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ABSTRACT

Devising domain- and model-agnostic evaluation metrics for generative models is
an important and as yet unresolved problem. Most existing metrics, which were
tailored solely to the image synthesis setup, exhibit a limited capacity for diagnos-
ing the modes of failure of generative models across broader application domains.
In this paper, we introduce a 3-dimensional metric, (α-Precision, β-Recall, Au-
thenticity), that characterizes the fidelity, diversity and generalization performance
of any generative model in a domain-agnostic fashion. Our metric unifies statisti-
cal divergence measures with precision-recall analysis, enabling sample-level and
distribution-level diagnoses of model fidelity and diversity. We introduce gener-
alization as an additional dimension for model performance that quantifies the ex-
tent to which a model copies training data—a crucial performance indicator when
modeling sensitive data with requirements on privacy. The three metric compo-
nents correspond to (interpretable) probabilistic quantities, and are estimated via
sample-level binary classification. The sample-level nature of our metric inspires
a novel use case which we call model auditing, wherein we judge the quality of
individual samples generated by a (black-box) model, discarding low-quality sam-
ples and hence improving the overall model performance in a post-hoc manner.

1 INTRODUCTION

Intuitively, it would seem that evaluating the likelihood function of a generative model is all it takes
to assess its performance. As it turns out, the problem of evaluating generative models is far more
complicated. This is not only because state-of-the-art models, such as Variational Autoencoders
(VAE) (Kingma & Welling (2013)) and Generative Adversarial Networks (GANs) (Goodfellow et al.
(2014)), do not possess tractable likelihood functions, but also because the likelihood score itself is a
flawed measure of performance—it scales badly in high dimensions, and it obscures distinct modes
of model failure into a single uninterpretable score (Theis et al. (2015)). Absent domain-agnostic
metrics, earlier work focused on crafting domain-specific scores, e.g., Inception score (Salimans
et al. (2016)), with an exclusive emphasis on image data (Lucic et al. (2018)).

In this paper, we introduce an alternative approach to evaluating generative models, where instead
of assessing the generative distribution by looking at all synthetic samples collectively to compute
likelihood or divergence, we classify each sample individually as being of high or low quality. In this
way, our metric comprises interpretable probabilistic quantities—resembling those used to evaluate
discriminative models (e.g., AUC-ROC)—which describe the rate by which a model makes errors.
When averaged over all samples, our sample-level scores reflect discrepancy between real and gen-
erative distributions in a way similar to statistical divergence measures (e.g., KL divergence, Fréchet
distance (Heusel et al. (2017)), or maximum mean discrepancy (Sutherland et al. (2016)). In this
sense, our metric enables diagnosing model performance on both the sample and distribution levels.

Our metric represents the performance of a generative model as a point in a 3-dimensional space—
each dimension corresponds to a distinct quality of the model. These qualities are: Fidelity, Diversity
and Generalization. Fidelity measures the quality of a model’s synthetic samples, and Diversity is
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Figure 1: Pictorial depiction for the pro-
posed evaluation metrics. The blue and red
spheres correspond to the α- and β-supports
of real and generative distributions, respec-
tively. Blue and red points correspond to real
and synthetic data. (a) Synthetic data falling
outside the blue sphere will look unrealistic
or noisy. (b) Overfitted models can generate
ostensibly high-quality data samples that are
“unauthentic” because they are copied from
the training data. (c) High-quality data sam-
ples should reside inside the blue sphere. (d)
Outliers do not count in the β-Recall met-
ric. (Here, α=β=0.9, α-Precision=8/9, β-
Recall = 4/9, and Authenticity = 9/10.)
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the extent to which these samples cover the full variability of real samples, whereas Generalization
quantifies the extent to which a model overfits (copies) training data.

How do we quantify the 3 dimensions of performance? We build on the precision-recall analysis
framework proposed in (Sajjadi et al. (2018)), and introduce the α-Precision and β-Recall metrics
to quantify model Fidelity and Diversity, respectively. Both metrics assume that a fraction 1 − α
(or 1 − β) of the real (and synthetic) data are “outliers”, and α (or β) are “typical”. α-Precision is
the fraction of synthetic samples that resemble the “most typical” α real samples, whereas β-Recall
is the fraction of real samples covered by the most typical β synthetic samples. α-Precision and
β-Recall are evaluated for all α, β ∈ [0, 1], providing entire precision and recall curves instead of
single numbers. To compute both metrics, we embed the (real and synthetic) data into hyperspheres
with most samples concentrated around the centers, i.e., the real and generative distributions (Pr
and Pg) has spherical-shaped supports. In this transformed feature space, typical samples would be
located near the centers of the spheres, whereas outliers would be closer to the boundaries.

To quantify Generalization, we introduce the Authenticity metric, which reflects the likelihood of a
synthetic sample being copied from training data. We derive the Authenticity metric from a hypoth-
esis test for data copying based on the observed proximity of synthetic samples to real ones in the
embedded feature space. A pictorial illustration for all metrics is shown in Figure 1.

How is our metric different? If one think of standard precision and recall metrics as “hard” binary
classifiers of real and synthetic samples, our α-Precision and β-Recall can be thought of as soft-
boundary classifiers that do not only compare the supports of Pr and Pg , but also assesses whether
both distributions are calibrated. Precision and recall metrics are special cases of α-Precision and
β-Recall for α = β = 1. As we show later, our new metric definitions solve many of the drawbacks
of standard precision-recall analysis, such as lack of robustness to outliers and failure to detect dis-
tributional mismatches (Naeem et al. (2020)). They also enable detailed diagnostics of different
types of model failure, such as mode collapse and mode invention. Moreover, optimal values of our
metrics are achieved only when Pr and Pg are identical, thereby eliminating the need to augment
the evaluation procedure with additional measures of statistical divergence (e.g., KL divergence).

Previous works relied on pre-trained embeddings (using ImageNet feature extractors (Deng et al.
(2009))). In this work, we propose feature embeddings that are model- and domain-agnostic, and are
tailored to our metric definitions and data set at hand. Our proposed feature embedding step can be
completely bespoke to raw data, or augmented with pre-trained embeddings. This enables our metric
to remain operable in application domains where no pre-trained representations exist.

Overfitting is a crucial mode of failure of generative models, especially when modeling sensitive data
(e.g., clinical data) for which data copying may violate privacy requirements (Yoon et al. (2020)),
but it has been overlooked in previous works which focused exclusively on quantifying the Fidelity-
Diversity characterization (Brock et al. (2018)). As we show in our experiments (Section 5), because
our metric accounts for Generalization, it can provide a fuller picture of a generative model’s perfor-
mance. Precisely, we show that some of the celebrated generative models score highly for Fidelity
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and Diversity simply because they memorize real samples, rendering them inappropriate for privacy-
sensitive applications. A comprehensive survey of prior work is provided in the Appendix.

Model auditing as a novel use case. The sample-level nature of our metrics inspires the new use
case of model auditing, wherein we judge individual synthetic samples by their quality, and reject
samples that have low Fidelity or are unauthentic. In Section 5, we show that model audits can
improve the outputs of a black-box model in a post-hoc fashion without any modifications to the
model itself, and demonstrate this use case in synthesizing clinical data for COVID-19 patients.

2 EVALUATING AND AUDITING GENERATIVE MODELS

2.1 PROBLEM SETUP

We denote real and generated data asXr ∼ Pr andXg ∼ Pg , respectively, whereXr, Xg ∈ X , with
Pr and Pg being the real and generative distributions, and X being the input space. The generative
distribution, Pg , is estimated using a generative model (e.g., GAN). The real and synthetic data sets
are Dreal = {Xr,i}ni=1 and Dsynth = {Xg,j}mj=1, where Xr,i ∼ Pr and Xg,j ∼ Pg .

2.2 WHAT MAKES A GOOD SYNTHETIC DATA SET?

Our goal is to construct a metric E(Dreal,Dsynth) for the quality of Dsynth in order to (i) evaluate
the performance of the underlying generative model Pg , and (ii) audit the model outputs by discard-
ing (individual) “low-quality” samples, thereby improving the overall quality ofDsynth. In order for
E to fulfill the evaluation and auditing tasks, it must satisfy the following desiderata: (1) it should
be able to disentangle the different modes of failure of Pg through interpretable measures of
performance, and (2) it should be sample-wise computable, i.e., we should be able to tell if a given
(individual) synthetic sample Xg ∼ Pg is of a low quality.

Having outlined the desiderata for our sought-after evaluation metric, we now propose three qualities
of synthetic data that the metric E should be able to quantify. Failure to fulfill any of these three
qualities correspond to independent modes of failure of the model Pg . These qualities are:

1. Fidelity—the generated samples resemble real samples from Pr. A high-fidelity synthetic
data set should contain “realistic” samples, e.g. visually-realistic images.

2. Diversity—the generated samples are diverse enough to cover the variability of real data,
i.e., a model should be able to generate a wide variety of good samples.

3. Generalization—the generated samples should not be mere copies of the (real) samples in
training data, i.e., models that overfit to Dreal are not truly “generative”.

In Section 3, we propose a three-dimensional evaluation metric E that captures all of the qualities
above. Our proposed metric can be succinctly described as follows:

E , (α-Precision︸ ︷︷ ︸
Fidelity

, β-Recall︸ ︷︷ ︸
Diversity

, Authenticity︸ ︷︷ ︸
Generalization

). (1)

The α-Precision and β-Recall metrics are generalizations of the conventional notions of precision
and recall used in binary classification analysis (Flach & Kull (2015)). Precision measures the rate by
which the model synthesizes “realistic-looking” samples, whereas the recall measures the fraction
of real samples that are covered by Pg . The authenticity score measures the fraction of synthetic
samples that are invented by the model and not copied from the training data.

2.3 EVALUATION AND AUDITING PIPELINES

Having provided a bird’s-eye view of our proposed metric E , we now briefly summarize the steps
involved in the evaluation and auditing tasks. Since statistical comparisons of complex data types in
the raw input space X are difficult, the evaluation pipeline starts by embedding Xr and Xg into a
“meaningful” feature space through a representation Φ, dubbed the evaluation embedding, and then
computing E on the embedded features (see Figure 2(a)). In Section 4, we propose a representation
learning approach to construct embeddings tailored to our metric and the data set at hand.
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In the (post-hoc) model auditing task, we
compute the sample-level metrics for each
Xg,j in Dsynth, and discard samples with
low authenticity and/or precision scores,
which results in a “curated” synthetic data
set with an improved overall performance.
When granted direct access to the model
Pg , the auditor serves as a rejection sam-
pler that repeatedly draws samples from
Pg , only accepting ones with high preci-
sion and authenticity (Figure 2(b)). Model
auditing is possible through our metrics as
they can be used to evaluate the quality
of individual synthetic samples; the same
task cannot be carried out with statisti-
cal divergence measures that compare the
overall real and generative distributions.
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Figure 2: The evaluation and auditing pipelines.

3 α-PRECISION, β-RECALL AND AUTHENTICITY

3.1 DEFINITIONS AND NOTATIONS

Let X̃r = Φ(Xr) and X̃g = Φ(Xg) be the embedded real and synthetic features. For simplicity, we
will use Pr and Pg to refer to the distributions over the raw and embedded features interchangeably.
Let Sr = supp(Pr) and Sg = supp(Pg), where supp(P) is the support of P. Central to our proposed
metrics is a more general notion for the support of a distribution P, which we dub the α-support. We
define the α-support as the smallest subset of S = supp(P) supporting a probability mass α, i.e.,

Sα , min
s⊆S

V (s), s.t. P(s) = α, (2)

where V (s) is the volume (Lebesgue measure) of s, and α ∈ [0, 1]. One can think of an α-support
as dividing the full support of P into “normal” samples concentrated in Sα, and “outliers” residing
in S̄α, where S = Sα∪S̄α. The notion of α-support is also known as the minimum volume set, and
has been traditionally used in outlier detection models (Polonik (1997); Scott & Nowak (2006)).

Finally, we define the distance between a data sample X and the training data Dreal as the distance
between X and the closest sample in Dreal, i.e.,

d(X,Dreal) = min
1≤i≤n

d(X,Xr,i), (3)

where d is a distance metric defined over the input space X .

3.2 SAMPLE-LEVEL EVALUATION METRICS

3.2.1 α-PRECISION AND β-RECALL

α-Precision. The conventional Precision metric is defined as the probability that a generated sample
is supported by the real distribution, i.e. P(X̃g ∈ Sr) (Sajjadi et al. (2018)). We propose a more
refined measure of sample fidelity, dubbed the α-Precision (denoted as Pα), defined as follows:

Pα , P(X̃g ∈ Sαr ), for α ∈ [0, 1]. (4)

That is, Pα is the probability that a synthetic sample resides in the α-support of the real distribution.

β-Recall. To assess diversity in synthetic data, we propose the β-Recall metric as a generalization
of the conventional Recall metric. Formally, we define the β-Recall as follows:

Rβ , P(X̃r ∈ Sβg ), for β ∈ [0, 1], (5)

i.e., Rβ is the fraction of real samples that reside in the β-support of the generative distribution.
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(a) Mode collapse (b) Mode invention (c) Density shift (d) α-Precision and β-Recall curves 
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Figure 3: Interpretation of the Pα andRβ curves. Real distribution is colored in blue, generative distribution
is in red. Distributions are collapsed into 1 dimension for simplicity. Here, Pr is a multimodal distribution of
cat images, with one mode representing orange tabby cats and another mode for Calico cats; outliers comprise
exotic Caracal cats. Shaded areas represent the probability mass covered by α- and β-supports—these supports
concentrate around the modes, but need not be contiguous for multimodal distributions, i.e., we have Sαr =

Sαr,1 ∪ Sαr,2, and Sβg = Sβg,1 ∪ S
β
g,2. (a) Here, the model Pg exhibits mode collapse where it over-represents

orange tabbies. Such model would achieve a precision score of P1 = 1 but a suboptimal (concave) Pα curve
(panel (d)). Because it does not cover all modes, the model will have both a suboptimal R1 score and Rβ
curve. (b) This model perfectly nails the support of Pr , hence it scores optimal standard metrics P1 = R1 = 1.
However, the model invents a mode by over-representing outliers, where it mostly generates images for the
exotic cat breed. Standard metrics imply that model (a) outperforms (b) where in reality (a) is more faithful
to the real data. Pα and Rβ give us a fuller picture of the comparative performances of both models. (c) This
model realizes both types of cats but estimates a slightly shifted support and density; intuitively, this is the best
of the three models, but it will appear inferior to (b) under P1 and R1. By examining the Pα-Rβ curves, we
see that model (c) has less deviation from optimal performance (the dashed black lines in panel (d)).

Interpreting α-Precision and β-Recall. To interpret (4) and (5), we first need to revisit the notion
of α-support. From (2), we know that an α-support hosts the most densely packed probability mass
α in a distribution, hence Sαr and Sβg always concentrate around the modes of Pr and Pg (Figure 3);
samples residing outside of Sαr and Sβg can be thought of as outliers. In this sense, Pα andRβ do not
count outliers when assessing fidelity and diversity. That is, the α-Precision score deems a synthetic
sample to be of a high fidelity not only if it looks “realistic”, but also if it looks “typical”. Similarly,
β-Recall counts a real sample as being covered by Pg only if it is not an outlier in Pg . By sweeping
the values of α and β from 0 to 1, we obtain a varying definition of which samples are typical and
which are outliers—this gives us entire Pα and Rβ curves as illustrated in Figure 3.

Generalizing precision-recall analysis. Unlike standard precision and recall, Pα and Rβ take into
account not only the supports of Pr and Pg , but also their densities. Standard precision (and recall)
correspond to one point on the Pα (and Rβ) curve; they coincide with Pα and Rβ evaluated on the
full supports (i.e., P1 and R1). By defining our metrics with respect to the α- and β-supports, we
do not treat all samples equally, but assign higher importance to samples in “denser” regions of Sr
and Sg . Pα and Rβ reflect the extent to which Pr and Pg are calibrated— i.e., good Pα and Rβ are
achieved when Pr and Pg share the same modes and not just a common support.

Our proposed Pα and Rβ metrics address major shortcomings of the commonly used P1 and R1,
among these are: lack of robustness to outliers, failure to detect matching distributions, and inability
to diagnose different types of distributional failure (Naeem et al. (2020)). Basically, Pg will score
perfectly on precision and recall (R1=P1=1) as long as it nails the support of Pr, even if Pr and Pg
place totally different densities on their common support. Figure 3 illustrates how our metrics rem-
edy these shortcomings. While optimal R1 and P1 are achieved by arbitrarily mismatched densities,
our Pα and Rβ curves are optimized only when Pr and Pg are identical as stated by Theorem 1.

Theorem 1. The α-Precision and β-Recall satisfy the condition Pα/α = Rβ/β = 1, ∀α, β, if and
only if the generative and real densities are identical, i.e., Pg = Pr. �

That is, a model is optimal if and only if its Pα and Rβ are both straight lines with unity slopes.
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Measuring statistical discrepancy with Pα and Rβ. While the Pα and Rβ curves provide a de-
tailed view on a model’s fidelity and diversity, it is often more convenient to summarize performance
in a single number. To this end, we define the mean absolute deviation of Pα and Rβ as:

∆Pα =

∫ 1

0

|Pα − α| dα, ∆Rβ =

∫ 1

0

|Rβ − β| dβ, (6)

where ∆Pα ∈ [0, 1/2] and ∆Rβ ∈ [0, 1/2] quantify the extent to which Pα and Rβ deviate from
their optimal values. We define the integrated Pα and Rβ metrics as IPα = 1− 2∆Pα and IRβ =
1− 2∆Rβ , both take values in [0, 1]. From Theorem 1, IPα = IRβ = 1 only if Pg = Pr.

Together, IPα and IRβ serve as a measure of the discrepancy between the distributions Pr and Pg ,
eliminating the need to augment our precision-recall analysis with measures of statistical divergence.
Moreover, unlike f -divergence measures, the (IPα, IRβ) metric disentangles fidelity and diversity
into separate components, and does not require that Pr and Pg share a common support.

3.2.2 AUTHENTICITY

Generalization is independent of precision and recall since a model can achieve perfect fidelity and
diversity without truly generating any samples, simply by resampling training data. Unlike discrim-
inative models for which generalization is easily tested via held-out data, evaluating generalization
in generative models is not straightforward (Adlam et al. (2019); Meehan et al. (2020)). We propose
an authenticity score A ∈ [0, 1] to quantify the rate by which a model generates new samples. To
pin down a mathematical definition for A, we reformulate Pg as a mixture of densities as follows:

Pg = A · P′g + (1−A) · δg,ε, (7)

where P′g is the generative distribution conditioned on the synthetic samples being non-overfitted,
and δg,ε is a noisy distribution over training data. In particular, we define δg,ε as δg,ε = δg∗N (0, ε2),
where δg is a discrete distribution that places an unknown probability mass on each training data
point in Dreal, ε is an arbitrarily small noise variance, and ∗ is the convolution operator. Essentially,
(7) assumes that the model flips a (biased coin), pulling off a training sample with probability 1−A
and adding some noise to it, or innovating a new sample with probability A. A model with A = 1
always innovates, whereas an overfitted model will concentrate Pg around the training data.

4 ESTIMATING THE EVALUATION METRIC

Since the metrics in Section 3 are defined through binary conditions on individual samples, we can
obtain an estimate Ê = (P̂α, R̂β , Â) of the metric E, for a given α and β, by assigning binary scores
P̂α,j , Âj ∈ {0, 1} to each synthetic sample X̃g,j in Dsynth, and R̂β,i ∈ {0, 1} to each real sample X̃r,i
in Dreal, then averaging over all samples, i.e., P̂α = 1

m

∑
j P̂α,j , R̂β = 1

n

∑
i R̂β,i, Â = 1

m

∑
j Âj .

To assign binary scores, we construct 3 classifiers fP , fR, fA : X̃ → {0, 1}, where P̂α,j = fP (X̂g,j),
R̂β,i = fR(X̂r,i) and Âj = fA(X̂g,j). We explain the operation of each classifier in what follows.

Precision and Recall classifiers. Based on definitions (4) and (5), both classifiers check if a sample
resides in an α- (or β-) support, i.e., fP (X̃g) = 1{X̃g ∈ Ŝαr } and fR(X̃r) = 1{X̃r ∈ Ŝβg }. Hence, the
main difficulty in implementing fP and fR is estimating the supports Ŝαr and Ŝβg —in fact, even if
we know the exact distributions Pr and Pg , computing their α- and β-supports is not straightforward
as it involves solving the optimization problem in (2).

To address this challenge, we pre-process the real and synthetic data in a way that renders estimation
of α-and β-supports straightforward. The idea is to train the evaluation embedding Φ so as to cast
the supports of the real data, Sr, into a hypersphere with radius r, and cast the distribution Pr into an
isotropic density concentrated around the center cr of the hypersphere. We achieve this by modeling
Φ as a one-class neural network trained with the following loss function: L =

∑
i `i, where

`i = r2 +
1

ν
max{0, ‖Φ(Xr,i)− cr ‖2 − r2}. (8)

The loss is minimized over the radius r and the parameters of Φ; the output dimensions of Φ, cr and ν
are viewed as hyperparameters (see Supplementary material). The loss in (8) is based on the seminal
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work on one-class SVMs in (Schölkopf et al. (2001)), which is commonly applied to outlier detection
problems, e.g., (Ruff et al. (2018)). In a nutshell, the evaluation embedding squeezes real data into
the minimum-volume hypersphere centered around cr, hence the real α-support is estimated as:

Ŝαr = B(cr, r̂α), r̂α = Q̂α{‖X̃r,i − cr‖ : 1 ≤ i ≤ n}, (9)

whereB(c, r) is a Euclidean ball with center c and radius r, and Q̂α is the α-quantile function. The
set of all α-supports of Pr corresponds to the set of all concentric spheres with center cr and radii
r̂α, ∀α ∈ [0, 1]. Thus, the precision classifier assigns a score 1 to a synthetic sample X̃g if it resides
in the Ball Ŝαr , i.e., fp(X̃g) = 1{‖X̃g − cr‖ ≤ r̂α}. Now define cg = 1

m

∑
j X̃g,j , and consider a hy-

persphereB(cg, r̂β), where r̂β = Q̂β{‖X̃g,j − cg‖ : 1 ≤ j ≤ m}. We construct fR as follows:

fR(X̃r,i) = 1{X̃β
g,j∗ ∈ B(X̃r,i,NNDk(X̃r,i))}, (10)

where X̃β
g,j∗ is the synthetic sample in B(cg, r̂β) that is closest to X̃r,i, and NNDk(X̃r,i) is the

distance between X̃r,i and its k-nearest neighbor in Dreal. Similar to the estimator in (Naeem et al.
(2020)), (10) is a nonparametric estimate of Sβg that checks if each real sample i is locally covered
by a synthetic sample inB(cg, r̂β). A discussion on how to select the hyper-parameter k, as well as
an alternative method for estimating Sβg using one-class representations is provided in the Appendix.

Authenticity classifier. We derive the classifier fA from a hypothesis test that tests if a sample X̃g,j

is non-memorized. LetH1 : Aj = 1 be the hypothesis that X̃g,j is authentic, with the null hypothesis
H0 : Aj = 0. To test the hypothesis, we use the likelihood-ratio statistic (Van Trees (2004)):

Λ(X̃g,j) = P(X̃g,j |Aj = 1)/P(X̃g,j |Aj = 0) = P′g(X̃g,j)/δg,ε(X̃g,j), (11)

which follows from (7). Since both likelihood functions in (11) are unknown, we need to test the
hypothesisH1 : Aj = 1 using an alternative sufficient statistic with a known probability distribution.

Let dg,j = d(X̃g,j ,Dreal) be the distance between synthetic sample j and the training data set, and let
i∗ be the training sample inDreal closest toXg,j , i.e., dg,j = d(X̃g,j , X̃r,i∗). Let dr,i∗ be the distance
between X̃r,i∗ and Dreal/{X̃r,i∗}, i.e., the training data with sample i∗ removed. Now consider the
statistic aj = 1{dg,j ≤ dr,i∗}, which indicates if synthetic sample j is closer to training data than any
other training sample. The likelihood ratio for observations {aj}j under hypothesesH0 andH1 is

Λ(aj) = P(aj |Aj = 1)/P(aj |Aj = 0) ≈ a−1
j · P(dg,j ≤ dr,i∗ |Aj = 1). (12)

Here, we used the fact that if sample j is a memorized copy of i∗, and if the noise variance ε in (7) is
arbitrarily small, then aj = 1 almost surely and P(aj |Aj = 0) ≈ 1. If j is authentic, then X̃g,j lies
in the convex hull of the training data, and hence P(aj |Aj = 0)→ 0 and Λ→∞ for a large real data
set. Thus, fA issues a label Aj = 1 if aj = 0, and Aj = 0 otherwise. Intuitively, fA deems sample
j unauthentic if it is closer to i∗ than any other real sample in the training data.

5 EXPERIMENTS AND USE CASES

5.1 EVALUATING & AUDITING GENERATIVE MODELS FOR SYNTHESIZING COVID-19 DATA

In this experiment, we use our metric to assess the ability of different generative models to synthesize
COVID-19 patient data that can be used for predictive modeling. Using SIVEP-Gripe (SIVEP-Gripe
(2020)), a database of 99,557 COVID patients in Brazil, including sensitive data such as ethnicity.
We use generative models to synthesize replicas of this data and fit predictive models to the replicas.

Models and baselines. We create 4 synthetic data sets using GAN, VAE, Wasserstein GANs with a
gradient penalty (WGAN-GP) (Gulrajani et al. (2017)), and ADS-GAN, which is specifically de-
signed to prevent patient identifiablity in generated data (Yoon et al. (2020)). To evaluate these
synthetic data sets, we use Fréchet Inception Distance (FID) (Heusel et al. (2017)), Precision/Recall
(P1/R1) (Sajjadi et al. (2018)), Density/Coverage (D/C) (Naeem et al. (2020)), Parzen window like-
lihood (PW ) (Bengio et al. (2013)) and Wasserstein distance (W ) as baselines. On each synthetic
data, we fit a predictive Logistic regression model to predict patient-level COVID-19 mortality.
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(a) Ranking generative and predictive models (b) Hyper-parameter optimization (c) Synthetic data improvement via auditing 

WGAN-GP ADS-GAN VAE Ground-truth ranking: 

AUC-ROC 

GAN 

0.79 ± 0.02 

0.79 ± 0.02 

0.76 ± 0.02 

0.55 ± 0.03 
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0.79  ± 0.02 
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Figure 4: Predictive modeling with synthetic data. (a) Here, we rank the 4 generative models (ADS-GAN:×,
WGAN-GP: •, VAE: N, GAN: �) with respect to each evaluation metric (leftmost is best). For each metric, we
train a predictive model on the synthetic data set with highest score, and test its AUC on real data. Ground-truth
ranking of synthetic data is the ranking of the AUC of predictive models trained on them. (b) Hyper-parameter
tuning for ADS-GAN. (Dashed lines are linear regression lines.) (c) Post-hoc auditing of ADS-GAN.

Predictive modeling with synthetic data. In the context of predictive modeling, a generative model
is assessed with respect to its usefulness in training predictive models that generalize well on real
data. Hence, the “ground-truth” ranking of the 4 generative models corresponds to the ranking of the
AUC-ROC scores achieved by predictive models fit to their respective synthetic data sets and tested
on real data (Figure 4(a)). The data synthesized by ADS-GAN (×) displayed the best performance,
followed by WGAN-GP (•), VAE (N), and GAN (�). To assess the accuracy of baseline evaluation
metrics, we test if each metric can recover the ground-truth ranking of the 4 generative models
(Figure 4(a)). Our integrated precision and recall metrics IPα and IRβ both assign the highest
scores to ADS-GAN; IPα exactly nails the right ranking of generative models. On the other hand,
competing metrics such as P1, C and D, over-estimate the quality of VAE and WGAN-GP—if we
use these metrics to decide which generative model to use, we will end up with predictive models
that perform poorly, i.e. AUC-ROC of the predictive model fitted to synthetic data with best P1 is
0.55, compared to an AUC-ROC of 0.79 for our IPα score.

These results highlight the importance of accounting for the densities Pg and Pr, and not just their
supports, when evaluating a generative model. This is because a shifted Pg would result in a “covari-
ate shift” in synthetic data, leading to poor generalization for predictive models fitted to it, even when
real and synthetic support coincide. As we can see in Figure 4(a), metrics that compare distributions
(our metrics, PW and FID), are able to accurately rank the 4 generative models.

Hyper-parameter tuning & the privacy-utility tradeoff. Another use case for our metric is hyper-
parameter optimization for generative models. Here, we focus on the best-performing model in our
previous experiment: ADS-GAN. This model has a hyper-parameter λ ∈ R that determines the
importance of the privacy-preservation loss function used to regularize the training of ADS-GAN
(Yoon et al. (2020)): smaller values of λmake the model more prone to overfitting, and hence privacy
leakage. Figure 4(b) shows how our precision and authenticity metrics change with the different
values of λ: the curve provides an interpretable tradeoff between privacy and utility (e.g., for λ = 2,
an A score of 0.4 means that 60% of patients may have personal information exposed). Increasing
λ improves privacy at the expense of precision. By visualizing this tradeoff using our metric, data
holders can understand the risks of different modeling choices involved in data synthesis.

Improving synthetic data via model auditing. Our metrics are not only useful for hyper-parameter
tuning, but can also be used to improve the quality of synthetic data generated by an already-trained
model using (post-hoc) auditing. Because our metrics are defined on the sample level, we can dis-
card unauthentic or imprecise samples. This does not only lead to nearly optimal precision and au-
thenticity for the curated data (Figure 4(c)), but also improves the AUC-ROC of the predictive model
fitted to audited data (from 0.76 to 0.78 for the audited ADS-GAN synthetic data, p < 0.005), since
auditing eliminates noisy data points that would otherwise undermine generalization performance.

5.2 DIAGNOSING GENERATIVE DISTRIBUTIONS OF MNIST

In this experiment, we test the ability of our metrics to detect common modes of failure in generative
modeling—in particular, we emulate a mode dropping scenario, where the generative model fails to
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(a) Diagnosing mode dropping in MNIST data 

Wasserstein distance FID Precision & Recall Density & Coverage α-Precision & β-Recall 

(b) Hide-and-seek competition 
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Figure 5: (a) Diagnosing mode collapse in MNIST data. (b) Results for the hide-and-seek competition.

recognize the distinct modes in a multimodal distribution Pr, and instead recovers a single mode in
Pg . To construct this scenario, we fit a conditional GAN (CGAN) model (Wang et al. (2018)) on
the MNIST data set, and generate 1,000 samples for each of the digits 0-9. (We can think of each
digit as a distinct mode in Pr.) To apply mode dropping, we first sample 1,000 instances of each
digit from the CGAN, and then delete individual samples of digits 1 to 9 with a probability Pdrop,
and replace the deleted samples with new samples of the digit 0 to complete a data set of 10,000
instances. The parameter Pdrop ∈ [0, 1] determines the severity of mode dropping: for Pdrop = 0,
the data set has all digits being equally represented with 1,000 samples, and for Pdrop = 1, the data
set has 10,000 samples of the digit 0 only as depicted pictorially in Figure 5(a) (bottom panel).

We show how the different evaluation metrics respond to varying Pdrop from 0 to 1 in Figure 5(a)
(top). Because mode dropping pushes the generative distribution away from the real one, statistical
distance metrics such as W and FID increase as Pdrop approaches 1. However, these metrics only
reflect a discrepancy between Pr and Pg , and do not disentangle the Fidelity and Diversity compo-
nents of this discrepancy. On the other hand, standard precision and recall metric are completely
insensitive to mode dropping except for the extreme case when Pdrop = 1. This is because both
metrics only check supports of Pr and Pg , so they cannot recognize mode dropping as long as there
is a non-zero probability that the model will generates digits 1-9. On the contrary, mode dropping
reflects in our metrics, which manifest in a declining IRβ as Pdrop increases. Since mode dropping
affects coverage of digits and not the quality of images, it only affects IRβ but not IPα.

5.3 REVISITING THE HIDE-AND-SEEK CHALLENGE FOR SYNTHESIZING TIME-SERIES DATA

Finally, we use our metric to re-evaluate the generative models submitted to the NeurIPS 2020
Hide-and-Seek competition (Jordon et al. (2020)). In this competition, participants were required to
synthesize intensive care time-series data based on real data from the AmsterdamUMCdb database.
A total of 16 submissions were judged based on the accuracy of predictive models fit to the synthetic
data (an approach similar to the one in Section 5.1). The submissions followed various modeling
choices, including recurrent GANs, autoencoders, differential privacy GANs, etc. Details of all
submissions are available online. Surprisingly, the winning submission was a very simplistic model
that adds Gaussian noise to the real data to create new samples.

To evaluate our metrics on time-series data, we trained a Seq-2-Seq embedding that is augmented
with our One-class representations to transform time-series into fixed feature vectors. (The archi-
tecture for this embedding is provided in the Supplementary material.) In Figure 5(b), we evaluate
all submissions with respect to precision, recall and authenticity. As we can see, the winning sub-
mission comes out as one of the least authentic models, despite performing competitively in terms
of precision and recall. This highlights the detrimental impact of using naı̈ve metrics for evaluating
generative models—based on the competition results, clinical institutions seeking to create synthetic
data sets may be led to believe that Submission 1 in Figure 5(b) is the right model to use. However,
our metrics—which give a fuller picture of the true quality of all submissions—shows that such
model creates unauthentic samples that are mere noisy copies of real data, which would pose risk
to patient privacy. We hope that our metrics and our pre-trained Seq-2-Seq embeddings can help
clinical institutions evaluate the quality of their synthetic time-series data in the future.
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SUPPLEMENTARY MATERIAL

APPENDIX A: LITERATURE REVIEW

In this Section, we provide a comprehensive survey of prior work, along with a detailed discussion
on how our metric relates to existing ones. We classify existing metrics for evaluating generative
models into two main classes:

1. Statistical divergence metrics

2. Precision and recall metrics

Divergence metrics are single-valued measures of the distance between the real and generative dis-
tributions, whereas precision-recall metrics classify real and generated samples as to whether they
are covered by generative and real distributions, respectively. In what follows, we list examples of
these two types of metrics, highlighting their limitations.

Statistical divergence metrics.

The most straightforward approach for evaluating a generative distribution is to compute the model
log-likelihood—for density estimation tasks, this has been the de-facto standard for training and
evaluating generative models. However, the likelihood function is a model-dependent criteria: this
is problematic because the likelihood of many state-of-the-art models is inaccessible. For instance,
GANs are implicit likelihood models and hence provide no explicit expression for its achieved log-
likelihood Goodfellow et al. (2014). Other models, energy-based models has a normalization con-
stant in the likelihood expression that is generally difficult to compute as they require solving in-
tractable complex integrals Kingma & Welling (2013).

Statistical divergence measures are alternative (model-independent) metrics that are related to log-
likelihood, and are commonly used for training and evaluating generative models. Examples include
lower bounds on the log-likelihood Kingma & Welling (2013), contrastive divergence and noise con-
trastive estimation Hinton (2002); Gutmann & Hyvärinen (2010), probability flow Sohl-Dickstein
et al. (2011), score matching Hyvärinen et al. (2009), maximum mean discrepancy (MMD) Gretton
et al. (2012), and the Jensen-Shannon divergence (JSD).

In general, statistical divergence measures suffer from the following limitations. The first limitation
is that likelihood-based measures can be inadequate in high-dimensional feature spaces. As has been
shown in (Theis et al., 2015), one can construct scenarios with poor likelihood and great samples
through a simple lookup table model, and vice versa, we can think of scenarios with great likelihood
and poor samples. This is because, if the model samples white noise 99% of the time, and samples
high-quality outputs 1% of the time, the log-likelihood will be hardly distinguishable from a model
that samples high-quality outputs 100% of the time if the data dimension is large. Our metrics solve
this problem by measuring the rate of error on a sample-level rather than evaluating the overall
distribution of samples.

Moreover, statistical divergence measures collapse the different modes of failure of the generative
distribution into a single number. This hinders our ability to diagnose the different modes of gener-
ative model failures such as mode dropping, mode collapse, poor coverage, etc.

Precision and recall metrics.

Precision and recall metrics for evaluating generative models were originally proposed in Sajjadi
et al. (2018). Our metrics differ from these metrics in various ways. First, unlike standard metrics,
α-Precision and β-Recall take into account not only the supports of Pr and Pg , but also the actual
probability densities of both distributions. Standard precision (and recall) correspond to one point on
the Pα (and Rβ) curve; they are equal to Pα and Rβ evaluated on the full support (i.e., P1 and R1).
By defining our metrics with respect to the α- and β-supports, we do not treat all samples equally,
but rather assign higher importance to samples that land in “denser” regions of Sr and Sg . Hence,
Pα and Rβ reflect the extent to which Pr and Pg are calibrated—i.e., good Pα and Rβ curves are
achieved when Pr and Pg share the same modes and not just a common support. While optimal R1

and P1 can be achieved by arbitrarily mismatched Pr and Pg , our Pα and Rβ curves are optimized
only when Pr and Pg are identical as stated by Theorem 1.
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The new Pα and Rβ metrics address the major shortcomings of precision and recall. Among these
shortcomings are: lack of robustness to outliers, failure to detect matching distributions, and inabil-
ity to diagnose different types of distributional failure (such as mode collapse, mode invention, or
density shifts) Naeem et al. (2020). Basically, a model Pg will score perfectly on precision and recall
(R1=P1=1) as long as it nails the support of Pr, even if Pr and Pg place totally different densities
on their common support.

In addition to the above, our metrics estimate the supports of real and generative distributions using
neural networks rather than nearest neighbor estimates as in Naeem et al. (2020). This prevents our
estimates from overestimating the supports of real and generative distributions, thereby overestimat-
ing the coverage or quality of the generated samples.

APPENDIX B: PROOF OF THEOREM 1

To prove the statement of the Theorem, we need to prove the two following statements:

(1) Pg = Pr → Pα/α = Rβ/β = 1, ∀α, β
(2) Pα/α = Rβ/β = 1, ∀α, β → Pg = Pr
To prove (1), we start by noting that since we have Pg = Pr, then Sgα = Srα, ∀α ∈ [0, 1]. Thus, we
have

Pα = P(X̃g ∈ Sαr ) = P(X̃g ∈ Sαg ) = α, (13)

for all α ∈ [0, 1], and similarly, we have

Rβ = P(X̃r ∈ Sβg ) = P(X̃r ∈ Sβr ) = β, (14)

for all β ∈ [0, 1], which concludes condition (1).

Now we consider condition (2). We first note that Sαr ⊆ Sα
′

r for all α′ > α. If Pα = α for all α,
then we have

P(X̃g ∈ Sαr ) =

∫
Sαr
dPg = α, ∀α ∈ [0, 1]. (15)

Now assume that α′ = α+ ∆α, then we have∫
Sα′r /Sαr

dPg =

∫
Sα′r /Sαr

dPr = ∆α. (16)

Thus, the probability masses of Pg and Pr are equal for all infinitesimally small region Sα+∆α
r /Sαr

(for ∆α→ 0) of the α-support of Pr, hence Pg = Pr for all subsets of S1
r . By applying the similar

argument to the recall metric, we also have Pg = Pr for all subsets of S1
g , and hence Pg = Pr.

APPENDIX C: ALTERNATIVE APPROACH FOR ESTIMATING THE SUPPORT OF
SYNTHETIC DATA & CODE SNIPPETS

Instead of using a k-NN approach to estimate the generative support Sβg , one could use a separate
one-class representation Φg for each new synthetic sample being evaluated. We provide code snip-
pets and comparisons between the two approaches in the an anonymized Colab notebook. While
the two approaches perform rather similarly, we opt to adopt the k-NN based approach to avoid
potential biases induced by using a separate representation for each generative model when using
our metric for model comparisons.

APPENDIX D: EXPERIMENTAL DETAILS

.1 DATA

In this research the argue for the versatility of our metrics, hence we have included results for tabular
(static), time-series and image data (see Table 1). For the tabular data we use Baqui et al. (2020)’s
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Table 1: Datasets used, with n and d the number of samples and features, respectively.

Name Type n d Embedding demb

SIVEP-GRIPE Tabular 6882 25 - -
AmsterdamUMCdb Time-series 7695 70 Seq-2-Seq 280
MNIST Image 10000 784 InceptionV3 2048

preprocessed version of the SIVEP-GRIPE dataset of Brazilian ICU Covid-19 patient data. For the
image experiments, we use the 10,000 samples in the default MNIST test set LeCun (1998). For
proper evaluation of the authenticity metric, the same original data is used for training of generative
models and evaluation of all metrics.

For the time-series experiments, AmsterdamUMCdb is used in a manner exactly analogous to the
NeurIPS 2020 Hide-and-Seek Privacy Challenge Jordon et al. (2020), which describes it as follows:
“AmsterdamUMCdb was developed and released by Amsterdam UMC in the Netherlands and the
European Society of Intensive Care Medicine (ESICM). It is the first freely accessible comprehen-
sive and high resolution European intensive care database. It is also first to have addressed com-
pliance with General Data Protection Regulation [...] AmsterdamUMCdb contains approximately
1 billion clinical data points related to 23,106 admissions of 20,109 unique patients between 2003
and 2016. The released data points include patient monitor and life support device data, laboratory
measurements, clinical observations and scores, medical procedures and tasks, medication, fluid bal-
ance, diagnosis groups and clinical patient outcomes.”. Notably, only the longitudinal features from
this database are kept, with static ones discarded. The same subset as was used in the competition
for “hider” synthetic data generation is used; this consists of 7695 examples with 70 features (and a
time column), sequence length is limited to 100 (the original data contains sequences of up to length
135,337). The features are normalised to [0, 1] and imputed as follows: (1) back-fill, (2) forward-fill,
(3) feature median imputation. This preprocessing is chosen to match the competition Jordon et al.
(2020). The competition “hider” submissions were trained on this dataset and the synthetic data
generated.

For metric consistency and the avoidance of tedious architecture optimization for each data modality,
we follow previous works (e.g. Heusel et al. (2017); Sajjadi et al. (2018); Kynkäänniemi et al.
(2019); Naeem et al. (2020)) and embed image and time series data into a static embedding. This
is required, since the original space is non-euclidean and will result in failure of most metrics. The
static embedding is used for computing baseline metrics, and is used as input for the One-Class
embedder.

For finding static representations of MNIST, images are upscaled and embedded using InceptionV3
pre-trained on ImageNET without top layer. This is the same embedder used for computing Frchet
Inception Distance Heusel et al. (2017). Very similar results were obtained using instead a VGG-
16 embedder Brock et al. (2018); Kynkäänniemi et al. (2019). Preliminary experimentation with
random VGG-16 models Naeem et al. (2020) did not yield stable results for neither baselines nor
our methods.

.2 TIME SERIES EMBEDDING

The time series embeddings used throughout this work are based on Unsupervised Learning of Video
Representations using LSTMs Srivastava et al. (2015), specifically the “LSTM Autoencoder Mode”.
A sequence-to-sequence LSTM network is trained, with the target sequence set as the input sequence
(reversed for ease of optimization), see Figure 1. The encoder hidden and cell states (h and c vectors)
at the end of a sequence are used as the learned representation and are passed to the decoder during
training. At inference, these are concatenated to obtain one fixed-length vector per example.

The specifics of the LSTM autoencoder used here are as follows. Two LSTM layers are used in
each encoder and decoder. The size of h, c vectors is 70 (280 after concatenation). The model
was implemented in PyTorch Paszke et al. (2017), utilising sequence packing for computational
efficiency. All autoencoders were trained to convergence on the original data; the synthetic time
series data was passed through this at inference. The time column (when present in data) was
discarded.
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Figure 1: Architecture of LSTM Autoencoder, sourced from Srivastava et al. (2015).

Table 2: Metrics on tabular data for different generative models. Row ”audited” contains results for
data generated by ADS-GAN, but in which samples are rejected if they do not meet the precision or
authenticity threshold.

Model W FD Parzen P1 R1 D C A IPα IRβ

VAE 2.2626 2.9697 -11.3653 1.0000 0.1022 1.3999 0.0926 0.5147 0.4774 0.0596
GAN 1.5790 1.8065 -10.7824 0.7059 0.0875 0.4316 0.0939 0.6077 0.9802 0.0648
WGAN-GP -0.0194 0.0856 -8.3650 0.9439 0.7299 1.0709 0.8945 0.4712 0.9398 0.4468
ADS-GAN 0.3578 0.2134 -8.7952 0.8083 0.6133 0.4711 0.5357 0.5905 0.7744 0.2914
DPGAN 1.1216 0.9389 -8.8394 0.9923 0.1822 1.4885 0.5065 0.3793 0.9591 0.1863
audited -0.0470 0.0600 -8.5408 0.8986 0.8737 0.7560 0.8050 1.0000 0.9994 0.1961

.3 FULL RESULTS

Table 2 contains metrics computed on different generated versions of the SIVEP-GRIPE tabular
dataset. Included metrics are Wasserstein distance, Frchet Distance (FD), Parzen window likeli-
hood estimate, precision P1, recall R1, density (D), coverage C and the proposed metrics, specifi-
cally integrated α-precision IPα, integrated β-recall IRβ and authenticity A . For the tabular data,
data is generated using a VAE, GAN, Wasserstein GAN with gradient penalisation (WGAN-GP) Ar-
jovsky et al. (2017), ADS-GAN Yoon et al. (2020), Differentially Private GAN (DP-GAN) Xie et al.
(2018) and an ADS-GAN generated dataset in which samples are audited on precision and authen-
ticity. Similarly, Table 3 contains metric results1 for MNIST, generated by a VAE, Deep convolution
GAN (DCGAN), WGAN-GP and ADS-GAN. Table 4 contains results for MIMIC generation using
different methods from the Hide-and-Seek Privacy Competition Jordon et al. (2020). The submis-
sion that won the competition is the penultimate model, Hamada. The last row shows results for an
audited version of the Hamada dataset, in which we keep generating data using the Hamada model
and discard samples that do not meet the precision or authenticity threshold.

1Note that here, the Frchet Distance equals the Frchet Inception Distance, because the metrics are computed
on InceptionV3 embeddings of the image data.

Table 3: Metrics on MNIST data for different generative models.

Model W FD Parzen P1 R1 D C A IPα IRβ

VAE 606.5 112934 -349913 0.2160 0.0140 0.0885 0.0810 0.8167 0.4280 0.1452
DCGAN -98.5 2578 -180132 0.8947 0.8785 0.8589 0.9071 0.6059 0.9889 0.4815
WGAN-GP -64.8 4910 -185745 0.8931 0.8504 0.8084 0.8509 0.6146 0.9894 0.4199
ADS-GAN -114.1 574 -28657 1.0000 0.9998 1.1231 1.0000 0.5268 0.9900 0.5549
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Table 4: Metrics on AmsterdamUMCdb data for different generative models.

Model W FD Parzen P1 R1 D C A IPα IRβ
(CodaLab username)

Add noise [baseline] 40.6 497 -228 0.0013 0.0173 0.0003 0.0010 0.8450 0.5187 0.0148
Time-GAN [baseline] 249.0 30478 -1404 0.0000 0.6642 0.0000 0.0000 0.9991 0.5000 0.0005
akashdeepsingh 13.3 44 -34 0.7643 0.3566 0.4263 0.0741 0.3958 0.6074 0.1408
saeedsa 93.4 1509 -2597 0.0000 0.0000 0.0000 0.0000 0.9925 0.5018 0.0025
wangzq312 62.3 645 -119 0.4430 0.8630 0.0920 0.0061 0.7665 0.6116 0.0185
csetraynor 64.6 1604 -4710 0.0000 0.0000 0.0000 0.0000 1.0000 0.5339 0.0000
jilljenn 118.0 17235 -5874 0.0000 0.0000 0.0000 0.0000 1.0000 0.4999 0.0000
SatoshiHasegawa 2.4 33 -156 0.9333 0.3264 0.5626 0.0988 0.3172 0.8050 0.1717
flynngo 126.3 8786 -120 0.0359 0.7663 0.0087 0.0022 0.8448 0.6497 0.0271
tuscan-chicken-wrap 118.7 5344 -892 0.0000 0.0535 0.0000 0.0000 0.9854 0.5030 0.0053
Atrin 175.3 15159 -1933 0.0000 0.7306 0.0000 0.0000 0.9975 0.5008 0.0019
wangz10 113.8 4624 -221 0.0039 0.2993 0.0010 0.0019 0.8509 0.5141 0.0113
yingruiz 146.7 8973 -562 0.0069 0.0626 0.0014 0.0001 0.8995 0.5129 0.0062
yingjialin 138.9 8919 -570 0.0000 0.0613 0.0000 0.0000 0.8864 0.5011 0.0030
lumip 25.8 271 -78 0.1796 0.4749 0.0727 0.0256 0.6335 0.5938 0.0801
hamada 8.3 73 -192 0.8933 0.4010 0.5906 0.0398 0.3572 0.5482 0.0850
hamada [audited] 7.1 48 -204 0.9006 0.0665 0.5931 0.0444 1.0 0.9976 0.0334

.4 HYPERPARAMETER OPTIMIZATION

.4.1 BASELINES

For computing the density and coverage metrics, we set a threshold of 0.95 on the minimum expected
coverage, as recommended in the original work (Eq. 9 Naeem et al. (2020)). For all datasets, this is
achieved for k = 5. For consistency in these comparisons, we use k = 5 for the precision and recall
metrics too.

.4.2 ONECLASS EMBEDDINGS

We use Deep SVDD Ruff et al. (2018) to embed static data into One-Class representations. To
mitigate hypersphere collapse (Propostions 2 and 3 of Ruff et al. (2018)), we do not include a bias
term and use ReLU activation for the One-Class embedder. Original data is split into training (80%)
and validation (20%) set, and One-Class design is fine-tuned to minimise validation loss. We use
the SoftBoundary objective (Eq. 3 Ruff et al. (2018)) with ν = 0.01 and center c = 1 for tabular
and time-series data and c = 10 ·1 for image data. Let nh be the number of hidden layers with each
dh nodes, and let dz be the dimension of the representation layer. For tabular data, we use nh = 3,
dh = 32 and dz = 25; for time-series data, nh = 2, dh = 128 and dz = 32; and for MNIST nh = 3,
dh = 128 and dz = 32. Models are implemented in PyTorch Paszke et al. (2017) and the AdamW
optimizer is used with weight decay 10−2.

For the β-recall metric, estimating the support of synthetic data involves tuning the k parameter of
the k-NN estimator. The k parameter can be tuned by fitting the NN estimator on a portion of the
data for every given k, and then testing the recall on a held out (real) sample. The selected k for
each α is the smallest k that covers α held out samples. Similar to Naeem et al. (2020), we found
that through this procedure, k = 5 seems to come up as the optimal k for most experiments.

.5 TOY EXPERIMENTS

We include two toy experiments that highlight the advantage of the proposed metrics compared to
previous works. We focus our comparison on the improved precision and recall Kynkäänniemi et al.
(2019) and density and coverage Naeem et al. (2020) metrics.

.5.1 ROBUSTNESS TO OUTLIERS

Naeem et al. (2020) showed that the precision and recall metrics as proposed by Sajjadi et al. (2018);
Kynkäänniemi et al. (2019) are not robust to outliers. We replicate toy experiments to show the
proposed α-Precision and β-Recall do not suffer the same fate.
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Let X,Y ∈ Rd denote original and synthetic samples respectively, with original X ∼ N(0, I) and
Y ∼ N(µ, I). We compute all metrics for µ ∈ [−1, 1]. In this setting we conduct three experiments:

1. No outliers

2. One outlier in the real data at X = 1

3. One outlier in the synthetic data at Y = 1

We set d = 64 and both original and synthetic data we sample 10000 points. Subsequent metric
scores are shown in Figure

(a) Precision (b) Recall

(c) IPα (d) IRβ

Figure 2: Toy experiment I: outlier robustnes

As can be seen, the precision and recall metrics are not robust to outliers, as just a single outlier has
dramatic effects. The IPα and IRβ are not affected, as the outlier does not belong to the α-support
(or β-support) unless α (or β) is large.

.5.2 MODE RESOLUTION

The precision and recall metrics only take into account the support of original and synthetic data,
but not the actual densities. The density and coverage metric do take this into account, but here we
show these are not able to capture this well enough to distinguish similar distributions.

In this experiment we look at mode resolution: how well is the metric able to distinguish a single
mode from two modes? Let the original distribution be a mixture of two gaussians that are separated
by distance µ and have σ = 1,

X ∼ 1

2
N(−µ

2
, 1) +

1

2
N(+

µ

2
, 1)

and let the synthetic data be given by

Y ∼ N(0, 1 + µ2).
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This situation would arise if a synthetic data generator fails to distinguish the two nodes, and instead
tries to capture the two close-by modes of the original distribution using a single mode. We compute
metrics for µ ∈ [0, 5].

(a) Precision (b) Recall

(c) Density (d) Coverage

(e) IPα (f) IRβ

Figure 3: Toy experiment II: mode resolution
As can be seen, neither P&R nor D&C notice that the synthetic data only consists of a single mode,
whereas the original data consisted of two. The α-precision metric is able to capture this metric: for
small α the α-support of the original distribution is centred around the two separated, and does not
contain the space that separates the modes (i.e. the mode of the synthetic data).
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