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Abstract—In this article, the problem of the cross-domain
fault diagnosis of rotating machinery is considered. In a
practical setting of this approach, the operating platform
of the machine may have a different setup and conditions
compared to the experimental platform that is used to col-
lect the training data. This can lead to significant data vari-
ations, specifically domain shifts. Conventional data-driven
approaches are known to adapt poorly to these domain
shifts, resulting in a significant drop in the diagnosis ac-
curacy when the pretrained model is applied in the actual
operating situation. In this article, an unsupervised domain
adaptation approach is developed to mitigate the domain
shifts between the data gathered from the experimental
platform (the source domain) and the operating platform
(the target domain) by aligning the features extracted from
the two data domains. The mutual information between the
target feature space and the entire feature space is max-
imized to improve the knowledge transferability of the la-
beled data in the source domain. Furthermore, the feature-
level discrepancy between the two domains is minimized
to further improve diagnosis accuracy. The experiments
using public datasets and real-world adaptation scenarios
demonstrate the feasibility and the superior performance of
the proposed method.

Index Terms—Information theory, machine fault diag-
nosis, neural network, unsupervised domain adaptation
(UDA).
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I. INTRODUCTION

FAULT diagnosis of rotating machinery plays an important
role in the safety and the reliability of these machinery

and estimating their residual life [1], [2]. Rotating machinery
usually works with varying heavy loads and under extreme
environments, which accelerates the failure of their components,
such as gears and bearings. The increasing fault rate of rotating
machinery also boosts their cost of operation and maintenance.
The collection and processing of various signals is the common
approach to diagnose the faults of rotating machinery, with the
goals of recovering from malfunctions and faults and preventing
future failures, in a timely manner.

In the approach of fault diagnosis by the neural network for
different conditions of the machine, a significant amount of
training data are collected and analyzed to extract the sufficient
features of the system variables for classification [3]. Different
supervised learning approaches have been utilized to automati-
cally detect machinery faults. Linear regression (LR) is utilized
to find the linear projections for the feature embeddings that can
optimize fault diagnosis [4], [5]. K-nearest neighbors (KNN)
is used to improve the diagnosis accuracy by introducing the
nonlinearity to those projections [6], [7]. Moreover, researchers
utilize support vector machines (SVMs) to further improve
the diagnosis accuracy by extracting the high-dimensional fea-
tures [8], [9]. However, the performance of the system based
on the supervised data-driven approaches heavily relies on the
handcrafted features that will be harder to extract owing the
increase in the complexity of the input data distribution.

To solve this problem, deep learning (DL) techniques have
been proposed to extract features automatically from the input
data without any human guidance [10]–[12]. DL-based methods
manage to significantly improve the performance of fault diag-
nosis by not using the handcrafted features [13], [14]. Recurrent
neural networks (RNNs) have been utilized for detecting the
faults of induction motors by taking advantage of the temporal
dynamics of RNNs [15]. Convolutional neural networks have
been used to generate nonhandcrafted features for machine
health monitoring [16]. Autoencoders are also utilized to pro-
duce more robust features from the input signals, which can
reduce the model complexity and improve the fault diagnosis ac-
curacy [17]. Nevertheless, DL-based approaches make a strong
assumption that the discriminative features in the training data
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(in the source domain) and the testing data (in the target domain)
are the same. In real-world scenarios, the variations between the
training data distributions and the testing data distributions can
significantly degrade the model generalization. For example,
the operating conditions (such as the mounting conditions of
the experimental platform, humidity, and temperature) while
collecting the training data could be completely different from
those of the actual operating platform. These variations (domain
shifts) could result in a huge divergence between the features
extracted from the data collected from the experimental settings
and the data observed in the actual operating situation. There-
fore, the current single-domain DL methods cannot guarantee
the generalization of the fault diagnosis model, which leads to
poor performance on the actual operating platforms.

In response to this shortcoming, unsupervised domain adap-
tation (UDA) has been proposed to extract the domain-invariant
features from different data domains; thereby, mitigating the
impact of data variation on the pretrained model [18]. A decision
boundary can be learned from the labels for the source input
samples and can be applied to the target domain by taking
advantage of the domain-invariant features that are shared by
the two data domains. Therefore, in real-world applications, a
set of vibration signals can be sampled on the target-domain
platform without knowing its health condition. Then, these
unlabeled target-domain samples are trained with the source
data to mitigate domain divergence. Once the model is trained,
the target-domain knowledge is captured and can be deployed
to diagnose target-domain machine faults. In general, UDA
approaches fall into two main categories: the adversarial UDA
and the nonadversarial UDA.

The adversarial UDA methods attempt to align the features
extracted from the two domains using a generative adversarial
network that uses two networks to compete with each other to
improve its generalization [19], [20]. Adversarial UDA models
have been proposed for the cross-domain bearing fault diagnosis.
Liu et al. [21] combine the standard adversarial UDA model with
the stacked autoencoder to improve the domain-invariant feature
extraction for the cross-domain diagnosis. Li et al. [22] utilize
an adversarial UDA model to transfer the knowledge learned
from the data of multiple machines to a target machine, which
achieves relatively good performance on the fault diagnosis of
the target machine. Furthermore, adversarial UDA methods are
also utilized to diagnose machinery faults across sensors at
different places [23]. Nevertheless, the traditional adversarial
approaches only discriminate the features as originated from
the source domain or the target domain, and the extracted fea-
tures are ambiguous near the class boundaries. The maximum
classifier discrepancy (MCD) solves this issue by explicitly
considering the class-specific decision boundaries while align-
ing the features from the two domains [24]. The MCD avoids
generating features near the class boundaries and extracts the
target features under the support of the source discriminative
features.

The adversarial UDA approaches may not fully optimize the
features that are important for the classification tasks in the target
domain. Moreover, adversarial training is hard to converge in the
case of large datasets. The nonadversarial UDA avoids this issue
by quantifying domain shifts with some statistical distances.

Methods based on the maximum mean discrepancy (MMD) are
proposed to minimize the variance between the feature spaces
of the two domains to mitigate the domain shifts [25]. The
nonadversarial UDA methods have been utilized to solve the
cross-domain fault diagnosis as well. Wen et al. [26] propose a
deep transfer learning (DTL) model based on the sparse autoen-
coder to extract features from the source domain and minimize
the domain shift by the MMD. However, the utilization of the
sparse autoencoder has its inherent limitation in extracting the
spatial features. Domain adaptation for fault diagnosis (DAFD)
is proposed to strengthen the representative information of the
input data to improve the knowledge transferability [27]. Zheng
et al. [28] designed an intelligent fault identification approach
based on the transfer locality preserving projection (TLPPIFI).
TLPPIFI projects the input data from the source domain into
a low-dimensional subspace to preserve the intrinsic geometry
and the local structure of the source data distribution, while the
MMD between the two data domains is minimized to mitigate
the domain shifts. However, both DAFD and TLPPIFI utilized
SVMs as their label classifiers that rely on the handcrafted
features, and thus, the generalization of their models is generally
poor. Furthermore, stepwise adaptive feature norm (SAFN) im-
proves MMD-based approaches by placing the target-domain
features far away from the small-norm regions, which is less
informative, to improve the model transferability [29]. Lately,
Wang et al. [30] demonstrated that the knowledge learned from
the source domain can be better transferred to the target domain
by projecting the features of the two domains to the same prior
distribution space.

Currently, most UDA approaches for fault diagnosis do not
consider the inherent correlations between the source features
and the target features. The input data for machinery fault
diagnosis involve processing time-series signals, which contain
redundant information in the input level and are less effective
for solving the UDA problem [31]. Therefore, fault-diagnosis-
specific features should be extracted and analyzed to mitigate
the domain shift. In this article, a feature representation align-
ment network (FRAN) is proposed to minimize the domain
shift in the fault-diagnosis-specific feature level and maximize
the knowledge transfer for the cross-domain machinery fault
diagnosis. First, the features are extracted from the two data
domains using a unified feature extractor. Then, two approaches
are utilized to align the source feature representation and the
target feature representation: 1) the mutual information (MI)
between the target feature space and the entire feature space is
maximized to reduce the uncertainty in the unlabeled domain
and improve the model transferability; and 2) a feature-level
MMD is developed to align the fault-diagnosis-specific features
from the two domains. Last, when the training of the model
converges, it can be directly deployed to diagnosis the unlabeled
input signals in the target domain.

The main contributions of this article are the following:
1) A feature representation alignment framework is pro-

posed to improve the knowledge transfer and the model
generalization in the cross-domain fault diagnosis for
rotating machinery.

2) An MI-based method is developed to better align the fault-
diagnosis-specific features from different data domains.
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3) A feature-level discrepancy is proposed to mitigate the
domain shift in the cross-domain fault diagnosis.

4) The developed framework, FRAN, is shown to outper-
form state-of-the-art algorithms in several public datasets
and the real-world adaptation scenarios.

The rest of this article is organized as follows. Section II
presents the preliminaries and formulates the problem. Sec-
tion III gives details about the methodology and the proposed
framework. The experiments to evaluate the proposed frame-
work are conducted and analyzed in Section IV. Finally, Sec-
tion V concludes this article.

II. PROBLEM FORMULATION

A. Preliminaries

1) Mutual Information: MI estimates the nonlinear relation-
ship between two random variables, which is viewed as their true
dependence, in probability and statistics. Let (X,Y ) be a pair of
random variables with values over the space X × Y . Their MI
is defined as

I(X;Y ) = H(X)−H(X|Y ) (1)

where I(·) denotes the MI between the two distribution spaces
and H(·) denotes the Shannon entropy. The Shannon entropy
may be explicitly written as

H(X) = −
∑

x∈X
P(x) log P(x). (2)

The conditional entropy H(X|Y ) is given by

H(X|Y ) = −
∑

x∈X ,y∈Y
p(x, y) log

p(x, y)

p(y)
. (3)

2) Maximum Mean Discrepancy: The MMD is a commonly
used nonparametric statistical approach to estimate the dis-
crepancy between two data domains [32]. The basic idea of
MMD is that all the statistical parameters of two probability
distributions should be the same if they are statistically identical.
Therefore, the MMD is a kernel-based test that either accepts
or rejects a null hypothesis based on the observation (whether
or not the distribution p equals the distribution q). The objective
of MMD is to minimize the discrepancy between the source
input space and the target input space in a reproducing kernel
Hilbert space (RKHS) H. Given source-domain samples x

(i)
s

and target-domain samples x
(i)
t , the empirical estimation of

MMD between the source input distribution and the target input
distribution can be given by

dH(p, q) = sup
f∈H

(Exs
(f(xs))− Ext

(f(xt)) (4)

where H is a class of functions.

B. Problem Formulation

In the setting of cross-domain fault diagnosis, a source domain
DS = {(x(i)

s ,y
(i)
s )}Ni=1 is given, which consists ofn labeled sig-

nals from the source input space {XS , YS}. x(i)
s ∈ XS denotes

a sample from the source input space that has the probability

Fig. 1. Overall concept for the proposed feature representation align-
ment among multiple classes.

distribution function ps(XS), and y
(i)
s ∈ YS is the correspond-

ing label that identifies the fault type for classification. Simi-
larly, a target domain DT = {(x(j)

t )}Mj=1 is provided with m
unlabeled signals that are sampled from the target input space
{XT , YT }. Target samples have the probability distribution
function pt(XT ). Commonly, the source domain and the target
domain are not the same due to the domain shift, and hence, the
probability distributions of the source and the target domains
are different, ps(XS) �= pt(XT ). The operating condition of
the machine and the types of possible faults are assumed to
be known. In this article, the type of faults for classification in
the target domain is considered to be the same as that in the
source domain. The objective of cross-domain fault diagnosis
is to learn a generalized model that performs well in unlabeled
target-domain classification, for fault diagnosis, with the help of
labeled source domain

min ‖yt, ŷt‖ (5)

where ŷt denotes the predicted fault type of the target-domain
inputs.

III. METHODOLOGY

A. Overall Idea for Feature Representation Alignment

The objective of UDA, in the present context, is to produce
a generalized feature extractor G that can produce feature rep-
resentations for both the source domain and the target domain.
The classifier F can then accurately predict the unlabeled target
samples with the assistance of knowledge in source-domain clas-
sification. Fig. 1 presents the overall concept for the proposed
feature representation alignment among multiple classes. For
simplicity, only the normal operating condition and two fault
conditions are used for illustration. Traditional domain adapta-
tion approaches, as shown in the leftmost segment of Fig. 1,
utilize a model that can correctly classify the labeled source
data, and then, the corresponding decision boundary can be es-
tablished among source features. However, as there exist domain
shifts between the source and the target domains, target features
that are not supported by the source knowledge may have
overlapping feature regions between different classes, which
prohibits the classifier from generating a correct prediction.
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This article proposes to regularize feature-level discrepancy dur-
ing the training, which maximizes the knowledge transferability.
This process facilitates the alignment of the feature distributions
of the source and the target domains and also enables the target
feature to get support from source knowledge. In this manner,
as shown in the rightmost segment of Fig. 1, the domain shift is
reduced, and hence, more labeled source knowledge can be used
to support the target-domain diagnosis. This helps the classifier
to produce more accurate target-domain predictions.

B. MI Maximization for Feature Alignment

It is difficult to directly produce a good feature representation
due to the lack of labels in the target-domain data. Under these
conditions, the classifier cannot predict the labels of the target
data with high confidence. It has been found that maximizing
the MI between the two domains can reduce the uncertainty in
the unlabeled domain. Denoting the feature extractor as G, the
source feature representation and target representation can be
expressed asZS = G(XS) andZT = G(XT ), respectively. De-
noting the classifier asF , the fault type predictions for the source
and target-domain data can be represented as ŷ(i)

s = F (G(x
(i)
s ))

and ŷ
(j)
t = F (G(x

(j)
t )), respectively.

For the purpose of aligning the source and the target feature
distributions, this article proposes to maximize the MI between
the target feature representation and the entire feature space,
specifically

max I(ZT ;Z) = maxH(ZT )−H(ZT |Z). (6)

Here, Z denotes the entire feature representation, which is
the union of the source feature representation set and the target
feature representation set

Z = ZS ∪ ZT . (7)

The Shannon entropy, H(·), can be represented in terms of
the expected value corresponding to its probability distribution
according to (2). It is maximized as

maxH(Z) = −Ez∼q(z)[log q(z)]. (8)

The substitution of (8) into (6) provides a particular structure,
as seen from

max I(ZT ;Z) = maxH(ZT )− H(ZT |Z)

= maxEz∼q(z)[log q(ZT |Z)]− Ezt∼q(zt)[log q(ZT )]. (9)

Equation (9) can be simplified. According to (7),
Ez∼q(z)[log q(ZT |Z)] can be expanded from the entire feature
space to the union source-domain feature representation and the
target-domain representation

Ez∼q(z)[log q(ZT |Z)]

= Ez∼q(z)[log q(ZT |(ZS ∪ ZT ))]

= Ez∼q(z)[log
q(Z|ZT ) · q(ZT )

q(Z)
]

= Ezt∼q(zt)[log q(ZT )]− Ez∼q(z)[log q(Z)]. (10)

By combining (9) and (10), the MI between the entire feature
space and the target feature representation can be simplified as

max Ez∼q(z)[log q(ZT |Z)]− Ezt∼q(zt)[log q(ZT )]

= max Ezt∼q(zt)[log q(ZT )]− Ez∼q(z)[log q(Z)]

− Ezt∼q(zt)[log q(ZT )]

= max−Ez∼q(z)[log q(Z)]

= max H(Z). (11)

It is seen that maximizing the MI between the entire feature
space and the target feature representations is equivalent to the
entropy maximization of the entire feature space.

Equation (11) is expanded for easier computation, as

maxH(Z) = max−Ez∼q(z)[log q(Z)]

= max−Ezt∼q(zt),zs∼q(zs)[log q(ZT ∪ ZS)].
(12)

The left-hand side of (12) is expanded as

− Ezt∼q(zt),zs∼q(zs)[log q(ZT ∪ ZS)]

= −Ezt∼q(zt)[log q(ZT )]− Ezs∼q(zs)[log q(ZS)]

+ Ezt∼q(zt),zs∼q(zs)[log q(ZT , ZS)]

= −(Ezt∼q(zt)[log q(ZT )]− Ezs∼q(zs)[log q(ZS)]). (13)

Then, substitution of (13) into (12) gives

maxH(Z)

= minEzt∼q(zt)[log q(ZT )] + Ezs∼q(zs)[log q(ZS)]

= maxH(ZS) + H(ZT ). (14)

From this development, it can be concluded that simultane-
ously maximizing the entropy of ZS and ZT will maximize
the knowledge transfer from the source to the target. Here, the
distributions of the source and the target domains can be aligned,
which enables the source knowledge supporting the unlabeled
target domain, leading to improved data classification. In this
manner, the classifier is able to make more accurate predictions,
as illustrated in Fig. 1.

C. Maximum Mean Feature Discrepancy for
Feature Alignment

Apart from the maximization of the MI, distribution dis-
crepancy between the source and the target domains should
be analyzed to improve the knowledge transfer. The use of the
RKHS is a popular statistical learning approach for calculating
the distribution discrepancy. Denote a random variable x ∈ X
in domain D, whose distribution is p(x). A real-valued RKHS
H on domain D with kernel k(x, x∗) represents a real-valued
Hilbert space of the real-valued function f : D �→ R, where
the evaluation functional over the Hilbert space of functions
H is μx : f �→ f(x). The kernel of H satisfies the reproducing
property

〈f(·), k(x, ·)〉H = f(x). (15)

In the case of UDA, the kernel functionk(x, ·) can be regarded
as the feature map φ(x), where k(x,x∗) = 〈φ(x), φ(x∗)〉H.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 18,2024 at 20:34:39 UTC from IEEE Xplore.  Restrictions apply. 



2774 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 26, NO. 5, OCTOBER 2021

Now, denote a probability distribution p as an element in RKHS
through kernel embedding

μx(p) = Ex(φ(x)) (16)

where Ex(k(x,x
∗)) is finite. The mean embedding function

μx can evaluate the expectation (expected value) of any RKHS
function f , using an inner product in Hilbert space H [33], [34]

〈μx, f〉H = Ex(f(x)) ∀f ∈ H. (17)

The kernel mean embedding process μx, which is a non-
parametric approach, helps to modify distributions by drawing
data from its domain. Therefore, a kernel k(·, ·) with an em-
bedding μx(p) to RKHS can retrieve discriminative features of
any distribution. This process does not require the estimation
of the probability density of the intractable true distribution
p [35]. Therefore, the embedding of the intractable true pos-
terior p(x) can be approximated by using a finite set of data
samples {x(1),x(2), . . . ,x(n)}. The resulting empirical kernel
embedding can be represented as μ̂x = 1

n

∑n
i=1 φ(xi), which

converges to ‖μx − μ̂x‖H in RKHS norm.
However, traditional RKHS kernel embedding focuses only

on signal domain. In the case of UDA, data samples are drawn
from the source distribution p(xs) and target distribution q(xt),
where XS = {x(1)

s ,x
(2)
s , . . . ,x

(n)
s } and {x(1)

t ,x
(2)
t , . . . ,x

(m)
t }

are the set of data samples from the source and the target do-
mains. The MMD solves the associated problem by introducing
a two-sample test that rejects/accepts the null hypothesis of
p = q [32]. MMD makes the assumption that if the probability
distributions are identical, the statistical features should be the
same

dH(p, q) = sup
f∈H

(Exs
(f(xs))− Ext

(f(xt)) (18)

where dH(p, q) = 0 ⇐⇒ p = q. An unbiased estimator of
dH(p, q) may be represented as

d̂H(p, q)

=
1
n2
s

ns∑

i=1

ns∑

j=1

k(x(i)
s ,x(i)

s ) +
1
n2
t

nt∑

i=1

nt∑

j=1

k(x
(i)
t ,x

(i)
t )

− 2
nsnt

ns∑

i=1

nt∑

j=1

k(x(i)
s ,x

(i)
t ). (19)

Simply calculating the domain shifts between p(xs) and q(xt)
may introduce noise from the input space. As there exists domain
shift between the source and the target domains, the samples
in the source domain and the target domain may not be the
same. Therefore, some features in the input space may not help
the cross-domain classification. Unlike input space samples,
feature representations are produced by a feature extractor,
where the discriminative features are maximized [35]. Directly
optimizing the divergence between the source and the target
feature representations may improve the performance of RKHS
kernel embedding in cross-domain classification. Following the
structure of a traditional MMD, the Hilbert space embedding
of the source feature distribution p(zs) and the target feature

distribution q(zt) can be used to measure the discrepancy of
the two feature representation distributions. The resulting opti-
mal divergence measurement is called maximum mean feature
discrepancy (MMFD), which is defined as

dF (p, q) = sup
f∈H

(Ezs
(f(zs))− Ezt

(f(zt)) (20)

where samples are drawn from the source feature distribu-
tion p(zs) and the target feature distribution q(zt). ZS =

{z(1)
s , z

(2)
s , . . . , z

(n)
s } and ZT = {z(1)

t , z
(2)
t , . . . , z

(m)
t } are the

sets of data samples from the source feature representation and
the target feature representation, respectively.

According to the kernel two-sample test theory of MMD and
(18), q(zt) can approximate the intractable true posterior p(zs)
if p(zt) = q(zs), which happens if and only if dF (p, q) = 0.
Similar to (19), the unbiased estimator of dF (p, q) can be rep-
resented as the sum of the squared distance between the kernel
mean embeddings

d̂F (p, q)

=
1
n2
s

ns∑

i=1

ns∑

j=1

k(z(i)s , z(i)s ) +
1
n2
t

nt∑

i=1

nt∑

j=1

k(z
(i)
t , z

(i)
t )

− 2
nsnt

ns∑

i=1

nt∑

j=1

k(z(i)s , z
(i)
t ) (21)

where the default kernel k(·, ·) is the Gaussian kernel

k(z, z′) = exp(−(z− z′)2/γ) (22)

where γ is a scalar bandwidth parameter.

D. System Framework of FRAN

Based on results obtained in Sections III-B and III-C, the
system framework of FRAN is presented in this section. In the
present work, the objective function consists of three parts: 1)
labeled source-domain classification; 2) MI maximization for
feature-level knowledge transfer; and 3) MMFD.

Following the standard UDA protocol, the softmax cross-
entropy loss is used to evaluate the labeled source-domain
classification. During the training, both the feature extractor G
and the classifier F are trained to minimize the loss function of
the source-domain classification

Lcls(XS , YS)

= − 1
N

N∑

i=1

δ(ys
(i), ŷ(i)

s ) log [σ ◦ F ◦G(x(i)
s )] (23)

whereσ(·) is the softmax function.σ(·) interprets the model out-
puts as nonnegative probabilities that add up to 1.G is the feature
extractor, which encodes the input diagnosis signals from the
source domain to their feature representation, zs(i) = G(xs

(i)).
F is the classifier, which calculates the likelihood for each
fault types from the feature representation generated by G. The
output of F is then normalized by the softmax function σ and
produces a probability distribution over the predicted fault types
ŷ
(i)
s = σ ◦ F (zs

(i)). The binary indicator, δ(ys
(i), ŷ

(i)
s ), outputs
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Fig. 2. System framework of FRAN.

1 if the prediction ŷ
(i)
s matches its corresponding class label

ys
(i).
In the MI maximization for feature-level knowledge transfer,

the loss function can be obtained according to (14)

LF (XS , XT )

=
1
N

N∑

i=1

[G(x(i)
s ) · log(G(x(i)

s )) +G(x
(i)
t ) · log(G(x

(i)
t ))]

=
1
N

N∑

i=1

[z(i)s · log(z(i)s ) + z
(i)
t · log(z(i)t )]. (24)

The loss function for MMFD is provided from (21) as

LD(ZS , ZT )

=
1
n2
s

ns∑

i=1

ns∑

j=1

k(z(i)s , z(i)s ) +
1
n2
t

nt∑

i=1

nt∑

j=1

k(z
(i)
t , z

(i)
t )

− 2
nsnt

ns∑

i=1

nt∑

j=1

k(z(i)s , z
(i)
t ). (25)

Summarizing (23)–(25), the objective function for the entire
system framework can be presented as

L = Lcls + αLF + βLD (26)

where α and β are the weighting coefficients.
Fig. 2 presents the detailed system framework of FRAN,

as developed in this work. The proposed system framework
includes the training stage and the diagnosis stage. The model
training stage incorporates the UDA protocol, which only takes
source-domain samples (xs), source-domain labels (ys), and
target-domain samples (xt) as inputs. In the beginning, the
source-domain samples and target-domain samples are passed
through the feature extractor F to produce feature representa-
tions zs and zt. Both source and target feature representations
are utilized to calculate the feature alignment lossesLF andLD.
Meanwhile, only the source feature representation zs is passed
through the classifier F to generate predictions and calculate the
classification lossLcls. Last, all the losses are summed according
to (26) and the optimizer backpropagates the errors to improve
the model performance.

Once the model is trained, it can be deployed to test the adap-
tation performance. The diagnosis stage takes the target-domain
data samples as the input and pass them through the trained
feature extractor and classifier to produce the predictions on
fault identification ŷt.

The detailed implementation of the proposed system frame-
work, FRAN, is summarized in Algorithm 1. The input of
the algorithm constitutes XS , XT , YS , and hyperparameters.
In the beginning, the input signals are normalized, and the
network parameters are initialized. Then, the minibatch training
is conducted from line 3 to line 14, to optimize the model for
epoch times. In each iteration, k minibatch data samples and
labels are drawn from the input data in a random manner. Then,
the source samples and the target samples are passed through
the feature extractor G to produce feature representations in
line 7. The source-domain prediction results are obtained in
line 8 via the classifier F . From line 9 to line 11, the loss
functions are computed according to (23)–(25). Last, in line 12,
the feature extractor and classifier is optimized to minimize the
loss function, and the network parameters θ are updated for the
next iteration.

E. Computational Complexity Analysis

In the proposed system framework, Lcls is the main objective
that evaluates the classification error on the labeled source
domain, which requires the most computational resources. For a
fair comparison, the feature extractor and classifier that produces
Lcls are considered the same as the benchmark algorithms.
Denote the computational complexity of F and G as O(G) and
O(F ), respectively. The domain adaptation process occurs when
minimizing the objectivesLF andLD, which have the complex-
ity,O(N) andO(k2), respectively. Therefore, the computational
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complexity of the proposed framework isO(G+ F +N + k2).
Normally, G+ F � N + k2, and the computational complex-
ity of the proposed framework can be reducedO(G+ F ), which
is the same as F ◦G. Thus, the system framework proposed in
this article should be able to solve cross-domain fault diagnosis
problems efficiently.

IV. EXPERIMENTAL VALIDATION

This section presents the results from experiments carried
out using the system framework developed in this article. The
performance of the proposed system framework is compared
with that using state-of-the-art benchmark algorithms on both
public and real-world datasets, with the objective of validating
the developed system framework.

A. Experimental Setup

In all the experiments carried out for the present purpose, the
standard training protocol for UDA [20], [36], [37] is followed,
which utilizes all labeled source data samples and unlabeled
target data samples. The evaluation metric is the accuracy of
the target-domain diagnosis, 1

M

∑M
i=1 δ(yt

(i), ŷ
(i)
t ). The Adam

optimizer [38], which backpropagates through the proposed
network to minimize the objective function, is used for the
optimization with minibatch to train the model. The Adam
optimizer is an efficient stochastic optimizer that requires less
memory to compute and can obtain faster convergence. A unified
network architecture is used: the feature extractor comprises two
convolutional layers with each layer followed by a max-pooling
layer. The kernel sizes for both convolutional layers are 2, and the
output channels are 32 and 64, respectively. Two fully connected
layers, whose output channels are 1000 and 3, respectively, are
placed behind for calculating the classification scores. In this
work, the hyperparameters are tuned through the grid search to
consider all parameter combinations. The learning rate is tuned
from 1e-5 to 0.1, and both α and β are tuned from 1e-7 to 1.0.
The reported performance is obtained by setting the learning rate
to 1e-4, α to 1e-6, β to 1.0, and the minibatch size to 64. Each
transfer task is repeated ten times to obtain the average accuracy.
All experiments are implemented on the PyTorch platform. The
conditional entropy of the softmax predictions is minimized
for the target samples, which encourages the model to make a
more confident prediction on the unlabeled target samples [39],
Lent =

1
|XT |

∑
xt∈XT

−F (G(xt)) logF (G(xt)).

B. Experiment Design and Datasets

According to [26] and [28], four cross-domain fault diagnosis
scenarios are conducted in this work to evaluate the proposed
framework. First, the performance on two common rotating
machine faults (bearing fault and gearbox fault) is tested. The
most vulnerable components for a bearing are its inner race,
outer race, and ball, which can wear out easily due to metal-
to-metal contact under high load and high running speed [40].
The gear tooth is the most vulnerable component of a gearbox,
whose frequent fault types are the chipped tooth (CT) and the
missing tooth (MT). In real-world scenarios, these faults are

inspected by checking if the system vibration and temperature
are increased and if there are visible defects on the surface of
bearings and gears. Then, complex fault diagnosis scenarios and
a real-world bearing fault diagnosis are conducted to further test
the performance of the proposed framework.

1) Bearing Fault Diagnosis: Three domains are used in this
scenario: two from the CWRU dataset and one from the MFPT
dataset. The CWRU bearing dataset is provided by the bearing
data center in the Case Western Reserve University.1 Deep grove
ball bearings are used for the experiment, which is driven by
a three-phase induction motor [40]. Two different settings on
the CWRU dataset are used in this test scenario, which shares
the same experiment platform and sampling rate (12 kHz). The
vibration signals in CWRUA are collected only from the driven
end with the motor load at 0 hp. The vibration signals in CWRUB
are collected with the motor load at 3 hp. For both CWRUA and
CWRUB, four health conditions are considered: ball fault (B),
inner race fault (IR), outer race fault (OR), and normal condition
(N). The MFPT dataset is provided by MFPT Society,2 which is
gathered from the setups with different deep grove ball bearings
and motors. MFPT includes the vibration signals under three
machine health conditions (OR, IR, and N), which are collected
under different motor loads, from 250 lb to 300 lb, with 48-kHz
sampling rate.

2) Gearbox Fault Diagnosis: Gearbox data are provided by
PHM09 Data Challenge.3 Vibration signals are collected at five
different shaft speeds (30, 35, 40, 45, and 50 rev/s) under high
(H) and low (L) load conditions. There are three machine health
conditions in this test scenario: CT, MT, and normal. For a fair
comparison, the transfer tasks are set as in [27] and [28] to
examine the model transfer performance under different shaft
speeds and loading. The domains are denoted as “xxH” or “xxL,”
where xx represents the corresponding shaft speed, and H and
L denotes the load conditions.

3) Fault Severity Diagnosis: To further test the performance
of the proposed system framework in handling complex adap-
tation scenarios, fault severity diagnosis is conducted. The full
CWRU bearing dataset is used in this test scenario, where the
data samples are vibration signals collected at both drive-end
(DE) and fan-end (FE) with three severity levels (fault diam-
eter: 0.007, 0.014, and 0.021 in). These faults are introduced
separately at the inner raceway (IR) and outer raceway (OR).
Besides, data samples from each severity level are collected at
the sampling rate of 12 kHz, under various motor loads from 0
to 3 hp. As for the adaptation scenario, different domains are
denoted by “DExxx” or “FExxx,” and FE and DE denote the
different data domains that contain all types of severity level.

4) Real-World Run-to-Failure Stage Diagnosis: In this test
scenario, the knowledge transfer performance from public
datasets in real-world applications is examined. The public
datasets CWRUA, CWRUB, and MFPT are used as the source
domain, while a real-world bearing fault scenario is used as

1[Online]. Available: http://csegroups.case.edu/bearingdatacenter/home
2[Online]. Available: https://www.mfpt.org/fault-data-sets/
3[Online]. Available: https://www.phmsociety.org/competition/PHM/09/

apparatus

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on December 18,2024 at 20:34:39 UTC from IEEE Xplore.  Restrictions apply. 

http://csegroups.case.edu/bearingdatacenter/home
https://www.mfpt.org/fault-data-sets/
https://www.phmsociety.org/competition/PHM/09/apparatus


CHEN et al.: UNSUPERVISED CROSS-DOMAIN FAULT DIAGNOSIS USING FRANS FOR ROTATING MACHINERY 2777

TABLE I
DOMAIN ADAPTATION RESULTS IN BEARING FAULT DIAGNOSIS

the target domain. To better examine the knowledge transfer
performance under complex real-world bearing faults, two types
of target domains are considered: early degradation stage (Early)
and serious fault dataset (Serious). Early degradation is inobvi-
ous and does not affect the operation of the machine, but may
develop into serious faults, which may cause damage to the entire
machine. Therefore, in the early degradation stage, the mainte-
nance strategy can be adjusted to prevent further degradation.
Moreover, the identification of serious fault requires the repair or
replacement of the failed components, which prevents damage
to the entire machine. The real-world run to failure dataset is
collected by the Hangzhou Bearing Test Research Center.4 In
this dataset, deep grove ball bearings are mounted on a shaft
that is coupled by a rubber belt and driven by an ac motor. The
experimental platform is different to CWRU and MFPT. In this
experiment, four experimental bearings are mounted on a shaft
that is driven by a motor running constantly at 3000 r/min. As
for the data samples, 10 s of vibration signals are collected at
all four experiment bearings, every 5 min at the sampling rate
of 24 kHz. During the experiment, radial loads of 10.25 kN are
applied to each bearing until the failure occurs, which finally
causes an inner race fault in bearing no. 4. The sampling data in
the no. 4 bearing are then segmented into three health conditions:
normal (N), early degradation (IRE), and serious fault (IRS).

C. Experimental Results

The training of the model was conducted on a PC with
4.0-GHz Quad-Core CPU, 16-GB memory, and an Nvidia 1080
GPU. For the fault severity diagnosis, the training time for 100
epochs is 705.3 s, and the test time for all target samples is 0.16
s. For other datasets, the training time is around 7.5 s, and the
test time is 0.01 s.

1) Results for Bearing Fault Diagnosis: The identification
results of the bearing fault diagnosis are presented in Table I,
where → denotes the adaptation is conducted from left-side
dataset (source) to right-side dataset (target). It is seen that
the proposed framework outperforms benchmark algorithms
by a significant margin in all adaptation scenarios except
MFPT→CWRUB. The proposed framework also achieves the
highest average diagnosis accuracy of over 85.0%, suggesting
that aligning feature representations can help to transfer the
discriminative features from the labeled source domain to the
unlabeled target domain. Notably, the adaptation scenarios using
MFPT as the source domain have the lower diagnosis accuracies

4[Online]. Available: https://data.mendeley.com/datasets/z4s9bx4wrn

(around 70%), which is because CWRU-related datasets contain
more health condition types than MFPT. The MFPT dataset only
collects three health conditions (OR, IR, and N), while CWRU-
related datasets have one more health condition: ball faults (“B”).
The lack of knowledge in the ball faults results in poor diagnosis
accuracy when using MFPT as the source domain. Moreover, the
proposed framework achieves more significant improvements in
the adaptation scenarios with larger domain shifts. For example,
the improvements in CWRUA↔CWRUB are less significant
when compared to other adaptation scenarios. A larger domain
shift requires the model to extract more representative features
that are shared by the two domains, which can be better analyzed
by the FRAN. Therefore, the FRAN is more effective when the
domain shift is larger, which makes FRAN suitable for complex
adaptation scenarios and real-world applications.

2) Results for Gearbox Fault Diagnosis: The results of gear-
box fault diagnosis are presented in Table II. The proposed
framework achieves 100% fault identification accuracy in all
adaptation scenarios, outperforming the benchmark algorithms
by a significant margin. It is seen that all the traditional single-
domain classification approaches cannot perform well in cross-
domain gearbox fault diagnosis, and the best prediction accuracy
is only 62.8%, which is nearly 40.0% less than the proposed
framework. In comparison, most DA-based benchmark ap-
proaches achieve high accuracy in this test scenario, with at least
95.8% accuracy. However, DA-based benchmark approaches
cannot perform well in the adaptation scenarios with large do-
main shifts, such as the scenarios with the different shaft speeds
under high load (30H→40H and 45H→35H). Shaft speed vari-
ance under high load may lead to significant changes in the
feature representation, which leads to larger domain shifts. The
DA-based benchmark approaches only focus on the input-level
features that failed to align features representations. Then, when
the domain shift is large, the fault-diagnosis-specific features
may not be captured, which negatively impacts the diagnosis
performance. The improvement achieved by the FRAN suggests
that it can successfully extract the fault-diagnosis-specific fea-
tures on the domain scenarios with large domain shifts, which
validates the effectiveness of aligning feature representations
using MI and MMFD.

The results for bearing fault diagnosis and gearbox fault
diagnosis illustrate the superior performance of DA-based ap-
proaches in cross-domain fault diagnosis. Compared to tradi-
tional approaches, DA-based approaches successfully transfer
the knowledge from the source domain to the target domain.
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TABLE II
DOMAIN ADAPTATION RESULTS IN GEARBOX FAULT DIAGNOSIS

“Xxh” or “Xxl” denotes the gearbox ran on “Xx” shaft speed under H or L load condition.

Fig. 3. Domain adaptation results in fault severity diagnosis (domain adaptation tasks were conducted from the row labels to the column labels;
“xxx” in DExxx or FExxx denotes the fault diameter; FE and DE contains all severity levels). (a) DTL. (b) MCD. (c) SAFN. (d) FRAN (proposed).

In the following experiments, both complex adaptation sce-
narios and real-world adaptation tasks are utilized to further
examine the performance of the proposed work. Note that only
the best performing DA approaches are tested in the following
complex scenarios as they significantly outperform traditional
approaches.

3) Results for Fault Severity Diagnosis: The results for di-
agnosing fault severity of a bearing are presented in Fig. 3.
The results for each algorithm are summarized using a square
matrix for better visualization, where domain adaptation tasks
are conducted from row label domains to column label domains.
The main diagonal of the result matrix can be regarded as the
signal-domain classification since the source domain and the
target domain are the same here. FRAN, SAFN, and MCD
achieve 100% accuracy in all single-domain classification tasks.
Overall, the proposed framework achieves the highest average
diagnosis accuracy at 89.9%, while DTL provides the worst
average diagnosis accuracy at 77.5%. The SAFN and MCD
achieve second-best average diagnosis accuracy at 86.1% and
84.9%, respectively. The worst performance for each algorithm
is obtained in the last two columns of the evaluation matrices,
which are the most complex adaptation scenarios. These adap-
tation scenarios only utilize a small part of the dataset to train a
model used to diagnose the full dataset. The knowledge of the
severity level in each source domain is very limited, which makes
it difficult to produce accurate diagnosis on the target domain
with more data variations. Nevertheless, the FRAN achieves
significantly higher accuracy than the benchmark algorithms on
these complex adaptation scenarios by progressively aligning
the feature representations using MI and MMFD. Apart from

the adaptation scenarios in the last two columns, the FRAN also
outperforms the benchmark algorithms significantly on other
simple adaptation scenarios. Overall, the superior performance
of the FRAN on the fault severity diagnosis suggests the effec-
tiveness of the proposed feature alignment on the knowledge
transfer.

4) Results for Real-World Run-to-Failure Stage Diagnosis:
The experiments on diagnosing a run-to-failure bearing in dif-
ferent fault stages can validate the generalization performance of
the proposed system framework. The results of the real-world
run-to-failure stage diagnosis are presented in Fig. 4. Similar
to the gearbox fault diagnosis, the FRAN achieves 100% fault
identification accuracy in all adaptation scenarios. It is seen that
most benchmark algorithms achieve higher diagnosis accuracy
when adapting to Serious than adapting to Early. This is because
there is only one fault (inner race fault) that occurred in the
test bearing (target domain) in the serious fault stage, which is
identical to “IR” feature in the source domains. Besides, the
source domains contain more types of data variations, which
makes the adaptations be conducted from the complex domains
to a relatively simple domain. Therefore, state-of-the-art ap-
proaches, such as SAFN, can also successfully detect these
adaptation scenarios. In comparison, the machine fault in the
early degradation stage is not obvious, and the features of such
fault are not similar to all the fault types that occur in the source
domain. Therefore, the domain shift between the source domain
and the target domain is large. Experimental results show that
the FRAN can successfully mitigate the domain shift and obtains
100% diagnosis accuracy, which outperforms the benchmark
algorithms significantly. The superior performance of the FRAN
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Fig. 4. Domain adaptation results in real-world run-to-failure stage diagnosis (domain adaptation tasks were conducted from x-axis label domains
to early/serious stages). (a) Early degradation diagnosis. (b) Serious fault diagnosis.

Fig. 5. Ablation study for FRAN components.

on both the early-stage diagnosis and the serious-stage diagnosis
suggests its capability in handling both the complex and the
simple real-world adaptation scenarios. Furthermore, the ability
in diagnosing early-stage degradation can help to give early
warnings in real-world applications, thereby preventing further
loss.

D. Ablation Study

Fig. 5 presents the contribution of each component of the
FRAN: the entropy of the target feature representation, i.e.,
H(zt), the entropy of the source feature representation, i.e.,
H(zs), and the MMFD penalty between zs and zt, to the overall
performance while keeping all hyperparameters the same. For
x ∈ {m, s, t, st,mt,ms, rmk}, FRAN-x denotes the proposed
model with only the components x enabled. For this component
analysis, m denotes MMFD, s denotes the entropy of the source
feature representation, and t denotes the target feature repre-
sentation. FRAN-s performs the worst suggesting that merely
maximizing the entropy of the source feature representation has
little help in transferring the knowledge from the source domain
to the target domain. FRAN-m and FRAN-t slightly improve
the performance from FRAN-s indicating that both maximizing
the entropy of the target feature representation and minimizing
the feature-level discrepancy can improve the knowledge trans-
ferability for the problem of the machine fault diagnosis. Then,
further improvements are achieved by FRAN-st, FRAN-mt, and
FRAN-ms. The performance of FRAN-m (MMFD) is better than
FRAN-st (MI), which suggests that MMFD is more effective
than MI if they were applied solely. Overall, the best perfor-
mance is achieved by jointly using all components of FRAN,

i.e., FRAN-mst, which indicates the effectiveness of optimizing
MI and MMFD simultaneously.

V. CONCLUSION

In this article, a novel framework was developed for the
cross-domain fault diagnosis as applied to rotating machinery.
The proposed approach provided a unified network structure
for aligning feature representations to improve the knowledge
transfer from the labeled vibration signals (source domain) to
the unlabeled vibration signals (target domain). A novel deep
neural network was proposed to maximize the MI between
the feature space of the source domain and the feature space
of the entire input domain while minimizing the discrepancy
between the two domains. Through the proposed alignment,
more features extracted from the source domain could be used
to support the diagnosis in the target domain. Therefore, a more
generalized model could be produced to handle complex adapta-
tion scenarios. Furthermore, the process of the MI maximization
was simplified to simultaneously maximize the entropy for the
feature space of each domain. Experiments were conducted on
both the public datasets and the real-world adaptation scenarios,
which validated the feasibility and the superior performance of
the proposed framework on the cross-domain fault diagnosis.

For the rotating machinery fault diagnosis, the temporal infor-
mation of the entire vibration signals might reveal the potential
of the machine faults and help improve the accuracy of the fault
diagnosis. In this article, the proposed approach only focuses
on the diagnosis of the input samples but did not consider the
temporal correlations among them. More analysis regarding the
temporal correlation for the fault diagnosis will be conducted in
future works.
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