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ABSTRACT

Theoretical understanding of the learning process of graph neural network (GNN)
has been lacking, especially for node-level tasks where data are not independent
and identically-distributed (I.I.D.). The common practice in GNN training is to
adopt strategies from other machine learning families, despite the striking dif-
ferences between learning non-graph and graph-structured data. This results in
unstable learning quality (e.g., accuracy) for GNN. In this paper, we study the
relation between the training set in the input graph and the performance of GNN.
Combining the topology awareness of GNN and the dependence (topology) of
data samples, we formally derive a structural relation between the performance
of GNN and the coverage of the training set in the graph. More specifically, the
distance of the training set to the rest of the vertexes in the graph is negatively
correlated to the learning outcome of GNN. We further validate our theory on
different graph data sets with extensive experiments. Using the derived result as
guidance, we also investigate the initial data labelling problem in active learning
of GNN and show that locality-aware data labelling substantially outperforms the
prevailing random sampling approach.

1 INTRODUCTION

Graph Neural Network (GNN) is a family of machine learning (ML) models tailored for learning
from graph-structured data (Duvenaud et al., 2015; Li et al., 2017b; Gilmer et al., 2017; You et al.,
2019). Recently, great success has been shown using models such as GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2018) and GAT (Veličković et al., 2017) on tackling various graph-
related problems in domains such as chemistry (Gilmer et al., 2017), biology (Duvenaud et al.,
2015), social networking (Hamilton et al., 2018; Chen et al., 2018; 2017b) and traffic networks
(Li et al., 2017a). Despite their practicality and potential, theoretical understanding of the learning
process of GNNs is still underexplored, especially given their difference in data dependency from
other ML families.

In most ML settings, data samples are assumed to be created independently and identically (I.I.D.)
from a certain distribution. Because of this, uniform sampling is effective in many data selection pro-
cesses such as training/validation/test set partition, batch sampling and initial labelling set selection
(Settles, 2009; Ren et al., 2020). For learning from graph-structured data, inherent dependencies
exist among data samples, as captured by the graph structure. Taking training/validation/test set
partition for example, different random partitions of the labelled nodes significantly impact the per-
formance of the GNN model (Shchur et al., 2019), especially when the size of the training set is
small relative to the data population. Fig. 1 illustrates this phenomenon on the Cora data set (Sen
et al., 2008). This calls for a better understanding of the relation between the dependence among
data samples and the learning process of GNN.

Network homophily (McPherson et al., 2001) is a fundamental principle that describes the depen-
dence among data samples in many real-world networks. Network homophily implies that nodes
close by in (graph) distance tend to have similar features and labels. Most existing GNN designs
assume strong homophily in the graph data (Zhu et al., 2020) and exploit it by propagating features
and aggregating them within various graph neighbourhoods using different mechanisms (Hamilton
et al., 2018; Veličković et al., 2017; Kipf & Welling, 2017). The capability to capture topological
information from the underlying graph structure is the key to contribute to the success of GNN.
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Figure 1: Performance of GCN, GraphSAGE and GAT on Cora dataset with different random parti-
tions of training set (of size 35) and test set (within the labelled data set).

The following question is raised: can we combine this network principle and topology awareness
of GNN to derive useful insights for more effective graph learning via GNN? Most existing efforts
focus on the (vertex) sampling strategy to accelerate GNN training (Chen et al., 2018) or to con-
serve memory during GNN training (Ying et al., 2018). There is little understanding or work on
the underlying principle between the dependency of the data samples and the performance of GNN
models Ma et al. (2021).

To address this question, we theoretically and experimentally investigate how and why different ran-
dom partitions of training sets affect the learning outcome (test performance) of GNN in node-level
tasks. We focus on graph data sets where the network homophily property holds. We formally show
the spatial locality in the inference ability of GNN (under certain conditions), i.e., GNN predicts
better on vertexes close to the training set.

Our main contributions are summarized as follows.

1. We prove that GNN predicts better on vertexes that are closer to the training set under
certain assumptions. This implies that better coverage of the training set over the rest of the
graph (in terms of neighbourhoods of a small radius) can translate into better generalization
performance of the GNN model in the semi-supervised setting.

2. We experimentally validate our theory and assumptions on Cora, Citeseer and PubMed data
sets with prevailing GNN models such as GCN, GAT and GraphSAGE.

3. Using the observation and theory as guidance, we formulate two optimization problems
for studying (1) the “cold start” problem in active learning (Grimova et al., 2018), and
(2) minimal size of the labelled data set with respect to the model performance. The first
optimization provides a strategy for selecting the most “economic” initial data set to be
labelled and the other gives insights on how many vertexes should be labelled initially for
the desired learning outcome of a GNN model.

This work represents our first attempt to unwrap a better understanding of the learning process of
GNN. It is novel to combine the network principle of the dependence among data samples and
topology awareness of GNN to formally infer useful insights (based on graph structure) for GNN
learning. The results suggest that the topology awareness of GNN is not only an important property
to improve GNN performance, as shown in (Li et al., 2020; You et al., 2019; Xu et al., 2018; Nishad
et al., 2021), but also useful guidance for making informed decisions in the learning process of GNN.

2 RELATED WORK

Expressive Power of GNN. Modern GNN architectures are inspired by the Weisfeiler–Lehman
(WL) isomorphism test (Leman & Weisfeiler, 1968) which uses the graph structure to propagate
information (Kipf & Welling, 2017). One idea in characterizing the power of GNN is to measure
its ability in differentiating different graph structures, referred to as the expressive power of GNN
(we refer to Sato (2020) for a survey on this line of works). In particular, Xu et al. (2018) proved
that the expressive power of GNNs is no more than the WL test. This has inspired a number of
studies on improving the expressive power of GNN by enabling it to differentiate graph structures
that cannot be distinguished by the WL-test (Morris et al., 2020). The studies in (You et al., 2019; Li
et al., 2020; Nishad et al., 2021; Zhou et al., 2020) show that combining graph topology information
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(distance) into the learning process of GNN (e.g., for feature encoding, aggregation, normalization)
can improve the performance of GNN on various tasks.

Generalization of GNN. Studies aiming to understand generalization performance of GNNs on
node-level tasks are rather limited (Ma et al., 2021). To our best knowledge, there are two very
recent studies that investigate/demonstrate similar observations as ours. Zhu et al. (2021) studied
the problem in GNN learning that the test set and the training set are generated from different dis-
tributions. They found the test error of GNNs is inversely related to their defined metric (distance)
between test set and training set, which is similar to our discovery here. However, their work fo-
cused on designing a regularization mechanism to allow the learnt distribution to approximate the
distribution in the test set. Ma et al. (2021) studied a similar problem as ours by extending the PAC-
Bayesian analysis for I.I.D. data to analyzing the generalization performance of GNNs. They prove
that given a fixed training set, GNN generalization performance varies among different subgroups
of the test population defined by a feature distance. Our study complements their study in the case
that graph distance metric is used. Our analysis provides a different and more direct perspective for
understanding how graph structure information influences GNN learning performance.

3 PRELIMINARIES

3.1 GRAPH AND NOTATION

Let G = (V,E) be the input graph with node feature vector Xv for all v ∈ V . In this paper,
we assume G is connected and focus our analysis on the node classification task where a label yv
is associated with vertex v, and the objective is to learn a representation vector hv of v such that
v’s label can be predicted as yv = f(hv), where f is the prediction function. We use d(x, y) to
denote the distance between x and y: (1) d(., .) is defined to be the shortest path distance if x and
y are vertexes in the graph; (2) d(., .) is the Euclidean distance if x and y are representations in the
embedding space; (3) d(., .) is the distance between x and the closest element in Y , if Y is a set.
For example, let u be a vertex and D be a set of vertexes, and then d(u,D) := minv∈D{d(u, v)}.
Let N and R denote the set of natural numbers and real numbers, respectively. R+ is the set of
non-negative real numbers.

3.2 GRAPH NEURAL NETWORK

GNN combines the graph structure and node features Xv to learn a representation vector hv of node
v. Modern GNNs adopt a neighborhood aggregation scheme, where the representation of a node is
updated iteratively by aggregating representations of its neighbors. After k iterations of aggregation,
a node’s representation captures the structural information within its k-hop neighborhood in the
graph. LetH ⊆ Rm be the embedding space of the learnt representations of vertexes and m ∈ N is
the dimension. Mθ : V 7→ H denotes the GNN model with parameter θ that maps a vertex v ∈ V
into a representation vector hv in the embedding space H, following a neighborhood aggregation
scheme. Let f : H 7→ Rc be the prediction function that maps an embedding vector hv to a
vector in Rc, in which c ∈ N is the number of classes and each entry represents the probability of
belonging to the respective class. The GNN prediction process can be viewed as composition of
f ◦Mθ : V 7→ Rc. Let L : Rc 7→ R+ denote the loss function which evaluates how accurate the
prediction is.

As the graph structure (topology) among vertexes provides important information, it is important for
GNN to preserve as much topological information as possible for embedding. Indeed, it has been
formally and experimentally shown in (Li et al., 2020; You et al., 2019; Nishad et al., 2021) that
improving the ability of GNN to preserve topological information such as shortest path distance can
improve the expressive power of GNN. Here, we explore how to combine the topology awareness of
GNN with the network homophily principle to derive useful insight for GNN learning. In particular,
we focus on the ability of GNN to preserve distances information among vertexes, i.e., to have a low
distortion between graph distance and embedding distance. The distortion of a function between
two metric spaces is defined as follows.
Definition 1 (distortion). Given two metric spaces (E , d) and (E ′, d′) and a mapping f : E 7→ E ′,
f is said to have distortion α, if there exists a constant r > 0 such that ∀u, v ∈ E , rd(u, v) ≤
d′(f(u), f(v)) ≤ αrd(u, v)
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You et al. (2019); Li et al. (2020); Nishad et al. (2021) have presented effective ways to increase the
awareness of GNNs to vertex distances, i.e, to decrease the distortion rate α. For example, one can
encode the shortest path distance (SPD) or other graph structure information to be part of the node
feature for each vertex (Li et al., 2020). Based on Bourgains’ theorem (Bourgain, 1985), You et al.
(2019) propose a vertex-distance-aware mechanism by selecting a set of anchor vertexes to provide
positional information, and use the positional information to adjust the intermediate activation in
GNN learning process. It is also discussed in (You et al., 2019) that the commonly used GNNs
are a local version of the vertex-distance-aware mechanism they proposed, as the commonly used
GNNs aggregate information for the training node from its neighbourhood. This neighbourhood
aggregation mimics the existence of anchor vertexes and can provide local position information.
This implies that common GNNs are already equipped with some ability to capture vertex distances
(low distortion), at least between neighbours whose representations are aggregated. We conduct
experiments in Sec. 4.3 to further validate this.

4 LOCALITY IN THE LEARNING PROCESS OF GNN

4.1 LOCALITY IN GNN PERFORMANCE

We now show how to use GNN properties to derive local structural behaviour in GNN learning. We
make the following assumptions for our theoretical analysis.

Assumption 1 (Local curvature). For all representations h ∈ H, d
dhL(f(h)) and d2

d2hL(f(h)) exist,
and are continuous and bounded.
Assumption 2 (Well-trained). For a given training setD, the training process of the GNN converges
to a set of parameters θD such that for any ε > 0 and v ∈ D, we have L(f(MθD (v))) < ε.

Assumption 1 is a standard technical assumption to make the analysis feasible. Regarding Assump-
tion 2, it has been formally proved that GNNs can achieve universal approximation power (Keriven
& Peyré, 2019; Brüel-Gabrielsson, 2020; Maron et al., 2019), and under mild conditions and with
enough parameters in the model (Oymak & Soltanolkotabi, 2019), a model with universal approx-
imation power can achieve zero loss on the training set upon convergence, i.e., the property in
Assumption 2, with high probability. This can be extended to the GNN case as long as there are
no training vertexes with an identical neighbourhood and the same features but different labels. We
assume the loss converges to zero for simplicity in our theoretical analysis, and show in our exper-
iments in Sec. 4.3 that converging to a small loss (instead of zero) is sufficient for a GNN model to
show the structural behaviour to be derived. Our first result below gives the locality in the predicting
power of GNN around vertexes in the training set.
Proposition 1. Let D be a given training set and θD be the set of parameters as defined in Assump-
tion 2. Under Assumption 1, we have that for any v ∈ D and hv =MθD (v), there exists rv > 0
such that for representations h, h′ ∈ H, if d(h, hv) < d(h′, hv) < rv , then L(f(h)) < L(f(h′)).

We provide a proof for Proposition 1 in Appendix A. Proposition 1 states that given a GNN model
with a large enough learning capacity (aka sufficient parameters in the model), for each vertex v in
the training set, there exists a local neighbourhood of radius rv surrounding representation hv of
v in the embedding space, on which the prediction performance (loss) admits simple monotonicity
with respect to the distance between the representations. This result suggests that if we look at the
landscape of the loss function from the perspective of the embedding space, the representation of
each vertex in the training set induces a “valley” effect in the prediction performance (lowest loss
at hv within the neighbourhood), where losses incurred by representations nearby are larger if the
respective distance to hv is larger. Fig. 2 gives an illustration.

4.2 STRUCTURAL RELATION BETWEEN TRAINING SET AND GNN PERFORMANCE

We next study the prediction power of GNN with respect to the (graph) distance between training
set and test set. We first extend the result in Proposition 1 to study the prediction performance of
GNN on different test sets.
Theorem 1. LetM be a GNN model trained on vertex set D with distortion α and θD is the set of
learned model parameters upon convergence. Let T and T ′ be two test sets whose vertexes are in the
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Figure 2: Locality of GNN performance induced by training vertexes. Vertex a is mapped to em-
bedding ha. Colored circle in embedding space represents a neighborhood centered at ha. Color
density represents the loss value: the darker, the lower the loss is (local minimal loss occurs at ha).

local region of some vertexes inD as given in Proposition 1. There is a one-to-one mapping g : T 7→
T ′ with d(u,D) < 1

αd(g(u), D),∀u ∈ T . Under Assumptions 1 and 2, there exists δ > 0 such that if∑
v∈T ′ d(v,D) > αδ

∑
u∈T d(u,D), we have

∑
u∈T L(f(MθD (u))) <

∑
v∈T ′ L(f(MθD (v))).

The proof of Theorem 1 is given in Appendix B. The core idea of the proof is to connect graph
distance of vertexes with embedding distance and to extend the result of Proposition 1 to analyze
the relation between the distance of different test sets to the training set and the performance (test
loss) of the learned model. Theorem 1 gives a structural relation on the prediction power of GNN
on different vertexes with respect to their graph distance to the training set. More specifically, GNN
predicts better on closer vertexes. We proved this structural relation in the case that the distortion of
the GNN is small enough so that relative order of distances across different test sets is preserved in
the embedding space. We provide experimental validation on this premise. Relaxing the condition
on the distortion rate and obtaining a complete relation renders an interesting future direction to
investigate. A similar result was proved in (Ma et al., 2021) using the distance between training
set and test set in the feature space. Here, we motivate our result from the perspectives of network
homophily and topology awareness of GNN. Further, we can extend the result above to compare
different pairs of training set and test set.

Theorem 2. LetM be a GNN model trained on vertex sets D,D′ with distortion α. Let θD, θD′ be
the learned model parameters upon convergence, respectively. Let T and T ′ be two test sets whose
vertexes are in the local region of some vertexes in D,D′, respectively, as given in Proposition 1.
There is a one-to-one mapping g : T 7→ T ′ with d(u,D) < 1

αd(g(u), D
′),∀u ∈ T . Under

Assumptions 1 and 2, there exists δ′ > 0 such that if
∑
v∈T ′ d(v,D′) > αδ′

∑
u∈T d(u,D), we

have
∑
u∈T L(f(MθD (u))) <

∑
v∈T ′ L(f(MθD′ (v))).

The proof of Theorem 2 is given in Appendix C. Theorem 2 extends the result of Theorem 1 and
gives a structural relation of the performance of GNN on different pairs of training set and test set
with respect to their graph distances. We can draw several implications from the theorems. First,
an insight is obtained that to enable better learning quality of GNN, the training set should consist
of vertexes within close proximity to the rest of the input graph. Fig. 3 gives an illustration and we
will further validate it in Sec. 4.3. Second, the topology awareness of GNN not only is important
for improving its expressive power, but also can be exploited to make other informed decisions in
the learning process. We use our result in investigating the initial data labelling problem in Sec. 5,
and briefly discuss the potential of applying it in other related problems such as vertex sampling
for batch training of GNN in Sec. 6. Third, Theorem 1 and Theorem 2 give us a glimpse on the
fundamental difference between the learning process in GNN and in other ML settings.

4.3 EXPERIMENTS

We next conduct experiments to verify our structural relation derived and some of the assumptions.
We train four representative GNN models: (1) GCN (Kipf & Welling, 2017); (2) GAT (Veličković
et al., 2017); (3) GraphSAGE (Hamilton et al., 2018); and (4) Position-aware Graph Neural Net-
work (PGNN) (You et al., 2019) with a deliberately designed mechanism (described in Sec. 3.2)
to enhance GNN’s capability to capture inter-vertex distances. We adopt popular graph data sets
including Cora, Citeseer and PubMed (Sen et al., 2008; Li et al., 2018). Due to space limit, we
mainly show experimental results using Cora (and GCN) in the main body of the paper, and present
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Figure 3: The loss landscape in the embedding space induced by different training sets. When
vertexes a and d are selected as the training set instead of b and c, the test losses are smaller as the
average distance between the training set and the other vertexes is smaller (the neighborhoods of ha
and hd cover embeddings of more vertexes in the embedding space).

the remaining experimental results on other data sets, as well as GNN architecture details and train-
ing hyperparameters, in Appendix F. For experiments on Cora, we consider the largest connected
component (2485 out of the total 2708 vertexes) and use a training set of size 35 (5 vertexes for each
class) that can bring larger variance on the distance of training set to the rest of the vertexes. The
experimental results demonstrate that our assumptions and the derived structural relation are indeed
common and persistent among GNNs on data sets with network homophily.

We first validate that GNNs preserve distances (with a small distortion rate) locally by evaluating the
relation between the graph distances of vertexes to the training set and the embedding distances of
vertex representations to the representations of the training set, namely the relation between d(v,D)
and d(MθD (v),MθD (D)). In this experiment, we compute the graph distance and the embedding
distance on the rest of the vertexes after training. As shown in Fig. 4, there exists a strong correlation
between the graph distance and the embedding distance. Especially, when the graph distance is
relatively small, the relation is close to linear and the relative orders are mostly preserved. This
indicates that the distortion α is indeed small (at least within the first few hops) with different
GNNs. This implies that the common aggregation mechanism in GNNs can well capture local graph
structure information (graph distances), which in turn indicates that the premise on the distortion rate
which we used to prove our theoretical results is not far from reality.

Next, we study the relation between the graph distance and the prediction loss following the same
settings as in the previous experiment. As illustrated in Fig. 5, vertexes corresponding to smaller
embedding distances (to representations of the training set in the embedding space) achieve smaller
loss (the GNN is more certain and more likely to be correct with the prediction). This validates
Proposition 1.

Combining the two experiments above, we can derive the positive relation between graph distance
(to the training set) and prediction loss. A smaller graph distance (to the training set) translates into
a smaller embedding distance (to representations of the training set) and then a smaller loss. Fig. 6
gives an illustration and validates the result in Theorem 1.

Further, we validate if the distance between different pairs of training set and test set is related to the
prediction performance of GNN. As shown in Fig. 7, Table 1 and Table 2, this is indeed the case,
which validates our result in Theoreom 2 that better performance (test accuracy/loss) is achieved
when the distance between the training set and the test set is smaller.
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Figure 4: Graph distance vs. embedding dis-
tance. We randomly sample vertexes with dif-
ferent distances from the training set. We ob-
tain their representations by feeding them into
the trained GNN.
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Figure 5: Embedding distance vs. loss: GCN
on Cora data set. We randomly sample vertexes
that are not in the training set, and derive their
losses by feeding them into the trained GCN.

Figure 6: Graph distance vs. accuracy: GCN on
Cora data set. We group vertexes that are not
in the training set into different groups based
on their distances to the training set. Then, we
compute the average accuracy of the vertexes in
different groups. Vertexes with 0 hop are the
training vertexes.
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Figure 7: Left: test accuracy vs. average graph distance (to the training set). Right: test loss vs. av-
erage graph distance (to the training set). GCN on Cora. Mean graph distance is computed by∑
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d(u,D)

|Dtest| .
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Table 1: GCN on Cora. Same experimental setting as in the previous experiment. We randomly
partition the labelled nodes into training set and test set for 100 times. Different partitions are
ranked in increasing order of the distance between training set and test set. Metrics are evaluated in
three cases: (1) “Random”: all 100 ways of partitions are used; (2) Top 50 %: top half of the ranked
partitions are used; (3) Top 30 %: top 30 % of the ranked partitions are used. Mean distance is the
average graph distance between training set and test set. Values in the bracket indicate the variance.

Test Accuracy Test Loss Mean Distance

Random 69.34 (5.03) 0.9629 (0.1326) 3.74 (0.18)

Top 50% 71.56 (4.23) 0.9343 (0.1229) 3.24 (0.07)

Top 30% 72.40 (3.59) 0.9152 (0.0970) 3.19 (0.06)

Table 2: Test accuracy of different models on Cora. Same experimental setting as in Table 1.
GCN GAT GraphSAGE

Random 69.34 (5.03) 68.03 (4.62) 63.61 (5.44)

Top 50% 71.56 (4.23) 69.94 (3.86) 64.54 (4.84)

Top 30% 72.40 (3.59) 70.52 (3.53) 65.60 (4.27)

5 APPLICATION ON INITIAL DATA LABELLING

We next present an application of our derived results on the initial data labelling problem in active
learning of GNNs. Active learning deals with selecting samples in the data set to label and the goal
is to maximize the gain on model performance while labelling the fewest samples possible. One
common scheme of active learning is to first select an initial set D to label and have the model
trained on D, and then select the data samples to be labelled next with “most uncertainty” (largest
loss) using the trained model (Ren et al., 2020; Settles, 2009).

Unsatisfactory initial set selection may lead to slow learning progress (Grimova et al., 2018). How to
select the most “economic/proper” initial labelled data set is referred to as the “cold start” problem,
as the model itself is not ready to be used for selecting data samples yet. One natural objective
for this selection is to find an initial set D from the complete data set V that could maximize the
generalization performance of the model trained on D: argminD⊂V

∑
d∈V \D L(d|D).

For a GNN model, we have shown that how well it can learn from the data set is closely related to
the coverage of the training set. A smaller mean distance of other vertexes to the training set leads
to better GNN performance. The distance function used in our theoretical results is defined with the
class label of the vertexes, which is unavailable in the initial labelling problem. Nevertheless, the
general principle is that we want the labelled data to have good coverage on the rest of the data. This
can be formulated into the following optimization problem.

max
D⊂V

∑
u∈V \D

Ir(u|D)

s.t. |D| ≤ k
(1)

where k is the given initial set size and r is the given neighborhood radius. Ir(u|D) is an indicator
function: Ir(u|D) = 1 if there exists a vertex v ∈ D such that u ∈ Nr(v), and Ir(u|D) = 0,
otherwise. The problem can be reduced to the maximal coverage problem (Hochbaum, 1996), as
given in Appendix D. The maximal coverage problem is NP-hard. There exist efficient greedy al-
gorithms to achieve an approximation ratio of 1− 1

e , e.g., by selecting a vertex whose neighbor has
the most uncovered vertexes at each stage (Hochbaum, 1996). We evaluate the initial set selected
by solving (1) using the greedy algorithm in (Hochbaum, 1996), and those chosen with common
approaches of uniformly random selection (effective for active learning of DNN under the I.I.D data
assumption) and importance-based selection (vertexes are sampled based on some graph properties
distribution). In Table 3, we observe that our locality-based selection achieves a significant improve-
ment of model performance over the other strategies, giving a better kick-start to the active learning
process of GNNs.
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Table 3: Model accuracy of different models trained on Cora. An initial labelled set (k=10) is
selected by different strategies, and test set includes the rest of labelled vertexes. We run each
strategy 10 times on each model and compute average test accuracy and variance (in brackets).
‘Cover’ is our strategy that solves (1) with r = 2.

GCN GraphSAGE GAT

Random 30.33 (1.45) 45.75 (1.73) 49.36 (0.52)

Importance:Degree 32.11 (1.01) 46.65 (1.23) 54.08 (0.24)

Importance:Random Walk 29.20 (0.72) 44.33 (1.18) 48.38 (0.19)

Importance:Centrality 33.27 (0.92) 47.01 (1.08) 56.29 (0.28)

Importance:Cluster Coefficient 28.11 (1.32) 43.83 (1.12) 49.30 (0.32)

Cover 36.46 (0.56) 49.05 (0.88) 62.76 (0.18)

In addition to finding an initial set of given size k, similar principle can be adopted to decide the
minimal size of the initial labelled data set, for certain guarantee on the performance of the trained
model. A lower bound of the initial labelled set size can be computed by solving the following
problem: min

D⊂V
|D|

s.t.
∑

u∈V−D
Ir(u|D) ≥ g|V | (2)

where g ∈ [0, 1] and Ir(u|D) is the same indicator function as defined earlier. For given r and
g, problem (2) finds the minimum cover which covers at least g portion of all the vertexes within
its radius-r neighborhoods. By adjusting the ratio g and radius r, one can control the performance
guarantee resulted from the initial set selection. (2) can be reduced to a minimal partial covering
problem which is NP-hard with efficient approximation algorithms available (Gandhi et al., 2004).
We provide a detailed reduction in Appendix E.

6 CONCLUDING DISCUSSIONS

In this paper, we investigate the role of the input graph in GNN learning, and show that data depen-
dence has significant effects on GNN learning quality. We formally and experimentally show that
there exists a structural relation between the coverage of the training set and the performance of the
GNN on the test set. Using the obtained result, we investigate its application in tackling the “cold
start” problem in the active learning of GNN. As our first attempt into in-depth understanding of
GNN’s learning process, a number of interesting directions are opened up for further investigation.

Combining with other topological features and network principles. Besides the distance preserving
property, the ideas in this work may be extended to combine other (useful) topology-preserving
properties of GNN (e.g., group and community structures (Zhou et al., 2020)) and network principles
(e.g., structure equivalence). Furthermore, similar ideas/analyses can also be extended to graph
edge-related tasks by adapting the topological features from edges.

Size of the local neighborhood of the training set. It has been studied on other deep learning mod-
els that the curvature of these local neighborhoods (Keskar et al., 2016) is closely related to the
performance of the deep learning models. Preliminary factors that affect the curvature of local min-
ima have been studied in (Jastrzebski et al., 2018). Comparing with other deep learning models,
GNNs allow for more rigorous analysis based on the underlying graph structure and the distance-
preserving property. It is interesting to extend our analysis to formally unwrap the factors that affect
the size/curvature of the local neighborhood, and how the curvature at the local minima could further
affect the model performance.

Other applications of the results. Other than initial data labelling, we may apply our structural
results in other data selection problems in GNN training, such as batch sampling for stochastic
training (Chen et al., 2017a) and neighbor subsampling in the information aggregation process (Ying
et al., 2018).

9
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of graph neural network evaluation, 2019.
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A PROOF OF PROPOSITION 1

In this appendix, we provide a proof for Proposition 1.

Proof. Let θD be the set of parameters learnt by the GNN model that satisfy properties given in
Assumption 2. Namely, for each vertex v ∈ D and any ε > 0, we have that

LθD (f(hv)) < ε,

where hv = M(v). This means that LθD (f(hv)) 7→ 0 and we know that the L function is a
continuous function of range R+. LθD (f(hv)) achieves the global minimum of the loss function in
the embedding space.

By Assumption 1, we know that d
dhL(f(hv)) and d2

d2hL(f(hv)) exist. This implies that

d

dh
L(f(hv)) = 0,

as this is the necessary condition for hv to achieve a local minimum. Furthermore, as LθD (f(hv))
also achieves the global minimum, this implies that

d2

d2h
L(f(hv)) ≥ 0.

This means that there must exist a rv > 0 such that ∀h ∈ Nrv (hv) ⊂ H, we have

d

dh
L(f(hv)) ≥ 0.

For d(h, hv) ≤ d(h′, hv) ≤ rv , we can rewrite h′ = h+ d. Then we have,

L(f(h′)) = L(f(h+ d))

≥ L(f(h)) + d

dh
L(f(h))‖d‖

Because d
dhL(f(h)) ≥ 0 and ‖d‖ > 0, we have that

L(f(h′)) > L(f(h)).

B PROOF OF THEOREM 1

Before diving into the detailed proof, we present an outline of the structure of the proof and prove a
lemma which we use in the proof of the theorem.

Outline of the proof for the thereom

1. Suppose we are given T and T ′, two test sets which satisfy the premise of the theorem;
2. Then, we can approximate and bound the loss of each vertex in the test set based on the

nearest vertex in the training set by extending the result from Proposition 1;
3. Based on smoothness of curvature assumed in Assumption 1, we can bound the behavior

of vertexes in the test set and derive the desired result.
Lemma 1. Let D be a given training set. M and f are the GNN model and prediction function
which have parameter θ and satisfy the property in Assumption 2. Let u, v be two arbitrary vertexes
in D with representations hu =M(u) and hv =M(v). Let Nrv (hv) and Nru(hu) be the neigh-
borhood given in Proposition 1. Furthermore, let Nrv,+(hv) := {h ∈ Nrv (hv)|L(f(h)) > 0}, i.e.,

12
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the set whose elements have positive loss values. Nru,+(hu) is Similarly defined. Then, we have
that

Nru,+(hu) ∩Nrv,+(hv) = ∅.

Proof. Suppose the opposite: there exists h which belongs toNru,+(hu) andNrv,+(hv) at the same
time. In other words,

h ∈ Nrv,+(hv) ∩Nru,+(hu).

By their definition,Nrv,+(hv) andNru,+(hu) are open sets. By definition of an open set, there exist
rh,v and rh,u such that the neighborhood Nrh,v

(h) ⊆ Nrv (hv) and the neighborhood Nrh,u
(h) ⊆

Nru(hu)

Let rh = min{rh,v, rh,u}. We have that neighborhood Nrh(h) are in both Nru(hu) and Nrv (hv).

Consider h′ ∈ Nrh(h) such that
d(h, hv) < d(h′, hv),

and
d(h, hu) > d(h′, hu).

Such h′ exists because hv and hu are two distinct points in the embedding space. Next, let’s consider
the loss value of h, h′ from the perspective of hv . Because

d(h, hv) < d(h′, hv),

by Proposition 1, we have that
L(f(h)) < L(f(h′)).

Similarly, if consider the loss value of h, h′ from the perspective of hu, we have that

L(f(h)) > L(f(h′)),

because
d(h, hu) > d(h′, hu).

We reach a contradiction.

Lemma 1 implies that each vertex can be in at most one of these neighborhoods at a time. Next, we
provide the proof for Theorem 1.

Proof. Let G = (V,E) be the input graph with node feature vector Xv for all v ∈ V . Let D ⊂ V
be the training sets. LetM be a given GNN model. Let f be the prediction function that maps the
output ofM to the class representation. Let L be the loss function with range R+. Let θD be the
sets of model parameters learnt using training set D, which satisfy Assumption 2. In other words,
we have, ∑

u∈D
L(f(MθD (u))) = 0 (3)

Let T, T ′ be the two test sets satisfy the premise of the theorem. In other words, we have a one-to-
one mapping g : T 7→ T ′ with αrd(u,D) < rd(g(u), D),∀u ∈ T . Now, let’s consider the loss on
the test set T with the modelMD, which can be written as:∑

u∈T
L(f(MθD (u))) (4)

By premise, we have that for each u ∈ T , there exists at least one v ∈ D such that M(u) ∈
Nrv (M(v)) where Nrv (M(v)) satisfies properties of Proposition 1. In other words, the loss func-
tion is monotonically increasing with respect to the embedding distance in Nrv (M(v)).

By Lemma 1, we know that u can be in only one of this neighborhoods. Let Q : T 7→ D be the
mapping that maps vertex u ∈ T to its corresponding simple neighborhood that is centered at a
vertex Q(u) ∈ D. For simplicity, we denote the vertex as qu = Q(u). Due to Proposition 1 and

13
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Assumption 1, we can do a quadratic approximation of u around qu and have the following upper
bound:

L(f(MθD (u))) ≤ L(f(MθD (qu))) + 〈MθD (u)−MθD (qu), DMθD (qu)〉

+
Mu

2
‖MθD (u)−MθD (qu)‖

(5)

where
Mu = sup{D2L(f(h))|h ∈ Nrqu (qu)},

and
rqu = ‖qu − u‖.

Let
M∗D = max{‖Mu‖|u ∈ T} (6)

M∗D exists since T is finite. Then, we obtain the following upper bound that is universal for all
vertexes in T :

∑
u∈T
L(f(MθD (u))) ≤

∑
u∈T

L1(u) +
M∗D
2
‖Mθu(u)−MθD (qu)‖ (7)

where
L1(u) = L(f(MθD (qu))) + 〈Mθu(u)−MθD (qu), DMθD (qu)〉.

Similarly, let Q′ : T ′ 7→ D be the mapping that maps vertex u ∈ T ′ to its corresponding simple
neighborhood that is centered at a vertex Q′(u) ∈ D. For simplicity, we denote the vertex as
q′u = Q′(u). Again, due to Proposition 1 and Assumption 1, we can do a quadratic approximation
of u around q′u and have the following lower bound:

L(f(MθD (u))) ≥ L(f(MθD (q
′
u))) + 〈MθD (u)−MθD (q

′
u), DMθD (q

′
u)〉

+
Lu
2
‖MθD (u)−MθD (q

′
u)‖

(8)

where
Lu = inf{D2L(f(h))|h ∈ Nrq′u (q

′
u)},

and
rq′u = ‖q′u − u‖.

Let
L∗D = min{‖Lu‖|u ∈ T ′} (9)

L∗D exists since T ′ is finite. Then, we obtain the following lower bound that is universal for all the
vertexes in T ′:

∑
u∈T ′

L(f(MθD (u))) ≥
∑
u∈T ′

L′1(u) +
L∗D
2
‖MθD (u)−MθD (q

′
u)‖ (10)

where
L′1(u) = L(f(MθD (q

′
u))) + 〈MθD (u)−MθD (q

′
u), DMθD (q

′
u)〉.

For simplicity, suppose the cardinality of T and T ′ are k, and let I = {1, ..., k}. Let’s index and
arrange the vertexes in T and T ′ such that,

T = {u1, ..., uk},
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and
T ′ = {v1, ..., vk},

such that
vi = g(ui).

Let’s consider the difference between equation 25 and equation 22:

∑
u∈T ′

L(f(MθDu)))−
∑
u∈T
L(f(MθD (u)))

=
∑
i∈I
L(f(MθD (vi)))− L(f(MθD (ui)))

>
∑
i∈I

L′1(vi) +
L∗D
2
‖MθD (vi)−MθD (q

′
vi)‖ − L1(ui)−

M∗D
2
‖MθD (ui)−MθD (qui

)‖

=
∑
i∈I

(L′1(vi)− L1(ui)) +
∑
i∈I

[L∗D
2
‖MθD (vi)−MθD (q

′
vi)‖ −

M∗D
2
‖MθD (ui)−MθD (qui

)‖
]

=
∑
i∈I

(L′1(vi)− L1(ui))+

L∗D
2

∑
i∈I

[
‖MθD (vi)−MθD (q

′
vi)‖

]
− M∗D

2

∑
i∈I

[
‖MθD (ui)−MθD (qui)‖

]
(11)

Since qui
and q′vi are local minima of the loss function, we get that

L′1(vi) = L1(ui).

This leads to that∑
i∈I
L(f(MθD (vi)))− L(f(MθD (ui)))

>
L∗D
2

∑
i∈I

[
‖MθD (vi)−MθD (q

′
vi)‖

]
− M∗D

2

∑
i∈I

[
‖MθD (ui)−MθD (qui

)‖
] (12)

To simplify the notation, let’s denote

S =
∑
i∈I

[
‖MθD (ui)−MθD (qui

)‖
]
,

S′ =
∑
i∈I

[
‖MθD (vi)−MθD (q

′
vi)‖

]
.

and
W =

∑
i∈I

d(ui, D),

W ′ =
∑
i∈I

d(vi, D)

By Definition 1, we have that
rW ≤ S ≤ αrW,

and
rW ′ ≤ S′ ≤ αrW ′.

Then, we can rewrite equation 27 as follows:∑
i∈I
L(f(MθD (vi)))− L(f(MθD (ui)))

>
L∗D
2
S′ − M∗D

2
S.

(13)
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We know that M∗D > L∗D > 0. This means that there exists a constant β > 1 such that

M∗D = βL∗D.

Similarly, By the premise of the theorem, we have that,

S′ ≥ rW ′ > αrW ≥ S.

There exists a constant α > 1 such that
S′ = γS.

Furthermore, we can obtain the following bound on the constant γ,

γ =
S′

S

≥ rW ′

αrW

≥ 1

α

W ′

W

≥ 1

α
δ

(14)

Substituting the above results into equation 28, we get that

1

2

[
L∗DS

′ −M∗DS
]

=
1

2

[
L∗DγS − βL∗DS

]
=

1

2
L∗DS(γ − β)

(15)

Let’s take any δ > αβ and have that

γ − β =
S′

S
− β,

>
1

α
δ − β,

>
1

α
αβ − β,

= 0.

(16)

Therefore, if δ > αβ, then we have∑
u∈Vtest

L(f(MθD (u)))− L(f(MθD (u))) > 0 (17)

This completes the proof for Theorem 1.

C PROOF FOR THEOREM 2

In this appendix, we provide a proof for Theorem 2. The proof is similar to the one presented for
Theorem 1.
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Proof. LetG = (V,E) be the input graph with node feature vectorXv for all v ∈ V . LetD,D′ ⊂ V
be the training sets. LetM be a given GNN model. Let f be the prediction function that maps the
output ofM to the class representation. Let L be the loss function with range R+. Let θD, θD′ be
the sets of model parameters learnt using training set D,D′, which satisfy Assumption 2. In other
words, we have,

∑
u∈D
L(f(MθD (u))) =

∑
v∈D′

L(f(MθD′ (v))) = 0 (18)

Let T, T ′ be the two test sets satisfy the premise of the theorem. In other words, we have a one-to-
one mapping g : T 7→ T ′ with αrd(u,D) < rd(g(u), D′),∀u ∈ T . Now, let’s consider the loss on
the test set T with the modelMD, which can be written as:

∑
u∈T
L(f(MθD (u))) (19)

By premise, we have that for each u ∈ T , there exists at least one v ∈ D such that M(u) ∈
Nrv (M(v)) where Nrv (M(v)) satisfies properties of Proposition 1. In other words, the loss func-
tion is monotonically increasing with respect to the embedding distance in Nrv (M(v)).

By Lemma 1, we know that u can be in only one of this neighborhoods. Let Q : T 7→ D be the
mapping that maps vertex u ∈ T to its corresponding simple neighborhood that is centered at a
vertex Q(u) ∈ D. For simplicity, we denote the vertex as qu = Q(u). Due to Proposition 1 and
Assumption 1, we can do a quadratic approximation of u around qu and have the following upper
bound:

L(f(MθD (u))) ≤ L(f(MθD (qu))) + 〈MθD (u)−MθD (qu), DMθD (qu)〉

+
Mu

2
‖MθD (u)−MθD (qu)‖

(20)

where
Mu = sup{D2L(f(h))|h ∈ Nrqu (qu)},

and
rqu = ‖qu − u‖.

Let
M∗D = max{‖Mu‖|u ∈ T} (21)

M∗D exists since T is finite. Then, we obtain the following upper bound that is universal for all
vertexes in T :

∑
u∈T
L(f(MθD (u))) ≤

∑
u∈T

L1(u) +
M∗D
2
‖Mθu(u)−MθD (qu)‖ (22)

where
L1(u) = L(f(MθD (qu))) + 〈Mθu(u)−MθD (qu), DMθD (qu)〉.

Similarly, let Q′ : T ′ 7→ D′ be the mapping that maps vertex u ∈ T ′ to its corresponding simple
neighborhood that is centered at a vertex Q′(u) ∈ D′. For simplicity, we denote the vertex as
q′u = Q′(u). Again, due to Proposition 1 and Assumption 1, we can do a quadratic approximation
of u around q′u and have the following lower bound:

L(f(MθD′ (u))) ≥ L(f(MθD′ (q
′
u))) + 〈MθD′ (u)−MθD′ (q

′
u), DMθD′ (q

′
u)〉

+
Lu
2
‖MθD′ (u)−MθD′ (q

′
u)‖

(23)

17



Under review as a conference paper at ICLR 2022

where
Lu = inf{D2L(f(h))|h ∈ Nrq′u (q

′
u)},

and
rq′u = ‖q′u − u‖.

Let
L∗D′ = min{‖Lu‖|u ∈ T ′} (24)

L∗D′ exists since T ′ is finite. Then, we obtain the following lower bound that is universal for all the
vertexes in T ′:

∑
u∈T ′

L(f(MθD′ (u))) ≥
∑
u∈T ′

L′1(u) +
L∗D′

2
‖MθD′ (u)−MθD′ (q

′
u)‖ (25)

where
L′1(u) = L(f(MθD′ (q

′
u))) + 〈MθD′ (u)−MθD′ (q

′
u), DMθD′ (q

′
u)〉.

For simplicity, suppose the cardinality of T and T ′ are k, and let I = {1, ..., k}. Let’s index and
arrange the vertexes in T and T ′ such that,

T = {u1, ..., uk},

and
T ′ = {v1, ..., vk},

such that
vi = g(ui).

Let’s consider the difference between equation 25 and equation 22:

∑
u∈T ′

L(f(MθD′u)))−
∑
u∈T
L(f(MθD (u)))

=
∑
i∈I
L(f(MθD′ (vi)))− L(f(MθD (ui)))

>
∑
i∈I

L′1(vi) +
L∗D′

2
‖MθD′ (vi)−MθD′ (q

′
vi)‖ − L1(ui)−

M∗D
2
‖MθD (ui)−MθD (qui)‖

=
∑
i∈I

(L′1(vi)− L1(ui)) +
∑
i∈I

[L∗D′

2
‖MθD′ (vi)−MθD′ (q

′
vi)‖ −

M∗D
2
‖MθD (ui)−MθD (qui

)‖
]

=
∑
i∈I

(L′1(vi)− L1(ui))+

L∗D′

2

∑
i∈I

[
‖MθD′ (vi)−MθD′ (q

′
vi)‖

]
− M∗D

2

∑
i∈I

[
‖MθD (ui)−MθD (qui)‖

]
(26)

Since qui
and q′vi are local minima of the loss function, we get that

L′1(vi) = L1(ui).

This leads to that∑
i∈I
L(f(MθD′ (vi)))− L(f(MθD (ui)))

>
L∗D′

2

∑
i∈I

[
‖MθD′ (vi)−MθD′ (q

′
vi)‖

]
− M∗D

2

∑
i∈I

[
‖MθD (ui)−MθD (qui)‖

] (27)
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To simplify the notation, let’s denote

S =
∑
i∈I

[
‖MθD (ui)−MθD (qui

)‖
]
,

S′ =
∑
i∈I

[
‖MθD′ (vi)−MθD′ (q

′
vi)‖

]
.

and
W =

∑
i∈I

d(ui, D),

W ′ =
∑
i∈I

d(vi, D
′)

By Definition 1, we have that
rW ≤ S ≤ αrW,

and
rW ′ ≤ S′ ≤ αrW ′.

Then, we can rewrite equation 27 as follows:∑
i∈I
L(f(MθD′ (vi)))− L(f(MθD (ui)))

>
L∗D′

2
S′ − M∗D

2
S.

(28)

Without loss of generality, we may assume M∗D > L∗D′ > 0. Otherwise, the proof is completed.
This means that there exists a constant β > 1 such that

M∗D = βL∗D′ .

Similarly, By the premise of the theorem, we have that,

S′ ≥ rW ′ > αrW ≥ S.

There exists a constant α > 1 such that
S′ = γS.

Furthermore, we can obtain the following bound on the constant γ,

γ =
S′

S

≥ rW ′

αrW

≥ 1

α

W ′

W

≥ 1

α
δ

(29)

Substituting the above results into equation 28, we get that

1

2

[
L∗D′S′ −M∗DS

]
=

1

2

[
L∗D′γS − βL∗DS

]
=

1

2
L∗D′S(γ − β)

(30)
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Let’s take any δ′ > αβ and have that

γ − β =
S′

S
− β,

>
1

α
δ′ − β,

>
1

α
αβ − β,

= 0.

(31)

Therefore, if δ′ > αβ, then we have∑
u∈Vtest

L(f(MθD (u)))− L(f(MθD (u))) > 0 (32)

This completes the proof for Theorem 1.

D MAXIMUM COVER

In this appendix we provide a detailed reduction of optimization (1) to the maximal coverage prob-
lem.

Let’s create binary variables Xv and yv for each vertex v ∈ V such that Xv indicates whether vertex
v is selected in the cover and yv indicates whether vertex v is covered by some neighborhood of
vertex in the selected set. We can rewrite optimization (1) as follows:

max
∑
v∈V

yv

s.t.
∑
v∈V

Xv ≤ k∑
u∈Nr(v)

Xu ≥ yv,∀v ∈ V

yv ∈ {0, 1}
Xv ∈ {0, 1}

(33)

∑
v∈V Xv ≤ k ensures no more than k vertexes are selected into the set.

∑
u∈Nr(v)

Xu ≥ yv,∀v ∈
V ensures that yv is 1 if and only if vertex v is covered by the neighborhood of some vertex u
selected in the cover. The objective function is to maximize the number of vertexes covered. Op-
timization (33) has the standard form of maximal coverage problem as presented in (Hochbaum,
1996). Therefore, we can directly employ the heuristic algorithm and its performance guarantee
in (Hochbaum, 1996).

E PARTIAL COVER

In this appendix we provide a detailed reduction of optimization (2) to the partial coverage problem.

Let’s create binary variables Xv and yv for each vertex v ∈ V suc that Xv indicates whether vertex
v is selected in the cover and yv indicates whether vertex v is covered by neighborhood of some
vertex in the selected set. We can rewrite optimization (2) above as follows:
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min
∑
v∈V

Xv

s.t.
∑

u∈Nr(v)

Xu ≥ yv,∀v ∈ V

∑
v∈V

yv ≥ g|V |

yv ∈ {0, 1}
Xv ∈ {0, 1}

(34)

∑
u∈Nr(v)

Xu ≥ yv,∀v ∈ V ensures that yv is 1 if and only if vertex v is covered by the neigh-
borhood of some vertex u selected in the cover.

∑
v∈V yv ≥ g|V | ensures that there are at least

g|V | number of vertexes covered. The objective function is to minimize the number of vertex se-
lected in the cover set. Optimization (34) has the standard form of partial coverage problem as
presented in (Gandhi et al., 2004) and therefore, we can directly employ the heuristic algorithm and
its performance guarantee in (Gandhi et al., 2004).

F ADDITIONAL EXPERIMENTS

In this appendix, we provide additional experimental results and include detailed set-up of the ex-
periments for reproducibility.

F.1 RANDOM PARTITION

In the experiments related to Fig. 1, all three models, GCN, GAT and GraphSage, have 3 layers with
hidden dimensions of 16 and Relu as the activation function. We use 2 attention heads for GAT. We
trained each model with Adam optimizer with a learning rate of 0.01, weight decay of 0.0005, and
drop-out of 0. We keep all other hyperparameters as default. For each training, we randomly select
a k (30 for Citeseer and 60 for PubMed) number of labelled vertexes as the training set and use the
rest of labelled vertexes to evaluate the performance. We trained each model for 400 epochs and
record the performance. Additional experimental results on Citeseer and PubMed are provided in
Fig. 8 and Fig. 9.
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Figure 8: Performance of GCN, GraphSAGE and GAT on Citeseer dataset with different random
partitions of training set and test set over the labelled data set.

Remark. From all these experiments, we can see that the variance on the performance of GNN
induced by different training sets is indeed common and persistent across different data sets and
GNN models.
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Figure 9: Performance of GCN, GraphSAGE and GAT on PubMed dataset with different random
partitions of training set and test set over the labelled data set.

F.2 GRAPH DISTANCE VS EMBEDDING DISTANCE

In the set of experiments related to Fig. 4, all three models, GCN, GAT and GraphSage, have 3 layers
with hidden dimensions of 16 and Relu as the activation function. We trained each model with Adam
optimizer with a learning rate of 0.01, weight decay of 0.0005, and drop-out of 0. We keep all other
hyperparameters as default. For each training, we consider the largest connected component and
randomly select k (30 for Citeseer and 60 for PubMed) number of labelled vertexes as the training
set. We trained the model in 400 epochs. We randomly sample a set of vertexes from the graph
that are not in the training set. We compute their graph/embedding distance (to the training set) and
use them for the plots. The additional experimental results on Citeseer and PubMed datasets are
provided in Fig. 10 and Fig. 11. In addition to the Euclidean distance metric, we also conducted
similar experiments with the embedding distance computed by the cosine similarity. The results are
provided in Fig. 12, Fig. 13 and Fig. 14.
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Figure 10: Graph distance vs. embedding distance on Citeseer. We randomly sample vertexes with
different distances from the training set. We obtain their representations by feeding them into the
trained GNN.

Remark. Comparing to Cora and Citeseer, we can see that the distance preserving phenomenon
on PubMed is significantly weaker and this could be due to the fact that PubMed data set does not
have a strong network homophily property as the other two data sets. However, as we will see
in later experiments, it is still strong enough to works well with our initial data labelling strategy.
In addition, the above experiments show that the relation between graph distance and embedding
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Figure 11: Graph distance vs. embedding distance on PubMed. We randomly sample vertexes with
different distances from the training set. We obtain their representations by feeding them into the
trained GNN.
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Figure 12: Graph distance vs. embedding distance on Cora with cosine similarity metric. We ran-
domly sample vertexes with different distances from the training set. We obtain their representations
by feeding them into the trained GNN.
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Figure 13: Graph distance vs. embedding distance on Citeseer with cosine similarity metric. We
randomly sample vertexes with different distances from the training set. We obtain their representa-
tions by feeding them into the trained GNN.
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Figure 14: Graph distance vs. embedding distance on PubMed with cosine similarity metric. We
randomly sample vertexes with different distances from the training set. We obtain their representa-
tions by feeding them into the trained GNN.

distance is persistent regardless of the metrics used for the computation (Euclidean and Cosine
similarity).

F.3 TRAINING SET COVERAGE AND MODEL PERFORMANCE

In this set of experiments related to Table 2, all three models, GCN, GAT and GraphSage, have 3
layers with hidden dimensions of 16 and Relu as the activation function. We use 2 attention heads
for GAT. We trained the model with Adam optimizer with a learning rate of 0.01, weight decay of
0.0005 and drop-out of 0. We keep all other hyperparameters as default. For Citeseer data set, we
consider the largest connected component and randomly partition the labelled nodes into training
set (of size 30) and test set for 100 times. Different partitions are ranked in increasing order of the
distance between training set and test set. Metrics are evaluated in three cases: (1) “Random”: all
100 ways of partitions are used; (2) Top 50 %: top half of the ranked partitions are used; (3) Top
30 %: top 30 % of the ranked partitions are used. Mean distance is the average graph distance
between training set and test set. For each training, we trained the model in 400 epochs and record
the performance from each training. The additional experimental results on Citeseer are provided in
Table 4.

Table 4: Test accuracy of different models on Citeseer
GCN GAT GraphSAGE

Random 56.72 (5.41) 53.78 (4.73) 56.52 (4.85)

Top 50% 61.48 (5.15) 54.33 (4.24) 61.78 (3.60)

Top 30% 63.03 (4.14) 54.63 (3.65) 62.38 (3.47)

F.4 INITIAL DATA LABELLING

In this set of experiments related to Table 3, all three models, GCN, GAT and GraphSage, have 3
layers with hidden dimensions of 16 and Relu as the activation function. We use 2 attention heads
for GAT. We trained the model with Adam optimizer with a learning rate of 0.01, weight decay
of 0.0005 and drop-out of 0. We keep all other hyperparameters as default. For each training, we
trained the model in 400 epochs and record the best performance from each training. For the “cover”
strategy following the greedy algorithm in (Hochbaum, 1996), we greedily select the next vertexes
to be the vertexes whose r-hop neighborhood has the most uncovered vertexes. If there are more
than one candidates, we randomly pick one from the candidate set, and then we update and repeat
the selection procedure. The additional experimental results on Citeseer and PubMed are provided
in Table 5 and Table 6.
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Table 5: Model accuracy (%) of different models trained on Citeseer data set. An initial labelled set
(k=20) is selected by different strategies, and the test set includes the rest of lablled vertexes. We run
each strategy 20 times on each model and compute its average performance and variance. ‘Cover’
is our strategy that solves (1) with r = 2.

GCN GraphSAGE GAT

Random 31.27 (1.09) 33.34 (1.07) 45.14 (1.48)

Importance 38.84 (0.62) 36.72 (1.41) 49.27 (0.65)

Cover 42.58 (0.34) 48.93 (0.75) 64.13 (0.04)

Table 6: Model accuracy of different models trained on PubMed data set. An initial labelled set
(k=20) is selected by different strategies, and the test set includes the rest of lablled vertexes. We run
each strategy 20 times on each model and compute its average performance and variance. ‘Cover’
is our strategy that solves (1) with r = 2.

GCN GraphSAGE GAT

Random 42.35 (0.84) 56.48 (0.87) 62.65 (0.55)

Importance 47.64 (0.73) 60.67 (0.54) 64.57 (0.19)

Cover 48.87 (0.43) 62.48 (0.41) 71.69 (0.01)

Remark. Based on the experimental results, GAT models significantly outperform (in terms of ac-
curacy and variance) the other two models when the size of the training set is small. This makes
an interesting research question: why GAT is able to generalize much better than GCN and Graph-
SAGE? This could be interesting to explore in the future.
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