
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIRECTLY ALIGNING THE FULL DIFFUSION TRAJEC-
TORY WITH SEMANTIC RELATIVE PREFERENCE OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies have demonstrated the effectiveness of aligning diffusion models
with human preferences using differentiable reward. However, they exhibit two
primary challenges: (1) they rely on multistep denoising with gradient compu-
tation for reward scoring, which is computationally expensive, thus restricting
optimization to only a few diffusion steps; (2) they often need continuous offline
adaptation of reward models in order to achieve desired aesthetic quality, such
as photorealism or precise lighting effects. To address the limitation of multistep
denoising, we propose Direct-Align, a method that predefines a noise prior to ef-
fectively recover original images from any time steps via interpolation, leveraging
the equation that diffusion states are interpolations between noise and target im-
ages, which effectively avoids over-optimization in late timesteps. Furthermore,
we introduce Semantic Relative Preference Optimization (SRPO), in which re-
wards are formulated as text-conditioned signals. This approach enables online
adjustment of rewards in response to positive and negative prompt augmentation,
thereby reducing the reliance on offline reward fine-tuning. By fine-tuning the
FLUX.1.dev model with optimized denoising and online reward adjustment, we
improve its human-evaluated realism and aesthetic quality by over 3x.

1 INTRODUCTION

Online reinforcement learning (Online-RL) (Xu et al., 2023; Clark et al., 2023; Prabhudesai et al.,
2024) methods that perform a direct gradient update through differentiable rewards have demon-
strated substantial potential to align diffusion models with human preferences. Compared to policy-
based approaches (Fan et al., 2023; Fan & Lee, 2023; Black et al., 2023; Xue et al., 2025; Liu et al.,
2025; Wang et al., 2025), these methods use analytical gradients rather than policy gradients, al-
lowing more efficient training. Despite their promising performance, these methods are frequently
observed to introduce artifacts after training, such as oversaturation or unrealistic textures. These
issues are mainly attributable to two primary limitations: First, they restrict optimization to only a
few diffusion steps, making them more susceptible to reward hacking, a phenomenon where models
achieve high reward scores for low-quality images (Liu et al., 2025; Clark et al., 2023; Domingo-
Enrich et al., 2024; Xue et al., 2025; Lee et al., 2023; Pan et al., 2022). Second, they lack an
mechanism to adjust rewards and require costly offline preparations to tune for desired aesthetic
such as photo-realism or precise lighting.

The first limitation stems from the conventional process of aligning the generation progress with
a reward model. Existing methods typically backpropagate gradients through a standard multistep
sampler (Ho et al., 2020; Song et al., 2020a), such as DDIM. However, these frameworks are not
only computationally expensive, but also prone to severe optimization instability, such as gradient
explosion. This issue becomes particularly acute when backpropagating gradients through the long
computational graphs of early diffusion timesteps, forcing these methods to restrict optimization
to the later stages of the trajectory. However, this narrow focus on late-stage timesteps makes the
model prone to overfitting the reward, as demonstrated in our experiment (see fig. 5). This overfitting
manifests as reward hacking, leading models to exploit known biases in popular reward models.
For instance, HPSv2 (Wu et al., 2023) develops a preference for reddish tones, PickScore (Kirstain
et al., 2023) for purple images and ImageReward (Xu et al., 2023) for overexposed regions. Previous
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Figure 1: Images generated by FLUX.1-dev finetuned our Semantic Relative Preference Op-
timization (SRPO) Our method offers both impressive realism and aesthetic quality, and can be
trained in only 10 minutes with 32 NVIDIA H20 GPUs, demonstrating exceptional efficiency.

work (Ba et al., 2025; Lee et al., 2025) has also found that these models tend to prefer smoothed
images with low-detail. To address this limitation, our method first injects predefined noise into the
clean image, enabling the model to directly interpolate back to the original from any given timestep.

The second challenge is the absence of mechanisms for online reward adjustment to accommodate
the evolving needs of real-world scenarios. Both the research community and industry often make
offline adjustments before RL. For example, contemporaneous works such as ICTHP (Ba et al.,
2025) and Flux.1 Krea (Lee et al., 2025) have shown that existing reward models tend to favor im-
ages with low aesthetic complexity. ICTHP addresses this issue by collecting a large, high-quality
dataset to fine-tune the reward model, while other works such as DRaFT (Clark et al., 2023) and
DanceGRPO (Xue et al., 2025) search for suitable reward systems to modulate image attributes
such as brightness and saturation. In contrast, we propose treating rewards as text-conditional sig-
nals, enabling online adjustment through prompt augmentation. To further mitigate reward hacking,
we regularize the reward signal by using the relative difference between conditional reward pairs,
defined by predefined positive and negative keywords applied to the same sample, as the objective
function. This approach effectively filters out information irrelevant to semantic guidance. Conse-
quently, we introduce Semantic Relative Preference Optimization (SRPO), built upon Direct-Align.

In our experiments, we first leverage SRPO to adjust standard reward models to two critical but
often overlooked aspects: image realism and texture detail. Next, we rigorously compare SRPO
with several state-of-the-art Online RL-based methods on FLUX.1.dev, including ReFL (Xu et al.,
2023), DRaFT (Clark et al., 2023), DanceGRPO (Xue et al., 2025), across a diverse set of evalua-
tion metrics such as Aesthetic predictor 2.5 (Unknown, 2025), Pickscore (Kirstain et al., 2023), Im-
ageReward (Xu et al., 2023), GenEval (Ghosh et al., 2023), and human assessments. Remarkably,
our approach demonstrates a substantial improvement in human evaluation metrics. Specifically,
compared to the baseline FLUX.1.dev Labs (2024) model, our method achieves an approximate
3.7-fold increase in perceived realism and a 3.1-fold improvement in aesthetic quality. Finally, we
emphasize the efficiency of our approach. By applying SRPO to the FLUX.1.dev and training for
only 10 minutes on HPDv2 dataset (Wu et al., 2023), our method enables the model to surpass the
performance of the latest version of FLUX.1.Krea (Lee et al., 2025) on the HPDv2 benchmark.

In summary, the key contributions are as follows:

(1) Mitigating Reward Hacking: The proposed framework effectively mitigates reward hacking.
Specifically, it removes the limitation of previous methods that could only train on the later diffusion
process. Furthermore, we introduce a Semantic Relative Preference mechanism, which regularizes
the reward signal by evaluating each sample with both positive and negative preference.
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(2) Online Reward Adjustment: We reformulate reward signals as text-conditioned preferences,
which enables dynamic control of the reward model via prompt augmentation. This approach re-
duces the reliance on reward-system or reward-model fine-tuning.

(3) State-of-the-Art Performance: Extensive evaluations demonstrate that our approach achieves
state-of-the-art results. Our method significantly enhances the realism of large-scale flow matching
models without requiring additional data, achieving convergence within just 10 minutes of training.
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Figure 2: Method Overview. The SRPO contains two key elements: Direct-Align, and a single
reward model that derives both rewards and penalties from positive and negative prompts. The
pipeline of Direct-Align consists of four stages: (0) generate an image for training; (1) inject noise
into image; (2) perform one-step denoise/inversion; (3) recover image.

2 RELATED WORK

Optimization on Diffusion Timesteps. Recent advances (Domingo-Enrich et al., 2024; Albergo
et al., 2023; Ma et al., 2024; Li et al., 2024) have demonstrated that diffusion models (Song et al.,
2020b;a; Ho et al., 2020) and flow matching methods (Liu et al., 2022; Lipman et al., 2022) can
be unified under a continuous-time SDE/ODE framework, where images are generated through a
progressive trajectory, with the early stages modeling the low-frequency structure and later steps
refining high-frequency details. Recent studies (Zhang et al., 2025; Liang et al., 2025) suggest that
optimizing early timesteps improves training efficiency and generation quality. However, standard
direct backpropagation with reward approaches (Xu et al., 2023; Clark et al., 2023; Prabhudesai
et al., 2024) struggle with early stage optimization due to excessive noise that corrupts reward gradi-
ents. To address this, we propose a novel sampling strategy that recovers clean images from highly
noisy inputs in a single step, enabling effective optimization at early diffusion stages.

Refining Reward Models for Human Preferences. A central challenge in aligning diffusion mod-
els with human preferences is reward hacking, which often arises from a mismatch between existing
reward models and genuine human preferences. This discrepancy can be attributed to two primary
factors. First, modeling inherently subjective human aesthetics is a significant challenge, as illus-
trated by the low inter annotator agreement in previous reports (Xu et al., 2023; Ma et al., 2025):
65.7% for the ImageReward test set and 59.7% for HPDv2. Second, current reward models are
typically trained on limited criteria and outdated model generations, capturing preferences only at a
coarse granularity learned from their training data like Fielidy and Text-to-image alignment in Im-
ageReward, and often require offline adjustment before RL to align with higher aesthetic demands.
For example, ICTHP (Ba et al., 2025) highlights the bias of the reward models toward low detail
and low aesthetic images, while HPSv3 (Ma et al., 2025) addresses this by training the rewards with
advanced models and real images, and MPS (Zhang et al., 2024) introduces more fine-grained cri-
teria for training. In contrast, our work focuses on how the reward signal is utilized within the RL
process, employing text-conditional preference to align reward attribution with targeted attributes
and filter out non-essential biases. This endows our method with robust generalization and provides
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different rewards, significantly improving the visual quality of the latest FLUX.1.dev model using
standard rewards like HPSv2 without requiring advanced or specifically fine-tuned alternatives.

3 METHOD

3.1 DIRECT-ALIGN

Limitations of Existing Approaches. Existing direct backpropagation algorithms optimize diffu-
sion models by maximizing reward functions evaluated on generated samples. Current approaches
(Xu et al., 2023; Clark et al., 2023; Prabhudesai et al., 2024) typically employ a two-stage process:
(1) sampling noise without gradients to obtain an intermediate state xk, followed by (2) a differen-
tiable prediction is conducted to produce an image. This enables gradients from the reward signal to
be backpropagated through the image generation process. The final objectives of these methods can
be categorized into two types.

Draft-like: r = R(sample(xt, c)), (1)

ReFL-like: r = R(
xt − σtϵθ(xt, t, c)

αt
), (2)

DRaFT (Clark et al., 2023) performs regular noise sampling throughout the process, including the fi-
nal few steps and even the last step, as multistep sampling leads to significant computational cost and
unstable training when the number of steps exceeds five, as reported in the original work. Similarly,
ReFL (Xu et al., 2023) also opts for a later value of k before performing a one-step prediction to
obtain x0, as the one-step prediction tends to lose accuracy at early timestep. Both methods restrict
the reinforcement learning process to the later stages of sampling.

Single-Step Image Recovery. To address the limitation mentioned above, an accurate single-step
prediction is essential. Our key insight is inspired by the forward formula in diffusion models,
which suggests that a clean image can be reconstructed directly from an intermediate noisy image
and Gaussian noise as shown in eq. (4). Building on this insight, we propose a method that begins
by injecting ground-truth Gaussian noise prior into an image, placing it at a specific timestep t to
initiate optimization. A key advantage of this approach is the existence of a closed-form solution,
derived from Eq. 4, which can directly recover the clean image from this noisy state. This analytical
solution obviates the need for iterative sampling, thus avoiding its common pitfalls, such as gradient
explosion, while preserving high accuracy even at early high-noise timesteps (see fig. 5).

xt = αtx0 + σtϵgt, (3)

x0 =
xt − σtϵgt

αt
, (4)

As shown in Eqs. 2-5, our method combines ground-truth vectors and model predictions to denoise
the noisy image. The contributions of the ground-truth and predicted components are weighted by
∆σt and σt −∆σ, respectively.

r = r(
xt −∆σtϵθ(xt, t, c)− (σt −∆σ)ϵ

αt
), (5)

Reward Aggregation Framework. Our framework (fig. 2) generates clean images x0 and injects
noise in a single step. For enhanced stability, we perform multiple noise injections to produce a se-
quence of images {xk, . . . , xk−n} from the same x0. Subsequently, we apply denoising and recov-
ery processes to each image in the sequence, allowing for the computation of intermediate rewards.
These rewards are then aggregated using a decaying discount factor through gradient accumulation,
which helps mitigate reward hacking at later timesteps.

r(xt) = λ(t) ·
∑k−n

k r(xi − ϵθ(xi, i, c), c), (6)
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3.2 SEMANTIC-RELATIVE PREFERENCE OPTIMIZATION

Semantic Guided Preference. Modern Online-RL for text-to-image generation employs reward
models to evaluate output quality and guide optimization. These models typically combine an im-
age encoder fimg and text encoder ftxt to compute similarity, following the CLIP architecture (Rad-
ford et al., 2021). In our experiments, we observe that the reward can be interpreted as an image-
dependent function parameterized by a text embedding denoted as C. Crucially, we find that strate-
gically augmenting the prompts p with magic control words denoted as pc can steer the reward by
modifying the semantic embedding, therefore we propose the Semantic Guided Preference (SGP)
that shifts reward preference by text condition.

rSGP (x) = RM(x, (pc,p)) ∝ fimg(x)
T ·C(pc,p), (7)

Although this approach enables controlled preference, it still inherits the original reward model’s
biases. To address this limitation, we further propose the Semantic-Relative Preference mechanism.

Semantic-Relative Preference. Existing approaches often combine multiple reward models to pre-
vent overfitting to any single preference signal. Although this can balance opposing biases (e.g.,
using CLIPScore’s underexposure to offset HPSv2.1’s oversaturation tendencies (Xue et al., 2025)).
As shown in fig. 5, it merely adjusts reward magnitudes rather than aligning optimization direc-
tions, resulting in compromised trade-offs rather than true bias mitigation. Based on the insight that
reward bias primary originates from the image branch (as the text branch does not backpropagation
gradient), we introduce a technique to generate a pair of opposing reward signals from a same image
through prompt augmentation, which facilitates the propagation of negative gradients for regular-
ization. This approach effectively neutralizes general biases via negative gradients while preserving
specific preferences in semantic difference.

rSRP (x) = fimg(x)
T · (C1 −C2), (8)

where C1 represents desired attributes (e.g., realistic) and C2 encodes unwanted features. This
formulation explicitly optimizes for target characteristics while penalizing undesirable ones. For
implementation, we simply add control phrases to prompts (e.g., <control>. <prompt>) ,
maintaining the syntactic structure for scoring.

Inversion-Based Regularization. Compared to previous methods that rely on model-based image
reconstruction and can only optimize along the denoising chain, our Direct-Align approach decou-
ples reconstruction from the computational graph by using a fixed prior, enabling more flexible
optimization. As a result, our method supports optimization in the inversion direction. We simplify
the reward formulations for both directions by representing them in terms of a constant K and model
prediction, as shown in eq. (9). Consequently, the denoising process performs gradient ascent, fitting
the reward, whereas the inversion process has the opposite effect.

r1 = r1

(
K±∆σtϵθ(xt, t, c)

αt

)
, (9)

Empirical analysis indicates that reward hacking predominantly occurs at high-frequency timesteps.
By employing the inversion mechanism, we decouple the penalization term and the reward term
from SRP at different timesteps, thereby enhancing the robustness of the optimization process.

4 EXPERIMENTS

We evaluate Online-RL algorithms using FLUX.1.dev (Labs, 2024) as our base model, a state-
of-the-art open-source model, hereafter referred to as FLUX. All methods use HPS (Wu et al.,
2023)(short for HPSv2.1) as the reward model and train on the Human Preference Dataset v2 (Wu
et al., 2023), which contains four visual concepts from DiffusionDB (Wang et al., 2022). Direct
propagation methods are run on 32 NVIDIA H20 GPUs. For DanceGRPO (Xue et al., 2025), we
follow the official FLUX configurations on 16 NVIDIA H20 GPUs.
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Figure 3: Qualitative Comparison on FLUX, DanceGRPO and SRPO with same seed. Our
approach demonstrates superior performance in realism and detail complexity.

For direct propagation methods, we use 25 sampling steps to maintain gradient accuracy and 50
sampling steps during inference to ensure a fair comparison with the original FLUX.1.dev. We also
compare the latest opensource FLUX.1 release from Krea (Lee et al., 2025) with our own fine-tuned
FLUX.1.dev model. For Krea, we used its default configuration (28 sampling steps, Guidance 4.5).

4.1 EVALUATION PROTOCOL.

Automatic metrics. We assess image quality using established metrics on the HPDv2 benchmark
(3,200 prompts). Our evaluation combines four standard measures: Aesthetic Score v2.5 (Un-
known, 2025), PickScore (Kirstain et al., 2023), ImageReward (Xu et al., 2023), and HPS (Wu
et al., 2023), which collectively evaluate aesthetic quality and semantic alignment. Furthermore, we
introduce our SRP reward, which quantifies the difference between the score extracted by HPS from
the prompts prefixed with “Realistic photo” (C1) and “CG Render” (C2) using HPS. For compre-
hensive evaluation, we employ GenEval (Ghosh et al., 2023) and DeQA (You et al., 2025).

Human Evaluation. We conduct a comprehensive human evaluation study comparing generative
models using a rigorously designed assessment framework. The evaluation involves 10 trained an-
notators and 3 domain experts to ensure statistical significance and professional validation. Our data
set comprises 500 prompts (first 125 prompts from each of the four subcategories in the HPD bench-
mark). Each prompt was evaluated by five distinct annotators in a fully crossed experimental design.
The assessment focuses on four critical dimensions of image quality: (1) Text-image alignment (se-
mantic consistency), (2) Realism and artifact presence, (3) Detail complexity and richness, and (4)
Aesthetic composition and appeal. Each dimension is rated using a four-level ordinal scale: Ex-
cellent (fully meets criteria), Good (minor deviations), Pass (moderate issues), and Fail (significant
deficiencies). To maintain evaluation reliability, we implement a multi-stage quality control process:
(1) Experts train and calibrate annotators, (2) Systematic resolution of scoring discrepancies, and (3)
Continuous validation of assessment criteria. The detail criteria in the table 2.

Reward Other Metrics GPU
hours(H20)

Method Aes Pick ImageReward HPS SRP GenEval DeQA

FLUX 5.867 22.671 1.115 0.289 0.463 0.678 4.292 –
ReFL⋆ 5.903 22.975 1.195 0.298 0.470 0.656 4.299 16
DRaFT-LV⋆ 5.729 22.932 1.178 0.296 0.458 0.636 4.236 24
DanceGRPO 6.022 22.803 1.218 0.297 0.414 0.585 4.353 480
Direct-Align 6.032 23.030 1.223 0.294 0.448 0.668 4.373 16
SRPO 6.194 23.040 1.118 0.289 0.505 0.665 4.275 5.3

Table 1: Comparison of Online-RL methods on automatic Evaluatio on the HPDv2 Bench-
mark. * indicates code implement by us.
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Figure 4: Comparison of human evaluation results for Vanilla FLUX, ReFL, DRaFT LV,
DanceGRPO, Direct-Align, and SRPO on HPDv2 benchmark. SRPO demonstrates significant
improvements in Aesthetics and achieves a substantial reduction in AIGC artifacts.

(a) (b) (c)

Pr
ev

io
us

O
ur

s(
0.

07
5)

O
ur

s(
0.

02
5)

Earliest 5% 10% 25% 50% FLUX

 HPS

SRPO(CLIP)SRPO(HPS)

HPS+CLIP

CLIPScore

Losing 

Rate

6%

17%

77%

Early

All

Late

Optimization TimestepReward SystemDenosing Efficiency

Figure 5: Ablation study on Denoising Efficiency, Reward System, and Timestep Optimization.

4.2 MAIN RESULT

Automatic Evaluation Results. Our method demonstrates three key advantages when train with
HPSv2.1 (Table. 1): (1) immunity to HPS score inflation from overfitting, (2) superior performance
across multiple reward metrics compared to SOTA methods, and (3) 75× greater training efficiency
than DanceGRPO while matching or exceeding all Online-RL baselines in image quality. To fur-
ther support that our method avoids overfitting to the reward, we present additional results in the
Appendix, where models are finetuned with different rewards and consistently show no color cast,
oversaturation, or other reward hacking artifacts (see fig. 8).

Human Evaluation Results. Our method achieves state-of-the-art (SOTA) performance, as shown
in fig. 4. Methods that directly optimize for reward preferences, including Direct-Align, demon-
strate suboptimal performance in terms of realism, even falling short of the baseline FLUX model
due to reward hacking. In fig. 3, we present a visual comparison between DanceGRPO and our
method. The full set of model visualizations is provided in the Appendix (see fig. 3). Although
DanceGRPO can improve aesthetic quality and achieve relatively high scores after reinforcement
learning, it often introduces undesirable artifacts, e.g., excessive glossiness (row 2, column 1) and
pronounced edge highlights (row 2, column 6). To further verify the enhancement in realism, we
selected the first 200 prompts from the photo category in the dataset. We augmented these prompts
by prepending realism-related words for the vanilla FLUX. fig. 7 (b) shows that the direct genera-
tion of our main model significantly outperforms FLUX.1.dev involving lighting and realism-related
words. In contrast, our SRPO substantially improves FLUX across realism, aesthetics, and overall
user preference. To the best of our knowledge, this is the first approach to comprehensively enhance
realism in large-scale diffusion models, increasing the excellent rate from 8.2% to 38.9% without
requiring additional training data. In addition, as shown in fig. 7 (a), our enhanced FLUX.1.dev
through SRPO surpasses the latest open source FLUX.1.krea on the HPDv2 benchmark.
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Inference w/o style word Inference with style word

Lighting GoldenDark Comic Oil Painting “with white hat”Concept Art Cyberpunk IllustrationBlack FilmRenaissance

Figure 6: Visualization of the SRPO-controlled model for different style words. The Inference
w/o style word case shows that our method shifts the model’s overall output distribution, making
most generations stylized even without explicit control words.

4.3 ABLATION STUDY

Denoising Efficiency. We compare the final images generated by standard one-step sampling (Ho
et al., 2020) used in previous method (Xu et al., 2023), which utilize model predictions, with those
produced by our method at early timesteps. As illustrated in fig. 5, the standard method still ex-
hibits noticeable artifacts throughout a significant portion of the denoising process. In contrast,
Direct-Align, which primarily relies on ground truth noise for prediction, is able to recover the
coarse structure of the image even at the initial 5% of timesteps, and produces results that are nearly
indistinguishable from the original image at 25%. Furthermore, we investigate the effect of the
proportion of model-predicted steps within the total denoising trajectory (as shown in the two rows
in fig. 5). The results indicate that a shorter proportion of model prediction leads to clear images.
These findings demonstrate the optimization capability of Direct-Align during the early stage.

Optimization timestep. We compare three training intervals using Direct-Align without late-
timestep discount and PickScore, as shown in fig. 5: Early (the first 25% of noise levels), All (the
entire training interval), and Late (the last 25% of noise levels). We randomly selected 200 prompts
from the HPD test set for human evaluation. Annotators were asked: Do any of these three images
show hacking artifacts, such as being too saturated, too smooth, or lacking image details? Mark
the worst as hacked. We observe that training exclusively on the late interval leads to a significant
increase in the hacking rate, likely due to overfitting to PickScore’s preference for smooth images.
When training over the entire interval, the hacking rate remains considerable, as this scheme still
includes the late-timestep region.

Effectiveness of Direct-Align. The core contribution of Direct-Align is its ability to address the
limitations of previous methods that only optimize late timesteps. Direct-Align introduces two key
components: early timestep optimization and late-timestep discount. In fig. 7 (d), we ablate these
components in the Direct-Align. As shown in Eq. 2 and Eq. 5, removing early timestep optimization
causes the reward structure to resemble ReFL, leading to reduced realism and increased vulnerability
to reward hacking, such as oversaturation and visual artifacts. Similarly, removing the λ(t) discount
makes the model prone to reward hacking, resulting in oversaturated and unnatural textures. These
findings confirm the importance of our approach in overcoming the limitations of late-timestep op-
timization. fig. 7 (d) also compares the use of inversion versus the direct construction of the reward
as in Eq. 8. Although direct construction yields slightly lower texture complexity than inversion, the
results remain competitive. These results highlight the potential of the SRPO reward formulation
for future applications in other online RL algorithms that are unable to support inversion.

Fine-Grained Human Preference Optimization. The key contribution of SRP is its effective
guidance of RL direction by manipulating control words. As shown in fig. 6, several control words
successfully control the direction of fine-tuning on HPDv2 and HPS, adjusting brightness (columns

8
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Main experiment with realism-related prompt
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Figure 7: Overview of experimental results demonstrating the key properties of our SRPO
method on the HPDv2 dataset: A: Comparison between FLUX.1.Krea and FLUX.1.dev tuned
by SRPO. B: Comparison between our main model and vanilla FLUX.1.dev using realism-related
word. C: Illustration of enhanced style control achieved through the incorporation of style-word
conditioning. D: Ablation study on the main components of SRPO.

1–3) or shifting outputs to comic/concept art styles. For challenging styles such as Renaissance, the
fine-tuned model cannot always generate the desired style directly; the style word typically needs to
be explicitly added during inference to achieve the correct result. We validated this with a user study
that compared models before and after training with style words. For user study, we selected the first
200 prompts from the photo subclass, as these prompts do not contain explicit style or IP terms. Each
prompt was prepended with style words to generate two images for each prompt. Annotators then
evaluated each image pair for adherence to the intended style, and in cases of equal style fidelity,
overall aesthetics were used as a tiebreaker. As illustrated in fig. 7 (c), our approach enables more
effective style control and improves the performance of FLUX on certain styles. However, the
degree of improvement depends on the reward model’s ability to recognize specific style terms;
For the Cyberpunk style, its infrequency in training data makes it difficult for the reward model to
recognize this style. Consequently,the overall improvement in human evaluation is limited.

5 CONCLUSION

In this work, we propose a novel Online RL framework to align text-to-image (T2I) models with
fine-grained human preferences, allowing fine-grained preference adjustment without the need for
fine-tuning reward. Our approach addresses two primary limitations of existing methods. First, we
overcome the sampling bottleneck, allowing the RL algorithm to be applied beyond the late-stage
generation of clean images. Second, we revisit the design of reward signals to enable more flexible
and effective preference modulation. Through comprehensive experimental evaluations, we demon-
strate that our method outperforms state-of-the-artapproaches in terms of both image realism and
alignment with human aesthetic preferences. Compared to DanceGRPO, our framework achieves
over a 75× improvement in training efficiency.

Limitations & Future Work. This work has two main limitations. First, in terms of controllability,
our control mechanism and certain control tokens are somewhat outside the domain of the existing
reward model, which may result in reduced effectiveness. Second, in terms of interpretability, since
our method relies on similarity in the latent space for reinforcement learning, the effects of some
control texts may not align with the intended RL direction after being mapped by the encoder. In
future work, our aim is to (1) develop a more systematic control strategy or incorporate learnable
tokens and (2) fine-tune a vision language model reward that is explicitly responsive to both control
words and the prompt system. Additionally, the SRPO framework can be extended to other online
reinforcement learning algorithms. We anticipate that these improvements will further enhance the
controllability and generalization capabilities of SRPO in practical applications.
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6 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. To
facilitate this, we included the source code (training and inference) with exact hyperparameter con-
figurations of our main model in the supplementary material. Our implementation is built on the
opensource framework and opensource dataset (Wu et al., 2023), and models can be trained follow-
ing the instructions provided within a compatible environment.
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A CROSS-REWARD PERFORMANCE
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Figure 8: Cross-reward results of SRPO.

We evaluated our method using three CLIP-based reward models: CLIP ViT-H/14, PickScore, and
HPSv2.1, as illustrated in fig. 8. Our approach consistently enhances image realism and detail com-
plexity across all models, including CLIP, though improvements with CLIP remain limited due to
its lack of human preference alignment. Notably, PickScore demonstrates faster and more stable
convergence than HPS, while both yield comparable visual quality. Crucially, no reward hacking is
observed in our method, highlighting the effectiveness of Direct-Align’s design ( fig. 8 (c)) in de-
coupling optimization from reward-specific biases while preserving alignment with user objectives.
Additionally, we validate the generalization of our approach to unimodal rewards. Although SRPO
primarily operates on the text branch and thus cannot explicitly control purely image-based aesthetic
models, relative reward can still be achieved through data processing techniques. Specifically, we
introduce small amounts of noise to the images generated by the model and compute the aesthetic
reward for both the noised and the original clean images. This setup naturally forms positive and
negative optimization gradients. Although the reward scores for noisy images may not be accurate,
they serve to penalize the overall bias in the reward model. Our experiments demonstrate that this
approach remains effective in mitigating reward hacking phenomena as shown in fig. 9
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Figure 9: Extension to the Aesthetic Model. The first row is trained with Direct-Align using the
original Aesthetic Predictor 2.5, while the second row is trained using SRPO.

B COMPARISON TO GRPO

Our approach is inspired by the group relativity mechanism in GRPO. Similar to GRPO, our method
first samples clean images without gradients and then injects noise back into the corresponding
intermediate to train. However, our method offers several key advantages over GRPO. First, we
apply direct propagation on the reward signal, in contrast to the policy optimization used in GRPO;
this leads to significantly improved convergence speed. For example, during FLUX training, we
observe that methods based on direct propagation yield noticeable image changes within 30 steps,
whereas GRPO requires over 100 steps for comparable results. Second, our approach computes
semantic-relative advantages, requiring only a single sample for each update and relying solely on
the original ODE. This eliminates the reliance on the diversity of the generative model or sampler.
Third, unlike GRPO, which often necessitates additional KL regularization and a reference model
to prevent over-optimization, our method directly constrains the optimization by propagating the
negative reward signal, thus obviating the need for auxiliary constraints.
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Figure 10: Comparison on GRPO and SRPO.

C HIGH-FREQUENCY WORD STATISTICS IN HPDV2 TRAINING SET

We found that the effectiveness of our method depends on the reward model’s ability to perceive
control words. Here, we briefly present the word frequency statistics in the HPDv2.1 training
set. As discussed in section 4.3, painting is the most frequent word and achieves the best
experimental results, while the less frequent word Cyberpunk yields weaker enhancement ef-
fects. Furthermore, we observed that low-frequency words can benefit from being combined with
high-frequency words. For example, the Comic column in our experiment uses a combination of
anime, comic, and digital painting. Similarly, Renaissance is constructed by com-
bining Renaissance-style and oil painting.
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Figure 11: High-frequency Word Statistics (part) in HPDv2 Training Set.
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Figure 12: Qualitative Comparison on several methods with same seed. Our approach demon-
strates superior performance in realism and detail complexity.
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In the interest of full transparency, the authors declare the use of an LLM-powered language model,
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Table 2: Evaluation Criteria.
Criterion Description Key Points
Realism & AI
artifacts

Evaluates
whether the
image looks
real and free of
AI artifacts

• Whether deformation artifacts appear in the image
• Whether the text is correct (if the image contains

text)
• Oily surface or over-saturated colors on objects
• Abnormal highlights on object edges or unnatural

transition to background
• Whether the object’s texture is overly simple or even

Subject
Clarity and
Detail
Complexity

Whether the
main subject of
the image is
clear and
detailed

• Whether there is obvious blurriness in the image.
• Whether the main subject of the image is intuitively

presented (i.e., not blurry).
• Whether there are any watermarks or garbled text in

the image that affect its presentation.
• Whether the texture of the image is complex, for ex-

ample, whether the texture of leaves is distinguish-
able.

• Whether the lighting and shadows in the image are
prominent, and whether the light source is identifi-
able.

Image-Text
Alignment

Measures
Image-Text
Alignment by
grading

• Excellent: Over 90% of the elements match the
prompt, and the style is fully consistent. If there is
text, it should be fully generated and naturally em-
bedded in the image.

• Good: 70%–90% of the elements match the
prompt. Minor errors in the text are allowed.

• Pass: 50%–70% of the elements match the prompt.
Most key elements are present, or the image gener-
ally looks similar to the prompt at first glance.

• Failed: Many key elements are missing, or the style
does not match the prompt.

Aesthetic
Quality

No need to
reference the
prompt;
evaluate the
aesthetic
appeal of each
image based on
composition,
lighting, color,
etc.

• Excellent: The image has a strong atmosphere and
is highly visually appealing.

• Good: The image stands out in at least one as-
pect—composition, lighting, or color—making it
comfortable to view or eye-catching.

• Pass: The image has no obvious flaws, but its aes-
thetic appeal is average.

• Failed: The image is unattractive to look at.

Overall
Quality

Comprehensively
evaluate the
overall
preference for
the image.

• Excellent: All dimensions are rated as Excellent.
• Good: At least half of the dimensions are rated as

Excellent.
• Pass: No dimension is rated as Failed.
• Failed: Any dimension is rated as Failed.
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