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Abstract

In the context of MDPs with high-dimensional states, downstream tasks are predominantly
applied on a compressed, low-dimensional representation of the original input space. A
variety of learning objectives have therefore been used to attain useful representations.
However, these representations usually lack interpretability of the different features. We
present a novel approach that is able to disentangle latent features into a controllable and
an uncontrollable partition. We illustrate that the resulting partitioned representations
are easily interpretable on three types of environments and show that, in a distribution of
procedurally generated maze environments, it is feasible to interpretably employ a planning
algorithm in the isolated controllable latent partition.

1 Introduction

Learning from high-dimensional data remains a challenging task. Particularly for reinforcement learning
(RL), the complexity and high dimensionality of the Markov Decision Process (MDP) (Bellman, 1957)
states often leads to complex or intractable solutions. In order to facilitate learning from high-dimensional
input data, an encoder architecture can be used to compress the inputs into a lower-dimensional latent
representation. To this extent, a plethora of work has successfully focused on discovering a compressed
encoded representation that accommodates the underlying features for the task at hand (Jonschkowski &
Brock, 2015; Jaderberg et al., 2017; Laskin et al., 2020; Lee et al., 2020; Yarats et al., 2021; Schwarzer et al.,
2021; Kostrikov et al., 2021).

The resulting low-dimensional representations however seldom contain specific disentangled features, which
leads to disorganized latent information. This means that the individual latent states can represent the
information from the state in any arbitrary way. The result is a representation with poor interpretability,
as the latent states cannot be connected to certain attributes of the original observation space (e.g, the
x-y coordinates of the agent). Prior work in structuring a latent representation has shown notions and use
of interpretability in MDP representations (Francois-Lavet et al., 2019). When expanding this notion of
interpretability to be compatible with RL, it has been argued that the controllable features should be an
important element of a latent representation, since it generally represents what is directly influenced by
the policy. In this light, Thomas et al. (2017) have introduced the concept of isolating and disentangling
controllable features in a low-dimensional maze environment, by means of a selectivity loss. Furthermore,
Kipf et al. (2020) took an object-centric approach to isolate distinct objects in MDPs and Ahuja et al. (2022)
showed theoretical foundations for this isolation in a weakly-supervised controllable setting. Controllable
features however only represent a fragment of an environment, where in many cases the uncontrollable
features are of equal importance. For example, in the context of a distribution of mazes, for the prediction
of the next controllable (agent) state following an action, the information about the wall structure is crucial
(see Fig. 1). We therefore hypothesize that a thorough representation should incorporate controllable and
uncontrollable features, ideally in a disentangled, interpretable arrangement; Intepretability is crucial for
future real-world deployment (Glanois et al., 2021), while an additional benefit would be that the separation
of the controllable and uncontrollable features can be exploited in downstream algorithms such as planning.

Our contribution consists of an algorithm that, showcased in three different MDP settings, explicitly disen-
tangles the latent representation into a controllable and an uncontrollable latent partition. This is highlighted
on three types of environments, each with a varying class of controllable and uncontrollable elements. This
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Figure 1: Visualization in a maze environment of (a) four random states ∈ R48×48 and (b) the disentanglement of
the controllable latent zc ∈ R2 on the horizontal axes, and the uncontrollable latent zu ∈ R1 on the vertical axis,
given for all states in the four maze environments shown in four different colors. The representation is trained on
high-dimensional tuples (st, at, rt, st+1), sampled from a replay buffer B, gathered from random trajectories in the
four maze environments shown in (a). All possible states are encoded with zt = f(st; θenc) and plotted in (b) with
the transition prediction for each possible action, revealing a clear disentanglement between the controllable agent’s
position and the uncontrollable wall architecture. Note that all samples are taken from the same buffer, filled with
samples from all four mazes.

allows for a precise and visible separation of the latent features, improving interpretability, representation
quality and possibly moving towards a basis for building causal relationships between an agent and its
environment. The unsupervised learning algorithm consists of both an action-conditioned and a state-only
forward predictor, along with a contrastive and an adversarial loss, which isolate and disentangle the control-
lable versus the non-controllable features. Furthermore, we show an application of learning and planning on
the human-interpretable disentangled latent representation, where the properties of disentanglement allow
the planning algorithm to operate solely in the controllable partition of the latent representation.

2 Related Work

General Representation Learning. Many works have focused on converting high-dimensional inputs to
a compact, abstract latent representation. Learning this representation can make use of auxiliary, unsuper-
vised tasks in addition to the pure RL objectives (Jaderberg et al., 2017). One way to ensure a meaningful
latent space is to implement architectures that require a pixel reconstruction loss such as a variational
(Kingma & Welling, 2014; Higgins et al., 2017) or a deterministic (Yarats et al., 2021) autoencoder. Other
approaches combined reward reconstruction with latent prediction (Gelada et al., 2019), pixel reconstruction
with planning (Hafner et al., 2019; 2021) or used latent predictive losses without pixel reconstruction (Lee
et al., 2020; Schwarzer et al., 2021).

Representing controllable features. In representation learning for RL, a focus on controllable features
can be beneficial as these features are strongly influenced by the policy (Thomas et al., 2017). This can
be done using generative methods (Laversanne-Finot et al., 2018), but is most commonly pursued using an
auxiliary inverse-prediction loss; predicting the action that was taken in the MDP (Jonschkowski & Brock,
2015). The work in Pathak et al. (2017); Badia et al. (2020) builds a latent representation with an emphasis
on the controllable features of an environment with inverse-prediction losses, and uses these features to guide
exploratory behavior. Furthermore, Efroni et al. (2021) and concurrent work by Lamb et al. (2022) employ
multi-step inverse prediction to successfully encompass controllable features in their representation. However,
these works have not expressed a focus on also retaining the uncontrollable features in their representation,
which is a key aspect in our work.
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Partitioning a latent representation. Sharing similarity in terms of the separation of the latent rep-
resentation, Bertoin & Rachelson (2022) disentangle the latent representation in the domain adaptation
setting into a task-relevant and a context partition, by means of adversarial predictions with gradient re-
versals and cyclic reconstruction. Fu et al. (2021) use a reconstruction-based adversarial architecture that
divides their latent representation into reward-relevant and irrelevant features. Related work by Wang et al.
(2022) further divides the latent representation of Dreamer (Hafner et al., 2019), using action-conditioned
and state-only forward predictors, into controllable, uncontrollable and their respective reward relevant and
irrelevant features. As compared to Wang et al. (2022), who focus on distraction-efficient RL, we purely
focus on the representational learning aspect of these predictors, and show notions of separation in low-
dimensional, structured representations of MDPs, leaning towards enhanced interpretability. Furthermore,
we use an adversarial loss to enforce disentanglement between zc and zu, and apply a contrastive loss instead
of pixel reconstruction to avoid representation collapse due to latent forward prediction.

Interpretable representations in MDPs. More closely related to our research is the work by Thomas
et al. (2017), which connects individual latent dimensions to independently controllable states in a maze
using a reconstruction loss and a selectivity loss. The work by Francois-Lavet et al. (2019) visualizes the
representation of an agent and its transitions in a maze environment, but does not disentangle the agent
state in its controllable and uncontrollable parts, which limits the interpretability analysis and does not
allow simplifications during planning. The work by Kipf et al. (2020) uses an object-oriented approach
to isolate different (controllable) features, using graph neural networks (GNN’s) and a contrastive forward
prediction loss, but does not discriminate between controllable and uncontrollable features. Further work
in this direction by Ahuja et al. (2022) focuses on theoretical foundations for an encoder to structurally
represent a distinct controllable object. We aim to progress the aforementioned lines of research by using
a representation learning architecture that disentangles an MDP’s latent representation into interpretable,
disentangled controllable and uncontrollable features. Finally, we show that having separate partitions of
controllable and uncontrollable features can be exploited in a planning algorithm. Exploitations like these
are done in combination with prior knowledge of a certain MDP, as in van der Pol et al. (2020).

3 Preliminaries

We consider an agent acting within an environment, where the environment is modeled as a discrete Markov
Decision Process (MDP) defined as a tuple (S, A, T, R, γ). Here, S is the state space, A is the action space,
T : S ×A → S is the environment’s transition function, R : S ×A → R is the environment’s reward mapping
and γ is the discount factor. We consider the setting where we have access to a replay buffer (B) of visited
states st ∈ S that were followed by actions at ∈ A and resulted in the rewards rt ∈ R and the next states
st+1. One entry in B contains a tuple of past experience (st, at, rt, st+1). The agent’s goal is to learn a policy
π : S → A that maximizes the expectation of the discounted return V π(s) = Eτ [

∑∞
t=0 γtR(st, at) | st = s],

where τ is a trajectory following the policy π.

Furthermore, we examine the setting where a high-dimensional state (st ∈ Rv) is compressed into a lower-
dimensional latent state zt ∈ Z = Rw where Z represents the latent space with w ≤ v. This is done by
means of a neural network encoding f : S → Z where f represents the encoder.

4 Algorithm

We aim for an interpretable and disentangled representation of the controllable and uncontrollable latent
features. We define controllable features as the characteristics of the MDP that are predominantly affected by
any action a ∈ A, such as the position of the agent in the context of a maze environment. The uncontrollable
features are those attributes that are not or only marginally affected by the actions. We show that the
proposed disentanglement is possible by designing losses and gradient propagation through two separate
parts of the latent representation. Specifically, to assign controllable information to the controllable latent
partition, the gradient from an action-conditioned forward predictor is propagated through it. To assign
uncontrollable information to the uncontrollable latent partition, the gradient from a state-only forward
predictor is propagated through it. The remaining details will be provided in the rest of this Section.
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Figure 2: Overview of the disentangling architecture, with dashed lines representing gradient propagation and green
rectangles representing parameterized prediction functions. An observation st is encoded into a latent representation
consisting of two parts; zc

t and zu
t , which represent controllable and uncontrollable features respectively. These sepa-

rated representations are then independently used to make action-conditioned, state-only and adversarial predictions
in order to provide gradients to the encoder that disentangle the latent representation zt into controllable (zc

t ) and
uncontrollable (zu

t ) partitions.

We consider environments with high-dimensional states, represented as pixel inputs. These pixel inputs are
subsequently encoded into a latent representation zt = (zc, zu) ∈ Z ∈ Rnc + Rnu , with the superscripts c
and u representing the controllable and uncontrollable features, and the superscripts nc and nu representing
their respective dimensions. The compression into a latent representation S → Z is done by means of a
convolutional encoder, parameterized by a set of learnable parameters θenc according to:

zt = (zc
t , zu

t ) = f(st; θenc). (1)

An overview of the proposed algorithm is illustrated in Fig. 2 and the details are provided hereafter. In this
section, all losses and transitions are given under the assumption of a continuous abstract representation
and a deterministic transition function. The algorithm could be adapted by replacing the losses related to
the internal transitions with generative approaches (in the context of continuous and stochastic transitions)
or a log-likelihood loss (in the context of stochastic but discrete representations).

4.1 Controllable Features

To isolate controllable features in the latent representation, zc
t is used to make an action-conditioned forward

prediction in latent space. In the context of a continuous latent space and deterministic transitions, zc is
updated using a mean squared error (MSE) forward prediction loss Lc =

∣∣ẑc
t+1 − zc

t+1
∣∣2, where ẑc

t+1 is the
action-conditioned residual forward prediction of the parameterized function Tc(z, a; θc) : Z × A → Z:

ẑc
t+1 = Tc(zt, at; θc) + zc

t (2)

and the prediction target zc
t+1 is part of the encoder output f(st+1; θenc). Note that the full latent state zt

is necessary in order to predict ẑc
t+1 (e.g. the uncontrollable features could represent a wall or other static

structure that is necessary for the prediction of the controllable features). Furthermore, the uncontrollable
latent partition input zu

t is accompanied by a stop gradient to discourage the presence of controllable features
in zu. When minimizing Lc, both the encoder (θenc) as well as the predictor (θc) are updated, which allows
shaping the representation zc as well as learning the internal dynamics.
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4.2 Uncontrollable Features

To express uncontrollable features in the latent space, zu
t is used to make a state-only (not conditioned on

the action at) forward prediction in latent space. This enforces uncontrollable features within the uncontrol-
lable latent partition zu, since features that are action-dependent cannot be accurately predicted with the
preceding state only. Following a residual prediction, zu is then updated using a MSE forward prediction
loss Lu =

∣∣ẑu
t+1 − zu

t+1
∣∣2, with ẑu

t+1 defined as:

ẑu
t+1 = Tu(zu

t ; θu) + zu
t (3)

and Tu(zu; θu) : Z → Z representing the parameterized prediction function. The target zu
t+1 is part of the

output of the encoder f(st+1; θenc). When minimizing Lu, both θenc and θu are updated. In this way the
loss Lu drives the latent representation zu, which is conditioned on θenc according to (zc

t , zu
t ) = f(st; θenc),

to only represent the features of st that are not conditioned on the action at.

4.3 Avoiding Predictive Representation Collapse

Minimizing a forward prediction loss in latent space Z is prone to collapse (Francois-Lavet et al., 2019;
Gelada et al., 2019), due to the convergence of Lc and Lu when f(st; θenc) is a constant ∀ st ∈ S. To
avoid representation collapse when using forward predictors, a contrastive loss is used to enforce sufficient
diversity in the latent representation:

LH1 = exp
(

− Cd

∥∥zt − z̄t

∥∥
2

)
(4)

where Cd represents a constant hyperparameter and z̄t is a ‘negative’ batch of latent states zt, which is
obtained by shifting each position of latent states in the batch by a random number between 0 and the
batch size. In the random maze environment, an additional contrastive loss is added to further diversify the
controllable representation:

LH2 = exp
(

− Cd

∥∥zc
t − z̄c

t

∥∥
2

)
(5)

where zc
t is obtained from randomly sampled trajectories. This additional regularizer proved neccessary to

avoid collapse of zc when moving to a near infinite number of possible mazes. More information on this
subject can be found in Appendix A.4. The resulting contrastive loss LH for the random maze environment
then consists of 0.5LH1 + 0.5LH2 . The total loss used to update the encoder’s parameters now consists of
Lenc = Lc + Lu + LH .

4.4 Guiding Feature Disentanglement with Adversarial Loss

When using a controllable latent space zc ∈ Rx, x ∈ N, where x > g, with g representing the number of
dimensions needed to portray the controllable features, some information about the uncontrollable features in
the controllable latent representation might be present (see Appendix D.2). This is due to the non-enforcing
nature of Lc, as the uncontrollable features are equally predictable with or without the action. To ensure
that no information about the uncontrollable features is kept in the controllable latent representation, an
adversarial component is added to the architecture in Fig. 2. This is done by updating the encoder with an
adversarial loss Ladv and reversing the gradient (Ganin et al., 2016). The adversarial loss is defined as

Ladv =
∣∣ẑu

t − zu
t

∣∣2
, (6)

with ẑu
t = Tadv(zc

t ; θadv), where ẑu
t is the uncontrollable prediction of the parameterized function

Tadv(zc; θadv) : Z → Z and zu
t is the target. Intuitively, since the parameters of Tadv(zc; θadv) are being

updated with Ladv and the parameters of f(s; θenc) are being updated with −Ladv, the prediction function
can be seen as the discriminator and the encoder can be seen as the generator (Goodfellow et al., 2014).
The discriminator tries to give an accurate prediction of the uncontrollable latent zu given the controllable
latent zc, while the generator tries to counteract the discriminator by removing any uncontrollable features
from the controllable representation. In our case, the predictor is a multi-layer perceptron (MLP), which
means that minimizing Ladv enforces that no nonlinear relation between zc and zu can be learned. We
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hypothesize that this is a deterministic approximation of minimizing the Mutual Information (MI) between
zu and zc. When using the adversarial loss, the combined loss propagating through the encoder consists of
Lenc = Lc + Lu + LH − Ladv. Here the minus term in −Ladv represents a gradient reversal to the encoder.
Note that the losses are not scaled, as this did not prove to be necessary for the experiments conducted.

Algorithm 1 Interpretable (Un)Controllable Features in MDP’s
1: Initialize θenc, θc, θu, θadv

2: for iteration = 1, 2, . . . , N do
3: Sample batch of tuples {st, at, st+1}
4: Encode observations: f(s; θenc) = {zc, zu}
5: Predict ẑc

t+1 = Tc(zc
t , zu

t , a; θc) + zc
t // detach zu

t

6: Predict ẑu
t+1 = Tu(zu

t ; θu) + zu
t

7: Predict ẑu
t = Tadv(zc

t ; θadv)
8: Compute losses Lc, Lu, −Ladv, LH

9: Update parameters θenc, θc, θu, θadv

10: end for

4.5 Downstream Tasks

By disentangling a latent representation in a controllable and an uncontrollable part, one can more readily
obtain human-interpretable features. While interpretability is generally an important aspect, it is also im-
portant to test how a notion of human interpretability affects downstream performance, as it is generally
desired to strike a good balance between interpretability and performance. This is examined by training an
RL agent on the learned and subsequently frozen latent representation. The action at is chosen following an
ϵ-greedy policy, where a random action is taken with a probability ϵ, and with (1 − ϵ) probability the policy
π(z) = arg max

a∈A
Q(z, a; θ) is evaluated, where Q(z, a; θ) is the Q-network trained by Deep Double Q-Learning

(DDQN) (Mnih et al., 2015; van Hasselt et al., 2016). The Q-network is trained with respect to a target Yt:

Yt = rt + γQ(zt+1, arg max
a∈A

Q(zt+1, a; θ); θ−) . (7)

With γ representing the environment’s discount factor and θ− the target Q-network’s parameters. The
target Q-network’s parameters are updated as an exponential moving average of the original parameters θ
according to: θ−

k+1 = (1 − τ)θ−
k + τθk, where subscript k represents a training iteration and τ represents

a hyperparameter controlling the speed of the parameter update. The resulting DDQN loss is defined as
LQ =

∣∣Yt − Q(zt, a; θ)
∣∣2. The full computation of all losses is shown in pseudocode in Algorithm 1.

5 Experiments

In this section, we showcase the disentanglement of controllable and uncontrollable features on three different
environments, the complexity of which is in line with prior work on structured representations (Thomas et al.,
2017; Higgins et al., 2018; Francois-Lavet et al., 2019; Kipf et al., 2020; Ahuja et al., 2022): (i) a quadruple
maze environment, (ii) the catcher environment and (iii) a randomly generated maze environment. The
first environment yields a state space of 119 different observations, and is used to showcase the algorithm’s
ability to disentangle a low-dimensional latent representation. The catcher environment examines a setting
where the uncontrollable features are not static, and the random maze environment is used to showcase
disentanglement in a more complex distribution of over 25 million possible environments, followed by the
application of downstream tasks by applying reinforcement learning (DDQN) and a latent planning algorithm
running in the controllable latent partition . The base of the encoder is derived from Tassa et al. (2018)
and consists of two convolutional layers, followed by a fully connected layer for low-dimensional latent
representations or an additional CNN for a higher-dimensional latent representation such as a feature map.
For the full network architectures, we refer the reader to Appendix C. In all environments, the encoder
f(s; θenc) is trained from a buffer B filled with transition tuples (st, at, rt, st+1) from random trajectories.
Note that, in interpretability, there is generally not a specific metric to optimize for. In order to produce
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Figure 3: Visualization of the latent feature disentanglement in the catcher environment after 200k training iterations,
with zt = f(st; θenc) ∈ R2 + R6×6. In (a) and (b), the left column shows zc

t , the middle column is a feature map
representing zu

t and the right column is the pixel state st. The dashed lines separate observations where the ball
position or the paddle position is kept fixed for illustration purposes. zc tracks the agent position while zu tracks
the falling ball. In b), note that even when having a two-dimensional controllable state (only 1 is needed, see
Appendix D.2), the adversarial loss in b) makes sure that distinct ball positions have a negligible effect on zc (left
column), even when the high-level features of the agent and the ball might be hard to distinguish.

interpretable representations, finding the right hyperparameters required manual (human) inspection of the
plotted latent representations. An ablation of the hyperparameters used can be found in Appendices A1-A3

5.1 Quadruple Maze Environment

The maze environment consists of an agent and a selection of four distinct, handpicked wall architectures.
The environment’s state is provided as pixel observations st ∈ R48×48, where an action moves the agent by
6 pixels in each direction (up, down, left, right) except if this direction is obstructed by a wall. We consider
the context where there is no reward (rt = 0 ∀ (st, at) ∈ (S, A)) and there is no terminal state.

We select a two-dimensional controllable representation (zc ∈ R2) and a one-dimensional uncontrollable
representation (zu ∈ R1). The remaining hyperparameters and details can be found in Appendix B. The
experiments are conducted using a buffer B filled with random trajectories from the four different basic
maze architectures. The encoder’s parameters are updated using Lenc in Section 4.3 with LH = LH1 . After
50k training iterations, a clear disentanglement between the controllable (zc) and uncontrollable (zu) latent
representation can be seen in Fig. 1. One can observe that the encoder is updated so that the one-dimensional
latent representation zu learns different values that define the type of wall architecture. A progression to
this representation is provided in Appendix D.1.

5.2 Catcher Environment

As opposed to the maze environment, the catcher environment encompasses uncontrollable features that
are non-stationary. The ball is dropped randomly at the top of the environment and is falling irrespective
of the actions, while the paddle position is directly modified by the actions. The environment’s states are
defined as pixel observations st of size R51×51. At each time step, the paddle moves left or right by 3
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(a) Lc = Lc
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(b) Lc = Linv
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(c) Lenc = LQ

Figure 4: A plot of the latent representation for all observations in a single randomly sampled maze when training
with the aforementioned losses (a), substituting the action-conditioned forward-prediction loss Lc for an inverse-
prediction loss Linv (b) and when end-to-end updating the encoder with only the Q-loss LQ from DDQN for 500k
iterations (c). The left column shows the controllable latent zc

t ∈ R2 with the current state in blue, the remaining
states in red, and the predicted movement due to actions as different colored bars for each individual action. The
middle column shows the uncontrollable latent zu

t ∈ R6×6 and the right column shows the original state st ∈ R48×48.
Evidently, the controllable representations in (b) and (c) lack disentanglement and interpretability. Furthermore,
the representation in (c) seems to have very little structure at all, showing that a representation that is optimized
without prior structural incentives will often represent a black box.

pixels. Since we are only doing unsupervised learning, we consider the context where there is no reward
(rt = 0 ∀ (st, at) ∈ (S, A)) and an episode ends whenever the ball reaches the paddle or the bottom.

We take zc ∈ R2 and zu ∈ R6×6. To test disentanglement, zc is of a higher dimension than needed since
the paddle (agent) only moves on the x-axis and would therefore require only one feature (see Appendix D.2
for the simpler setting with zc ∈ R1). To show disentanglement, the redundant dimension of zc should not
or negligibly have information about zu. The encoder’s parameters are updated using Lenc in Section 4.4
with LH = LH1 . After training the encoder for 200k iterations, a selection of state observations st and their
encoding into the latent representation z = (zc, zu) can be seen in Fig. 3. A clear distinction between the
ball and paddle representations can be observed, with the former residing in zu and the latter in zc.

5.3 Random Maze Environment

The random maze environment is similar to the maze environment from Section 5.1, but consists of a
large distribution of randomly generated mazes with complex wall structures. The environment’s state is
provided as pixel observations st ∈ R48×48, where an action moves the agent by 6 pixels in each direction. We
consider zc ∈ R2 and zu ∈ R6×6. This environment tests the generalization properties of a disentangled latent
representation, as there are over 25 million possible maze architectures, corresponding to a probability of less
than 4 ·10−8 to sample the same maze twice. Note that because zc is 2-dimensional, results with and without
adversarial loss are in practice extremely close. After 50k training iterations, the latent representation
z = (zc, zu) shows an interpretable disentanglement between the controllable and the uncontrollable features
(see Fig. 4a). A clear distinction between the agent and the wall structure can be found inside zc and zu.
Note that Instead of using a single dimension to ‘describe’ the uncontrollable features zu (see Fig. 1), using
a feature map for zu allows training an encoding that provides a more interpretable representation of the
actual wall architecture.

Using an Inverse Predictor. An alternative to the state-action forward prediction method used through-
out the paper is the inverse (action) prediction loss. An inverse prediction loss is often referred to in previous
work that focuses on controllable features (Jonschkowski & Brock, 2015; Pathak et al., 2017; Badia et al.,
2020). A single-step inverse prediction loss is defined as:

ât = I(zc
t , zc

t+1, zu
t ; θinv). (8)
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Figure 5: Performance of different (pre)trained representations on the random maze environment, measured as a mean
(full line) and standard error (shaded area) over 5 seeds. The ‘Interpretable’ setting uses an encoder pre-trained with
50k iterations to acquire a representation as in Fig. 4a, after which the encoder is frozen and a Q-network is trained
on top with DDQN for 500k iterations. The ‘Interpretable + Planning’ curve is similar to the ‘Interpretable’ setting
but uses DDQN with a planning algorithm in the controllable partition of the latent space with a depth of 3. The
‘DDQN’ setting uses an encoder trained end-to-end with only DDQN for 500k iterations and the ‘Inverse Prediction’
setting is equal to the ’Interpretable’ setting but has an encoder pre-trained with Linv instead of Lc. On the right,
a random subset of the vast amount of procedurally generated mazes used in the reward evaluation is shown.

Here, ât is the predicted action and I(zc
t , zc

t+1, zu
t ; θinv) : Z → A is the inverse prediction network. To

see whether an inverse predictor can generate structured, controllable representations in the random maze
environment, we replace the action-conditioned forward predictor with an inverse predictor, so that zc is no
longer updated with Lc but with Linv (see Appendix A.6 for details on Linv).

The resulting representation can be seen in Fig. 4b. It seems that using Linv, causes an absence of inter-
pretable structure in the controllable latent representation zc

t . Furthermore, there is a less precise disen-
tanglement between the controllable and uncontrollable features, as differences can be observed in zc

t when
encoding equal agent positions as pixel states st. In addition, an inverse predictor does not allow forward
prediction in latent space, which can be used for planning as shown hereafter. It thus seems that in some
environments, an inverse prediction loss might be insufficient to isolate the controllable features. Take for
example the maze agent in the top-right maze of Fig. 4, where the agent can only move in the left direction.
Even when using the wall information (zu

t ), an inverse predictor will not be able to predict the action taken
when the agent does not go left. However, an action-conditioned forward predictor is able to predict the
next state correctly regardless of which action was taken.

Reinforcement Learning. In order to verify whether a human-interpretable disentangled latent encoding
is informative enough for downstream tasks, we formalize the random maze environment into an MDP with
rewards. The agent acquires a reward rt of -0.1 at every time step, except when it finds the key in the
top right part in which case it acquires a positive reward of 1. The episode ends whenever a positive
reward is obtained or a total of 50 environment steps have been taken. For each new episode, a random
wall structure is generated, and the agent starts over in the bottom left section of the maze (see Fig. 5).
To see whether an interpretable disentangled latent representation is useful for RL, we compare different
scenarios of (pre)training; (i) An encoder pretrained for 50k iterations to attain the representation in Fig. 4a
and subsequently trained with DDQN for 500k iterations (ii) an encoder identical to the aforementioned but
trained with DDQN and a planning algorithm (iii) an encoder pretrained for 50k iterations with Linv instead
of Lc and subsequently trained with DDQN for 500k iterations (iv) an encoder purely trained with DDQN
gradients for 500k iterations. The resulting performances are compared in Fig. 5. We find that a disentangled
structured representation is suitable for downstream tasks, as it achieves comparable performance to training
an encoder end-to-end with DDQN for 500k iterations. Although performance is similar, Fig. 4c shows that
an encoder updated solely with the DDQN gradient can lose any form of interpretability. Moreover, we
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show in Fig. 5 that a representation trained with an inverse prediction loss instead of a state-action forward
prediction loss leads to poor downstream performance in the random maze environment.

Planning. As seen in Fig. 4a, after pre-training with the unsupervised losses, an interpretable disentangled
representation with the corresponding agent transitions is obtained. Due to this disentanglement of the
controllable and uncontrollable features, we can for instance employ prior knowledge that the uncontrollable
features in the maze environment are static, and employ latent planning in the controllable latent space only
(see Fig. 6). The planning algorithm used is derived from Oh et al. (2017), and is used to successfully plan
only in the controllable partition of the latent representation zc, while freezing the input for zu regardless
of planning depth. More details on the planning algorithm can be found in Appendix A.5. It can be
observed that even when planning with a relatively small depth of 3, we achieve better performance than
the pre-trained representation with an ϵ-greedy policy and than the purely DDQN-updated encoder.

6 Limitations

While the work presented here provides a step towards a better understanding of disentangling controllable
and uncontrollable features within an encoder architecture, there remain some limitations that we must
acknowledge, and which can provide a basis for future research.

First, our method’s effectiveness was predominantly demonstrated on environments with relatively simple
underlying dynamics. In these environments, the disentanglement process was easier to achieve due to the
limited complexity of internal dynamics present. As we begin to transfer our approach to more complex
environments characterized by more extensive internal dynamics, there can arise two problems; The first
being that the separation of controllable from uncontrollable features may not be as clear-cut in more complex
MDPs, but can be more on a spectrum, complicating the fundamental differences between a state-only and
a state-action forward predictor. The second being that interpretability will be harder to enforce when there
are a large number of underlying factors of variation. As distinct seeds can give different orderings and signs
of the neurons in the final layer of the encoder, identifying a factor of variation can become exponentially
harder for more complex environments.

Lastly, while our work showed that an action-conditioned forward predictor could be preferred over an in-
verse predictor in some environments for isolating controllable features, it may not hold for all scenarios.
The inherent properties of different environments might show a necessity of using different predictors. Con-
sequently, there could very well be MDPs where our current approach might not provide the same level of
disentanglement showed in the MDPs used in this paper.

Despite these limitations, we believe our work provides a strong foundation upon which future research can
build and further extend the possibilities of achieving a highly interpretable latent representation through
disentanglement of controllable and uncontrollable features.

7 Conclusion and Future Work

We have shown the possibility of disentangling controllable and uncontrollable features in an encoder archi-
tecture, strongly increasing the interpretability of the latent representation while also showing the potential
use of this for downstream learning and planning, even in a single latent partition. This disentanglement of
controllable and uncontrollable features in the latent representation of high-dimensional MDPs was achieved
by propagating an action-conditioned forward prediction loss and a state-only forward prediction loss through
distinct sections of the latent representation. Additionally, a contrastive loss and an adversarial loss were
used to respectively avoid collapse and further disentangle the latent representation. Furthermore, we showed
that an action-conditioned forward predictor can, in some environments, be preferred as compared to an
inverse predictor in terms of isolating controllable features in the representation. Finally, by employing
forward prediction in latent space, we were able to successfully run a planning algorithm while leveraging
the properties of the environment. In particular, the disentanglement of controllable and uncontrollable fea-
tures allowed us to keep zu frozen regardless of planning depth in the context of a distribution of randomly
generated mazes, i.e. we only do forward prediction in zc.

10
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(a) Planning depth 3 (b) Planning depth 9

Figure 6: Visualization of the latent representation through an actual planning iteration utilizing a planning depth of 3
(a) and a planning depth of 9 (b), with the controllable representation zc ∈ R2 (left), the uncontrollable representation
zu ∈ R6×6 (middle) that is kept static throughout planning depth and the original pixel input st ∈ R48×48 (right).
The translucent red dots represent every possible encoded state in the random maze environment, the full blue dot
represents the current encoded state, the red dots represent intermediate encoded states estimated by planning and
the green dot represents the final predicted state as chosen by the planning algorithm, consistent with its depth.

Future work could focus on gradually transferring our notion of disentanglement and interpretability to
environments with more extensive underlying internal dynamics. Further work could also look at the ordering
of the latent dimensions, as a latent representation is often arbitrarily ordered. This means that distinct
seeds will lead to a different ordering and sign of the neurons in the final layer of the encoder. For example,
if seed one would give agent position +x and +y for neurons 1 and 2 respectively, then seed two could give
agent position -y and +x to the same neurons. As we are additionally using a contrastive loss while learning
our representation, these results are compliant with the theory that a contrastive loss can recover the original
latent information up to an orthogonal linear transformation (Zimmermann et al., 2021).

Certain benefits can be obtained as well with a particular design of the encoder architecture, as we have
done in this paper using estimates of the necessary dimensions of zc and zu for the different MDP envi-
ronments. This can be seen as an inductive bias to aid disentanglement, as mentioned by Locatello et al.
(2019). Succeeding work could also focus on finding more algorithmic benefits of this disentanglement of
controllable/uncontrollable features in more complex environments. For example, in the context of safety,
a disentangled interpretable representation could allow incorporating latent state constraints in a planning
algorithm. Lastly, as discussed by Glanois et al. (2021); Locatello et al. (2019), an interesting venue could be
to further investigate the trade-off between interpretability and downstream performance. This is due to the
fact that black-box representations such as Figure 4c still seem to have excellent downstream performance
with DDQN, where for the task of maze navigation, a human would perform substantially better using the
representation portrayed in Figure 4a as compared to using the representation in Figure 4c.
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A Additional Material

A.1 Ablation of the contrastive scalar

Without using a pixel reconstruction loss, the contrastive loss LH is crucial in avoiding the trivial solution
for any latent forward predictor (Francois-Lavet et al., 2019; Gelada et al., 2019). The contrastive scalar
that regulates the LH however remains the most influential hyperparameter. When Cd is chosen too low, the
representation remains in a compact cluster. On the other hand, when Cd is chosen too high, unnecessary
inter-sample distances are formed to enforce large individual latent distances. Two ablations of the contrastive
scalar Cd are shown in Fig. 7.
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Figure 7: Ablation of the hyperparameter Cd, where a higher value of Cd enforces less entropy in the representation,
while a lower value of Cd especially pushes the controllable features zc towards shapes that ensure large distances
between samples. In both figures, the left column is zc ∈ R2, the middle column is zu ∈ R6×6 and the right column
is the input state ∈ R48×48.

A.2 Ablation of learning rates

We show experiments in Fig. 8 and Fig. 9 where we employ different learning rates for the encoder and the
action-conditioned forward predictor, respectively.

−1

0

1 0

5

0

20

40

−1

0

1 0

5

0

20

40

−1

0

1 0

5

0

20

40

−1 0 1
−1

0

1

0 5

0

5
0 20 40

0

20

40

(a) Encoder learning rate of 2e-4
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Figure 8: Ablation of the learning rates for the encoder, where a too low learning rate causes collapse of zc and a too
high learning rate causes distortions in the uncontrollable features zu. In both figures, the left column is zc ∈ R2,
the middle column is zu ∈ R6×6 and the right column is the input state ∈ R48×48.
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Figure 9: Ablation of the learning rates for the action-conditioned forward predictor. A too high learning rate will
cause the controllable representation to lose structure, while a low learning rate retains structure but does not learn
strong transition dynamics. In both figures, the left column is zc ∈ R2, the middle column is zu ∈ R6×6 and the right
column is the input state ∈ R48×48.

A.3 Ablation of the detachment of zu and ablation of the residual prediction

As seen in the main paper in Figure 2, we detach the uncontrollable representation zc from Lc as we do
not want controllable features to be present in zu. We can see in Figure 10 that updating zu with Lc

leads to slightly better transition predictions in zc, but also results in a less interpretable encoding of zu.
Furthermore, we can also see in Figure 10 that, when using normal forward predictions instead of residual
forward predictions, we lose almost all of our interpretable structure in zu.
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Figure 10: In both figures, the left column is zc ∈ R2, the middle column is zu ∈ R6×6 and the right column is the
input state ∈ R48×48.

A.4 Ablation of the entropy loss LH2

As the amount of possible encoded maze architectures goes to infinity due to the procedural generation, a
collapse in the controllable features zc can be noticed when using only LH1 as the contrastive loss (see Fig. 11).
On the other hand, when using only LH2 as the contrastive loss, there is no more clear distinction in the
uncontrollable representation zu. The best results were obtained using a combination of the aforementioned
losses.
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Figure 11: In both figures, the left column is zc ∈ R2, the middle column is zu ∈ R6×6 and the right column is the
input state ∈ R48×48.

A.5 Planning

We use a planning algorithm derived from (Oh et al., 2017; Francois-Lavet et al., 2019), where we employ
d-step planning as:

Q̂d((ẑc
t , zu), a) =

{
P ((ẑc

t , zu), a; θr) + Γ((ẑc
t , zu), a; θγ) max

a′∈A∗
Q̂d−1((ẑc

t+1, zu), a′), if d > 0
Q((ẑc

t , zu), a; θ), if d = 0
(9)

QD
plan((ẑc

t , zu), a) =
D∑

d=0
Q̂d((ẑc

t , zu), a) (10)

Where P (st, a; θr) : Z × A → R represents the reward predictor and Γ(s, a; θγ) : Z × A → γ represents the
discount value predictor. The action is chosen by taking the argmax of QD

plan((ẑc
t , zu), a). Note in the results

from Section 5.3, we are only forward predicting in the controllable latent space zc, and that zu remains a
fixed value regardless of planning depth. This is possible by making use of the prior knowledge of the maze
environments together with a disentangled controllable and uncontrollable latent representation.

A.6 Inverse Prediction

A common single-step inverse prediction is defined as:

ât = f(st, st+1) (11)

where ât is the predicted action and f(st, st+1) represents an arbitrarily structured function. In the random
maze environment, we use a parameterized inverse predictor which predicts in latent space:

ât = I(zc
t , zc

t+1, zu
t , zu

t+1; θinv) (12)

Where I(·; θinv) ∈ I : Z → A is a parameterized inverse prediction function. Since we have 4 actions, we
use the 4-dimensional logit output ât to calculate the inverse prediction loss Linv as:

S(âi) = exp(âi)∑na

j=1 exp(âj)
, Linv = −

na∑
i=1

ai log(S(âi)) (13)
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Here, na is the number of actions, S(âi) represents the softmax operator and ai is the actual action, given
as a 0 or 1 truth label. This is more commonly known as the Cross-Entropy loss computation.

A.7 Reconstruction

We run an additional ablation on the four mazes environment, where the contrastive loss LH is replaced
with a pixel reconstruction loss. The resulting representation comparison can be seen in Fig. 12.
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Figure 12: Visualization in a maze environment of the disentanglement of the controllable latent zc ∈ R2 on the
horizontal axes, and the uncontrollable latent zu ∈ R1 on the vertical axis, given for all states in the four maze
environments shown in four different colors. The representation is trained on high-dimensional tuples (st, at, rt, st+1),
sampled from a replay buffer B, gathered from random trajectories in the four maze environments. All possible
states are encoded with zt = f(st; θenc) and plotted in (a) and (b) together with the transition prediction for each
possible action. In (a), a clear disentanglement between the controllable agent’s position and the uncontrollable wall
architecture is portrayed. In (b), it seems that a reconstruction loss groups observations with similar pixel inputs
together, and thus allows the forward predictors to ’collapse’ to unit matrices, decreasing representation quality.
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A.8 T-SNE

We conduct an additional experiment in the random maze environment where we use a latent dimension of
32, partition it in half to form zc ∈ R16 and zu ∈ R16 and show the a T-SNE visualization of 6 different
trajectories in random mazes in Fig. 13. Note that, because the trajectories are random, only a subpart of
the possible agent positions in every random maze is present.
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Figure 13: Ablation of a dimensionality increase in our random maze environment. Here, the total latent space is
a 32-dimensional MLP output, where zc and zu are both 16-dimensional. in (a), 6 random trajectories are plotted
using T-SNE (perplexity=20) in different colors for both zc and zu, where zu remains similar across a trajectory
(same wall architecture), and zc differs across the trajectory (different agent positions). In (b), a collection of the
random mazes are shown from which the random trajectories have been taken.

B Experiment details

The Pytorch framework was used for all experiments, as well as the Adam optimizer (Kingma & Ba, 2015).
We employ a batch size of 32 tuples (st, at, rt, st+1) for every update. In all experiments, we detach zc

t in
the calculation of Lc, as it allowed us to use a larger learning rate for Tc without causing instabilities.

Simple Maze The replay buffer B is filled with 5k transitions from each of the four wall architectures.
The transitions are collected by the agent following a random policy. The learning rate for the encoder is
5 · 10−5, for the action-conditioned forward predictor 1 · 10−3 and for the uncontrollable forward predictor
5 · 10−5. The contrastive scalar Cd is set to 15.

Catcher The replay buffer B is filled with 25k transitions. The transitions are collected by the agent
following a random policy. A new random maze is created after 50 time steps or when the reward is
acquired. The learning rate for the encoder is 2 · 10−5, for the action-conditioned forward predictor 4 · 10−5

and for the uncontrollable forward predictor 1 ·10−5. When using the adversarial loss, we use a learning rate
of 1 · 10−3 for the adversarial predictor. The contrastive scalar Cd is set to 5.

Random Maze The replay buffer B is filled with 50k transitions, representing around 1000 maze archi-
tectures. The transitions are collected by the agent following a random policy. The learning rates used
are equal to those of the catcher environment; for the encoder 2 · 10−5, for the action-conditioned forward
predictor 4 · 10−5 and for the uncontrollable forward predictor 1 · 10−5. After freezing the encoder, we train
the action-conditioned forward predictor for an additional 250k iterations on the same 50k transitions in the
buffer B. For updating the Q-network with DDQN, we use a learning rate of 1 · 10−4, and a τ of 0.02. The
contrastive scalar Cd is set to 13. When using planning, we employ a learning rate of 5 · 10−5 for the reward
and discount prediction networks.
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Contrastive Loss For the catcher and random maze environment, given that zc is 1 or 2-dimensional,
and zu is a 36-dimensional feature map, we alleviate dimensional mismatch when calculating the contrastive
loss in Equation 4 in the main paper. This is done by taking a random subset of 15 out of 36 feature values
in zu for every batch.

C Network Architecture

We use the same base encoder for all experiments, made up of 2 convolutional layers of 32 channels each,
with a kernel size of 3 and stride 2, except for the final layer which has stride 1. Both convolutional layers
have a Rectified Linear Unit (ReLU) nonlinear activation.

In the quadruple maze environment, the output of the base convolutional encoder is flattened and used as
an input to a single linear layer with 3 outputs (zc +zu) and a hyperbolic tangent (tanh) activation function.

In the catcher and random maze environments, we use the following encoder head to extract the uncontrol-
lable features; the base convolutional layers are followed by a single convolutional layer with 32 channels, a
kernel size of 4 and a stride of 1. This layer is followed by a ReLU activation function and an AveragePool
layer with an output size of 6. For the controllable features, we flatten the output of the base convolutional
encoder and use this as an input to a linear layer with 200 neurons and a tanh activation function. This
layer is followed by another linear layer with nc neurons and a tanh activation function.

The transition and prediction models all have the same structure, with linear layers of 32-128-128-32-x
neurons where x is the output dimension in line with the predicted feature’s dimension. The linear layers all
have tanh activation functions except for the final output. Only the action-conditioned transition predictor
of the random maze environment has larger layer sizes, with linear layers of 128-512-512-128-2, to account for
slightly more complicated transitions. The DQN network used is of size 128-512-512-128-4, with an output
value corresponding to each possible action.

D Additional Figures

D.1 Quadruple Maze Progression
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Figure 14: Progression of the separation of the controllable zc (x and y-axis) and uncontrollable zu (z-axis) features
in the maze environment.
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D.2 Catcher
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(a) zc ∈ R1 without Ladv (b) zc ∈ R2 without Ladv

Figure 15: Comparison of training the representation for the catcher environment with either 1 or 2-dimensions for
the controllable representation zc. When using more dimensions for zc than needed, it can be observed that some
information of the ball position can be present in zc.
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