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Abstract

We consider estimation of a linear functional of the treatment effect from adaptively
collected data. This problem finds a variety of applications including off-policy
evaluation in contextual bandits, and estimation of the average treatment effect in
causal inference. While a certain class of augmented inverse propensity weighting
(AIPW) estimators enjoys desirable asymptotic properties including the semi-
parametric efficiency, much less is known about their non-asymptotic theory with
adaptively collected data. To fill in the gap, we first present generic upper bounds
on the mean-squared error of the class of AIPW estimators that crucially depends
on a sequentially weighted error between the treatment effect and its estimates. Mo-
tivated by this, we propose a general reduction scheme that allows one to produce
a sequence of estimates for the treatment effect via online learning to minimize the
sequentially weighted estimation error. To illustrate this, we provide three concrete
instantiations in (1) the tabular case; (2) the case of linear function approximation;
and (3) the case of general function approximation for the outcome model. We then
provide a local minimax lower bound to show the instance-dependent optimality of
the AIPW estimator using no-regret online learning algorithms.

1 Introduction

Estimating a linear functional of the treatment effect is of great importance in both causal inference
and reinforcement learning (RL). For instance, in causal inference, one is interested in estimating the
average treatment effect (ATE) [20] or their weighted variants, and in the literature of bandits and
RL, one is interested in estimating the expected reward of a target policy [38, 64, 41, 37]. Two main
challenges arise when tackling this problem:

• Off-policy estimation: Oftentimes, one needs to estimate the linear functional based on obser-
vational data collected from a behavior policy. This behavior policy may not match the desired
distribution specified by the linear functional [42];

• Adaptive data collection mechanism: It is increasingly common for observational data to be
adaptively collected due to the use of online algorithms (e.g., via contextual bandit algorithms [60,
33, 2, 52, 34]) in experimental design [67].

In this paper, we deal with two challenges simultaneously by investigating the estimation of a linear
functional of the treatment effect from observational data that are collected adaptively. When the
observational data is collected non-adaptively, i.e., in an i.i.d. manner, there is an extensive line of
work [51, 49, 10, 24, 1, 27, 43, 6, 3, 64, 41] investigating the asymptotic and non-asymptotic theory
of various estimators. Most notably are the study [6] that establishes the asymptotic efficiency of a
family of semi-parametric estimators, and a more recent study [42] that undertakes a finite-sample
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analysis which uncovers the importance of a certain weighted ℓ2-norm when estimating the treatment
effect. On the other hand, when it comes to adaptively collected data, most prior works [16, 67] focus
on the asymptotic normality of the estimators, and do not discuss the finite-sample analysis of the
estimators. In this paper, we aim to fill in this gap.

1.1 Main contributions

More specifically, we make the following three main contributions in this paper:

• First, we present generic finite-sample upper bounds on the mean-squared error of the class of
augmented inverse propensity weighting (AIPW) estimators that crucially depends on a sequentially
weighted error between the treatment effect and its estimates. This sequentially weighted estimation
error demonstrates a clear effect of history-dependent behavior policies;

• Second, motivated by previous finding, we propose a general reduction scheme that allows one to
form a sequence of estimates for the treatment effect via online learning to minimize the sequentially
weighted estimation error. To demonstrate this, we provide three concrete instantiations in (1) the
tabular case; (2) the case of linear function approximation; and (3) the case of general function
approximation for the outcome model;

• In the end, we provide a local minimax lower bound to showcase the instance-dependent optimality
of the AIPW estimator using no-regret online learning algorithms in the large-sample regime.

1.2 Related works

Off-policy estimation with observational data Off-policy estimation in observational settings has
been a central topic in statistics, operations research, causal inference, and RL. Here, we group a few
prominent off-policy estimators into the following three categories: (i) Model-based estimator: often
dubbed as the direct method (DM), whose key idea is to utilize observational data to learn a regression
model that predicts outcomes for each state-action pair, and then average these model predictions
[29, 10, 9, 39]. Due to model mis-specification, DM typically has a low variance but might lead to
highly biased estimation results. (ii) Inverse propensity weighting (IPW): for the OPE task, IPW uses
importance weighting to account for the distribution mismatch between the behavioral policy and the
target policy [21, 55]. If the behavioral policy differs significantly from the target policy, then IPW
can have an overly large variance (known as the low overlap issue) [23]. Typical remedies for this
issue include propensity clipping [25, 57] or self-normalization [19, 58]. (iii) Hybrid estimator: some
off-policy estimators (e.g., the doubly-robust (DR) estimator [10]) combine DM and IPW together to
blend their complementary strengths [48, 10, 9, 59, 12, 56, 64]. A key asymptotic results in OPE is
that the cross-fitted DR is

√
n-consistent and asymptotically efficient (that is, it attains the lowest

possible asymptotic variance), even for the case where nuisance parameters are estimated at rates
slower than

√
n-rates [6]. However, these methods still might be vulnerable to the low overlap issue

especially for large or continuous action spaces. Thus, there has been a line of recent studies on OPE
for large action spaces [13, 53, 44, 54] and OPE for continuous action space [28, 35, 63].

Off-policy estimation with adaptively collected data A recent strand of works studied asymptotic
theory of adaptive variants of the IPW and DR estimators (e.g., asymptotic normality, semi-parametric
efficiency, and confidence intervals) [31, 8, 7] for adaptively collected data. However, in adaptive
experiments, overlap between the behavioral policies and the target policy can deteriorate since the
experimenter shifts the behavioral policies in response to what he/she observes (known as the drifting
overlap) [67]. It may engender unacceptably large variances of the IPW and DR estimators. To address
this large variance problem, there has been a recent strand of works investigating variance reduction
strategies for the DR estimator based on shrinking importance weights toward one [4, 64, 57, 56],
local stabilization [40, 69], and adaptive weighting [17, 67]. Recent studies on policy learning with
adaptively collected data [68, 26] explored the adaptive weighting DR estimator for policy learning.
In contrast with the majority of prior works on off-policy estimation with adaptively collected data
that focus on asymptotic results, this paper aims at establishing non-asymptotic theory of the problem.
While several researchers have been recently explored non-asymptotic results of the problem with an
emphasis on uncertainty quantification [30, 65], we focus on analyses of estimation procedures of the
off-policy value. As a majority of existing standard objects for uncertainty quantification, such as a
confidence interval (CI), take a very static view of the world (e.g., it holds for a fixed sample size and
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is not designed for interactive/adaptive data collection procedures), the aforementioned two papers
[30, 65] instead study a more suitable statistical tool for such cases called a confidence sequence.

2 Problem formulation

We first formulate our problem using the language of contextual bandits: let X, A, and Y ⊆ R denote
the context space, the action space, and the outcome space, respectively. Denote by O := X×A×Y
the space of all possible context-action-outcome triples. In an adaptive experiment, one observes n
samples {(Xi, Ai, Yi) ∈ O : i ∈ [n]} produced by the following data generating procedure [26, 68]:
At each stage i ∈ [n],

(i) A context Xi ∈ X is independently sampled from a fixed context distribution Ξ∗(·) ∈ ∆(X);
(ii) There exists a behavioral policy Π∗

i (·, ·) : X × Oi−1 → ∆(A) that selects the i-th action
as Ai |Xi,Oi−1 ∼ Π∗

i (· |Xi,Oi−1 ), where Oi := (X1, A1, Y1, · · · , Xi, Ai, Yi) ∈ Oi for
i ∈ [n]. As Π∗

i (· |Xi,Oi−1 ) may depend on previous observations, {(Xi, Ai, Yi) : i ∈ [n]}
are no longer i.i.d.;

(iii) Given a Markov kernel Γ∗(·, ·) : X× A → ∆(Y), we assume that the outcome is generated
according to Yi ∼ Γ∗ (· |Xi, Ai ). Moreover, the conditional mean of the outcome Yi ∈ Y is
specified as

E [Yi |Xi, Ai ] =

∫
Y
yΓ∗ (dy |Xi, Ai ) = µ∗ (Xi, Ai) ,

where the function µ∗(·, ·) : X× A → R is called the treatment effect (in causal inference)
or the reward function (in bandit and RL literature). We note that the treatment effect µ∗ is
not revealed to the statistician. We also define the conditional variance function σ2(·, ·) :
X×A → [0,+∞] defined by σ2 (x, a) := E

[
{Y − µ∗ (X,A)}2

∣∣∣ (X,A) = (x, a)
]
, which

is assumed to satisfy σ2(x, a) < +∞ for every state-action pair (x, a) ∈ X× A.

At this moment, we assume the existence of σ-finite base measures λX(·), λA(·), and λY(·) over X,
A, and Y, resp., such that Ξ∗(·) ≪ λX(·), Π∗

i (· |x,oi−1 ) ≪ λA(·) for every (x,oi−1) ∈ X×Oi−1

and i ∈ [n], and Γ∗ (· |x, a ) ≪ λY(·) for all state-action pairs (x, a) ∈ X× A. Here, the notation ≪
stands for the absolute continuity of measures. Our main goal is to estimate the off-policy value for
any given target evaluation function g(·, ·) : X× A → R defined as

τ∗ = τ (I∗) := EX∼Ξ∗
[
⟨g(X, ·), µ∗(X, ·)⟩λA

]
, (1)

where I∗ := (Ξ∗,Γ∗) ∈ I := ∆(X)× (X× A → ∆(Y)) defines our problem instance. Throughout
the paper, we assume that the propensity scores {π∗

i (Xi,Oi−1;Ai) : i ∈ [n]} are revealed, where
π∗
i (x,oi−1; ·) := dΠ∗

i (·|x,oi−1 )
dλA

: A → R.

As we mentioned earlier in Section 1, the estimation problem of a linear functional of the treatment
effect µ∗ turns out to be useful in both causal inference and RL in the following sense:

• Estimation of average treatment effects: We consider the binary action space A = {0, 1}
equipped with the counting measure. The average treatment effect (ATE) in our problem setting is
defined as the linear functional

ATE := EI∗ [Yi(1)− Yi(0)] = EX∼Ξ∗ [µ∗ (X, 1)− µ∗ (X, 0)] .

Once we take the evaluation function as g(x, a) = 2a− 1, the ATE boils down to a particular case
of the equation (1);

• Off-policy evaluation (OPE) for contextual bandits: Assume that a target policy Πtarget(·) :
X → ∆(A) is given such that Πtarget (· |x ) ≪ λA(·) for every context x ∈ X. For simplicity, let
πtarget (x, ·) := dΠtarget(·|x )

dλA
denote the density function of the target policy for each context x ∈ X.

If we take g(x, a) = πtarget(x, a), then the linear functional (1) corresponds to the value of the
target policy Πtarget. This problem has been widely studied in the literature of bandits and RL,
known as the off-policy evaluation (OPE).
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We conclude this section by introducing notations that will be useful in later sections: let Pi
I ∈ ∆

(
Oi
)

denote the law of the sample trajectory Oi under the sampling mechanism with a problem instance
I = (Ξ,Γ) ∈ I. We denote the density function of Pi

I ∈ ∆
(
Oi
)

with respect to the base measure
(λX ⊗ λA ⊗ λY)

⊗i by piI(·) : Oi → R+. Lastly, we define the k-th weighted ℓ2-norm for k ∈ [n] as

∥φ∥2(k) :=
1

k

k∑
i=1

EI∗

[
g2 (Xi, Ai)φ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

]
(2)

for any function φ(·, ·) : X× A → R, together with the k-th weighted ℓ2-space by

L2
(k) :=

{
φ(·, ·) ∈ (X× A → R) : ∥φ∥(k) < +∞

}
.

3 A class of AIPW estimators and non-asymptotic guarantees

The main objective of this section is to develop a meta-algorithm to tackle the estimation problem
of the off-policy value (1), followed by some key rationale of the proposed procedure as a variance-
reduction scheme of the standard inverse propensity weighting (IPW) estimator.

3.1 How can we reduce the variance of the IPW estimator?

Akin to [42], we consider a class of two-stage estimators obtained from simple perturbations of the
IPW estimator. Given any collection f :=

(
fi : X×Oi−1 × A → R : i ∈ [n]

)
of auxiliary functions,

we consider the following perturbed IPW estimator τ̂fn (·) : On → R:

τ̂fn (on) :=
1

n

n∑
i=1

{
g (xi, ai) yi

π∗
i (xi,oi−1; ai)

− fi (xi,oi−1, ai) + ⟨fi (xi,oi−1, ·) , π∗
i (xi,oi−1; ·)⟩λA

}
.

For each i ∈ [n], let νi ∈ ∆
(
X×Oi−1 × A

)
denote the joint distribution of (Xi,Oi−1, Ai) induced

by the adaptive data collection procedure described in Section 2. Then, we arrive at the following
result whose proof is deferred to Appendix B.1:
Proposition 3.1. For any collection f :=

(
fi ∈ L2 (νi) : i ∈ [n]

)
of auxiliary deterministic functions,

we have EI∗
[
τ̂fn (On)

]
= τ (I∗). Furthermore, if

⟨fi (x,oi−1, ·) , π∗
i (x,oi−1; ·)⟩λA

= 0, ∀ (x,oi−1) ∈ X×Oi−1 (3)

for each i ∈ [n], then

n · VarI∗
[
τ̂fn (On)

]
= VarX∼Ξ∗

[
⟨g(X, ·), µ∗(X, ·)⟩λA

]
+ ∥σ∥2(n) (4)

+
1

n

n∑
i=1

EI∗

[{
g (Xi, Ai)µ

∗ (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

− ⟨g (Xi, ·) , µ∗ (Xi, ·)⟩λA
− fi (Xi,Oi−1, Ai)

}2
]
.

From the decomposition (4) of the variance of the perturbed IPW estimate τ̂fn (On), one observes
that the only term that depends on the collection of auxiliary functions f is the third term. More
importantly, the third term is equal to zero if and only if

fi (x,oi−1, a) = f∗
i (x,oi−1, a) :=

g (x, a)µ∗ (x, a)

π∗
i (x,oi−1; a)

− ⟨g(x, ·), µ∗(x, ·)⟩λA
. (5)

The collection of minimizing functions f∗ :=
(
f∗
i ∈ L2 (νi) : i ∈ [n]

)
yields the oracle estimator

τ̂f
∗

n (·) : On → R

τ̂f
∗

n (On) =
1

n

n∑
i=1

{
g (Xi, Ai) {Yi − µ∗ (Xi, Ai)}

π∗
i (Xi,Oi−1;Ai)

+ ⟨g (Xi, ·) , µ∗ (Xi, ·)⟩λA

}
, (6)

whose variance is given by

n · VarI∗

[
τ̂f

∗

n (On)
]
= v2∗ := VarX∼Ξ∗

[
⟨g(X, ·), µ∗(X, ·)⟩λA

]
+ ∥σ∥2(n) . (7)
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Algorithm 1 Meta-algorithm: augmented inverse propensity weighting (AIPW) estimator.
Require: the dataset D = {(Xi, Ai, Yi) ∈ O : i ∈ [n]} and an evaluation function g : X× A → R.

1: For each step i ∈ [n], we compute an estimate µ̂i (Oi−1) ∈ (X× A → R) of the treatment effect
based on the sample trajectory Oi−1 up to the (i− 1)-th step. // Implement Algorithm 2
as a subroutine;

2: Consider the AIPW estimator (a.k.a., the doubly-robust (DR) estimator) τ̂AIPW
n (·) : On → R:

τ̂AIPW
n (on) :=

1

n

n∑
i=1

Γ̂i (oi) , (8)

where the objects being averaged are the AIPW scores Γ̂i(·) : Oi → R is defined by

Γ̂i (oi) :=
g (xi, ai)

π∗
i (xi,oi−1; ai)

{yi − µ̂i (oi−1) (xi, ai)}+ ⟨g (xi, ·) , µ̂i (oi−1) (xi, ·)⟩λA
. (9)

3: return the AIPW estimate τ̂AIPW
n (On).

3.2 The class of augmented IPW estimators

Since the treatment effect µ∗ is not revealed to the statistician in (6), it is impossible to exactly compute
the oracle estimate τ̂f

∗

n (·) : On → R using only the observational dataset On. Therefore, a natural
remedy would be the following two-stage procedure, which is referred to as the augmented inverse
propensity weighting (AIPW) estimator or the doubly-robust (DR) estimator [10, 50, 61, 17, 67, 22]:
(i) we first compute a sequence of estimates {µ̂i (Oi−1) ∈ (X× A → R) : i ∈ [n]} of the treatment
effect µ∗; and then (ii) we plug-in these estimates to the equation (6) to construct an approximation
to the ideal estimate τ̂f

∗

n (On). We summarize this two-stage procedure in Algorithm 1.

We pause here to compare our problem setting and algorithms with the most relevant work [42]. We
focus on off-policy estimation with adaptively collected data, which is technically more challenging
compared to i.i.d. data considered in [42]. In the case with i.i.d. data, [42] proposed a natural approach
to construct a class of two-stage estimators as follows: (a) compute an estimate µ̂ of the treatment
effect µ∗ utilizing part of the dataset; and (b) substitute this estimate in the equation (6) of the oracle
estimator. Note that the authors use the cross-fitting approach [5, 6], which allows to make full use of
data to maintain efficiency and statistical power of machine learning algorithms for estimation of
nuisance parameters while reducing overfitting bias. However, the cross-fitting strategy heavily relies
on the i.i.d. nature of the data collection mechanism and therefore one cannot use it in the setting
with adaptively collected data. Instead, we construct an estimate µ̂i of the treatment effect µ∗ based
on the sample trajectory Oi−1 at each stage and then substitute these estimates in the equation (6).
This is one of main contributions to address the adaptive nature of our data generating mechanism.
We will make use of the framework of online learning to construct a sequence of estimates for the
treatment effect µ∗.

3.3 Theoretical guarantees of Algorithm 1

In this section, we provide statistical guarantees for the class of AIPW estimators for dealing with the
estimation problem of the off-policy value (1). The main result of this section can be summarized as
the following non-asymptotic upper bound on the mean-squared error (MSE) of Algorithm 1:
Theorem 3.1 (Non-asymptotic upper bound on the MSE of the AIPW estimator). For any sequence
of estimates {µ̂i (Oi−1) ∈ (X× A → R) : i ∈ [n]} for the treatment effect µ∗, the AIPW estimator
(8) has the MSE bounded above by

EI∗

[{
τ̂AIPW
n (On)− τ (I∗)

}2]
≤ 1

n

{
v2∗ +

1

n

n∑
i=1

E

[
g2 (Xi, Ai) {µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

(π∗
i )

2
(Xi,Oi−1;Ai)

]}
.

(10)

Note that the non-asymptotic upper bound (10) on the MSE for the class of AIPW estimators (8)
consists of two terms, both of which have natural interpretations. The first term v2∗ corresponds to the
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Algorithm 2 Online non-parametric regression protocol for estimation of the treatment effect.
Require: the number of rounds n ∈ N.

1: for i = 1, 2, · · · , n, do
2: The learner selects a point µ̂i (Oi−1) ∈ (X× A → R) based on the sample trajectory Oi−1;
3: The environment then picks a loss function li(·) : (X× A → R) → R defined as

li(µ) :=
g2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

{Yi − µ (Xi, Ai)}2 , ∀µ(·, ·) ∈ (X× A → R) . (14)

4: end for
5: return the sequence of estimates {µ̂i (Oi−1) ∈ (X× A → R) : i ∈ [n]} of the treatment effect.

optimal variance (7) achievable by the oracle estimator, and the second term

1

n

n∑
i=1

EI∗

[
g2 (Xi, Ai) {µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

(π∗
i )

2
(Xi,Oi−1;Ai)

]
(11)

measures the average estimation error of the estimates {µ̂i (Oi−1) ∈ (X× A → R) : i ∈ [n]} of µ∗.
Of primary interest to us is a subsequent upper bounding argument based on the MSE bound (10) in
the finite sample regime: in particular, to minimize the RHS of (10), one needs to choose a sequence
of estimates {µ̂i (Oi−1) ∈ (X× A → R) : i ∈ [n]} which minimizes the second term (11).

3.4 Reduction to online non-parametric regression

Let us now focus on constructing a sequence of estimates {µ̂i (Oi−1) ∈ (X× A → R) : i ∈ [n]} of
the treatment effect and upper bounding the estimation error (11) in the MSE bound (10). To this end,
we borrow ideas from the literature of online non-parametric regression [45].

To begin with, we consider an n-round turn-based game between the learner and the environment;
see Algorithm 2 for the details. Then, one can readily observe for any µ(·, ·) : X× A → R, we have

EI∗ [ li(µ)| (Hi−1, Xi, Ai)]

=
g2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

[
σ2 (Xi, Ai) + {µ (Xi, Ai)− µ∗ (Xi, Ai)}2

]
.

(12)

In the current turn-based game, our natural goal is to minimize the learner’s static regret against the
best fixed action in hindsight belonging to a pre-specified function class F ⊆ (X× A → R):

Regret (n,F ;A) :=

n∑
i=1

li {µ̂i (Oi−1)} − inf
µ∈F

n∑
i=1

li(µ), (13)

where A denotes the learner’s online non-parametric regression algorithm that returns a sequence of
estimates {µ̂i (Oi−1) : i ∈ [n]} for the treatment effect. Then, one can establish the following oracle
inequality that demystifies a relationship between estimation problem of the off-policy value and the
online non-parametric regression protocol. See Appendix B.3 for the proof.
Theorem 3.2 (Oracle inequality for the class of AIPW estimators). The AIPW estimator (8) using
the sequence of estimates {µ̂i (Oi−1) ∈ (X× A → R) : i ∈ [n]} of the treatment effect µ∗ produced
by the online non-parametric regression algorithm A enjoys the following upper bound on the MSE:

EI∗

[{
τ̂AIPW
n (On)− τ (I∗)

}2]
≤ 1

n

(
v2∗ +

1

n
EI∗ [Regret (n,F ;A)] + inf

{
∥µ− µ∗∥2(n) : µ ∈ F

})
.

(15)

A few remarks are in order. Apart from the optimal variance v2∗ , the RHS of the bound (15) contains
two additional terms: (i) the expected regret relative to the number of rounds n, where the expected
value is taken over On ∼ Pn

I∗(·); and (ii) the approximation error under the ∥·∥(n)-norm. Given any
fixed function class F ⊆ (X× A → R), if we consider the large sample size regime, i.e., the sample
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size n is sufficiently large, then one can see that the asymptotic variance of the AIPW estimator (8) is
asymptotically the same as v2∗+inf

{
∥µ− µ∗∥2(n) : µ ∈ F

}
, provided that the online non-parametric

regression algorithm A exhibits a no-regret learning dynamics, i.e., EI∗ [Regret (n,F ;A)] = o(n)
as n → ∞. Consequently, the AIPW estimator (8) may suffer from an efficiency loss which depends
on how well the unknown treatment effect µ∗ can be approximated by a member of the function
class F ⊆ (X× A → R) under the ∥·∥(n)-norm. Hence, any contribution to the MSE bound of the
AIPW estimator (8) in addition to the efficient variance v2∗ primarily relies on the approximation
error associated with approximating the treatment effect µ∗ utilizing a provided function class F .

3.5 Consequences for particular outcome models

The main goal of this section is to illustrate the consequences of our general theory developed in
Section 3 so far for several concrete classes of outcome models. Throughout this section, we consider
the case for which Y = [−L,L] for some constant L ∈ (0,+∞), and impose the following condition:
Assumption 1 (Strict overlap condition). The likelihood ratios are uniformly bounded by a universal
constant B ∈ (0,+∞), i.e., for every i ∈ [n],∣∣∣∣ g (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

∣∣∣∣ ≤ B Pn
I∗ -almost surely. (16)

We note that Assumption 1 is often referred to as the strict overlap condition in the literature of causal
inference [20, 32, 66, 36, 11]. At this point, we emphasize that Assumption 1 is necessary to produce
main consequences of the oracle inequality for the class of AIPW estimators (Theorem 3.2) that we
discuss in the ensuing subsections: Theorems 3.3, 3.4, and the arguments throughout Appendix B.6.

3.5.1 Tabular case of the outcome model

We embark on our discussion about the consequences of our theory established in Sections 3.3 and
3.4 for one of the simplest case of the outcome model satisfying the following assumption.
Assumption 2 (Tabular setting of the outcome model). The state-action space X× A is a finite set.

If we compute the gradient of the loss function (14), we have

∇li(µ) =
2g2 (Xi, Ai)

(π∗)
2
(Xi,Oi−1;Ai)

{µ (Xi, Ai)− Yi} δ(Xi,Ai), ∀µ ∈ RX×A, (17)

where δ(Xi,Ai) ∈ RX×A is the point-mass vector at the i-th state-action pair in the sample trajectory,
i.e., δ(Xi,Ai)(x, a) := 1 if (x, a) = (Xi, Ai); δ(Xi,Ai)(x, a) := 0 otherwise.

Algorithm 3 Online gradient descent (OGD) algorithm for the finite state-action space.

Require: the function class F ⊆ [−L,L]
X×A, the total number of rounds n ∈ N, and a sequence of

learning rates {ηi ∈ (0,+∞) : i ∈ [n− 1]}.
1: We first choose an initial point µ̂1(∅) ∈ F arbitrarily;
2: for i = 1, 2, · · · , n− 1, do
3: Observe a triple (Xi, Ai, Yi) ∈ O;
4: Update µ̂i+1 (Oi) ∈ F according to the following OGD update rule:

µ̂i+1 (Oi) = ΠF [µ̂i (Oi−1)− ηi∇li {µ̂i (Oi−1)}]

= ΠF

[
µ̂i (Oi−1)−

2ηi · g2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

{µ̂i (Oi−1)− Yi} δ(Xi,Ai)

]
,

(18)

where ΠF [·] : RX×A → F denotes the projection map of RX×A onto the function space F .
5: end for
6: return the sequence of estimates {µ̂i (Oi−1) ∈ F : i ∈ [n]} of the treatment effect µ∗.

Now, it is time to put forward an online contextual learning algorithm aimed at producing a sequence
of estimates of µ∗ with a no-regret learning guarantee. For the tabular case, the online non-parametric
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regression problem can be resolved through standard online convex optimization (OCO) algorithms.
In particular, we employ the online gradient descent (OGD) algorithm (see Algorithm 3) as a sub-
routine of Algorithm 1. By leveraging standard results on regret analysis of OCO algorithms, one can
obtain the following regret bound, which guarantees a no-regret learning dynamics of Algorithm 3.
Theorem 3.3 (Regret guarantee of Algorithm 3). Under Assumptions 1 and 2, the OGD algorithm
(Algorithm 3) with learning rates

{
ηi :=

diam(F)

4LB2
√
i
: i ∈ [n]

}
guarantees

Regret (n,F ;OGD) ≤ 6LB2diam(F) ·
√
n Pn

I∗ -almost surely, (19)

where diam(F) := sup {∥µ∥2 : µ ∈ F} denotes the diameter of F ⊆ [−L,L]
X×A.

See Appendix B.4 for the proof of Theorem 3.3. Combining the regret guarantee (19) of Algorithm 3
together with the MSE bound (15) in Theorem 3.2, one can establish a concrete upper bound on the
MSE of the AIPW estimator (8) by utilizing Algorithm 3 to produce a sequence of estimates for the
treatment effect µ∗.

3.5.2 Linear function approximation

We next move on to outcome models where the state-action space X× A can be infinite. We begin
with the simplest case: the class of linear outcome functions. Let ϕ(·, ·) : X× A → Rd be a known
feature map such that sup {∥ϕ(x, a)∥2 : (x, a) ∈ X× A} ≤ 1, and we consider the functions that are
linear in this representation: fθ(·, ·) : X×A → R, where fθ(x, a) := θ⊤ϕ(x, a) for some parameter
vector θ ∈ Rd. Given a radius R > 0, we define the function class

Flin :=
{
fθ(·, ·) ∈ (X× A → R) : θ ∈ Θ := B (0d;R)

}
, (20)

where B (0d;R) :=
{
u ∈ Rd : ∥u∥2 ≤ R

}
. With this linear function approximation framework, let

us consider the following OCO model: at the i-th stage,

(i) the learner first chooses a point θ̂i (Oi−1) ∈ Θ;
(ii) the environment then picks a loss function Li(·) : Θ → R defined as

Li(θ) :=
g2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

{
Yi − θ⊤ϕ (Xi, Ai)

}2

, ∀θ ∈ Θ, (21)

and our goal is to produce a sequence of estimates
{
µ̂i (Oi−1) :=

{
θ̂i (Oi−1)

}⊤
ϕ ∈ Flin : i ∈ [n]

}
for the treatment effect µ∗ after n rounds of the above-mentioned OCO model which minimizes the
learner’s regret against the best fixed action in hindsight:

Regret (n,Flin;A) =

n∑
i=1

li {µ̂i (Oi−1)} − inf

{
n∑

i=1

li(µ) : µ ∈ F

}

=

n∑
i=1

Li

{
θ̂i (Oi−1)

}
− inf

{
n∑

i=1

Li(θ) : θ ∈ Θ

}
,

where A is the learner’s OCO algorithm whose output is a sequence
{
θ̂i (Oi−1) ∈ Θ : i ∈ [n]

}
of

parameters. If we compute the gradient of the loss function (21), one has

∇θLi(θ) =
2g2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

{
θ⊤ϕ (Xi, Ai)− Yi

}
ϕ (Xi, Ai) . (22)

For the current linear function approximation setting, we implement the OGD algorithm (Algorithm 4)
as a sub-routine of Algorithm 1. By using the same arguments as in Section 3.5.1, one can reproduce
the following regret guarantee of Algorithm 4 whose proof is available at Appendix B.5.
Theorem 3.4 (Regret guarantee of Algorithm 4). With Assumption 1, the OGD algorithm (Algorithm
4) with learning rates

{
ηi :=

R
B2(L+R)

√
i
: i ∈ [n]

}
guarantees

Regret (n,Flin;OGD) ≤ 6B2R(L+R)
√
n Pn

I∗ -almost surely. (24)
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Algorithm 4 Online gradient descent (OGD) algorithm for linear function approximation.
Require: the radius R > 0 of the parameter space, the number of rounds n ∈ N, and a sequence of

learning rates {ηi ∈ (0,+∞) : i ∈ [n− 1]}.
1: We first choose an arbitrary initial point θ̂1(∅) ∈ Θ, where Θ := B (0d;R);
2: for i = 1, 2, · · · , n− 1, do
3: Observe a triple (Xi, Ai, Yi) ∈ O;
4: Update θ̂i+1 (Oi) ∈ Θ according to the following OGD update rule:

θ̂i+1 (Oi) = ΠΘ

[
θ̂i (Oi−1)− ηi∇θLi

{
θ̂i (Oi−1)

}]
, (23)

where ΠΘ[·] : Rd → Θ denotes the projection map of Rd onto the parameter space Θ.
5: end for
6: return the estimates

{
µ̂i (Oi−1) :=

{
θ̂i (Oi−1)

}⊤
ϕ ∈ Flin : i ∈ [n]

}
of the treatment effect.

General function approximation Lastly, we demonstrate the consequences of our general theory
established in Sections 3.3 and 3.4 for the case of general function approximation: the function class
F ⊆ (X× A → [−L,L]) can be arbitrarily chosen. Our further discussion this case heavily relies on
the basic theory of online non-parametric regression from [45] whose technical details are rather long
and complicated. So, we defer our detailed inspection on the case of general function approximation
to Appendix B.6.

4 Lower bounds: local minimax risk

We turn our attention to a local minimax lower bound for estimating the off-policy value τ∗ = τ (I∗).
Here, we aim at establishing lower bounds that hold uniformly over all estimators that are permitted
to know both the propensity scores {π∗

i (Xi,Oi−1;Ai) : i ∈ [n]} and the evaluation function g. We
assume the existence of a constant K ≥ 1 and reference Markov policies

{
Πi : X → ∆(A) : i ∈ [n]

}
such that Πi ( ·|x) ≪ λA(·) for (x, i) ∈ X× [n], and

1

K
≤ πi (x, a)

π∗
i (x,oi−1; a)

≤ K (25)

for all (x,oi−1, a) ∈ X×Oi−1 × A, where πi (x, ·) := dΠi( ·|x)
dλA

: A → R+ for each context x ∈ X.
Proximity of behavioral policies to certain Markov policies is often assumed under adaptive data
collection procedures. For instance, in Theorem 1 of [67], the authors assumed that the sequence of
behavior policies is eventually Markov; see the equation (8) therein.

4.1 Instance-dependent local minimax lower bounds

Given any problem instance I∗ = (Ξ∗,Γ∗) ∈ I and an error function δ : X× A → R+, we consider
the following local neighborhoods:

N (Ξ∗) :=

{
Ξ ∈ ∆(X) : KL (Ξ ∥Ξ∗ ) ≤ 1

n

}
;

Nδ (Γ
∗) := {Γ ∈ (X× A → ∆(Y)) : |µ(Γ)(x, a)− µ (Γ∗) (x, a)| ≤ δ(x, a), ∀(x, a) ∈ X× A} ,

where for any given Γ : X×A → ∆(Y), let µ(Γ)(x, a) :=
∫
Y yΓ (dy|x, a) for each (x, a) ∈ X×A.

Our goal is to lower bound the following local minimax risk:

Mn (Cδ (I∗)) := inf
τ̂n(·):On→R

(
sup

I∈Cδ(I∗)

EI

[
{τ̂n (On)− τ (I)}2

])
, (26)

where Cδ (I∗) := N (Ξ∗)×Nδ (Γ
∗) ⊆ I. We now specify some assumptions necessary for lower

bounding the local minimax risk (26). Prior to this, we introduce a new important notation: given any
random variable Y ∈ L4 (Ω,F ,P) defined on a probability space (Ω,F ,P), its (2, 4)-moment ratio

is defined as ∥Y ∥2→4 :=

√
E[Y 4]

E[Y 2] .
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Assumption 3. Let h(x) := ⟨g(x, ·), µ∗(x, ·)⟩λA
− EX∼Ξ∗

[
⟨g(X, ·), µ∗(X, ·)⟩λA

]
. We assume that

H2→4 := ∥h∥2→4 =

√
EX∼Ξ∗ [h4(X)]

EX∼Ξ∗ [h2(X)] < +∞.

We next make an assumption on a lower bound on the local neighborhood size:
Assumption 4. The neighborhood function δ(·, ·) : X× A → R+ satisfies the lower bound

√
n · δ(x, a) ≥ |g(x, a)|σ2(x, a)

πi(x, a) ∥σ∥(n)
(27)

for all (x, a, i) ∈ X× A× [n].

We note that Assumptions 3 and 4 are analogues of Assumptions (MR) and (LN) considered in [42],
respectively, for the case of adaptively collected data. Under these assumptions, one can prove the
following lower bound on the local minimax risk over Cδ (I∗):
Theorem 4.1. Under Assumptions 3 and 4, the local minimax risk over Cδ (I∗) is lower bounded by

Mn (Cδ (I∗)) ≥ C(K) · v
2
∗
n
, (28)

where C(K) > 0 is a universal constant that only depends on the data coverage constant K ≥ 1 of
the reference Markov policies

{
Πi(·) : X → ∆(A) : i ∈ [n]

}
defined in (25).

The proof of Theorem 4.1 can be found in Appendix C.1. This result delivers a key message: the
term v2

∗
n including the sequentially weighted ℓ2-norm is indeed the fundamental limit for estimating

the linear functional based on adaptively collected data. Our results can be viewed as a generalization
of those developed in [42] for the case of i.i.d. data.
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A Some elementary inequalities and their proofs

The following lemma is useful for the truncation arguments used in the proofs of our local minimax
lower bounds. In particular, it enables to make small modifications on a pair of probability measures
by conditioning on good events of each probability measure, without inducing an overly large change
in the total variation distance.
Lemma A.1. Let (µ, ν) be a pair of probability measures defined on a common sample space (Ω,F),
and consider any two events A,B ∈ F satisfying min {µ(A), ν(B)} ≥ 1 − ϵ for some ϵ ∈

[
0, 1

4

]
.

Then, the conditional distributions (µ|A) (·) ∈ ∆(Ω,F) and (ν|B) (·) ∈ ∆(Ω,F) defined by

(µ|A) (E) :=
µ (A ∩ E)

µ(A)
and (ν|B) (E) :=

ν (B ∩ E)

ν(B)

for any event E ∈ F , satisfy the bound

|TV (µ|A, ν|B)− TV (µ, ν)| ≤ 2ϵ. (29)

Proof of Lemma A.1. Due to the triangle inequality for the total variation (TV) distance, it follows
that

TV (µ, ν) ≤ TV (µ, µ|A) + TV (µ|A, ν|B) + TV (ν|B, ν) , (30)

and

TV (µ|A, ν|B) ≤ TV (µ|A,µ) + TV (µ, ν) + TV (ν, ν|B) . (31)

At this point, one can easily observe that

TV (µ, µ|A) = sup {|µ(E)− (µ|A) (E)| : E ∈ F} = (µ|A) (A)− µ(A) = 1− µ(A);

TV (ν, ν|B) = sup {|ν(E)− (ν|B) (E)| : E ∈ F} = (ν|B) (B)− ν(B) = 1− ν(B).
(32)

Putting the observation (32) into the inequalities (30) and (31), the assumptions 1− µ(A) ≤ ϵ and
1− ν(B) ≤ ϵ establish the desired result.

B Proofs and omitted details for Section 3

B.1 Proof of Proposition 3.1

First, one can observe that

EI∗
[
τ̂fn (On)

]
=

1

n

n∑
i=1

EI∗

[
EI∗

[
g (Xi, Ai)Yi

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

+ ⟨fi (Xi,Oi−1, ·) , π∗
i (Xi,Oi−1; ·)⟩λA

∣∣ (Xi, Ai,Hi−1)
]]

=
1

n

n∑
i=1

EI∗

[
g (Xi, Ai)µ

∗ (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai) + ⟨fi (Xi,Oi−1, ·) , π∗
i (Xi,Oi−1; ·)⟩λA

]

=
1

n

n∑
i=1

EI∗

[
EI∗

[
g (Xi, Ai)µ

∗ (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai) (33)

+ ⟨fi (Xi,Oi−1, ·) , π∗
i (Xi,Oi−1; ·)⟩λA

∣∣ (Xi,Hi−1)
]]

=
1

n

n∑
i=1

EI∗

[∫
A
g (Xi, a)µ

∗ (Xi, a) dλA(a)− ⟨fi (Xi,Oi−1, ·) , π∗
i (Xi,Oi−1; ·)⟩λA

+ ⟨fi (Xi,Oi−1, ·) , π∗
i (Xi,Oi−1; ·)⟩λA

]
= τ (I∗) .
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We now assume (3) and note that

VarI∗
[
τ̂fn (On)

]
=

1

n2

n∑
i=1

VarI∗

[
g (Xi, Ai)Yi

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

]
+

2

n2

∑
1≤i<j≤n

CovI∗

[
g (Xi, Ai)Yi

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai) ,

g (Xj , Aj)Yj

π∗
j (Xj ,Oj−1;Aj)

− fj (Xj ,Oj−1, Aj)

]
.

(34)

One can reveal that

VarI∗

[
g (Xi, Ai)Yi

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

]
= EI∗

[
EI∗

[{
g (Xi, Ai)Yi

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

}2
∣∣∣∣∣ (Xi, Ai,Hi−1)

]]
− {τ (I∗)}2

= EI∗

[
g2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

EI∗
[
Y 2
i

∣∣ (Xi, Ai,Hi−1)
]

−2fi (Xi,Oi−1, Ai) g (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

EI∗ [Yi| (Xi, Ai,Hi−1)] + f2
i (Xi,Oi−1, Ai)

]
− {τ (I∗)}2

= EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

]

+ EI∗

[{
g (Xi, Ai)µ

∗ (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

}2
]

(35)

− {τ (I∗)}2

(a)
= EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

]

+ EI∗

[{
g (Xi, Ai)µ

∗ (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

− ⟨g (Xi, ·) , µ∗ (Xi, ·)⟩λA
− fi (Xi,Oi−1, Ai)

}2
]

+ EI∗

[
⟨g (Xi, ·) , µ∗ (Xi, ·)⟩2λ

]
− {τ (I∗)}2︸ ︷︷ ︸

= VarX∼Ξ∗
[
⟨g(X,·),µ∗(X,·)⟩λA

]

= EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

]

+ EI∗

[{
g (Xi, Ai)µ

∗ (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

− ⟨g (Xi, ·) , µ∗ (Xi, ·)⟩λA
− fi (Xi,Oi−1, Ai)

}2
]

+ VarX∼Ξ∗
[
⟨g (X, ·) , µ∗ (X, ·)⟩λA

]
,

where the step (a) can be verified as follows:

EI∗

[{
g (Xi, Ai)µ

∗ (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

}2
]

= EI∗

[
EI∗

[{
g (Xi, Ai)µ

∗ (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

}2
∣∣∣∣∣ (Xi,Hi−1)

]]

= EI∗

[
VarI∗

[
g (Xi, Ai)µ

∗ (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

∣∣∣∣ (Xi,Hi−1)

]]
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+ EI∗


EI∗

[
g (Xi, Ai)µ

∗ (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

∣∣∣∣ (Xi,Hi−1)

]
︸ ︷︷ ︸

= ⟨g(Xi,·),µ∗(Xi,·)⟩λ


2

= EI∗

[{
g (Xi, Ai)µ

∗ (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

− ⟨g (Xi, ·) , µ∗ (Xi, ·)⟩λA
− fi (Xi,Oi−1, Ai)

}2
]

+ EI∗

[
⟨g (Xi, ·) , µ∗ (Xi, ·)⟩2λA

]
.

Next, we compute CovI∗

[
g(Xi,Ai)Yi

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai) ,
g(Xj ,Aj)Yj

π∗
j (Xj ,Oj−1;Aj)

− fj (Xj ,Oj−1, Aj)
]
:

CovI∗

[
g (Xi, Ai)Yi

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai) ,
g (Xj , Aj)Yj

π∗
j (Xj ,Oj−1;Aj)

− fj (Xj ,Oj−1, Aj)

]

= EI∗

[{
g (Xi, Ai)Yi

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

}
{
g (Xj , Aj)µ

∗ (Xj , Aj)

π∗
j (Xj ,Oj−1;Aj)

− fj (Xj ,Oj−1, Aj)

}]
− {τ (I∗)}2

= EI∗

[
EI∗

[{
g (Xi, Ai)Yi

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

}
(36){

g (Xj , Aj)µ
∗ (Xj , Aj)

π∗
j (Xj ,Oj−1;Aj)

− fj (Xj ,Oj−1, Aj)

}∣∣∣∣∣ (Xj ,Hj−1)

]
− {τ (I∗)}2

= EI∗

[{
g (Xi, Ai)Yi

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

}
⟨g (Xj , ·) , µ∗ (Xj , ·)⟩λA

]
− {τ (I∗)}2

= EI∗

[
EI∗

[{
g (Xi, Ai)Yi

π∗
i (Xi,Oi−1;Ai)

− fi (Xi,Oi−1, Ai)

}
⟨g (Xj , ·) , µ∗ (Xj , ·)⟩λA

∣∣∣∣Hj−1

]]
− {τ (I∗)}2

(b)
= 0,

where the step (b) holds due to the fact that Xj is independent of the historical data Hj−1, which

immediately yields Xj |Hj−1
d
= Xj ∼ Ξ∗(·). Taking two pieces (35) and (36) collectively into the

equation (34), one has

n · VarI∗
[
τ̂fn (On)

]
= VarX∼Ξ∗

[
⟨g(X, ·), µ∗(X, ·)⟩λA

]
+

1

n

n∑
i=1

(
EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1, Ai)

]

+EI∗

[{
g (Xi, Ai)µ

∗ (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

− ⟨g (Xi, ·) , µ∗ (Xi, ·)⟩λA
− fi (Xi,Oi−1, Ai)

}2
])

,

as desired.

B.2 Proof of Theorem 3.1

We first single out a key technical lemma throughout this section that plays a crucial role in the proof
of Theorem 3.1.

Lemma B.1. The following results hold:
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(i) It holds that EI∗

[
Γ̂i (Oi)

∣∣∣ (Xi,Hi−1)
]
= ⟨g (Xi, ·) , µ∗ (Xi, ·)⟩λA

for all i ∈ [n]. There-
fore, one has

EI∗

[
Γ̂i (Oi)

]
= EI∗

[
EI∗

[
Γ̂i (Oi)

∣∣∣ (Xi,Hi−1)
]]

= EI∗
[
⟨g (Xi, ·) , µ∗ (Xi, ·)⟩λA

]
= τ (I∗) .

(37)

(ii) For every 1 ≤ i < j ≤ n, we have CovI∗

[
Γ̂i (Oi) , Γ̂j (Oj)

]
= 0;

(iii) For every i ∈ [n],

VarI∗

[
Γ̂i (Oi)

]
= VarX∼Ξ∗

[
⟨g (X, ·) , µ∗ (X, ·)⟩λA

]
+ EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

]

+ EI∗

[
VarI∗

[
g (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

{µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}
∣∣∣∣ (Xi,Hi−1)

]]
≤ VarX∼Ξ∗

[
⟨g (X, ·) , µ∗ (X, ·)⟩λA

]
+ EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

]

+ EI∗

[
g2 (Xi, Ai) {µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

(π∗
i )

2
(Xi,Oi−1;Ai)

]
.

(38)

Proof of Lemma B.1.
(i) From the definition of Γ̂i(·) : Oi → R in (9), we have

EI∗

[
Γ̂i (Oi)

∣∣∣ (Xi, Ai,Hi−1)
]
=

g (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

{µ∗ (Xi, Ai)− µ̂i (Oi−1) (Xi, Ai)}

+ ⟨g (Xi, ·) , µ̂i (Oi−1) (Xi, ·)⟩λA
.

(39)

Thus, we obtain

EI∗

[
Γ̂i (Oi)

∣∣∣ (Xi,Hi−1)
]

= EI∗

[
EI∗

[
Γ̂i (Oi)

∣∣∣ (Xi, Ai,Hi−1)
]∣∣∣ (Xi,Hi−1)

]
=

∫
A

g (Xi, a)

π∗
i (Xi,Oi−1; a)

{µ∗ (Xi, a)− µ̂i (Oi−1) (Xi, a)} · π∗
i (Xi,Oi−1; a) dλA(a)

+ ⟨g (Xi, ·) , µ̂i (Oi−1) (Xi, ·)⟩λA

= ⟨g (Xi, ·) , µ∗ (Xi, ·)⟩λA

(40)

as desired.

(ii) One can reveal that

CovI∗

[
Γ̂i (Oi) , Γ̂j (Oj)

]
= EI∗

[
Γ̂i (Oi)E

[
Γ̂j (Oj)

∣∣∣ (Xj , Aj ,Hj−1)
]]

− {τ (I∗)}2

= EI∗

[
Γ̂i (Oi)

[
g (Xj , Aj)

π∗
j (Xj ,Oj−1;Aj)

{µ∗ (Xj , Aj)− µ̂j (Oj−1) (Xj , Aj)}

+ ⟨g (Xj , ·) , µ̂j (Oj−1) (Xj , ·)⟩λA

]]
− {τ (I∗)}2 (41)
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= EI∗

[
Γ̂i (Oi)EI∗

[
g (Xj , Aj)

π∗
j (Xj ,Oj−1;Aj)

{µ∗ (Xj , Aj)− µ̂j (Oj−1) (Xj , Aj)}

+ ⟨g (Xj , ·) , µ̂j (Oj−1) (Xj , ·)⟩λA

∣∣∣ (Xj ,Hj−1)
]
− {τ (I∗)}2

= EI∗

[
Γ̂i (Oi; g) ⟨g (Xj , ·) , µ∗ (Xj , ·)⟩λA

]
− {τ (I∗; g)}2

(a)
= 0,

where the step (a) holds due to the facts that Γ̂i (Oi) is Hj−1-measurable and Xj ⊥⊥ Hj−1, together
with the equation (37).

(iii) It follows that

VarI∗

[
Γ̂i (Oi)

]
= EI∗

[
VarI∗

[
Γ̂i (Oi)

∣∣∣ (Xi,Hi−1)
]]

+ VarI∗

[
EI∗

[
Γ̂i (Oi)

∣∣∣ (Xi,Hi−1)
]]

(b)
= EI∗

[
EI∗

[
VarI∗

[
Γ̂i (Oi)

∣∣∣ (Xi, Ai,Hi−1)
]∣∣∣ (Xi,Hi−1)

]]
+ EI∗

[
VarI∗

[
EI∗

[
Γ̂i (Oi)

∣∣∣ (Xi, Ai,Hi−1)
]∣∣∣ (Xi,Hi−1)

]]
(42)

+ VarX∼Ξ∗
[
⟨g(X, ·), µ∗(X, ·)⟩λA

]
= EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

]

+ EI∗

[
VarI∗

[
g (Xi, Ai)

π∗
i (Xi,Oi−1;Ai)

{µ∗ (Xi, Ai)− µ̂i (Oi−1) (Xi, Ai)}
∣∣∣∣ (Xi,Hi−1)

]]
+ VarX∼Ξ∗

[
⟨g(X, ·), µ∗(X, ·)⟩λA

]
,

as desired, where the step (b) follows from the fact (40).

Now, it’s time to finish the proof of Theorem 3.1. One can reveal that

EI∗

[{
τ̂AIPW
n (On; g)− τ (I∗; g)

}2]
(a)
=

1

n2

n∑
i=1

VarI∗

[
Γ̂i (Oi; g)

]
(b)
≤ 1

n2

n∑
i=1

{
VarX∼Ξ∗

[
⟨g (X, ·) , µ∗ (X, ·)⟩λA

]
+ EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

]

+EI∗

[
g2 (Xi, Ai) {µ∗ (Xi, Ai)− µ̂i (Oi−1) (Xi, Ai)}2

(π∗
i )

2
(Xi,Oi−1;Ai)

]}
(c)
=

1

n

{
v2∗ +

1

n

n∑
i=1

EI∗

[
g2 (Xi, Ai) {µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

(π∗
i )

2
(Xi,Oi−1;Ai)

]}
,

where the step (a) holds from the part (ii) of Lemma B.1, the step (b) makes use of the inequality
(38), and the step (c) follows from the definition of v2∗ in (7).

B.3 Proof of Theorem 3.2

It holds due to the observation (12) that

EI∗

[
n∑

i=1

li {µ̂i (Oi−1)}

]
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=

n∑
i=1

EI∗ [EI∗ [ li {µ̂i (Oi−1)}| (Hi−1, Xi, Ai)]]

=

n∑
i=1

EI∗

[
g2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

[
σ2 (Xi, Ai) + {µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

]]

= n ∥σ∥2(n) +
n∑

i=1

EI∗

[
g2 (Xi, Ai) {µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

(π∗
i )

2
(Xi,Oi−1;Ai)

]
,

which establishes the following expression of the estimation error term (11):

1

n

n∑
i=1

EI∗

[
g2 (Xi, Ai) {µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

(π∗
i )

2
(Xi,Oi−1;Ai)

]

=
1

n
EI∗

[
n∑

i=1

li {µ̂i (Oi−1)}

]
− ∥σ∥2(n) (43)

=
1

n
EI∗ [Regret (n;A)] +

1

n
EI∗

[
inf

{
n∑

i=1

li(µ) : µ ∈ F

}]
− ∥σ∥2(n) .

At this point, one can realize that

1

n
EI∗

[
inf

{
n∑

i=1

li(µ) : µ ∈ F

}]

≤ inf

{
1

n
EI∗

[
n∑

i=1

li(µ)

]
: µ ∈ F

}

= inf

{
1

n

n∑
i=1

EI∗ [EI∗ [ li(µ)| (Hi−1, Xi, Ai)]] : µ ∈ F

}
(44)

(a)
= inf

{
1

n

n∑
i=1

EI∗

[
g2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

[
σ2 (Xi, Ai) + {µ (Xi, Ai)− µ∗ (Xi, Ai)}2

]]
: µ ∈ F

}
= ∥σ∥2(n) + inf

{
∥µ− µ∗∥2(n) : µ ∈ F

}
,

where the step (a) holds by the fact (12). Taking two pieces (43) and (44) collectively, it follows that

1

n

n∑
i=1

EI∗

[
g2 (Xi, Ai) {µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

(π∗
i )

2
(Xi,Oi−1;Ai)

]

≤ 1

n
EI∗ [Regret (n;A)] + inf

{
∥µ− µ∗∥2(n) : µ ∈ F

}
.

(45)

Hence, the upper bound (15) on the MSE of the AIPW estimator (8) is an immediate consequence of
the inequality (45) by putting it into the bound (10) in Theorem 3.1.

B.4 Proof of Theorem 3.3

One can easily observe from the equation (17) for every µ ∈ F that

∥∇li(µ)∥22 =
4g4 (Xi, Ai)

(π∗
i )

4
(Xi,Oi−1;Ai)

{Yi − µ (Xi, Ai)}2
Pn
I∗ -a.s.
≤

(
4LB2

)2
, (46)

which holds due to Assumption 1 together with the fact Y = [−L,L]. So it turns out that the loss
function (14) is Lipschitz continuous with parameter G := 4LB2 Pn

I∗-almost surely. Hence, the
desired conclusion immediately follows by Theorem 3.1 in [18] with parameter G = 4LB2.
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B.5 Proof of Theorem 3.4

One can realize from the equation (22) that Pn
I∗ -almost surely,

∥∇θLi(θ)∥22 =
4g4 (Xi, Ai)

(π∗
i )

4
(Xi,Oi−1;Ai)

{
θ⊤ϕ (Xi, Ai)− Yi

}2

∥ϕ (Xi, Ai)∥22

≤ 4B4 {|Yi|+ ∥θ∥2 ∥ϕ (Xi, Ai)∥2}
2 ∥ϕ (Xi, Ai)∥22

≤ 4B4(L+R)2,

(47)

which holds by Assumption 1 together with the facts Y = [−L,L] and sup(x,a)∈X×A ∥ϕ(x, a)∥2 ≤ 1.
So, the loss function (21) is Lipschitz continuous with parameter G := 2B2(L+R) Pn

I∗ -a.s. Hence,
the desired result follows by Theorem 3.1 in [18] with parameter G = 2B2(L+R) and D = 2R.

B.6 Consequences for particular outcome models: general function approximation

Lastly, we consider the most challenging setting where the estimation of the treatment effect µ∗(·, ·) :
X× A → R is parameterized by general function classes. Under Assumption 1, one first observes
from the MSE bound (10) of the AIPW estimator (8) in Theorem 3.1 that

EI∗

[{
τ̂AIPW
n (On)− τ (I∗)

}2]
≤ 1

n

{
v2∗ +

1

n

n∑
i=1

E

[
g2 (Xi, Ai) {µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

(π∗
i )

2
(Xi,Oi−1;Ai)

]}

≤ 1

n

{
v2∗ +

B2

n

n∑
i=1

E
[
{µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

]}
.

(48)

From the last term in the MSE bound (48), our aim becomes to control an upper bound of the term

1

n

n∑
i=1

E
[
{µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

]
(49)

in the finite sample regime. Towards achieving this goal, we consider the online non-parametric
regression problem described in Algorithm 2 whose sequence {li(·) : (X× A → R) → R : i ∈ [n]}
of loss functions defined as (14) is superseded by

{
li(·) : (X× A → R) → R : i ∈ [n]

}
, where

li(µ) := {Yi − µ (Xi, Ai)}2 , ∀ (µ, i) ∈ (X× A → R)× [n]. (50)

It is straightforward to see for every i ∈ [n] that

EI∗
[
li(µ)

∣∣ (Hi−1, Xi, Ai)
]
= σ2 (Xi, Ai) + {µ (Xi, Ai)− µ∗ (Xi, Ai)}2 . (51)

With this modified online non-parametric regression problem, we now aim to minimize the learner’s
modified regret defined as follows:

Regret
(
n,F ;A

)
:=

n∑
i=1

li {µ̂i (Oi−1)} − inf

{
n∑

i=1

li(µ) : µ ∈ F

}
, (52)

where A denotes the learner’s online non-parametric regression algorithm that returns a sequence of
estimates {µ̂i (Oi−1) ∈ (X× A → R) : i ∈ [n]} of the treatment effect based on interactions with
the environment which selects modified loss functions

{
li(·) : (X× A → R) → R : i ∈ [n]

}
.

Theorem B.1. The AIPW estimator (8) based on a sequence {µ̂i (Oi−1) ∈ (X× A → R) : i ∈ [n]}
of estimates for the treatment effect µ∗ produced by making use of an online non-parametric regres-
sion algorithm A against the environment which chooses the sequence of modified loss functions
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{
li(·) : (X× A → R) → R : i ∈ [n]

}
defined in (50) enjoys the following upper bound on the MSE:

EI∗

[{
τ̂AIPW
n (On)− τ (I∗)

}2]
≤ 1

n

(
v2∗ +

1

n
EI∗

[
Regret

(
n,F ;A

)]

+ inf

{
1

n

n∑
i=1

EI∗

[
{µ (Xi, Ai)− µ∗ (Xi, Ai)}2

]
: µ ∈ F

}
︸ ︷︷ ︸

approximation error term.

 .

(53)

Proof of Theorem B.1. It follows from the property (51) that

EI∗

[
n∑

i=1

li {µ̂i (Oi−1)}

]

=
n∑

i=1

EI∗
[
EI∗

[
li {µ̂i (Oi−1)}

∣∣ (Fi−1, Xi, Ai)
]]

=

n∑
i=1

EI∗

[
σ2 (Xi, Ai) + {µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

]
=

n∑
i=1

EI∗
[
σ2 (Xi, Ai)

]
+

n∑
i=1

EI∗

[
{µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

]
,

which leads to the following expression of the estimation error term (49):

1

n

n∑
i=1

EI∗

[
{µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

]
=

1

n
EI∗

[
n∑

i=1

li {µ̂i (Oi−1)}

]
− 1

n

n∑
i=1

EI∗
[
σ2 (Xi, Ai)

]
(54)

=
1

n
EI∗

[
Regret

(
n;A

)]
+

1

n
EI∗

[
inf

{
n∑

i=1

li(µ) : µ ∈ F

}]
(55)

− 1

n

n∑
i=1

EI∗
[
σ2 (Xi, Ai)

]
.

Here, one may observe that

1

n
EI∗

[
inf

{
n∑

i=1

li(µ) : µ ∈ F

}]

≤ inf

{
1

n
EI∗

[
n∑

i=1

li(µ)

]
: µ ∈ F

}

= inf

{
1

n

n∑
i=1

EI∗
[
EI∗

[
li(µ)

∣∣ (Fi−1, Xi, Ai)
]]

: µ ∈ F

}
(56)

(a)
= inf

{
1

n

n∑
i=1

EI∗

[
σ2 (Xi, Ai) + {µ (Xi, Ai)− µ∗ (Xi, Ai)}2

]
: µ ∈ F

}

=
1

n

n∑
i=1

EI∗
[
σ2 (Xi, Ai)

]
+ inf

{
1

n

n∑
i=1

EI∗

[
{µ (Xi, Ai)− µ∗ (Xi, Ai)}2

]
: µ ∈ F

}
,
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where the step (a) holds by the fact (51). Putting two pieces (54) and (56) together yields

1

n

n∑
i=1

EI∗

[
{µ̂i (Oi−1) (Xi, Ai)− µ∗ (Xi, Ai)}2

]
≤ 1

n
EI∗

[
Regret

(
n;A

)]
+ inf

{
1

n

n∑
i=1

EI∗

[
{µ (Xi, Ai)− µ∗ (Xi, Ai)}2

]
: µ ∈ F

}
.

(57)

Hence, the desired result (53) on the MSE of the AIPW estimator (8) is a straightforward consequence
of the inequality (57) by plugging it into the bound (48).

Here, we remark that aside from the optimal variance v2∗ , the MSE bound (53) shows two additional
terms: (i) the expected regret relative to the number of rounds n, where the expectation is taken over
On ∼ Pn

I∗(·); and (ii) the approximation error term whose form is slightly different from the one

inf
{
∥µ− µ∗∥2(n) : µ ∈ F

}
appeared in the MSE bound (15) of Theorem 3.2.

Non-asymptotic theory of online non-parametric regression Before delving into the investiga-
tion of the modified regret (52), we briefly recap the main results in [45] that establishes a theoretical
framework of online non-parametric regression. In contrast to most existing works of online regres-
sion, the authors do NOT start from an algorithm, but instead directly work with the minimax regret
in [45]. We will be able to extract a (not necessarily efficient) algorithm after taking a closer look at
the minimax regret. Let us use ⟪· · · ⟫ni=1 to denote an interleaved application of the operators inside
repeated over n rounds. With this notation in hand, the minimax regret of the online non-parametric
regression problem for estimation of the treatment effect can be written as

Vn(F)

:= ⟪ sup
(xi,ai)∈X×A

inf
ŷi∈[−L,L]

sup
yi∈[−L,L]

⟫
n

i=1

[
n∑

i=1

(ŷi − yi)
2 − inf

µ∈F

n∑
i=1

{µ (xi, ai)− yi}2
]
,

(58)

where F ⊆ (X× A → [−L,L]) is a pre-specified function class. One of the key tools in the study
of estimators based on i.i.d. data is the symmetrization technique [15, 62]. Under the i.i.d. scenario,
one can investigate the supremum of an empirical process conditionally on the data by introducing
Rademacher random variables, which is NOT directly applicable given the adaptive nature of our
main problem. In the online prediction scenario, such a symmetrization technique becomes more
subtle and it requires the notion of a binary tree, the smallest entity which captures the sequential
nature of the problem in some sense. Towards achieving our goal in our problem, let us state some
definitions.
Definition B.1. Let S be a measurable state space. An S-valued tree of depth n is a rooted complete
binary tree with nodes labeled by elements of the state space S: the sequence s = (s1, s2, · · · , sn) of
labeling functions si(·) : {±1}i−1 → S which provides the labels of each node. Here, s1 ∈ S is the
label for the root of the tree, while si for 2 ≤ i ≤ n is the label of the node obtained by following the
path of length i−1 from the root, with +1 indicating right and −1 indicating left. A path of length n is
given by the sequence ϵ1:n = (ϵ1, · · · , ϵn) ∈ {±1}n. Given any measurable function ϕ(·) : S → R,
ϕ(s) is an R-valued tree of depth n with labeling functions (ϕ ◦ si) (·) : {±1}i−1 → R for level
i ∈ [n] (or, in words, the evaluation of ϕ(·) : S → R, ϕ(s) on s). Lastly, we let Tree (S, n) denote the
set of all S-valued trees of depth n.

Here, one may think of the sequence of functions {si(·) : i ∈ [n]} defined on the underlying sample
space as a predictable stochastic process with respect to the dyadic filtration {σ (ϵ1:i) : i ∈ [n]}. Next,
let us define the notion of a sequential β-cover quantifies one of the key complexity measures of a
function class G ⊆ (S → R) evaluated on the predictable process: the sequential covering number.
Definition B.2 (Sequential covering numbers [46]).

(i) Define the following random pseudo-metric between two R-valued trees u = (ui : i ∈ [n])
and v = (vi : i ∈ [n]) of depth n: for any (p, ϵ1:n) ∈ [1,+∞]× {±1}n,

dpϵ1:n (u,v) :=

{{
1
n

∑n
i=1 |ui (ϵ1:i−1)− vi (ϵ1:i−1)|p

} 1
p if 1 ≤ p < +∞;

max {|ui (ϵ1:i−1)− vi (ϵ1:i−1)| : i ∈ [n]} if p = +∞.
(59)
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(ii) A set V ⊆ Tree (R, n) is called a sequential β-cover with respect to lp-norm of G ⊆ (S → R)
on a given S-valued tree s of depth n, where p ∈ [1,+∞], if

sup
{
inf
{
dpϵ1:n (u,v) : v ∈ V

}
: (u, ϵ1:n) ∈ G(s)× {±1}n

}
≤ β, (60)

where G(s) := {g(s) : g ∈ G} ⊆ Tree (R, n);

(iii) The sequential β-covering number with respect to lp-norm of a function class G ⊆ (S → R)
on an S-valued tree s of depth n, where p ∈ [1,+∞], is defined by

Np (β,G, s)
:= min {|V | : V ⊆ Tree (R, n) is a sequential β-cover w.r.t. lp-norm of G on s} .

Let us further define Np (β,G, n) := sup {Np (β,G, s) : s ∈ Tree (S, n)} to be the maximal
sequential β-covering number with respect to lp-norm of G over S-valued trees of depth n.
Now, we will refer to logNp (β,G, n) as the sequential β-metric entropy of G with respect
to lp-norm.

In particular, we are going to study the behavior of the minimax regret Vn(F) for the case where
the sequential metric entropy of F ⊆ (X× A → [−L,L]) w.r.t. l2-norm grows polynomially as the
scale β decreases:

logN2 (β,F , n) ∼ β−p for p ∈ (0,+∞) . (61)

Let us also consider the parametric “p = 0” case when the sequential covering number of F with
respect to l2-norm itself behaves as:

N2 (β,F , n) ∼ β−d. (62)

For instance, the function class F :=
{
fθ(·) : Rd → R : θ ∈ Θ

}
for the linear regression problem in

a bounded measurable subset Θ ⊆ Rd, where the function fθ(·) : Rd → R is given by fθ(x) := θ⊤x
for θ ∈ Rd, satisfies the condition (62). By employing the main results (in particular, Theorem 2) in
[45], one can establish the following conclusion:

Theorem B.2 (The rates of convergence of the minimax regret). Given any function class F ⊆
(X× A → [−L,L]) with sequential metric entropy growth logN2 (β,F , n) ≤ β−p for p ∈ (0,+∞),
it holds that

(i) for p ∈ (2,+∞), the minimax regret (58) is bounded as

Vn(F) ≤
(
4 +

24

p− 2

)
Ln1− 1

p . (63)

(ii) for p ∈ (0, 2), the minimax regret (58) is bounded as

Vn(F) ≤
(
32L2 + 4L+

24L

2− p

)
n1− 2

p+2 . (64)

(iii) for p = 2, the minimax regret (58) is bounded as

Vn(F) ≤
(
32L2 + 4L+ 3

)√
n log n. (65)

(iv) for the parametric case (62), the minimax regret (58) is bounded as

Vn(F) ≤
(
16L2 + 4L+ 12

)
d log n. (66)

(v) if the function class F ⊆ (X× A → [−L,L]) is a finite set, the minimax regret (58) is
bounded as

Vn(F) ≤ 32L2 log |F| . (67)
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It is shown in [45] that the upper bounds (i)–(iv) on the minimax regret (58) in Theorem B.2 are tight
up to logarithmic factors. See Theorem 3 therein for further details.

Although Theorem B.2 characterizes the rates of convergence of the minimax regret (58) in various
scenarios statistically, its proof is non-constructive in the sense that the regret bounds therein are
established without explicitly constructing an algorithm. In order to provide a general algorithmic
framework for the problem of online non-parametric regression, we follow the abstract relaxation
recipe proposed in [47]. It was shown in [47] that if one can find a sequence of mappings from the
observed data to real numbers Reln, often called a relaxation, satisfying some desirable conditions,
then one can construct estimators based on such relaxations. To be specific, we search for a relaxation
Reln (·, ·) :

⊎n
k=0

{
(X× A)k × [−L,L]

k
}
→ R that satisfies the following two conditions:

Assumption 5 (Initial condition). The relaxation Reln (·, ·) :
⊎n

k=0

{
(X× A)k × [−L,L]

k
}
→ R

satisfies

Reln ((x,a)1:n ,y1:n) ≥ − inf

{
n∑

k=1

{yi − µ (xi, ai)}2 : µ(·, ·) ∈ F

}
, (68)

where (x,a)1:k := ((xi, ai) : i ∈ [k]) ∈ (X× A)k and y1:k := (yi : i ∈ [k]) ∈ [−L,L]
k for every

k ∈ [n].
Assumption 6 (Recursive admissibility condition). The relaxation Reln (·, ·) satisfies

inf
ŷk∈[−L,L]

sup
yk∈[−L,L]

{
(ŷk − yk)

2
+ Reln ((x,a)1:k ,y1:k)

}
≤ Reln

(
(x,a)1:k−1 ,y1:k−1

)
, (69)

for any k ∈ [n] and any xk ∈ X.

A relaxation Reln (·, ·) :
⊎n

k=0

{
(X× A)k × [−L,L]

k
}

→ R satisfying Assumptions 5 and 6 is
said to be admissible. With an admissible relaxation Reln (·, ·) in hand, one can design an algorithm
for the online non-parametric regression problem with the following associated regret bound (see
Algorithm 5 for a detailed description):

Regret (n,F ;Alg. 5)

=

n∑
i=1

{Yi − µ̂i (Oi−1) (Xi, Ai)}2 − inf

{
n∑

i=1

{Yi − µ (Xi, Ai)}2 : µ ∈ F

}
≤ Reln (∅,∅) .

(70)

We further notice that if the function yi ∈ [−L,L] 7→ (ŷ − yi)
2
+ Reln (((x,a)1:i) , (y1:i−1, yi))

is convex for every (ŷ,x1:n,a1:n,y1:i−1) ∈ [−L,L] × Xn × An × [−L,L]
i−1 and i ∈ [n], then

the prediction rules (71) and (72) becomes much simpler, since the supremum over yi ∈ [−L,L] is
attained either L or −L. The prediction rules then can be written as

µ̂1(∅)(x, a)

∈ argmin
{
max

{
(ŷ − L)

2
+ Reln ((x, a), L) , (ŷ + L)

2
+ Reln ((x, a),−L)

}
: ŷ ∈ [−L,L]

}
,

(73)

and for i ∈ {2, 3, · · · , n},

µ̂i (Oi−1) (x, a)

∈ argmin
{
max

{
(ŷ − L)

2
+ Reln

((
(X,A)1:i−1 , (x, a)

)
, (Y1:i−1, L)

)
,

(ŷ + L)
2
+ Reln

((
(X,A)1:i−1 , (x, a)

)
, (Y1:i−1,−L)

)}
: ŷ ∈ [−L,L]

}
.

(74)

One can easily observe that the prediction rules (73) and (74) can be further simplified as

µ̂1(∅)(x, a) = χ[−L,L]

{
Reln ((x, a), L)− Reln ((x, a),−L)

4L

}
, (75)
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Algorithm 5 A generic forecaster based on the relaxation recipe proposed in [47]

Require: a relaxation Reln (·, ·) :
⊎n

k=0

{
(X× A)k × [−L,L]

k
}
→ R.

1: We first choose µ̂1(∅)(·, ·) ∈ (X× A → R) as

µ̂1(∅)(x, a) ∈

{
sup

y1∈[−L,L]

{
(ŷ − y1)

2
+ Reln ((x, a), y1)

}
: ŷ ∈ [−L,L]

}
. (71)

2: for i = 2, 3, · · · , n, do
3: Observe a triple (Xi, Ai, Yi) ∈ O;
4: We compute µ̂i (Oi−1) ∈ (X× A → R) according to the following rule:

µ̂i (Oi−1) (x, a)

∈ argmin

{
sup

yi∈[−L,L]

{
(ŷ − yi)

2
+ Reln

((
(X,A)1:i−1 , (x, a)

)
, (Y1:i−1, yi)

)}
: ŷ ∈ [−L,L]

}
.

(72)

5: end for
6: return the sequence of estimates {µ̂i (Oi−1) ∈ (X× A → R) : i ∈ [n]} of the treatment effect.

and for i ∈ {2, 3, · · · , n},

µ̂i (Oi−1) (x, a)

= χ[−L,L]

{
Reln

((
(X,A)1:i−1 , (x, a)

)
, (Y1:i−1, L)

)
− Reln

((
(X,A)1:i−1 , (x, a)

)
, (Y1:i−1,−L)

)
4L

}
,

(76)

where χ[−L,L](·) : R → [−L,L] defines a clip function onto the interval [−L,L], i.e.,

χ[−L,L](x) :=


L if x > L;

x if − L ≤ x ≤ L;

−L otherwise.

By directly using Lemma 16 in [45], one can obtain the following significant result:

Theorem B.3. The relaxation Rn (·, ·) :
⊎n

k=0

{
(X× A)k × [−L,L]

k
}
→ R defined as

Rn ((x,a)1:k ,y1:k)

:= sup
(z,m)

Eϵ1:n∼Unif({±1}n)

sup


n∑
j=k+1

[4Lϵj {µ (zj (ϵ1:j−1))−mj (ϵ1:j−1)}

−{µ (zj (ϵ1:j−1))−mj (ϵ1:j−1)}2
]
−

k∑
j=1

{µ (xj , aj)− yj}2 : µ ∈ F


 ,

(77)

where the pair (z,m) ranges over the set Tree (X× A, n)× Tree (R, n), is an admissible relaxation.
As a direct consequence of the regret bound (70), Algorithm 5 using the admissible relaxation Rn (·, ·)
as an input enjoys the regret bound of an offset Rademacher complexity:

Regret (n,F ;Alg. 5)
≤ Rn (∅,∅)

= sup
(z,m)

Eϵ1:n∼Unif({±1}n)

sup


n∑
j=1

[4Lϵj {µ (zj (ϵ1:j−1))−mj (ϵ1:j−1)}

−{µ (zj (ϵ1:j−1))−mj (ϵ1:j−1)}2
]
: µ ∈ F

}]
.

(78)
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Since the upper bounds on the minimax regret (58) provided in Theorem B.2 are established by further
upper bounding the offset Rademacher complexity Rn (∅,∅), one can end up with the following
corollary:

Corollary B.1. Consider any function class F ⊆ (X× A → [−L,L]) with sequential metric entropy
growth logN2 (β,F , n) ≤ β−p for p ∈ (0,+∞). Then, Algorithm 5 using the admissible relaxation
Rn (·, ·) defined by (77) as an input enjoys the following regret bounds:

(i) for p ∈ (2,+∞), it holds that

Regret (n,F ;Alg. 5) ≤
(
4 +

24

p− 2

)
Ln1− 1

p . (79)

(ii) for p ∈ (0, 2), it holds that

Regret (n,F ;Alg. 5) ≤
(
32L2 + 4L+

24L

2− p

)
n1− 2

p+2 . (80)

(iii) for p = 2, it holds that

Regret (n,F ;Alg. 5) ≤
(
32L2 + 4L+ 3

)√
n log n. (81)

(iv) for the parametric case (62), it holds that

Regret (n,F ;Alg. 5) ≤
(
16L2 + 4L+ 12

)
d log n. (82)

(v) if the function class F ⊆ (X× A → [−L,L]) is a finite set, it holds that

Regret (n,F ;Alg. 5) ≤ 32L2 log |F| . (83)

Even though Corollary B.1 gives no-regret learning guarantees of Algorithm 5 with the admissible
relaxation Rn (·, ·) defined by (77) for various function classes F ⊆ (X× A → [−L,L]), it is still
NOT a practical algorithm since the relaxation Rn (·, ·) defined as (77) is not directly computable in
general. To address this problem, [45] provided a generic schema for deriving implementable online
non-parametric regression algorithms. The schema can be described as follows:

(a) Find a computable relaxation Reln (·, ·) :
⊎n

k=0

{
(X× A)k × [−L,L]

k
}
→ R such that

Rn ((x,a)1:k ,y1:k) ≤ Reln ((x,a)1:k ,y1:k)

for every (k,x1:n,a1:n,y1:n) ∈ {0, 1, · · · , n} × Xn × An × [−L,L]
n, and the function

yk ∈ [−L,L] 7→ (ŷ − yk)
2
+ Reln (((x,a)1:k) , (y1:k−1, yk)) ∈ R is convex for every

(ŷ,x1:n,a1:n,y1:k−1) ∈ [−L,L]× Xn × An × [−L,L]
k−1 and k ∈ [n];

(b) Next, we check the following condition:

sup
(xk,ak,µk)∈X×A×∆([−L,L])

{
Eyk∼µk

[
(Eyk∼µk

[yk]− yk)
2
]
+ Eyk∼µk

[Reln ((x,a)1:k ,y1:k)]
}

≤ Reln
(
(x,a)1:k−1 ,y1:k−1

)
for every (x1:k−1,a1:k−1,y1:k−1) ∈ Xk−1 × Ak−1 × [−L,L]

k−1 and k ∈ [n];

(c) Implement Algorithm 5 using the relaxation Reln (·, ·) as an input.

The authors proved that any computable relaxation Reln (·, ·) satisfying conditions stated in (a) and
(b) are admissible; see Proposition 17 therein. Consequently, any online non-parametric regression
algorithm produced by the above generic schema always satisfies the regret bound (70). Moreover,
the authors established a practical online non-parametric regression algorithm with no-regret learning
guarantees based on the above schema for the finite function class F ⊆ (X× A → [−L,L]) and the
online linear regression problem.
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C Proofs for Section 4

C.1 Proof of Theorem 4.1

Theorem 4.1 can be established by taking the following two lemmas collectively:

Lemma C.1. Under Assumption 3, the local minimax risk over the class Cδ (I∗) is lower bounded by

Mn (Cδ (I∗)) ≥ 1

2304

(
1− 1√

2

)
· 1
n

VarX∼Ξ∗
[
⟨g(X, ·), µ∗(X, ·)⟩λA

]
, (84)

provided that n ≥ 16H2
2→4.

Lemma C.2. Under Assumption 4, the local minimax risk over the class Cδ (I∗) is lower bounded by

Mn (Cδ (I∗)) ≥ 1

8K4
·
∥σ∥2(n)

n
. (85)

C.2 Proof of Lemma C.1

The proof relies on Le Cam’s two-point method by taking the outcome kernel Γ∗ : X× A → ∆(Y)
to be fixed, and perturbing the context distribution Ξ∗(·) ∈ ∆(X): we first construct a collection
of context distributions {Ξs(·) ∈ ∆(X) : s ∈ (0,+∞)}. Later, we will choose the parameter s > 0
small enough so that Ξs ∈ N (Ξ∗) and two distributions Pn

(Ξs,Γ∗) ∈ ∆(On) and Pn
(Ξ∗,Γ∗) ∈ ∆(On)

are indistinguishable, but large enough such that the functional values τ (Ξs,Γ
∗) and τ (Ξ∗,Γ∗) are

well-separated. Le Cam’s two-point lemma (the equation (15.14) in [62]) guarantees that the local
minimax risk Mn (Cδ (I∗)) is lower bounded as

Mn (Cδ (I∗)) ≥ 1

4

{
1− TV

(
Pn
(Ξs,Γ∗),P

n
(Ξ∗,Γ∗)

)}
{τ (Ξs,Γ

∗)− τ (Ξ∗,Γ∗)}2 , (86)

provided that Ξs ∈ N (Ξ∗).

As the first step, we upper bound the total variation distance TV
(
Pn
(Ξs,Γ∗),P

n
(Ξ∗,Γ∗)

)
. Thanks to the

Pinsker-Csiszár-Kullback inequality, one has

TV
(
Pn
(Ξs,Γ∗),P

n
(Ξ∗,Γ∗)

)
≤
√

1

2
KL
(
Pn
(Ξs,Γ∗)

∥∥∥Pn
(Ξ∗,Γ∗)

)
. (87)

We can find that the density function of the law Pn
I = Pn

(Ξ,Γ) ∈ ∆(On) of the sample trajectory On

under the problem instance I = (Ξ,Γ) ∈ I with respect to the base measure (λX ⊗ λA ⊗ λA)
⊗n is

given by

pnI (on) = pn(Ξ,Γ) (on) =

n∏
i=1

{ξ (xi)π
∗
i (xi,oi−1; ai) γ (yi|xi, ai)} . (88)

Using this fact, the KL-divergence KL
(
Pn
(Ξs,Γ∗)

∥∥∥Pn
(Ξ∗,Γ∗)

)
can be computed as

KL
(
Pn
(Ξs,Γ∗)

∥∥∥Pn
(Ξ∗,Γ∗)

)
= E(Ξs,Γ∗)

[
log

pn(Ξs,Γ∗) (On)

pn(Ξ∗,Γ∗) (On)

]

= E(Ξs,Γ∗)

[
n∑

i=1

log
ξs (Xi)π

∗
i (Xi,Oi−1;Ai) γ

∗ (Yi|Xi, Ai)

ξ∗ (Xi)π∗
i (Xi,Oi−1;Ai) γ∗ (Yi|Xi, Ai)

]

=

n∑
i=1

E(Ξs,Γ∗)

[
log

ξs (Xi)

ξ∗ (Xi)

]
= n · KL (Ξs∥Ξ∗) .

(89)
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So if one can show that Ξs ∈ N (Ξ∗), then the equation (89) guarantees that

KL
(
Pn
(Ξs,Γ∗)

∥∥∥Pn
(Ξ∗,Γ∗)

)
= n · KL (Ξs∥Ξ∗) ≤ 1,

which can be taken collectively with the bound (87) to produce the following conclusion:

TV
(
Pn
(Ξs,Γ∗),P

n
(Ξ∗,Γ∗)

)
≤ 1√

2
. (90)

With the arguments thus far in place, it remains to construct a family {Ξs ∈ ∆(X) : s ∈ (0,+∞)}
and then choose a parameter s > 0 such that Ξs ∈ N (Ξ∗) and the functional values τ (Ξs,Γ

∗) and
τ (Ξ∗,Γ∗) are well-separated. To this end, we consider the function h̃(·) : X → R defined by

h̃(x) :=

{
h(x) if |h(x)| ≤ 2H2→4

√
EX∼Ξ∗ [h2(X)];

sign (h(x))
√
EX∼Ξ∗ [h2(X)] otherwise.

Since H2→4 ≥ 1, one can easily find that
∣∣∣h̃(x)∣∣∣ ≤ |h(x)| for all x ∈ X. Now for each s ∈ (0,+∞),

we define the tilted probability measure Ξs(·) ∈ ∆(X) by

ξs(x) =
dΞs

dλX
(x) :=

1

Z(s)
ξ∗(x) exp

(
sh̃(x)

)
, ∀x ∈ X, (91)

where Z(s) :=
∫
X ξ∗(x) exp

(
sh̃(x)

)
dλX(x) = EX∼Ξ∗

[
exp

(
sh̃(X)

)]
. At this point, we note

for every x ∈ X that

exp
(
−s
∥∥∥h̃∥∥∥

∞

)
≤ exp

(
sh̃(x)

)
≤ exp

(
s
∥∥∥h̃∥∥∥

∞

)
, (92)

which also immediately yields

exp
(
−s
∥∥∥h̃∥∥∥

∞

)
≤ Z(s) = EX∼Ξ∗

[
exp

(
sh̃(X)

)]
≤ exp

(
s
∥∥∥h̃∥∥∥

∞

)
. (93)

Here, we choose s = 1
4∥h∥L2(Ξ∗)

√
n
> 0. Then, it holds due to the fact

∣∣∣h̃(x)∣∣∣ ≤ 2H2→4 ∥h∥L2(Ξ∗)

for all x ∈ X that

s
∥∥∥h̃∥∥∥

∞
=

1

4
√
n
·

∥∥∥h̃∥∥∥
∞

∥h∥L2(Ξ∗)

≤ H2→4

2
√
n

(a)
≤ 1

8
, (94)

where the step (a) follows due to the assumption that n ≥ 16H2
2→4. Now, it’s time to prove that

Ξs ∈ N (Ξ∗) for the current choice of the parameter s > 0. Due to Theorem 5 in [14], it follows that

KL (Ξs∥Ξ∗) ≤ log
{
1 + χ2 (Ξs∥Ξ∗)

}
≤ χ2 (Ξs∥Ξ∗) . (95)

So it suffices to upper bound the χ2-divergence χ2 (Ξs∥Ξ∗). One can reveal that

χ2 (Ξs∥Ξ∗) = VarX∼Ξ∗

[
ξs(X)

ξ∗(X)

]
=

1

Z2(s)
VarX∼Ξ∗

[
exp

(
sh̃(X)

)]
≤ 1

Z2(s)
EX∼Ξ∗

[{
exp

(
sh̃(X)

)
− 1
}2
]

(96)

(b)
≤ exp

(
2s
∥∥∥h̃∥∥∥

∞

)
EX∼Ξ∗

[
exp

(
2s
∣∣∣h̃(X)

∣∣∣) · s2h̃2(X)
]

(c)
≤ exp

(
4s
∥∥∥h̃∥∥∥

∞

)
· s2EX∼Ξ∗

[
h2(X)

]
,

where the step (b) makes use of the fact (93) together with the elementary bound |exp(u)− 1| ≤
|u| exp (|u|), ∀u ∈ R, and the step (c) follows from the fact

∣∣∣h̃(x)∣∣∣ ≤ |h(x)|, ∀x ∈ X. If we put
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s = 1
4∥h∥L2(Ξ∗)

√
n

into the bound (96), then we obtain from the fact s
∥∥∥h̃∥∥∥

∞
≤ 1

8 together with the

basic inequality (95) that

KL (Ξs∥Ξ∗) ≤ χ2 (Ξs∥Ξ∗) ≤ 2s2 ∥h∥2L2(Ξ∗) =
1

8n
, (97)

which implies Ξs ∈ N (Ξ∗) for the choice of the parameter s = 1
4∥h∥L2(Ξ∗)

√
n

. Hence, the upper

bound on the total variation distance (90) turns out to be valid.

Next, we lower bound the gap between the functional values τ (Ξs,Γ
∗) and τ (Ξ∗,Γ∗). It holds that

τ (Ξs,Γ
∗)− τ (Ξ∗,Γ∗)

= EX∼Ξs

[
⟨g(X, ·), µ∗(X, ·)⟩λA

]
− τ (I∗)

=
1

Z(s)

∫
X
ξ∗(x) exp

(
sh̃(x)

){
⟨g(x, ·), µ∗(x, ·)⟩λA

− τ (I∗)
}︸ ︷︷ ︸

= h(x)

dλX(x)

=
1

Z(s)
EX∼Ξ∗

[
h(X) exp

(
sh̃(X)

)]
=

EX∼Ξ∗

[
h(X) exp

(
sh̃(X)

)]
EX∼Ξ∗

[
exp

(
sh̃(X)

)] .

(98)

Since s
∥∥∥h̃∥∥∥

∞
≤ 1

8 , we have sh̃(X) ∈
[
− 1

4 ,
1
4

]
and therefore the simple inequality

|exp(u)− 1− u| ≤ u2, ∀u ∈
[
−1

4
,
1

4

]
,

implies

EX∼Ξ∗

[
h(X) exp

(
sh̃(X)

)]
(d)
≥ EX∼Ξ∗ [h(X)]︸ ︷︷ ︸

= 0

+sEX∼Ξ∗

[
|h(X)|

∣∣∣h̃(X)
∣∣∣]− s2EX∼Ξ∗

[
|h(X)| h̃2(X)

]
(e)
≥ sEX∼Ξ∗

[
h̃2(X)

]
− s2

√
EX∼Ξ∗ [h2(X)]

√
EX∼Ξ∗ [h4(X)]︸ ︷︷ ︸

= H2→4·EX∼Ξ∗ [h2(X)]

(99)

(f)
≥ s

2
EX∼Ξ∗

[
h2(X)

]
− s2H2→4

(
EX∼Ξ∗

[
h2(X)

]) 3
2

=
∥h∥L2(Ξ∗)

8

(
1√
n
− H2→4

2n

)
(g)
≥

∥h∥L2(Ξ∗)

16
√
n

,

where the step (d) holds due to the fact that sign (h(x)) = sign
(
h̃(x)

)
, ∀x ∈ X, the step (e) makes

use of the property that
∣∣∣h̃(x)∣∣∣ ≤ |h(x)|, ∀x ∈ X, together with the Cauchy-Schwarz inequality, the

step (f) follows due to Lemma 7 in [42], and the step (g) utilizes the assumption that n ≥ 16H2
2→4.

Putting the lower bound (99) into the equation (98) yields

τ (Ξs,Γ
∗)− τ (Ξ∗,Γ∗) ≥

∥h∥L2(Ξ∗)

16
√
nEX∼Ξ∗

[
exp

(
sh̃(X)

)] (h)
≥

∥h∥L2(Ξ∗)

24
√
n

, (100)

where the step (h) holds since EX∼Ξ∗

[
exp

(
sh̃(X)

)]
≤ 3

2 , which follows by the fact
∣∣∣sh̃(X)

∣∣∣ ≤ 1
8 .

Finally, by taking three pieces (86), (90), and (100) collectively, one completes the proof of Lemma
C.1.
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C.3 Proof of Lemma C.2

The proof of Lemma C.2 is also heavily relies on Le Cam’s two-point method. For each (i, s, z) ∈
[n]× (0,+∞)× {±1}, we consider the function µi(zs)(·, ·) : X× A → R defined by

µi(zs)(x, a) := µ∗(x, a) +
zsg(x, a)

πi(x, a)
σ2(x, a), ∀(x, a) ∈ X× A. (101)

Also, we define the perturbed outcome kernel Γi(zs)(·, ·) : X× A → Y as

Γi(zs) ( ·|x, a) := N
(
µi(zs)(x, a), σ

2(x, a)
)
, ∀(x, a) ∈ X× A.

Then, due to Le Cam’s two-point lemma, the local minimax risk over the class Cδ (I∗) can be lower
bounded by

Mn (Cδ (I∗)) ≥ 1

4

{
1− TV

(
Pn
(Ξ∗,Γi(s))

,Pn
(Ξ∗,Γi(−s))

)}
{τ (Ξ∗,Γi(s))− τ (Ξ∗,Γi(−s))}2 ,

(102)

provided that Γi(zs) ∈ Nδ (Γ
∗) for z ∈ {±1}.

We first upper bound the total variation distance TV
(
Pn
(Ξ∗,Γi(s))

,Pn
(Ξ∗,Γi(−s))

)
. By employing the

Pinsker-Csiszár-Kullback inequality, one has

TV
(
Pn
(Ξ∗,Γi(s))

,Pn
(Ξ∗,Γi(−s))

)
≤
√

1

2
KL
(
Pn
(Ξ∗,Γi(s))

∥∥∥Pn
(Ξ∗,Γi(−s))

)
. (103)

The KL-divergence KL
(
Pn
(Ξ∗,Γi(s))

∥∥∥Pn
(Ξ∗,Γi(−s))

)
can be computed as

KL
(
Pn
(Ξ∗,Γi(s))

∥∥∥Pn
(Ξ∗,Γi(−s))

)
= E(Ξ∗,Γi(s))

[
log

pn(Ξ∗,Γi(s))
(On)

pn(Ξ∗,Γi(−s)) (On)

]

= E(Ξ∗,Γi(s))

[
n∑

i=1

log
ξ∗ (Xi)π

∗
i (Xi,Oi−1;Ai) γi(s) (Yi|Xi, Ai)

ξ∗ (Xi)π∗
i (Xi,Oi−1;Ai) γi(−s) (Yi|Xi, Ai)

]

=

n∑
i=1

E(Ξ∗,Γi(s))

[
log

γi(s) (Yi|Xi, Ai)

γi(−s) (Yi|Xi, Ai)

]
.

(104)

Note that

log
γi(s) (y|x, a)
γi(−s) (y|x, a)

= − 1

2σ2(x, a)

[
{y − µi(s)(x, a)}2 − {y − µi(−s)(x, a)}2

]
=

sg(x, a)

πi(x, a)
{2y − µi(s)(x, a)− µi(−s)(x, a)} .

(105)

By utilizing the fact (105), one can obtain from the equation (104) that

KL
(
Pn
(Ξ∗,Γi(s))

∥∥∥Pn
(Ξ∗,Γi(−s))

)
=

n∑
i=1

E(Ξ∗,Γi(s))

[
E(Ξ∗,Γi(s))

[
sg (Xi, Ai)

πi (Xi, Ai)
{2Yi − µi(s) (Xi, Ai)− µi(−s) (Xi, Ai)}

∣∣∣∣ (Xi, Ai,Hi−1)

]]

=

n∑
i=1

E(Ξ∗,Γi(s))

[
sg (Xi, Ai)

πi (Xi, Ai)
{µi(s) (Xi, Ai)− µi(−s) (Xi, Ai)}

]

= 2s2
n∑

i=1

E(Ξ∗,Γi(s))

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

π2
i (Xi, Ai)

]
(106)
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= 2s2
n∑

i=1

EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

π2
i (Xi, Ai)

]
(a)
≤ 2K2s2

n∑
i=1

EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

]
= 2K2s2n ∥σ∥2(n) ,

where the step (a) follows by the assumption (25). If we put s = 1
2K

√
n∥σ∥(n)

into the bound (106), it

follows that KL
(
Pn
(Ξ∗,Γi(s))

∥∥∥Pn
(Ξ∗,Γi(−s))

)
≤ 1

2 . So, by combining this conclusion together with
the basic inequality (103), we arrive at

TV
(
Pn
(Ξ∗,Γi(s))

,Pn
(Ξ∗,Γi(−s))

)
≤ 1

2
. (107)

At this point, we should note for every (i, z, x, a) ∈ [n]× {±1} × X× A that

|µ∗(x, a)− µi(sz)(x, a)| =
s |g(x, a)|σ2(x, a)

πi(x, a)

=
1

2
√
K

· |g(x, a)|σ2(x, a)√
nπi(x, a) ∥σ∥(n)

(b)
≤ δ(x, a)

2
√
K

(c)
≤ δ(x, a),

(108)

where the step (b) holds due to Assumption 4, and the step (c) utilizes the fact that K ≥ 1, which
establishes that Γi(zs) ∈ Nδ (Γ

∗) for z ∈ {±1} and thus the local minimax lower bound (102) turns
out to be valid.

Next, we aim at establishing a lower bound on the gap between the functional values τ (Ξ∗,Γi(s))
and τ (Ξ∗,Γi(−s)). One can observe that

τ (Ξ∗,Γi(s))− τ (Ξ∗,Γi(−s))

= EX∼Ξ∗
[
⟨g(X, ·), µi(s)(X, ·)− µi(−s)(X, ·)⟩λA

]
= 2s · EI∗

[∫
A

g2 (Xi, a)σ
2 (Xi, a)

πi (Xi, a)
dλA(a)

]
(d)
≥ 2s

K
· EI∗

[∫
A

g2 (Xi, a)σ
2 (Xi, a)

π∗
i (Xi,Oi−1; a)

dλA(a)

]
(109)

=
2s

K
· EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

]

=
1

K2
√
n ∥σ∥(n)

EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

]
,

where the step (d) holds due to the assumption (25). By taking three pieces (102), (107), and (109)
collectively, we have

Mn (Cδ (I∗)) ≥ 1

8K4n ∥σ∥2(n)

(
EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

])2

(110)
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for every i ∈ [n]. Hence, one can conclude by taking an average of the local minimax lower bound
(110) over i ∈ [n] that

Mn (Cδ (I∗)) =
1

n

n∑
i=1

Mn (Cδ (I∗))

≥ 1

8K4n2 ∥σ∥2(n)

n∑
i=1

(
EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

])2

(e)
≥ 1

8K4n3 ∥σ∥2(n)

(
n∑

i=1

EI∗

[
g2 (Xi, Ai)σ

2 (Xi, Ai)

(π∗
i )

2
(Xi,Oi−1;Ai)

])2

︸ ︷︷ ︸
= n2∥σ∥4

(n)

=
1

8K4
·
∥σ∥2(n)

n
,

(111)

where the step (e) makes use of the Cauchy-Schwarz inequality.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction provide a good summary of our contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The main limitation lies in the lower bounds where we assume the existence of
a sequence of Markov policies that are close enough to the history-dependent behavioral
policies.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide rigorous analysis of both the upper and lower bounds in our paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: We don’t have experimental results in this paper.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: We don’t have experimental results in this paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: We don’t have experimental results in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: We don’t have experimental results in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: We don’t have experimental results in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We don’t see any violations.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper is mostly theoretical, and is not tied to a particular application.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We give full credit to the prior work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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