xinrui Lyu, Matthias Hueser, Stephanie L Hyland, George Zerveas, and Gunnar Rétsch. Improving
clinical predictions through unsupervised time series representation learning. arXiv preprint
arXiv:1812.00490, 2018.

Qianli Ma, Jiawei Zheng, Sen Li, and Gary W Cottrell. Learning representations for time series
clustering. In Advances in Neural Information Processing Systems, pp. 3776-3786, 2019.

Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Puneet Agarwal, and Gautam Shroff. Timenet:
Pre-trained deep recurrent neural network for time series classification. arXiv preprint
arXiv:1706.08838, 2017.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. arXiv preprint arXiv:1301.3781, 2013.

George Moody. A new method for detecting atrial fibrillation using RR intervals. Computers in
Cardiology, pp. 227-230, 1983.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw
audio. arXiv preprint arXiv:1609.03499, 2016.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Slobodan Petrovic. A comparison between the silhouette index and the davies-bouldin index in
labelling ids clusters. In Proceedings of the 11th Nordic Workshop of Secure IT Systems, pp. 53-64,
2006.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Alec Radford, Rafal Jozefowicz, and Ilya Sutskever. Learning to generate reviews and discovering
sentiment. arXiv preprint arXiv:1704.01444, 2017.

Nikunj Saunshi, Orestis Plevrakis, Sanjeev Arora, Mikhail Khodak, and Hrishikesh Khandeparkar. A
theoretical analysis of contrastive unsupervised representation learning. In International Confer-
ence on Machine Learning, pp. 5628-5637. PMLR, 2019.

Peter Schulam, Fredrick Wigley, and Suchi Saria. Clustering longitudinal clinical marker trajectories
from electronic health data: Applications to phenotyping and endotype discovery. In Twenty-Ninth
AAAI Conference on Artificial Intelligence, 2015.

11

Published as a conference paper at ICLR 2021

Harini Suresh, Jen J Gong, and John V Guttag. Learning tasks for multitask learning: Heterogenous
patient populations in the icu. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, pp. 802-810, 2018.

Sana Tonekaboni, Shalmali Joshi, Kieran Campbell, David K Duvenaud, and Anna Goldenberg.
What went wrong and when? instance-wise feature importance for time-series black-box models.
Advances in Neural Information Processing Systems, 33, 2020.

Xiang Wang, David Sontag, and Fei Wang. Unsupervised learning of disease progression models. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 85-94, 2014.

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using videos.
In Proceedings of the IEEE International Conference on Computer Vision, pp. 2794-2802, 2015.

Qiang Yang and Xindong Wu. 10 challenging problems in data mining research. International
Journal of Information Technology & Decision Making, 5(04):597-604, 2006.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends in deep learning
based natural language processing. IEEE Computational Intelligence Magazine, 13(3):55-75,
2018.

12

Published as a conference paper at ICLR 2021

A APPENDIX

A.1 SIMULATED DATASET

Feature 1 Feature 0

Feature 2

0 100 200 300 400 500 600 700 800
time

Figure A.1: A normalized time series sample from the simulated dataset. Each row represents a
single feature, and the shaded regions indicate one of the 4 underllying simulated states.

The simulated time series consists of 3 features generated from different underlying hidden states.
Figure A.1 shows a sample from this dataset. Each panel in the figure shows one of the features, and
the shaded regions indicate the underlying state of the signal in that period. We use a Hidden Markov
Model (HMM) to generate these random latent states over time. The transition probability is set equal
to %5 for switching to an alternating state, and %85 for not changing state. In each state, the time
series is generated from a different signal distribution. Table 3 describes the generative process of
each signal feature in each state. Note that feature 1 and 2 are always correlated, mainly to mimic
realistic clinical time series. As an example, physiological measurements like pulse rate and heart
rate are always correlated.

State 1 State 2 State 3 State 4
Feature 1 GP (periodic) NARMA, GP (Squared Exp.) NARMAg
Feature 2 GP (periodic) NARMA, GP (Squared Exp.) NARMAg
Feature 3 GP (Squared Exp.) NARMAg GP (periodic) NARMA,

Table 3: Signal distributions for each time series feature of the simulated dataset

In the state 1, the correlated features are generated by a Gaussian Process (GP) with a periodic kernel.
Feature 3, which is uncorrelated with the other two features, comes from another GP with a squared
exponential kernel. In addition to GPs, we also have multiple Non-Linear Auto-Regressive Moving
Average (NARMA) time series models. The linear function of NARMA, and NARMA g are shown
in Equation 2 and 3.

NARMA,, : y(k + 1) = 0.3y(k) + 0.05y(k) Ti y(k—1) + 1.5u(k — (n — 1)u(k) + 0.1 (2)
i=0
NARMAg : y(k + 1) = 0.1y(k) + 0.25y(k) i y(k — i) 4+ 2.5u(k — (n — 1))u(k) — 0.005 (3)
i=0

A white Gaussian noise with o = 0.3 is added to all signals, and overall, the dataset consists of 500
instances of 7' = 2000 measurements.

13

Published as a conference paper at ICLR 2021

A.2 BASELINE IMPLEMENTATION DETAILS

Implementation of all baselines are included in the code base for reproducibility purposes, and
hyper-parameters for all baselines are tuned using cross-validation.

Contrastive Predictive Coding (CPC): The CPC baseline first processes the sequential signal
windows using an encoder Z; = Enc(X;), with a similar architecture to the encoders of other
baselines. Next, an autoregressive model g, aggregates all the information in Z<; and summarizes
it into a context latent representation ¢; = go,-(Z<;). In our implementation, we have used a single
layer, a one-directional recurrent neural network with GRU cell and hidden size equal to the encoding
size as the auto-regressor. Like the original paper, the density ratio is estimated using a linear
transformation, and the model is trained for 1 step ahead prediction.

Triplet-Loss (T-Loss): The triplet loss baseline is implemented using the original code made
available by the authors on Github®.

KNN and K-means: These two baselines for classification and clustering are implemented using
the tslearn library “, that integrates distance metrics such as DTW. Note that evaluating DTW is
computationally expensive, and the tslearn implementation is not optimized. Therefore, for the
waveform data with windows of size 2500, we had to down-sampled the signal frequency by a factor
of two.

A.3 TNC IMPLEMENTATION EXTRA DETAILS

To define the neighborhood range in the TNC framework, as mentioned earlier, we use the Augmented-
Dickey Fuller (ADF) statistical test to determine this range (1) as the region for which the signals
remain stationary. More precisely, we gradually increase the range, from a single window size up to
3 times the window size (the upper limit we set), and repeatedly perform the ADF test. We use the
p-value from this statistical test to determine whether the Null hypothesis can be rejected, meaning
that the signal is stationary. At the point where the p-value is above our defined threshold (0.01), we
can no longer assume that the signal is stationary, and this is where we set the 1 parameter. Now,
once the neighborhood is defined, we make sure the non-neighboring samples are taken from the
distribution of windows with at least 4 x 7 away from W, ensuring a low likelihood of belonging to the
neighborhood. Note that for implementation of ADF, we use the stats model library °. Unfortunately,
this implementation is not optimized and does not support GPU computation, therefore evaluating
the neighborhood range using ADF slows down TNC framework training. As a future direction, we
are working on an optimized implementation of the ADF score for our framework.

A.4 SELECTING THE WINDOW SIZE

The window size 0 is an important factor in the performance of a representation learning framework,
not only for TNC but also for similar baselines such as CPC and triplet loss. Overall, the window size
should be selected such that it is long enough to contain information about the underlying state and
not too long to span over multiple underlying states. In our settings, we have selected the window
sizes based on our prior knowledge of the signals. For instance, in the case of an ECG signal, the
selected window size is equivalent to 7 seconds of recording, which is small enough such that the
ECG remains in a stable state and yet has enough information to determine that underlying state. Our
understanding of the time series data can help us select an appropriate window size, but we can also
experiment with different J to learn this parameter. Table 4 shows classification performance results
for the simulation setups, under different window sizes. We can clearly see the drop in performance
for all baseline methods when the window size is too small or too large.

3https ://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries
*https://tslearn.readthedocs.io/en/stable/index.html
5https ://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.

adfuller.html

14

https://github.com/White-Link/UnsupervisedScalableRepresentationLearningTimeSeries
https://tslearn.readthedocs.io/en/stable/index.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.adfuller.html
https://www.statsmodels.org/dev/generated/statsmodels.tsa.stattools.adfuller.html

Published as a conference paper at ICLR 2021

6 =10 6 =50 6 =100

AUPRC Accuracy AUPRC Accuracy AUPRC Accuracy

TNC 0.74 £0.01 71.60+0.59 0.99+0.00 97.52+0.13 0.84+0.11 84.25+9.08
CPC 049+£0.02 51.85+1.81 0.69+£0.06 70264648 049 +0.05 56.65+0.81
T-Loss 0.48 £0.06 56.70£1.07 0.78+£0.01 76.66 £1.14 0.73 £0.008 73.29 £+ 1.58

Table 4: Downstream classification performance for different window size § on the simulated dataset

A.5 CLUSTERING METRICS

Most cluster validity measures assess certain structural properties of a clustering result. In our
evaluation, we have used two measures, namely the Silhouette score and Davies-Bouldin index, to
evaluate the representations’ clustering quality. Davies-Bouldin measures intra-cluster similarity
(coherence) and inter-cluster differences (separation). Let C = {Cy, ...,Ci } be a clustering of a set D
of objects. The Davies-Bouldin score is evaluated as follows:

DB = % Z maij 4

Where s(C) measures the scatter within a cluster, and § is a cluster to cluster distance measure. On
the other hand, the silhouette score measures how similar an object is to its cluster compared to other
clusters. Both measures are commonly used for the evaluation of clustering algorithms. A comparison
of 2 metrics has shown that the Silhouette index produces slightly more accurate results in some cases.
However, the Davies-Bouldin index is generally much less complex to compute ().

A.6 SETTING THE WEIGHTS FOR PU LEARNING

As mentioned in the Experiment section, the weight parameter in the loss is the probability of
sampling a positive window from the non-neighboring region. One way to set this parameter is using
prior knowledge of the number and the distribution of underlying states. Another way is to learn it as a
hyperparameter. Table 5 shows the TNC loss for different weight parameters. The loss column reports
the value measured in Equation 1, and the accuracy shows how well the discriminator identifies
the neighboring samples from non-neighboring ones for settings with different weight parameters.
To also assess the impact of re-weighting the loss on downstream classification performance, we
compared these performance measures for weighted and non-weighted settings. Table 6 demonstrates
these results and confirms that weight adjusting the loss for non-neighboring samples improves the
quality of learned representations.

Simulation ECG Waveform HAR
Weight Loss Accuracy Loss Accuracy Loss Accuracy
0.2 0.582+0.002 74.29+£0.61 0.631+0.011 60.44+2.56 0.475+0.004 85.75+0.5
0.1 0.5714+0.011 75.41+£0.37 0.6374+0.011 63.67£1.29 0.4134+0.003 88.21£1.29

0.05 0.576+0.002 75.73£0.24 0.6224+0.023 66.04£3.46 0.383+0.001 87.33£0.17

Table 5: Training the TNC framework using different weight parameters. The loss is the measured
value determined in Equation 1, and the Accuracy is the accuracy of the discriminator.

Weighting? Simulation ECG Waveform HAR

True 97.524+0.13 77.79+0.84 88.32+0.12
False 97.17£0.44 75.26+1.48 75.25+13.6

Table 6: Downstream classification accuracy on simulated data with the TNC frameworks, using 2
different weighting strategies: 1)Trained with weight adjustment, 2)Trained with w = 0.

15

Published as a conference paper at ICLR 2021

A.7 SUPPLEMENTARY FIGURE
A.7.1 CLINICAL WAVEFORM DATA

In order to understand what TNC framework encodes from the high dimensional ECG signals,
we visualize the trajectory of the representations of an individual sample over time. Figure A.3
demonstrates this example, where the top 2 rows are ECG signals from two recording leads and
the bottom row demonstrates the representation vectors. We see that around second 40 the pattern
in the representations change as a result of an artifact happening in one of the signals. With the
help from our clinical expert, we also tried to interpret different patterns in the encoding space. For
instance, between time 80 and 130, where features 0-10 become more activated, the heart rate (HR)
has increased. Increase in HR can be seen as increased frequency in the ECG signals and is one of the
indicators of arrhythmia that we believe TNC has captured. Figure A.2 shows the distribution of the
latent encoding of ECG signals for different baselines, with colors indicating the arrhythmia class.

TNC Triplet Loss CPC

f2

Figure A.2: T-SNE visualization of waveform signal representations for unsupervised representation
learning baselines. Each point in the plot is a 64 dimensional representation of a window of time
series, with the color indicating the latent state.

Time series Sample Trajectory

0 25 50 75 100 125 150 175

AL S R B T b

0 25 50 75 100 125 150 175
Encoding Trajectory

NoN
o

60565248444036322824201612 8 4 0

Figure A.3: Trajectory of a waveform signal encoding. The top two plots show the ECG recordings
from 2 ECG leads. The bottom plot shows the 64 dimensional encoding of the sliding windows W,
where § = 2500.

A.7.2 HAR DATA

Figure A.4 and A.5 are similar plots to the ones demonstrated in the previous section, but for the
HAR dataset. As shown in Figure A.5, the underlying states of the signal are clearly captured by the
TNC framework as different patterns in the latent representations.

16

Published as a conference paper at ICLR 2021

Triplet Loss CPC

-40 -30 -20 -10 0O 10 20 30 40

Figure A.4: T-SNE visualization of HAR signal representations for all baselines. Each point in the
plot is a 10 dimensional representation of a window of & = 4, with colors indicating latent states.

Time series Sample Trajectory

Figure A.5: Trajectory of a HAR signal encoding. The top plot shows the original time series with
shaded regions indicating the underlying state. The bottom plot shows the 10 dimensional encoding
of the sliding windows W, where § = 4.

A.7.3 SIMULATION DATA
In addition to the initial experiment, we also show the trajectory of the encoding for a smaller

encoding size (3). In this setting, we have 4 underlying states in the signal, and only 3 dimensions for
the encoding.

Time series Sample Trajectory

I |

1 |
T B T T A e oty Wy ey
R b ,!" ikl "'«.W"“ (I L

I

0 100 200 300 400 500
Encoding Trajectory

Figure A.6: Trajectory of a simulation signal encoding. The top plots shows the signals and the
bottom plot shows the 3 dimensional encoding of the sliding windows W; where § = 50.

17

	Introduction
	Method
	Experiments
	Simulated data
	Clinical waveform data
	Human Activity Recognition (HAR) data

	Results
	Evaluation: Clusterability
	Evaluation: Classification
	Evaluation: Trajectory

	Related work
	Conclusion
	Appendix
	Simulated Dataset
	Baseline implementation details
	TNC implementation extra details
	Selecting the window size
	Clustering metrics
	Setting the weights for PU learning
	Supplementary Figure
	Clinical waveform data
	HAR data
	Simulation data

