
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IMPROVING END-TO-END TRAINING OF RETRIEVAL-
AUGMENTED GENERATION MODELS VIA JOINT
STOCHASTIC APPROXIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Retrieval-augmented generation (RAG) has become a widely recognized
paradigm to combine parametric memory with non-parametric memory. An RAG
model consists of two serial connecting components (retriever and generator). A
major challenge in end-to-end optimization of the RAG model is that marginaliza-
tion over relevant passages (modeled as discrete latent variables) from a knowl-
edge base is required. Traditional top-K marginalization and variational RAG
(VRAG) suffer from biased or high-variance gradient estimates. In this paper, we
propose and develop joint stochastic approximation (JSA) based end-to-end train-
ing of RAG, which is referred to as JSA-RAG. The JSA algorithm is a stochas-
tic extension of the EM (expectation-maximization) algorithm and is particularly
powerful in estimating discrete latent variable models. Extensive experiments
are conducted on five datasets for two tasks (open-domain question answering,
knowledge-grounded dialogs) and show that JSA-RAG significantly outperforms
both vanilla RAG and VRAG. Further analysis shows the efficacy of JSA-RAG
from the perspectives of generation, retrieval, and low-variance gradient estimate.

1 INTRODUCTION

Large language models (LLMs) have been shown to store factual knowledge in their parameters
through pre-training over large amounts of Internet corpora (Petroni et al., 2019; Brown et al., 2020).
However, such implicit knowledge cannot be easily updated, expanded, inspected, and interpreted.
Moreover, for many knowledge-intensive tasks, the use of external knowledge beyond the parametric
memory of LLMs to generate responses is critical, such as in open-domain question answering
(ODQA) (Chen et al., 2017; Lee et al., 2019; Karpukhin et al., 2020) and knowledge-grouned dialog
systems (Kim et al.; Mishra et al., 2022; Cai et al., 2023). To address these issues, hybrid models
that combine parametric memory with nonparametric memories have emerged (Lee et al., 2019; Guu
et al., 2020), among which retrieval-augmented generation (RAG) has drawn considerable attention
(Lewis et al., 2020).

During recent years, RAG has not only been used to refer to the particular method developed in
(Lewis et al., 2020), but also, more often, represents a general two-step paradigm (retrieve-then-
generate). In the RAG paradigm, given a context (denoted by x) such as a query in QA or a dialog
context, relevant passages (denoted by h) are first obtained from external knowledge bases (KBs) by
using a retriever. The retrieved passages are then combined with the context and fed into a generator
to generate the response y.

Hence, a RAG model consists of two serial connecting components (retriever and generator). During
training, if the relevant passage is known (e.g., human-annotated gold passage), we can supervise
the retriever with that passage, and train the generator conditioned on that passage as well. However,
collecting human annotations of gold passages is labor intensive. This challenge leads to the widely
adopted approach of training retrievers and generators separately. Retrievers are often trained on one
corpus (Karpukhin et al., 2020; Izacard et al.; Zhang et al., 2023), and then generators are trained
on another different corpus using fixed retrievers (Khattab et al., 2022; Zhang et al., 2024; Zhao
et al., 2024). While this is fairly easy to implement, separate training is sub-optimal, for example,
the retriever never improves as the generator learns to generate responses.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

There have been efforts in developing end-to-end training of an RAG model (Lewis et al., 2020;
Zhang et al., 2022; Han et al., 2023; Zamani & Bendersky, 2024), which means eliminating the
reliance on intermediate annotations and training all model components simultaneously. In (Lewis
et al., 2020), to train the retriever and generator end-to-end, the relevant passage is treated as a
discrete latent variable and the following marginal log-likelihood is to be maximized:

p(y|x) =
∑
h

p(h|x)p(y|x, h) (1)

Thus end-to-end training of RAG in essence amounts to unsupervised training of a discrete latent-
variable model, as shown above. Direct marginalization is intractable; hence, originally, top-K
marginalization (TKM) is used for the approximation (Lewis et al., 2020), which we refer to as
vanilla RAG. Recently, variational learning (VL) (Kingma & Welling, 2014) has been applied to
end-to-end training of RAG in two concurrent and similar works - VRAG (Mishra et al., 2022)
and Hindsight (Paranjape et al.), which we refer to collectively as VRAG. In VRAG, an auxiliary
inference model is introduced, acting as a posterior retriever. However, for variational learning
of discrete latent variable models, the traditional Monte Carlo gradient estimator for the inference
model parameter is known to be either biased or have high-variance (Ou & Song, 2020).

Recently, the joint stochastic approximation (JSA) algorithm (Xu & Ou, 2016; Ou & Song, 2020) has
emerged to learn discrete latent variable models with better performance than VL. JSA is a stochas-
tic extension of the EM (expectation-maximization) algorithm and gives unbiased, low-variance
stochastic gradients for the inference model.

In this paper, we propose JSA based end-to-end training of RAG, which is referred to as JSA-RAG,
as overviewed in Figure 1. JSA-RAG makes the following contributions. First, we design all model
components (including prior retriever, generator, and posterior retriever) and implement the whole
training and decoding pipeline to enable the successful application of JSA. We address some com-
putational challenges to work with large-scale KBs (e.g., tens of millions of passages in Wikipedia).
Second, we investigate the effect of index rebuilding in training. We study the passage concatena-
tion strategy for post-training of the generator while fixing the retriever. These further demonstrate
the capability and bonus offered by JSA-RAG. Third, extensive experiments are conducted on five
datasets for two tasks (open-domain question answering, knowledge-grounded dialogs) and show
that JSA-RAG outperforms both vanilla RAG and VRAG, e.g., achieving +4.1% Exact Match on
TQA and +10.3% BLEU-4 on DoQA relative over VRAG. Improved retriever performance and low-
variance gradients of the posterior retriever are also validated, e.g.,+8.5% R@1 on NQ and +1.7%
R@1 on OR-QuAC relative over VRAG.

2 METHOD: JSA-RAG

2.1 MODEL

Let (x, y) denote the pair of context and response, both represented by token sequences. Let K
denote the KB, which is a discrete set of text passages (e.g. Wikipedia chunks). Each passage is
also a token sequence. Let h denote the relevant passage in K needed to generate the response y
given the context x, which is treated as a latent variable since there are no annotations. Therefore,
we obtain a latent variable model for RAG, with parameters θ = (θr, θg), which can be decomposed
as:

pθ(y, h|x) = pθr (h|x)pθg (y|x, h) (2)

Prior retriever pθr (h|x), is parameterized by θr and models the prior relevancy of the passages in
K with respect to the context x. Similar to the original RAG, a bi-encoder architecture for the prior
retriever is defined as follows:

pθr (h|x) =
exp

(
eλ(h)

⊤eη(x)
)∑

h′∈K exp (eλ(h′)⊤eη(x))
(3)

where eλ(x) denote the context encoder, parameterized by λ, outputting the dense vector represen-
tation (or say, the embedding vector) of the context; eη(h), the passage encoder, parameterized by
η, returns the embedding vector of the passage. We calculate the two embeddings with two separate
neural networks, both initialized from BERT (Devlin et al., 2019). Hence, θr = (λ, η).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Overview of JSA-RAG. 1) In addition to the (prior) retriever and generator, JSA-RAG
introduces an (auxiliary) posterior retriever. 2) During training, the posterior retriever proposes
relevant passages, which get accepted or rejected according to the probabilities calculated from the
three components. The blue dashed line shows such Metropolis independence sampling (MIS),
which is a Monte Carlo approximation of the E-step in EM. 3) The filtered passages are then treated
as pseudo labels, as shown by the red dotted line. 4) Given the pseudo labels, we can calculate
the gradients for prior retriever, posterior retriever, and generator, respectively, and proceed with
parameter updating, very similar to perform supervised training, like the M-step in EM.

Generator pθg (y|x, h) is parameterized by θg and models the sequential generation of the response
y given the context x and the passage h. The neural network architecture can be encoder-decoder or
decodely-only. In this work, we employ decoder-only LLMs, which calculates the likelihood of the
response y as follows:

log p(y|h, x) =
∑
j

log p(yj |y<j , x, h). (4)

where the context x and the retrieved passage h are concatenated to fed into the LLM to generate y.

Posterior retriever is introduced for applying the JSA algorithm to learn the latent variable model
Eq. (2). It represents an auxiliary inference model to approximate the posterior probability of select-
ing passage h when given both context x and reponse y. Similar to the prior retriever, a bi-encoder
architecture for the posterior retriever, with parameters ϕ = (λ, ξ), is defined as follows:

qϕ(h|x, y) =
exp

(
eλ(h)

⊤eξ(x+ y)
)∑

h′∈K exp (eλ(h′)⊤eξ(x+ y))
(5)

where the passage encoder eλ(h) is shared between the prior and the posterior retrievers, but a new
BERT based neural network is introduced to calculate the embedding for the combination of context
x and response y. In particular, x and y are concatenated, denoted by x + y, and are fed to the
context-response encoder eξ(·). Note that except for the index rebuilding experiment, all passage
encoders are fixed.

Computation consideration. The softmax calculation over the entire KB in Eq. (3) and Eq. (5)
for the prior and posterior retrievers are computationally prohibitive even for moderate-sized KBs
(e.g., thousands of passages). In practice, we maintain an index on passage embeddings for the
KB using FAISS (Johnson et al., 2019). Given a pair of context and reponse (x, y), we can ef-
ficiently retrieve the set of top-k passages under prior and posterior distributions using Maximum
Inner Product Search (MIPS) (Johnson et al., 2019), denoted by Sprior and Spost respectively (k =
10 in our experiments). The two sets occupy the majority of probabilities for the prior and posterior
distributions, and at first thought, can be used to approximate the calculations of Eq. (3) and Eq. (5),
respectively. Note that in order to calculate the importance weights for sampled passages used in
JSA training (to be clear in Section 2.2 below), we need the prior and posterior probabilities to be
calculated over a common set. Therefore, we form a union set by merging Sprior and Spost, and the
softmax calculations in Eq. (3) and Eq. (5) are only taken over this union set.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 The JSA-RAG algorithm

Require: Training dataset D = {(x, y)}, prior retriever pθr (h|x), posterior retriever qϕ(h|x, y),
generator pθg (y|x, h), MIS step number m.
repeat

Draw a pair of context and response (x, y);
Monte Carlo sampling:
Use MIS to draw {h(1), h(2), ..., h(m)};
Parameter updating:
Update θ by ascending:
1
m

∑m
i=1 ∇θ log

[
pθr (h

(i)|x)pθg (y|x, h(i))
]
;

Update ϕ by ascending:
1
m

∑m
i=1 ∇ϕ log qϕ(h

(i)|x, y);
until convergence
return θ and ϕ

2.2 TRAINING

Training the RAG model from complete data, i.e., knowing h, can be easily realized by supervised
training. For end-to-end training of the RAG model (i.e., conducting unsupervised training with-
out knowing h), we resort to maximizing the marginal likelihood pθ(y|x) and applying the JSA
algorithm (Xu & Ou, 2016; Ou & Song, 2020).

JSA involves introducing an auxiliary inference model to approximate the intractable posterior
pθ(h|x, y), which, turns out to take the form of qϕ(h|x, y), i.e., the posterior retriever. We can jointly
train the three components (prior retriever, posterior retriever and generator), which is summarized
in Algorithm 1. The JSA algorithm can be viewed as a stochastic extension of the well-known EM
algorithm (Dempster et al., 1977) , which iterates Markov Chain Monte Carlo (MCMC) sampling
and parameter updating, being analogous to the E-step and the M-step in EM respectively.

E-Step. The sampling step stochastically retrieves passages through sampling from the posterior
pθ(h|x, y). However, direct sampling from the posterior pθ(h|x, y) is intractable, so MCMC sam-
pling is employed. Particularly, using pθ(h|x, y) as the target distribution and qϕ(h|x, y) as the
proposal, we sample h through Metropolis independence sampler (MIS) (Liu, 2001) as follows:

1) Propose h ∼ qϕ(h|x, y);

2) Accept h with probability min
{
1, w(h)

w(h̃)

}
, where

w(h) =
pθ(h|x, y)
qϕ(h|x, y)

∝
pθr (h|x)pθg (y|x, h)

qϕ(h|x, y)
(6)

is the usual importance ratio between the target and the proposal distribution and h̃ denotes the
previous value for h along the Markov chain. In practice, we run MIS for several (m) steps, with
the chain is initialized from pθ(h|x, y).

M-Step. Once we obtain the accepted pseudo labels {h(1), h(2), ..., h(m)} from MIS, we can treat
them as being given. We calculate the gradients for the prior retriever, posterior retriever, and gen-
erator models, respectively, and proceed with parameter updating, very similar to the process in
supervised training. This is analogous to the M-step in EM, but the proposal qϕ is also adapted. In
summary, the loss function can be written as:

LJSA = − 1

m

m∑
i=1

(
log pθr (h

(i)|x) + log pθg (y|x, h(i)) + log qϕ(h
(i)|x, y)

)
(7)

2.3 INDEX REBUILDING AND PASSAGE CONCATENATION

Index Rebuilding. In previous work, during training, the index of passage embeddings for the KB
is often fixed; therefore, the parameters of the passage encoder (λ) are frozen (Lewis et al., 2020;

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Mishra et al., 2022; Lin et al., 2023a). In this work, to study whether JSA-RAG can perform end-
to-end optimization of all modules - including the passage encoder, we explore an index rebuilding
scheme. During training, we no longer freeze the parameters of the passage encoder and recalculate
the passage embeddings in the index using the updated passage encoder at regular intervals. During
passage embedding recalculation, the training process waits; the training is resumed after the index
update is completed.

Passage Concatenation. Note that the prior retriever is improved after end-to-end learning. In-
spired by FiD (Izacard & Grave, 2021), we consider a passage concatenation strategy for post-
training of the generator while fixing the retriever. The top-k prior retrieved passages are concate-
nated and append to the context, forming a combined sequence that is fed into the generator for
response generation. In this way, the generator is post-trained and in the same way, the generator is
used in decoding. This shows the bonus offered by JSA-RAG.

Note that the above two methods are only used in the experiments described in Section 4.5.

2.4 DECODING

During testing, we use “Top-k Documents Decoding”, following VRAG (Mishra et al., 2022), with
k = 10. Specifically, given a context x, we employ the trained prior retriever to fetch the top-k
passages {h(1), · · · , h(k)}. The context x and the retrieved passage h(i) are concatenated and fed
into the generator, a beam search is performed to generate the top response y(i), i = 1, · · · , k. We
estimate p(y(i)|x) using the product of two terms: p(y(i)|x) ≈ p(h(i)|x)p(y(i)|h(i), x). Finally,
we select the response y(i) with the highest estimated probability as the final output for the given
context x. This is a simplified “Fast Decoding” in (Lewis et al., 2020) and performs well in our
experiments.

3 EXPERIMENT

To evaluate the effectiveness of the JSA-RAG method, we use VRAG and RAG as baseline end-
to-end methods. The evaluation is taken on two tasks - open-domain question answering and
knowledge-grounded dialogs. Comprehensive experiments are conducted to evaluate the perfor-
mance of JSA-RAG, focusing on aspects such as generation quality and retrieval recall. Ablation
studies are also conducted to analyze the effects of JSA-RAG in controlling gradient variance and
optimizing retrieval efficiency. Specifically, we compare the performance of the posterior retriev-
ers in JSA-RAG and VRAG, as well as fluncations in gradient norms. For all experiments, top-10
retrieval is used for both the prior and posterior retrievers during training and testing.

3.1 DATASETS

Open-domain question answering (ODQA) requires extensive external knowledge to answer ques-
tions, which is the primary task explored with RAG systems. We mainly consider three ODQA
datasets: NaturalQuestions (NQ) (Kwiatkowski et al., 2019), TriviaQA (TQA) (Joshi et al., 2017),
and MS-MARCO (Bajaj et al., 2016)1. For NQ and TQA, we use the Wikipedia December 2018
dump, which contains a total of 24M chunks (passages); for MS-MARCO, instead of using the
10 provided reference passages, we extract its QA pairs and use the MS-MARCO passages from
TREC2019 as the KB (Bajaj et al., 2016).

Knowledge grounded dialogs. In dialog datasets, we use conversation history turns as x to retrieve
relevant passages and take the response of the current turn as y, thus constructing (x, y) pairs. We
use the OR-QuAC (Qu et al., 2020) and the DoQA (Campos et al., 2020) datasets. OR-QuAC is
an open-domain dialog question answering dataset derived from the QUAC (Question Answering in
Context) corpus, requiring models to retrieve and reason over external knowledge to answer multi-
turn conversational questions. DoQA comprises of open-ended dialog conversations on different
domains like cooking, travel and movies. Both datasets follow the knowledge base settings used in
VRAG (Mishra et al., 2022). For OR-QuAC, its KB contains 68k passages, while for DoQA, its KB
contains 1.2k passages.

1The MS-MARCO dataset has two versions, and the version we use in this work is MS-MARCO v1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.2 EXPERIMENT SETTINGS

In open-domain QA tasks, we employ BGE-large (326M parameters) (Zhang et al., 2023) to initial-
ize both the prior and posterior retrievers and use Mistral-7B (Jiang et al., 2023) as the generator,
which is fine-tuned with LoRA (Hu et al., 2022; Han et al.) during training. To evaluate end-to-end
generation, we use Exact Match for NQ and TQA, and BLEU-1 and Rouge-L for MS-MARCO. For
retriever performance, we use Recall@1 and Recall@10 to measure the accuracy of retrieved results
for all three datasets.

For knowledge-grounded dialog tasks, we initialize the prior and posterior retrievers with DPR
(124M parameters) (Karpukhin et al., 2020) and use GPT-2 (124M parameters) (Radford et al.,
2019) as the generator. For end-to-end generation evaluation, we use BLEU-1, BLEU-4 (Papineni
et al., 2002), and F1; for retriever performance, we employ metrics the same as in open-domain QA.

Remarkably, evaluating retrievers requires access to the gold passages. For NQ, TQA, and MS-
MARCO, there are no gold passage annotations. Therefore, we first perform a posterior retrieval
based on BGE-large to retrieve the top 100 passages per question from the KB. Then GPT-4o is
used to select the most relevant as the gold annotation. So in testing, the retrieval metrics for NQ,
TQA, and MS-MARCO are calculated against a high-quality but machine-generated standard. See
Appendix C for details. It should also be noted that these GPT-4o-generated annotations are never
used in model training, but only used in testing to evaluate the prior retrievers (Table 2) and the
posterior retrievers (Table 3), for those datasets without gold passage annotations (i.e., NQ, TQA
and MS-MARCO in our experiments).

Technically, we construct an FAISS index for fast retrieval and deploy it as a standalone server. This
allows the main program to perform retrieval via API calls. This setup optimizes GPU memory
utilization: by eliminating the need to pre-reserve GPU memory for index loading, the main pro-
gram can allocate more dedicated VRAM to model computations. Notably, the index persists across
experiments (when different experiments use the same Wikepedia KB), eliminating redundant em-
bedding recomputation and significantly reducing training time.

Additional training details are provided in Appendix A. The Prompt Template for the generator LLM
is shown in Appendix D.

3.3 MAIN RESULT

Based on the results in Table 1, JSA-RAG demonstrates significant superiority on dialog datasets
(DoQA and OR-QUAC) and open-domain QA tasks, with all evaluated metrics outperforming base-
lines (vanilla RAG and VRAG).

End-to-end generation performance. On DoQA, JSA-RAG achieves a BLEU-4 score of 17.11
(+10.3% relative over VRAG) and an F1 score of 27.84 (+6.9% relative over VRAG), and on OR-
QUAC, its F1 score of 18.41 represents a relative 4.4% gain over VRAG, highlighting superior
contextual knowledge integration for complex dialog reasoning. In open-domain QA, JSA-RAG
excels in TQA with an Exact Match score of 75.23 (+4.1% relative over VRAG) and NQ with
an Exact Match score of 51.05 (+4.1% relative over VRAG), indicating robust handling of multi-
step questions, and in MS-MARCO with a Rouge-L score of 37.96 (+3.4% relative over VRAG),
reflecting fluent and contextually faithful generation. JSA-RAG shows significant improvements on
the NQ dataset as well. From these results, we can observe that JSA-RAG completely outperforms
the other two methods in end-to-end generation.

Retrieval performance. Going beyond end-to-end generation performance, we aim to explore
whether the JSA-RAG promotes joint improvement of retriever and generator in end-to-end train-
ing. Thus, we conduct experiments to evaluate the retrieval performance. On Table 2, JSA-RAG
demonstrates consistent improvements in prior retriever performance across dialogs (OR-QUAC,
DoQA) and open-domain QA (NQ, TQA, MS-MARCO) datasets. This reveals that the retrievers
can get enhanced in JSA-RAG end-to-end training. On OR-QUAC, JSA-RAG achieves the highest
R@1 (39.56, +1.7% relative over VRAG), R@10 (84.76, +1.5% relative over VRAG) and MRR@10
(57.51, +2.7% relative over VRAG), reflecting successful optimizations for dialog retrieval. In open-
domain QA, JSA-RAG outperforms baselines on NQ (R@1: 29.23 +8.5%, R@10: 67.27 +5.0%,
MRR@10:41.04 +7.4% relative over VRAG), TQA (R@1: 37.39, +1.5% relative over VRAG) and
MS-MARCO (R@1: 24.75 +4.5%, R@10:71.32 +3.6% relative over VRAG), indicating stronger

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of different methods on knowledge-grounded dialog and open-
domain question answering datasets.

Method

Knowledge-Grounded Dialog Open-Domain Question Answering

DoQA OR-QUAC NQ TQA MS-MARCO

BLEU-4 BLEU-1 F1 BLEU-4 BLEU-1 F1 EM EM BLEU-1 Rouge-L

RAG 15.39 21.69 25.91 6.57 13.51 17.28 50.52 72.82 34.23 36.54
VRAG 15.51 21.55 26.02 6.71 13.87 17.63 49.03 72.26 34.14 36.70
JSA-RAG 17.11 23.36 27.84 7.76 14.59 18.41 51.05 75.23 35.28 37.96

Table 2: Performance evaluation of the prior retrievers for different methods. The base retrievers for
knowledge-grounded dialog datasets and open-domain question answering datasets are BGE-large
and DPR, respectively.

Method
Knowledge-Grounded Dialog Open-Domain Question Answering

OR-QUAC DoQA NQ TQA MS-MARCO

R@1 R@10 MRR@10 R@1 R@10 MRR@10 R@1 R@10 MRR@10 R@1 R@10 MRR@10 R@1 R@10 MRR@10

Base 31.16 77.74 48.28 58.59 83.13 66.94 26.25 63.73 37.64 33.33 66.73 44.21 10.51 36.81 17.91
RAG 38.97 83.35 55.93 67.61 87.33 74.74 27.58 66.97 39.96 36.01 69.48 46.19 23.17 68.66 36.48
VRAG 38.91 83.48 55.98 68.01 87.49 74.78 26.95 64.04 38.21 36.81 70.07 46.73 23.68 68.81 37.53
JSA-RAG 39.56 84.76 57.51 68.09 87.57 75.06 29.23 67.27 41.04 37.39 70.67 46.90 24.75 71.32 38.65

retrieval of relevant passages. The superiority of JSA-RAG in R@1 and R@10 across multiple
datasets indicates that passages filtered by MIS are more helpful in guiding the training of retrievers,
compared to simply using a posterior retriever to fetch top-10 passages.

Comparative analysis. By combining the analysis of end-to-end generation performance and re-
triever performance, we find that JSA-RAG comprehensively outperforms both RAG and VRAG.
Notably, on TQA and MS-MARCO, although VRAG introduces the posterior retriever and improves
retriever performance, its generation performance declines compared to RAG. This exhibits asyn-
chrony in end-to-end optimization, where retriever performance improves while generator perfor-
mance decreases instead. In contrast, JSA-RAG enables more effective joint optimization between
retrievers and generators, achieving simultaneous improvements in both retriever accuracy (e.g.,
higher R@1, R@10, MRR@10) and generative quality (e.g., superior BLEU-4, F1 scores). This
demonstrates that the knowledge pieces selected by JSA-RAG’s MIS step can not only enhance
retriever performance but also align well with the preferences for generating response, rather than
merely maximizing the relevance scores of retrieved knowledge pieces.

3.4 ABLATIONS

We conduct ablation experiments on the posterior retriever from two aspects to help understand
intuitively why JSA-RAG outperforms VRAG. First, we analyze the performance of the posterior
retriever. We test the trained posterior retriever on recall@1, recall@10, and MRR@10 metrics
using the OR-QUAC dataset, a moderately scaled dataset with gold passage annotations. Second,
we monitor the gradient variation of the posterior retriever during training. This allows us to observe
how the gradients fluctuate along the training steps to intuitively compare the gradient variance
between JSA and VRAG.

Table 3: Performance evaluation of the posterior
retrievers on the OR-QuAC dataset.

Dataset Method R@1 R@10 MRR@10

OR-QuAC
DPR 44.32 90.72 63.88

VRAG 45.66 91.26 64.52
JSA-RAG 46.91 91.43 65.42

Performance of posterior retriever. As
shown in Table 3, on the QuAC dataset, JSA-
RAG’s posterior retriever outperforms VRAG
across all evaluated metrics: R@1 (46.91 vs.
45.66), R@10 (91.43 vs. 91.26), and MRR@10
(65.42 vs. 64.52), achieving improvements of
2.7%, 0.2%, and 1.4% respectively. These re-
sults indicate that JSA-RAG’s posterior retriever captures relevant knowledge pieces more accu-
rately. Presumably, this is because the low-variance gradients allow the posterior retriever to con-
verge more efficiently toward the true posterior distribution during training. Similarly, better quality
of passages retrieved by MIS also benefit posterior retriever.

Variance in gradient norm. As shown in Figure 2, we record the gradient norms of the posterior
retrievers for JSA-RAG and VRAG every 50 steps during the first 4,000 training steps. The gradient

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Performance of index rebuilding on
OR-QuAC (index rebuilt every 100 steps during
training).

Method Rebuild BLEU-4 R@1 R@10 MRR@10

RAG % 6.57 38.97 83.35 55.93
✓ 8.50 47.77 89.75 65.39

VRAG % 6.71 38.91 83.48 55.98
✓ 8.58 48.54 90.09 65.90

JSA-RAG % 7.76 40.35 84.66 57.97
✓ 10.26 49.44 90.11 66.36

Table 5: Performance of passage concatenation
on ODQA (top 10 passages concatenated with
context).

Method Concat
NQ TQA MS-MARCO

EM EM BLEU-1 Rouge-L

RAG % 50.52 72.82 34.23 36.54
✓ 51.10 74.84 34.00 37.31

VRAG % 49.03 72.26 34.14 36.70
✓ 51.99 75.54 34.81 37.86

JSA-RAG % 51.05 75.23 35.27 37.96
✓ 52.35 76.11 35.61 38.81

norms of JSA are of low variance, while the gradient norms of VRAG frequently exhibit ”sharp”
spikes. This observation confirms that during training, JSA-RAG provides gradients with lower
variance, enabling more stable training dynamics and thus yielding higher performance.

Figure 2: Comparison of the gradient norms from the posterior retriever.

3.5 EXPERIMENTS ON INDEX REBUILDING AND PASSAGE CONCATENATION

Index rebuilding. In the index rebuilding experiment, unlike the main experiment, we do not freeze
the parameters of the passage encoder. Every 100 steps, we recalculate the passage embeddings
using the updated passage encoder and rebuild the index. As Table 4 shows, updating the index on
OR-QuAC improves all metrics for all methods, with substantial gains in retriever performance, and
JSA-RAG remains the top performance. These findings show that JSA-RAG is able to enhance the
performance of all system components in an end-to-end training framework. Meanwhile, it should
be noted that in our experiments, model training and index rebuilding are serially conducted. In the
OR-QuAC (68k passages) experiment, it takes about 3 minutes for 100 training steps, and then index
rebuilding takes less than 2 minutes, which hardly affects the training time. However, for larger scale
experiments with Wikipedia (24M packages), index rebuilding takes 6 hours with the hardware
in our experiments (4*A100 (40G)). When we used a long interval for index rebuiding (we tried
2000-5000 steps in experiments), marginal performance improvements were obtained compared to
the results of not using index rebuilding, since the model training behavior does not change much.
However, if we reduce the interval for index rebuilding (e.g., every 100 steps), then it will add 200×6
hours with huge time cost (for a total of 20,000 steps for one experiment). Asynchronous algorithm
research (parameter training and index rebuilding are performed in parallel) is interesting future
work. It should be noted that such asynchronous algorithm is orthogonal to the core contribution of
this work – the developement of JSA-RAG beyond the prior arts which are vanilla RAG (using top-K
marginalization) and variational approaches like VRAG.

Passage concatenation. In the passage concatenation strategy, we freeze all parameters except
the generator. As shown in Table 5. On the dataset NQ,TQA and MS-MARCO, post-training with
the passage concatenation strategy is found to improve performance across all methods. After all
methods are subjected to post-training, JSA-RAG still significantly outperforms RAG and VRAG.
This robustness shows the practical applicability of the JSA-RAG approach.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4 RELATED WORK

Retrieval-Augmented Generation (RAG). RAG (Lewis et al., 2020) has become a widely recog-
nized paradigm for combining parametric memory with nonparametric memory. A major challenge
in end-to-end optimization of RAG models is that the optimization needs to marginalize over rel-
evant passages, which are modeled as discrete latent variables with no annotations. Atlas (Izacard
et al., 2023) studies some ad-hoc loss functions (including the vanilla RAG loss via TKM) to train
the retriever jointly with generator, and does not observe significant systematic differences between
the different training objectives. This highlights the need for more principled end-to-end training
method, which our JSA-RAG addresses. In addition to investigating new training methods for RAG,
there are other research activities around RAG. FiD (Izacard & Grave, 2021) presents a new strategy
to aggregate and combine multiple passages in decoding. In (Siriwardhana et al., 2023), end-to-end
training of RAG is applied to specialized domains such as healthcare and news. CoV-RAG (He
et al., 2024) integrates a verification module into RAG and uses verification data to finetune RAG
generators, while keeping retrievers frozen. RAT (Wang et al., 2024) combines RAG with chain of
thought (CoT) prompting but does not involve any model training. RA-DIT (Lin et al., 2023b) fine-
tunes retrievers and generators separately on a set of multi-task instruction-tuning datasets, which
are not end-to-end optimized. These recent works are orthogonal to and can benefit from JSA-RAG,
which focuses on improving end-to-end training of RAG models.

Learning with discrete latent-variable models. End-to-end training of RAG in essence amounts
to learning a discrete latent-variable model. A class of maximum likelihood methods consists of
the expectation-maximization (EM) algorithm (Dempster et al., 1977) and its extensions. Varia-
tional learning optimizes the Evidence Lower Bound (ELBO) instead of directly maximizing the
marginal log-likelihood. VRAG and Hindsight, both based on variational learning, use the TKM
approximation to optimize ELBO. RetGen (Zhang et al., 2022) uses the REINFORCE trick (Paisley
et al., 2012). Stochastic RAG (Zamani & Bendersky, 2024) uses the Straight-Through trick (Bengio
et al., 2013). These parameter estimators are known to be biased or have high-variance (Ou & Song,
2020). The JSA algorithm (Xu & Ou, 2016; Ou & Song, 2020) is a stochastic extension of the EM
algorithm with impressive performance, where both the E-step and the M-step (as they cannot be
performed exactly) are extended by the stochastic approximation methodology, hence called joint
SA. To the best of our knowledge, our work is the first to apply and implement the general JSA to
successfully realize more powerful and principled end-to-end training method for RAG.

5 CONCLUSION AND FUTURE WORK

A major challenge in end-to-end optimization of the RAG model is that the optimization needs to
marginalize over relevant passages from a knowledge base, which are modeled as discrete latent
variables with no annotations. Traditional top-K marginalization and variational RAG (VRAG) suf-
fer from biased or high-variance gradient estimates. In this paper, we propose and develop joint
stochastic approximation (JSA) based end-to-end training of RAG, which is referred to as JSA-
RAG. The JSA algorithm is a stochastic extension of the EM algorithm and is particularly powerful
in estimating discrete latent variable models. JSA-RAG achieves substantial improvements across
multiple tasks and datasets, compared to vanilla RAG and VRAG. Notably, it can be seen from
Appendix B that the training time cost of JSA-RAG is comparable to RAG and VRAG. Beyond per-
formance evaluation, we demonstrate that JSA-RAG exhibits lower gradient variance than VRAG.
We also conduct extensive investigations to further strengthen the JSA-RAG framework, including
the index rebuilding and the passage concatenation strategies.

Remarkably, the potential advantage of the JSA-RAG approach in learning discrete latent variable
models suggests promising directions for future research, particularly in learning multi-step agents.
Basically, RAG can be viewed as a two-step agent (retrieve-then-generate). Currently, the multi-step
trajectory of thinking, reasoning, tool use, and planning in building agents needs to be synthesized or
annotated. The JSA-RAG methodology investigated in this paper can be extended to learning such
multi-step agents. This avenue of exploration is highly promising and warrants further investigation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu, Rangan Ma-
jumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al. Ms marco: A human generated
machine reading comprehension dataset. arXiv preprint arXiv:1611.09268, 2016.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yucheng Cai, Hong Liu, Zhijian Ou, Yi Huang, and Junlan Feng. Knowledge-retrieval task-oriented
dialog systems with semi-supervision. In Proc. Interspeech 2023, pp. 4673–4677, 2023.

Jon Ander Campos, Arantxa Otegi, Aitor Soroa, Jan Milan Deriu, Mark Cieliebak, and Eneko
Agirre. Doqa-accessing domain-specific faqs via conversational qa. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 7302–7314, 2020.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-
domain questions. pp. 1870–1879, 2017.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, 39, 1977.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proc. of the Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, 2019.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In International conference on machine learning, pp. 3929–3938.
PMLR, 2020.

Gunsoo Han, Daejin Jo, Daniel Nam, Eunseop Yoon, Taehwan Kwon, Seungeun Rho, Kyoung-
Woon On, Chang Yoo, and Sungwoong Kim. Efficient latent variable modeling for knowledge-
grounded dialogue generation. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 2683–2702, 2023.

Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
for large models: A comprehensive survey. Transactions on Machine Learning Research.

Bolei He, Nuo Chen, Xinran He, Lingyong Yan, Zhenkai Wei, Jinchang Luo, and Zhen-Hua Ling.
Retrieving, rethinking and revising: The chain-of-verification can improve retrieval augmented
generation. arXiv preprint arXiv:2410.05801, 2024.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Gautier Izacard and Édouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pp. 874–880, 2021.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense information retrieval with contrastive learning.
Transactions on Machine Learning Research.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and Edouard Grave. Atlas: Few-shot learning
with retrieval augmented language models. Journal of Machine Learning Research, 24(251):
1–43, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lu-
cile Saulnier, L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. ArXiv,
abs/2310.06825, 2023. URL https://api.semanticscholar.org/CorpusID:
263830494.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1601–1611,
2017.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, 2020.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christopher Potts,
and Matei Zaharia. Demonstrate-search-predict: Composing retrieval and language models for
knowledge-intensive nlp. arXiv preprint arXiv:2212.14024, 2022.

Byeongchang Kim, Jaewoo Ahn, and Gunhee Kim. Sequential latent knowledge selection for
knowledge-grounded dialogue.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and
Yann LeCun (eds.), 2nd International Conference on Learning Representations (ICLR), 2014.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly supervised open
domain question answering. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 6086–6096, 2019.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. Advances in neural information processing systems, 33:
9459–9474, 2020.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi, Maria Lomeli, Richard James, Pedro Ro-
driguez, Jacob Kahn, Gergely Szilvasy, Mike Lewis, et al. Ra-dit: Retrieval-augmented dual
instruction tuning. In The Twelfth International Conference on Learning Representations, 2023a.

Xi Victoria Lin, Xilun Chen, Mingda Chen, Weijia Shi, Maria Lomeli, Richard James, Pedro Ro-
driguez, Jacob Kahn, Gergely Szilvasy, Mike Lewis, et al. Ra-dit: Retrieval-augmented dual
instruction tuning. In The Twelfth International Conference on Learning Representations, 2023b.

Jun S Liu. Monte Carlo strategies in scientific computing, volume 10. Springer, 2001.

Mayank Mishra, Dhiraj Madan, Gaurav Pandey, and Danish Contractor. Variational learning for
unsupervised knowledge grounded dialogs. In International Joint Conference on Artificial Intel-
ligence, 2022.

Zhijian Ou and Yunfu Song. Joint stochastic approximation and its application to learning discrete
latent variable models. In Conference on Uncertainty in Artificial Intelligence, pp. 929–938.
PMLR, 2020.

11

https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Paisley, David M Blei, and Michael I Jordan. Variational bayesian inference with stochas-
tic search. In Proceedings of the 29th International Coference on International Conference on
Machine Learning, pp. 1363–1370, 2012.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting on association for
computational linguistics (ACL), pp. 311–318. Association for Computational Linguistics, 2002.

Ashwin Paranjape, Omar Khattab, Christopher Potts, Matei Zaharia, and Christopher D Manning.
Hindsight: Posterior-guided training of retrievers for improved open-ended generation. In Inter-
national Conference on Learning Representations.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander Miller. Language models as knowledge bases? In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2463–2473, 2019.

Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W Bruce Croft, and Mohit Iyyer. Open-retrieval con-
versational question answering. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval, pp. 539–548, 2020.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Shamane Siriwardhana, Rivindu Weerasekera, Elliott Wen, Tharindu Kaluarachchi, Rajib Rana, and
Suranga Nanayakkara. Improving the domain adaptation of retrieval augmented generation (rag)
models for open domain question answering. Transactions of the Association for Computational
Linguistics, 11:1–17, 2023.

Zihao Wang, Anji Liu, Haowei Lin, Jiaqi Li, Xiaojian Ma, and Yitao Liang. Rat: Retrieval aug-
mented thoughts elicit context-aware reasoning and verification in long-horizon generation. In
NeurIPS 2024 Workshop on Open-World Agents, 2024.

Haotian Xu and Zhijian Ou. Joint stochastic approximation learning of Helmholtz machines. In
ICLR Workshop Track, 2016.

Hamed Zamani and Michael Bendersky. Stochastic rag: End-to-end retrieval-augmented generation
through expected utility maximization. In Proceedings of the 47th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pp. 2641–2646, 2024.

Peitian Zhang, Shitao Xiao, Zheng Liu, Zhicheng Dou, and Jian-Yun Nie. Retrieve anything to
augment large language models. arXiv preprint arXiv:2310.07554, 2023.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and Joseph E
Gonzalez. Raft: Adapting language model to domain specific rag. In First Conference on Lan-
guage Modeling, 2024.

Yizhe Zhang, Siqi Sun, Xiang Gao, Yuwei Fang, Chris Brockett, Michel Galley, Jianfeng Gao, and
Bill Dolan. Retgen: A joint framework for retrieval and grounded text generation modeling.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 11739–11747,
2022.

Yuetong Zhao, Hongyu Cao, Xianyu Zhao, and Zhijian Ou. An empirical study of retrieval aug-
mented generation with chain-of-thought. In 2024 IEEE 14th International Symposium on Chi-
nese Spoken Language Processing (ISCSLP), pp. 436–440. IEEE, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A TRAINING DETAILS

In our experiments, all methods were run for 20,000 steps with batch size being 1 and the best results
were recorded. During training, we set different learning rates for the retriever and generator. The
loss was optimized using the AdamW optimizer. For the dialog task, using GPT-2 and DPR models,
the learning rates for the generator and retriever were set to 1 × 10−5 and 1 × 10−5, respectively.
For the ODQA task with Mistral-7B and BGE models, the learning rates for the generator and
retriever were 2× 10−5 and 1× 10−5, respectively. In the passage concatenation experiment, only
the generator was post-trained at a learning rate of 1 × 10−5 for 10,000 steps. Additionally, the
hyperparameter involved in JSA include: MIS sampling steps m = 50.

For training with the dialog datasets, we used 8 NVIDIA 3090 GPUs with 24GB VRAM for both
training and index storing. For ODQA experiments, training was conducted on 8 A100 GPUs with
40GB VRAM, where 4 GPUs were dedicated to main training and the other 4 to building the index
server.

GPT-2 was fine-tuned with full parameters, while the Mistral-7B model was wrapped with a PEFT
model for LoRA fine-tuning. The configuration of Low-Rank Adaptation (LoRA) parameters used
in this study is presented in Table 6. These settings were applied uniformly across all experiments
unless otherwise specified.

Table 6: LoRA Hyperparameter Settings

Parameter Value
Task Type Causal Language Modeling (CAUSAL LM)
Rank Reduction Factor (r) 8
LoRA Scaling Factor (α) 16.0
Dropout Probability 0.0
Bias Training Strategy None

Target Modules k proj, q proj, v proj, o proj,
gate proj, down proj, up proj

B COMPUTATION COST IN TRAINING

To evaluate the computational efficiency of different methods, we measure the training time for 100
iteration steps on the OR-QuAC dataset (batch size = 1). The results are summarized in Table 7. It
can be seen that the training time cost of JSA-RAG is comparable to RAG and VRAG.

Table 7: Computation Cost Comparison on OR-QuAC Dataset

Method Time (Seconds / 100 steps)
JSA-RAG 198
VRAG 153
RAG 148

C GOLD PASSAGE ANNOTATION FOR RETRIEVER EVALUATION

In testing retrieval performance, some datasets such as NQ, TQA, and MS-MARCO do not have
annotations for gold passages in their corresponding KBs. A gold passage refers to a passage con-
taining information capable of answering a question. To obtain such passages or to find them as
closely as possible, we first perform a posterior retrieval based on BGE-large to retrieve 100 rele-
vant passages from the knowledge base for each question (the posterior retriever performs retrieval
using question-answer pairs to incorporate more information). We then prompt GPT-4o to select the
one passage that it deems the most capable of answering the question from the 100 candidates. The
specific prompt is shown in Table 8. It should be noted that these GPT-4o-generated annotations are

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

never used in model training, but only used in testing to evaluate the prior retrievers (Table 2) and
the posterior retrievers (Table 3), for those datasets without gold passage annotations (i.e., NQ, TQA
and MS-MARCO in our experiments).

Table 8: Prompt for Gold Passage Selection via GPT-4o for retriever evaluation

Task Type Prompt Text
Gold Passage Selec-
tion

Question: {question}, Provided Answers:
{answers}. Please select the ID of the
passage that best answers the question from
the following paragraphs. If there is no
passage you think can generate the correct
answer, select the ID of the passage that
comes closest to answering the question.
Note!!! Only return the value of the
passage’s id key.

D LLM PROMPT TEMPLATE

During training, to enable the generator to more clearly combine the context and the retrieved pas-
sages, we employ different LLM Prompt Templates for different tasks, as shown in Table 9.

Table 9: LLM Prompt Templates Used in Evaluation for Different Tasks

Tasks LLM Prompt Template
ODQA [INST] Give a short answer to the Question based on

relevant information given in Input.
\nInput:{retrieved passage}\nQuestion: {q}
\n[/INST]{answer}

Dialogs Input:{retrieved passage}\n
<speaker1>{turn1}<speaker2>{turn2}
<speaker1>{turn3}<speaker2>{answer}

14

	Introduction
	Method: JSA-RAG
	Model
	Training
	Index rebuilding and passage concatenation
	Decoding

	Experiment
	Datasets
	Experiment settings
	Main result
	Ablations
	Experiments on index rebuilding and passage concatenation

	Related work
	Conclusion and Future Work
	Training Details
	Computation Cost in Training
	Gold Passage Annotation for retriever evaluation
	LLM Prompt Template

