RECYCLED ATTENTION: EFFICIENT INFERENCE FOR LONG-CONTEXT LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Processing long-context input imposes a heavy computational burden when deploying large language models. Recently proposed inference-time methods accelerate generation by attending only to local context. Despite its efficiency gains, this approach fails to capture all relevant information in the input, showing substantial performance drop in long-context benchmarks. We propose *recycled attention*, an efficient and effective method which alternates between full context attention and attention over a subset of input tokens. When performing partial attention, we leverage the attention pattern of a nearby token that has performed full attention and attend only to the top K most attended tokens. We evaluate our methods on RULER, a suite of tasks designed to comprehensively evaluate long-context abilities, and long-context language modeling tasks. Applying our inference method to off-the-shelf LLMs achieves comparable speedup to baselines which only consider local context while improving the performance by 2x. We further experiment with continued pre-training the model with recycled attention to improve the performance-efficiency trade-off.

025 026

027

004

010 011

012

013

014

015

016

017

018

019

021

1 INTRODUCTION

Recent large language models (LLMs) are trained to ingest extremely long inputs and generate long outputs (Meta, 2024; Gemini, 2024) to support a wide range of applications. However, deploying such long-context LLMs can be very costly. As the context length increases, LLMs see a linear increase in memory to store the Key-Value (KV) cache and a quadratic increase in time for attention computation. These two factors lead to high latency during inference; Adnan et al. (2024) showed that as context length increased 16x for the MPT-7B model (MosaicML, 2023), the inference latency increased by 50x, where 40% of the increase was due to the data movement of the KV cache.

To improve efficiency, prior work put a limitation on the size of KV cache, i.e. the number of past tokens that are available at each generation step. This leads to a meaningful gain along two axes: memory requirement and time for attention computation. To form a smaller KV cache, they make a locality assumption, only keeping most recent input tokens (Beltagy et al., 2020; Child et al., 2019) along with a fixed number of globally available initial tokens (i.e., StreamingLLM (Xiao et al., 2023)). Another line of work (e.g., H₂O (Zhang et al., 2024), Keyformer (Adnan et al., 2024)) maintains a dynamically constructed fixed sized KV cache by identifying *key* past tokens from observed attention patterns and dynamically evicting the rest during generation.

043 These approaches reported little degradation in perplexity-based evaluation for the next token pre-044 diction task. However, they show a significant drop in performance (Sun et al., 2024) on long-context benchmarks that require synthesizing information from non-local contexts (Hsieh et al., 2024). For example, on the simple needle-in-a-haystack (NIAH) task, both StreamingLLM (Xiao et al., 2023) 046 and H₂O (Zhang et al., 2024) report less than 8% accuracy compared to 100% for vanilla attention. 047 Keeping a smaller KV cache is problematic when LLMs is tasked with synthesizing information 048 from long context, going beyond next token prediction where local contexts suffice. Once a key in-049 put token is eliminated from the KV cache (either through locality assumption or by eviction during the generation process), there is no way to recover access to the eliminated token. When LLMs are 051 tasked to generate long text, it gets harder to predict which input tokens are useful in advance. 052

⁰⁵³ In this work, we propose a novel approach, Recycled Attention, that focuses on reducing inference time while comprehensively capturing long-context inputs. We keep the full KV cache throughout

Figure 1: Illustration of our Recycled Attention method (right) compared to baselines (left). Our approach alternates between full attention steps (i.e. over all past tokens) and *recycled* attention steps (i.e. over a reduced KV cache of *key* tokens) during generation. By restricting the full attention computation to once in every S steps, Recycled Attention is able to achieve comparable speedups to baseline models with smaller KV without degrading performance on long-context benchmarks.

072 073

068

069

071

074 the inference (thus no gain in memory footprint), but perform attention over a dynamically constructed smaller KV cache, retaining gain in inference speedups. Our method flexibly alternates 075 between two modes of generation: generation that involves an attention over the full KV cache and 076 generation that computes an attention over a subset of tokens (see Figure 1). We choose this subset 077 of tokens by taking top K attended tokens from the most recent generation step involving attention over the full KV cache (thus the term *recycling* attention). In this work, we have a fixed strategy for 079 alternation: full attention every S steps and recycled attention for the next S-1 steps. Our design choices is supported by the analysis that neighboring tokens during generation place high attention 081 mass over a similar subset of past tokens. Our work (no KV eviction, dynamically constructed 082 smaller KV) establishes a middle ground between full attention (no KV eviction, high latency, high 083 performance) and sparse attention (KV eviction, reduced latency, low performance).

We evaluate our approach in language modeling task and RULER (Hsieh et al., 2024) benchmark, a suite of tasks designed to evaluate long-context models, as well as datasets from LongBench(Bai et al., 2023). Applying our inference method to two off-the-shelf LLMs (Meta, 2024; Yang et al., 2024a) achieves comparable speedup to prior work with limited KV cache while improving the performance on long-context benchmark by 2x. We further experiment to continued pre-training the model with recycled attention, bringing further gains. To summarize, our contributions are

090 091 092

094

095

096

• We propose recycled attention, an inference-time method to accelerate generation with long input.

• We comprehensively evaluate our methods to two long-context models and a suite of long-context tasks, including downstream tasks and language modelling tasks. We find that our method achieves up to 2x wall clock time speedup while preserving performance, especially on downstream tasks which require access to information throughout the input.

• We investigate further improvements: continued pre-training LLM with recycled attention and deciding when to perform full attention based on query similarity.

- 098 099
- 100 101

102

2 RECYCLED ATTENTION FOR LONG-CONTEXT LLMs

2.1 PROBLEM SETTING AND NOTATION

Let M be a language model trained to estimate the conditional probability of all output sequences given an input x. At inference time, M generates an output $\hat{y} \sim M(x)$ in two steps: (1) **Pre-filling** stage: M ingests the input $x = x_1, \dots x_L$ and stores the KV cache for all L tokens across all layers of the transformer model, and (2) **Generation stage**: generate one token y_i at a time from the conditional distribution $P_M(y_i|x, y_1 \dots y_{i-1})$. At each step, the model attends to the KV cache of all previous tokens, and also updates the KV cache to include the current token's key-value pairs. Our goal is to reduce the inference latency during this second stage of the generation process. There are two main factors that contribute to this increased latency; first, the attention computation increases quadratically with input length L. Second, a large L necessitates maintaining a large KV cache of past tokens, and 40% of the inference latency can be attributed to the data movement of this large KV cache from the GPU HBM (Adnan et al., 2024).

113 Prior approaches (Xiao et al., 2023; Zhang et al., 2024; Adnan et al., 2024) achieve inference time 114 speed-ups by limiting the size of the KV cache to a fixed size K. StreamingLLM (Xiao et al., 115 2023) constructs this fixed size KV cache by retaining only the initial and recent tokens (illustrated 116 in Figure 1(b)) while H_2O (Zhang et al., 2024) retain a mix of local tokens and key past tokens 117 dynamically identified during generation (see Figure 1(c)). For both approaches, once tokens are 118 evicted from the KV cache, they cannot be recovered in subsequent generation steps. This can be particularly catastrophic in long-context scenarios where key tokens are challenging to identify in 119 advance, e.g. cases where instructions inquiring about the past tokens are located towards the end of 120 the input. Consequently, methods that evict tokens from the KV cache often report poor performance 121 on benchmarks like RULER (Hsieh et al., 2024) that are designed to test reasoning and information 122 synthesis capabilities over long-contexts. 123

Instead of permanently evicting tokens for all future steps, we ask: can we distinguish between important and unimportant tokens for the attention computation for the next S time steps? Our key hypothesis is that consecutive tokens in a sequence likely place the majority of the attention weights over a similar subset of tokens in the context, and this can be leveraged to increased inference efficiency. We test this hypothesis for the LLaMA-3.1-8B model in the subsection below.

129 130

131

2.2 ATTENTION MASS OVERLAP BETWEEN NEIGHBORING TOKENS

132 **Setting:** We randomly sample five examples from the 133 Arxiv split of the RedPajama dataset (Together, 2023) and compute the attention weights over past tokens for 134 all layers and all time steps. Next, for time step t = 8K, 135 we identify the topK(= 1024) past tokens based on at-136 tention weights independently for each layer. Then, for 137 subsequent attention computations for tokens at times 138 steps t = 8K + i, varying i from 1 to 10, we compute 139 the fraction of the attention mass placed on t = 8K's 140 topK tokens. Figure 2 shows this attention recovery rate 141 for different step *i* from the full attention step, averaged 142 across all layers of the transformer model (shown in blue). 143 The graph clearly demonstrates that the topK tokens at t = 8K include the past tokens that contribute, on aver-144 age, more than 90% of the attention weights at subsequent 145 times t = 8K + i. Based on this observation, our key 146 idea is to alternate between full attention over the entire 147 KV cache of past tokens every S steps, and a more time-148 efficient attention over only K tokens for the next S-1149 steps, where these K tokens are selected to be the highest 150

Figure 2: Fraction of the total attention mass recovered at time t = T + i by the topK past tokens in the KV cache, where these topK tokens are selected based on attention scores at t = T. Compared to StreamingLLM, topK tokens recover a larger fraction of the total attention mass.

weighted tokens during the previous full attention step. We call this strategy Recycled Attention, as we recycle the topK tokens from a previous time step in lieu of full attention.

Note that the graph in Figure 2 also reports the fraction of the full attention weight placed on tokens corresponding to StreamingLLM's cache of similar size K (shown in orange), comprising of the initial "sink" tokens and the local tokens (see Figure 1b for KV construction strategy). Compared to our proposed strategy, StreamingLLM reports a much lower attention mass recovery rate (~ 0.65 compared to 0.9 for our approach) and is consequently worse at approximating full attention.

158 159

160

2.3 METHODOLOGY AND IMPLEMENTATION

Given a language model M and a sequence of input tokens $x_1, ..., x_L$, we present the pseudocode for generating the output sequence of tokens using Recycled Attention in Figure 3.

Figure 3: Pseudocode for Recycled Attention. We use M(C) to denote performing a forward pass with the language model while computing attention over the key-value pairs in cache C.

Our approach maintains two separate KV caches C_f and C_r (size $\propto K$), corresponding to the full and recycle attention steps respectively. Given input $x_1, ..., x_L$, we first prefill M using the vanilla full attention computation and initialize our full KV cache C_f with the first L tokens. We also obtain the attention scores \mathbf{a}_L for the last token x_L at each layer of model M. We initialize our recycle KV cache C_r with the key-value pairs of the topK tokens at each layer based on attention scores.

At each recycle steps, i.e. S-1 contiguous steps after every full attention step, we generate the next token $y_t \sim M(C_r)$ using the smaller recycled KV cache C_r to compute attention. This leads to a reduction in both the attention computation FLOPs as well as the latency due to movement of KV cache (we only move the smaller KV C_r instead of the larger full KV C_f , where $|C_r| << |C_f|$). As C_r is updated with the KV cache of the new input tokens (i.e. the generated token from previous step) in the forward pass, we remove the recycled token which received the lowest attention score from C_r to maintain a fixed size.

At each full attention step that occurs every S steps, we first update the C_f KV cache with the keyvalue pairs of the S-1 tokens from the recycle step. Next, we generate the next token $y_t \sim M(C_f)$ using the full KV cache C_f . Finally, we follow the same procedure as above to reset the recycle cache C_r with the topK tokens from each layer of the current time step.

202

203 **Compatibility with Flash Attention** FlashAttention (Dao, 2024) improves standard attention 204 computation on GPU by reducing data movement, significantly improving the memory and speed 205 efficiency. It achieves this by directly producing the output for the attention blocks, without storing 206 the $O(L^2)$ attention matrix. However, we rely on these attention scores to select the topK tokens 207 during the full attention steps and construct our recycled KV cache C_r (lines 9-10 of Algorithm 3). 208 To make our method compatible with FlashAttention, we implement an extra step to re-compute the 209 attention score when we perform full attention. As we only perform full attention at stride of S, this does not introduce significant overhead. Additionally, note that other methods that use attention pat-210 terns (e.g. H₂O) will also show reduced speed-gain when using in conjunction with FlashAttention. 211

212

213 Memory and time requirements Table 1 shows a comparison of the memory and attention com-214 pute requirements for our Recycle Attention method and baseline approaches. Recycle Attention 215 uses a similarly sized KV cache memory compared to vanilla attention (L+K vs L), where $K \ll L$) but larger than efficient KV strategies like StreamingLLM and H₂O. Our method substantially reTable 1: Comparison of the time and memory requirements of Recycle Attention and baseline approaches. Suppose an LLM ingests a sequence of L input tokens and generates T output tokens. We report the memory requirement for storing the input KV cache and time required to generate the Toutput tokens. Let K denote the size of the reduced KV cache of baseline non-vanilla approaches. We use the same size K for our recycle KV cache in Recycle Attention and use S to denote the stride. Additionally, we report NIAH performance measured for the Llama-3.1-8B model, with K = 4096 and L = 32,768 for all approaches.

	Vanilla	H_2O	StreamingLLM	SnapKV	Recycled Attention (Ours)
Memory		K	K	K	L+K
Time	$T \times L$	$T \times K$	$T \times K$	$T \times (K+T)$	$T \times \frac{\pi}{S} + T \times K$
NIAH Accuracy	100	8	7	77	98

duces the time for the attention computation compared to vanilla attention by setting the recycle KV size $K \ll L$. Our strategy also allows us to remain performant on tasks such as NIAH compared to vanilla attention, in contrast with other KV eviction strategies. We provide a detailed comparison of wallclock times and performances on various tasks against baslines in Section 3.

3 EXPERIMENTAL SETTINGS

We evaluate our method on two long-context language models Llama-3.1-8b (Meta, 2024) and Qwen-2-7b (Yang et al., 2024a). Llama-3.1 is pre-trained with 8K tokens, followed by a continued pre-training stage to increase the context window to 128K. Qwen-2 is continued pre-trained with up to 32k tokens, and adopted YARN (Peng et al., 2024) and Dual Chunk Attention (An et al., 2024) to enable processing of up to 128k tokens. As both models employ Grouped Query Attention (Ainslie et al., 2023), we use a single aggregated attention score for all query heads (max over all query heads) in the same group to identify the top K tokens.¹

3.1 TASKS

231

232

233

234 235 236

237

245

246

257

262

263

We evaluate our approach on language modeling and a suite of downstream proxy tasks for long-context evaluation (Hsieh et al., 2024). For both tasks, report the task performance and inference speed measured by wall clock time.

Downstream tasks We test our method on RULER (Hsieh et al., 2024), a suite of tasks designed to evaluate long-context models. It includes tasks that require retrieval capabilities (e.g. Needle-in-a-Haystack) as well as those that require aggregating information over the long context. We follow Hsieh et al. (2024) and evaluate our methods on 13 tasks from four categories of RULER. We evaluate on context length of 32K and 64K, with 100 examples for each {task, context length}. We additionally report on two tasks from LongBench in Section A.2 in the Appendix.

Language Modeling We evaluate language modeling perplexity on the Arxiv and Book split of RedPajama (Together, 2023), and PG19 (Rae et al., 2019). We evaluate on 16k and 100k context size for the two respectively. We report results on 100 sequences for each domain. Following prior work (Yen et al., 2024b), we report the perplexity on the last 256 tokens of each sequence.

3.2 BASELINES

We compare Recycle Attention against the following baselines: (1) **Vanilla** attention baseline which uses the entire KV cache to generate tokens. (2) **StreamingLLM** (Xiao et al., 2023) inferences by attending to a KV cache consisting of "sink tokens" and recent tokens, discarding all other tokens. Following previous work, we maintain a cache with 4 sink tokens and K - 4 recent tokens. (3)

¹Our ablations show that taking the max outperforms other aggregation method such as mean, or relying solely on one of the query head in the group. We detail this more in Table 7 in the Appendix.

Table 2: Performance on the RULER benchmark for LLama-3.1-8B and Qwen-2-7B. The results
show that Recycled Attention achieves a comparable speedup to prior approaches, while substantially outperforming them based on accuracy across all settings.

				LLan	1a-3.1		QWEN-2					
				32K		64K		32K	64K			
Method	stride	K	Acc ↑	$\textit{time}(s) \downarrow$	Acc ↑	$\textit{time}(s) \downarrow$	Acc ↑	$\textit{time}(s) \downarrow$	Acc \uparrow	time(s) \downarrow		
Vanilla	-	-	90	1.71	82	2.40	79	2.55	57	4.93		
H ₂ O	-	4096	21	2.15	11	2.29	16	1.94	11	1.94		
StreamingLLM	-	4096	22	1.23	17	1.21	21	1.17	11	1.19		
StreamingLLM++	50	4096	22	1.25	17	1.33	21	1.21	11	1.29		
SnapKV (kernel=7, w=32) -	4096	72	1.64	62	1.73	57	1.43	31	1.60		
Recycled	50	4096	63	1.27	50	1.29	32	1.21	20	1.20		
Recycled (kernel=7)	50	4096	79	1.26	65	1.29	58	1.20	31	1.20		

StreamingLLM++: we also implement a modified version of StreamingLLM that is equivalent to our Recycled Attention method in terms of both computation and memory requirements. Similar to our approach, StreamingLLM++ performs full attention at a stride S, i.e. every S steps, to match the attention operations of Recycle Attention. (4) H_2O (Zhang et al., 2023) maintains a KV cache which contains recent tokens and "heavy hitters", defined by high cumulative attention scores. We set the heavy hitter size and recent cache size to be K/2. (5) **SnapKV** (Li et al., 2024) considers the average attention scores of the last few tokens ("observation window") in the prompt to decide the KV cache to keep. It further applies max pooling over consecutive tokens' attention score, instead of relying on the token's attention score, to decide token to keep. We set the observation window size to 32 and kernel size to 7 following Li et al. (2024).²

3.3 INFERENCE SETTINGS

We prefill the model with the input and measure wall clock time for the generation phase for each of the method. We generate 50 tokens for the RULER tasks and 256 tokens for the language modeling task. We perform our experiments on 1 A100 80GB GPU with Flash Attention (Dao, 2024). We report a fixed set of K and S for the tasks, and perform ablation study on varying these two hyperparameters in Section A.1 in the Appendix. We include a variant of Recycled Attention with max pooling with kernel size=7 to cluster KV cache, same as SnapKV.

4 Results

RULER For this set of experiments, we set K = 4096 for all baseline models, where applicable. For Recycled attention and Streaming++, we set stride S = 50.

Aggregate accuracy results and the generation time per example for the RULER benchmark are reported in Table 2. All methods aiming to achieve inference speedup by evicting tokens from the KV cache permanently (e.g. StreamingLLM, H₂O) shows substantial degradation. Recycled attention significantly outperforms other non-vanilla approaches by over 2x in terms of aggregate accu-racy. However, we note that the performance degrades substantially compared to vanilla attention. In terms of speed-up, our method achieves similar speedup to StreamingLLM/StreamingLLM+, fol-lowed by H₂O model. As input context length increases, inference time for vanilla method scales linearly, while the other methods' inference time remain at the same ballpark with a fixed K.

Note that H_2O relies on calculating attention scores at each time step to identify the "heavy hitter" tokens which FlashAttention does not store. Thus, the inference speed-up is not as significant in certain setting (with 1/8 KV cache size for 32K input) when used with Flash Attention. For our Recycled Attention approach, we only explicitly re-compute the attention score every *S* steps, which do not introduce as heavy an overhead.

 ²Our proposed method of constructing the top K cache is equivalent to SnapKV with a window size of 1 and
 kernel size of 1. While it is not feasible to apply a window size greater than 1 for our method as it will require access to attention scores at *each* decoding step, it is possible to apply the kernel method to our approach.

Method	niah_single	multi_key	multi_query	multi_value	fwe	vt	cwe	qa
	(Context size	: 32K					
Vanilla	100	98	99	99	93	99	65	61
H_2O	7	7	6	6	78	38	39	34
Streaming	8	13	13	13	93	12	4	42
StreamingLLM++	8	13	13	13	93	10	5	43
SnapKV (kernel=7, w=32)	77	68	99	98	83	99	56	61
Recycled	98	35	59	37	90	99	20	59
Recycled (kernel=7)	99	60	98	99	83	99	44	63
	(Context size	: 64K					
Vanilla	100	90	96	99	91	98	3	54
H_2O	3	2	2	4	52	3	8	20
Streaming	8	7	7	8	90	5	0	33
StreamingLLM++	8	7	7	8	90	5	0	35
SnapKV (kernel=7, w=32)	74	42	90	88	71	92	5	48
Recycled	80	30	26	17	79	95	3	51
Recycled (kernel=7)	96	41	85	84	72	93	4	49

Table 3: Per-task performance of Llama-3.1-8B on RULER subtasks. For non-vanilla methods, we set the K = 4096.

As RULER consists of a diverse range of task, we report per-task fine-grained performance for Llama-3.1 in Table 3. Recycled attention performs the best at tasks that require retrieving a piece of information in the context (including Needle-in-a-haystack (NIAH), Question Answering (QA) and Variable Tracking (VT)). H₂O and StreamingLLM suffers at these tasks as the information falls out of the KV cache. However, recycled attention does not perform well for task that requires aggregating the information in the context, such as frequent word extraction (fwe), lagging behind H₂O and StreamingLLM. Performances for tasks which requires retrieving for multiple pieces of information (multiple keys or multiple queries) are worse compared to the task with (single key, single value) when using the same K. We later show in ablation study in Section A.1 increasing the size of K leads to improvements in such tasks.

Language Modeling For context size 16K, we fix K = 2048 and S = 10 both LLaMA-3.1 and QWEN-2. For context size 100K, we report results using K = 2048 and 32, 768, and S = 256.

Table 4 outlines the perplexity-based performance of the baselines and recycled attention approach. For LLaMA-3.1, recycled attention achieves better perplexity and comparable inference speeds com-pared to StreamingLLM when the KV cache size is 1/8 of a 16K context. This shows that the model benefits from attending to tokens outside of local context window. We observe that H₂O outperforms our approach by a small margin, but at the cost of a substantially higher inference time per example $(10.77 \text{ for } H_2 O \text{ vs } 6.05 \text{ for our method})$. Overall, our recycled attention approach achieves a bet-ter trade-off between inference speeds and task accuracy compared to non-vanilla approaches for both LLaMA-3.1 and QWEN-2 models for the 16K context size setting.

When we scale up the context length to 100K, we find differing trends between the LLaMA-3.1 and QWEN-2 models. For LLaMA-3.1, we observe that recycled attention reports better perplexity but worse inference speeds compared to non-vanilla baseline methods. However, baseline approaches outperform recycle attention for the QWEN-2 model. We analyze the attention pattern to investigate this in Section A.1.

CONTINUED PRE-TRAINING WITH RECYCLED ATTENTION

So far, we use the off-the-shelf LLMs as is, only modifying the inference method. This creates a discrepancy between model training and inference assuming LLM is trained with vanilla full at-

tention setting. In this section, we experiment with continued pre-training the model with recycled

380					2.4.00	01115							
381	Method	K	Stride	LLam	a-3.1-8B		N-2-7B DDI						
382				time(s) +	IIL ↓	time(s) +	IIL ↓						
383	Con	Context size: 16 K (Arxiv and Book)											
000	Vanilla	-	-	7.63	2.22 / 7.07	8.85	2.33 / 8.26						
384	H_2O	2048	-	10.77	2.48 / 7.60	11.57	2.68 / 9.02						
385	StreamingLLM	2048	-	6.92	2.62 / 7.94	5.71	2.75 / 9.10						
386	StreamingLLM++	2048	10	7.21	2.59 / 7.88	6.08	2.71 / 9.05						
387	SnapKV (kernel=7, w=32)	2048	-	7.77	2.48 / 7.68	6.90	2.65 / 8.97						
388	Recycled	2048	10	7.14	2.36 / 7.49	6.33	2.57 / 9.01						
280	Recycled (kernel=7)	2048	10	7.14	2.32 / 7.40	6.33	2.47 / 8.73						
390		Context size: 100 K (PG19)											
201	Vanilla	-	-	18.11	8.24	40.42	13.28						
391	H_2O	2048	-	10.56	17.04	9.96	13.39						
392	StreamingLLM	2048	-	5.94	9.53	5.72	13.58						
393	StreamingLLM++	2048	256	6.04	9.53	5.92	13.58						
394	Recycled	2048	256	6.10	9.31	5.90	14.90						
395	H_2O	32,768	-	26.89	8.63	23.55	13.36						
206	StreamingLLM	32,768	-	13.38	8.55	15.81	12.31						
330	StreamingLLM++	32,768	256	13.43	8.55	15.87	12.32						
397	Recycled	32,768	256	13.52	8.46	15.89	13.50						
398				1		1							

378 Table 4: Perplexity results on language modeling task for LLama-3.1-8B and QWEN-2-7B. We 379 report performances for Arxiv (the first number) and Book (the second number) and PG19.

400 attention, with the goal of teaching the models to adapt to attending over discontinuous tokens in the 401 recycled cache.

403 Data We sample 200k data from the Arxiv split of RedPajama dataset³ and filter out sequences 404 with less than 8192 tokens. We split the data into 80%, 10% and 10% train/dev/test splits, resulting in 120k training data. 405

407 **Training** We train the model to adapt to recycled attention when predicting a sequence with 8142 with a prefilling length of 8092, K = 2048 and a stride of 50. Concretely, for the last 50 tokens t_i 408 in the sequence, attention is calculated over the 2048 tokens that received the highest attention score 409 according to t_{8092} , as well as $\{t_{8093}, \dots, t_i\}$. For $\{t_0, \dots, t_{8092}\}$, attention is calculated with regular 410 causal mask. We train the model with next token prediction loss for all the tokens in the sequence. 411 We report implementation details in Section A.3 in the Appendix. 412

413 **Comparison sytstems** We compare fine-tuning with other inference methods (Vanilla, 414 StreamingLLM, StreamingLLM++). For each method, we report the base performance from the 415 pre-trained checkpoint (Base) and the performance after continued fine-tuning (+CPT). 416

Results We report the results of continued pre-training in Table 5 for both the language modelling and the 14 RULER tasks. We see that continued pre-training does not improve performance with vanilla inference method, likely as the model is highly optimized in this setting and trained with this data. We also observe very little performance gain through continued pre-training in other inference methods (StreamingLLM, StreamingLLM++). Yet, with Recycled Attention, we see a meaningful gain from continued pre-training in two stride setting (25, 50). Continued pre-training achieves a lower perplexity and higher accuracy with higher stride (50) compared to base model with a smaller stride (25), leading to a better performance-efficiency trade-off.

424 425 426

427

431

417

418

419

420

421

422

423

399

402

406

NEW SECTION: DYNAMIC STRIDE 6

428 Our experiments in Section 3 employs a fixed schedule for all layers. In this section, we explore a 429 dynamic scheduler to alternate between full and recycling attention steps. Intuitively, if the query 430 vector of a particular layer and head for the current step is similar to the query vector of the most

³https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T

Model	Method	Stride	Dev PPL	Test PPL	RULER Acc
Base	Vanilla	-	2.83	2.68	93
+ CPT	Vanilla	-	2.83	2.68	93
Base	Streaming	-	3.20	3.14	37
+ CPT	Streaming	-	3.19	3.14	37
Base	Streaming++	50	3.19	3.13	37
+ CPT	Streaming++	50	3.18	3.13	36
Base	Recycled	50	3.09	2.96	83
+ CPT	Recycled	50	3.01	2.87	84
Base	Recycled	25	3.03	2.90	83
+ CPT	Recycled	25	2.97	2.81	85

Table 5: Results on continued pre-training LLaMA-3.1. The context length is 8K and we decode non-vanilla methods with K = 2048. We report perplexity on the last 50 tokens.

 recent full attention step, the attention pattern should be similar. Based on this, for dynamic scheduling, we only perform the full attention step when this similarity falls below a threshold.

Approach At every S^{th} decode step, we first determine whether we *need* to perform full attention instead of always performing full attention by default. We calculate the cosine similarity between query vectors of the input token t averaged across all query heads in layer l, with the averaged query vector of the most recent full attention step for that layer. If the similarity is higher than a threshold s, we decode with recycle cache, and otherwise use full attention for layer l. Our approach offers the flexibility of using different schedules for different layers, but uses the same schedule for all heads in the same layer. Since we perform this similarity check every S steps, setting threshold s = 1 is equivalent to decoding with the fixed stride S. We perform the comparison only every S steps to reduce computational overhead; we call this query comparison (QC) stride.

Setup We run experiments with Llama-3.1-8B on the Arxiv and Books corpus. As before, we report perplexity and decoding time measured on one A100 with batch size of 1 for the last 256 tokens of each test sequence. We run dynamic scheduler with two different query comparison strides {5, 10} and a similarity threshold of 0.8. We compare against Recycled Attention with fixed strides 10 and 15. For RULER, we report performance on two tasks which require generating longer outputs (multi-query and multi-value). We run a dynamic scheduler with two different query comparison strides 10 and a similarity threshold of $\{0.8, 0.9\}$. We compare against Recycled Attention with fixed strides $\{10, 15\}$. For dynamic schedules, we report the effective stride across layers, i.e. the average stride at which full attention is performed.

Dynamic stride strategy improves perplexity compared to fixed strategy when using similar **decoding times.** Table 6 reports our results. We observe that using dynamic strides improves the performance-efficiency trade-off across all settings. Compared to fixed stride of 10 (row 2), dynamic stride with query comparison stride of 5 (row 3) achieves lower perplexity with a slightly faster decoding time on both domains. Similarly, employing a dynamic stride with query comparison stride of 10 (last row) achieves better or on-par performance with less decoding time compared to having a fixed stride of 15 (row 4). We observe a similar trend for RULER tasks. This better trade-off can be attributed to the larger effective stride size, i.e. less frequent full attention steps, that result from using dynamic schedules. Overall, our experiment demonstrates that dynamically deciding when to refresh the recycle cache can improve performance when using similar decode times.

7 RELATED WORK

Efficient inference methods There are multiple paths to improve decoding efficiency of longcontext LMs. Prior work (Dao, 2024) achieves significant gain in inference latency by optimizing
attention computations on GPUs. A line of work (Xiao et al., 2022) achieves efficiency through
quantization of KV caches. We note that these are orthogonal to and can be combined with our approach. Other lines of work introduce changes to model architecture, which involves further training
the model: Cai et al. (2024a) adds extra decoding heads to predict multiple subsequent tokens in parallel to further speed-up speculative decoding (Leviathan et al., 2022). Yen et al. (2024a) encodes

Method	Schedule		L	anguage	Modelin	g		
		Time	PPL Arxiv	Stride	Time	PPL Book	Stride	
Vanilla	-	7.63	2.22	-	7.63	7.07	-	
Recycled	Fixed	7.17	2.36	10	7.17	7.49	10	
Recycled	Dynamic (QC = 5 , s= 0.8)	7.07	2.32	25	7.07	7.42	24	
Recycled	Fixed	6.88	2.41	15	6.94	7.53	15	
Recycled	Dynamic (QC = 10, s=0.8)	6.86	2.36	32	6.83	7.54	31	
				RUL	ER			
		Time	Acc	Stride	Time	Acc	Stride	
		n	ıulti-que	ry	m	ulti-valu	ie	
Vanilla	-	1.71	99	-	1.71	99	-	
Recycled	Fixed	1.48	69	10	1.48	44	10	
Recycled	Dynamic (QC=10, s=0.9)	1.32	69	15	1.32	44	17	
Recycled	Fixed	1.43	62	15	1.43	37	15	
Recycled	Dynamic (QC=10, s=0.8)	1.26	62	36	1.24	40	38	

Table 6: Results comparing fixed stride and dynamic stride based on query similarity.

chunks of long context in parallel with an encoder model, which are used as input to the decoder model. We note that our method can be used as a training-free method, and show that it is possible to fine-tune the model to further improve the performance-efficiency trade-off.

Dynamic KV cache Recent work (Sun et al., 2024) introduces a hierarchical speculative decoding 511 method, which uses the model with a small KV cache constructed with attention pattern as draft 512 model for the model with the full cache. While we share the motivation of using the attention pattern 513 to construct a smaller KV cache, we directly leverages the dynamic cache to accelerate inference and 514 study the performance-efficiency trade-off. Another line of recent work (Xiao et al., 2024a) proposes 515 building a dynamic KV cache by mapping distant tokens into chunks and retrieving chunks that are 516 similar to the current token, with the focus of extending the context size of the language model. 517 Quest (Tang et al., 2024) uses the minimal and maximal key values to estimate import tokens for the 518 query embedding of the current input token and load the KV cache of these tokens to decode.

519

504 505 506

507

508

509 510

486

520 **KV cache eviction** As performing attention over the full KV cache imposes a high memory and 521 computation burden, KV cache eviction methods have been extensively studied. Strategies include 522 keeping only "sink" and recent tokens in the KV cache (Xiao et al., 2023); or tokens with high 523 accumulative attention scores (Zhang et al., 2024). Building on the idea of attention-based eviction strategy, PyramidInfer(Yang et al., 2024b) retains different number of tokens per layer. Another line 524 of work proposed query-aware eviction strategies, using the attention scores of the last few tokens 525 in the prompt to select tokens to keep (Li et al., 2024; Cai et al., 2024b; Chen et al., 2024). Other 526 works design eviction strategies based on attention patterns of different heads (Ge et al., 2024; Xiao 527 et al., 2024b) or different layers (Yang et al., 2024b). 528

529 530

8 CONCLUSION

531

We propose recycled attention, an inference-time method which maintains a small, dynamic KV cache based on attention patterns of neighboring tokens. Our work follows a line of work leveraging the locality assumption during the attention computation. Instead of using locality to directly decide which tokens to attend to (only selecting nearby tokens), we recycle the attention pattern of nearby tokens, allowing more flexible and dynamic sparse attention patterns. We apply our method to two off-the-shelf long-context model and show that our method reduces inference wall-clock time while better preserving performance compared to prior methods which keep a KV cache of recent tokens. Finally, we show that continued pre-training the model with recycled attention and employing a dynamic stride can further improve the performance-efficiency trade-off.

540 REFERENCES 541

551

560

561

562 563

564

565

566

567

584

- 542 Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-543 rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024. 544
- Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebr'on, and 546 Sumit K. Sanghai. Gqa: Training generalized multi-query transformer models from multi-head 547 checkpoints. ArXiv, abs/2305.13245, 2023. URL https://api.semanticscholar.org/ 548 CorpusID:258833177. 549
- Chen An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Lingpeng Kong. 550 Training-free long-context scaling of large language models. ArXiv, abs/2402.17463, 2024. URL https://api.semanticscholar.org/CorpusID:268032518. 552
- 553 Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, 554 and Xipeng Qiu. L-eval: Instituting standardized evaluation for long context language models, 555 2023. URL https://arxiv.org/abs/2307.11088. 556
- Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, 558 Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual, multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023. 559
 - Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer. arXiv:2004.05150, 2020.
 - Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, De huai Chen, and Tri Dao. Medusa: Simple llm inference acceleration framework with multiple decoding heads. ArXiv, abs/2401.10774, 2024a. URL https://api.semanticscholar.org/ CorpusID:267061277.
- Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, 568 Baobao Chang, Junjie Hu, et al. Pyramidky: Dynamic ky cache compression based on pyramidal 569 information funneling. CoRR, 2024b. 570
- 571 Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuo-572 huan Wang, Yu Sun, Dianhai Yu, and Hua Wu. NACL: A general and effective KV cache 573 eviction framework for LLM at inference time. In Lun-Wei Ku, Andre Martins, and Vivek 574 Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7913-7926, Bangkok, Thailand, August 2024. As-575 sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.428. URL https: 576 //aclanthology.org/2024.acl-long.428. 577
- 578 Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse 579 transformers. ArXiv, abs/1904.10509, 2019. URL https://api.semanticscholar. 580 org/CorpusID:129945531. 581
- 582 Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-583 national Conference on Learning Representations (ICLR), 2024.
- Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-585 wise quantization. CoRR, abs/2110.02861, 2021. URL https://arxiv.org/abs/2110. 586 02861. 587
- 588 Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells 589 you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International 590 Conference on Learning Representations, 2024. URL https://openreview.net/forum? 591 id=uNrFpDPMyo.
- Gemini. Google. gemini 1.5: Unlocking multimodal understanding across millions of tokens of 593 context. arXiv preprint arXiv:2403.05530, 2024.

594 Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A human-595 annotated dialogue dataset for abstractive summarization. In Lu Wang, Jackie Chi Kit Cheung, 596 Giuseppe Carenini, and Fei Liu (eds.), Proceedings of the 2nd Workshop on New Frontiers in Sum-597 marization, pp. 70-79, Hong Kong, China, November 2019. Association for Computational Lin-598 guistics. doi: 10.18653/v1/D19-5409. URL https://aclanthology.org/D19-5409. Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang 600 Zhang, and Boris Ginsburg. Ruler: What's the real context size of your long-context language 601 models? arXiv preprint arXiv:2404.06654, 2024. 602 Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for 603 long document summarization. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek 604 Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou 605 (eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association 606 for Computational Linguistics: Human Language Technologies, pp. 1419–1436, Online, June 607 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.112. URL 608 https://aclanthology.org/2021.naacl-main.112. 609 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly 610 supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan 611 (eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics 612 (Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-613 putational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/ 614 P17-1147. 615 Marzena Karpinska, Katherine Thai, Kyle Lo, Tanya Goyal, and Mohit Iyyer. One thousand and one 616 pairs: A "novel" challenge for long-context language models, 2024. URL https://arxiv. 617 org/abs/2406.16264. 618 619 Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis, 620 and Edward Grefenstette. The NarrativeQA reading comprehension challenge. Transactions of 621 the Association for Computational Linguistics, 6:317–328, 2018. doi: 10.1162/tacl_a_00023. 622 URL https://aclanthology.org/Q18-1023. 623 Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative 624 decoding. In International Conference on Machine Learning, 2022. URL https://api. 625 semanticscholar.org/CorpusID:254096365. 626 Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International 627 Conference on Computational Linguistics, 2002. URL https://aclanthology.org/ 628 C02-1150. 629 630 Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle 631 Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before 632 generation. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=poE54G0q21. 633 634 Meta. The llama 3 herd of models. ArXiv, abs/2407.21783, 2024. URL https://api. 635 semanticscholar.org/CorpusID:271571434. 636 NLP Team MosaicML. Introducing mpt-7b: A new standard for open-source, commercially usable 637 Ilms, 2023. URL www.mosaicml.com/blog/mpt-7b. Accessed: 2023-05-05. 638 639 Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-640 dow extension of large language models. In The Twelfth International Conference on Learning 641 *Representations*, 2024. URL https://openreview.net/forum?id=wHBfxhZulu. 642 Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap. 643 Compressive transformers for long-range sequence modelling. arXiv preprint, 2019. URL 644 https://arxiv.org/abs/1911.05507. 645 Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless 646 acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint 647 arXiv:2404.11912, 2024.

- Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest: Query-aware sparsity for efficient long-context llm inference, 2024.
- Together. Redpajama: an open dataset for training large language models, 2023. URL https:
 //github.com/togethercomputer/RedPajama-Data.
- Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue:
 Multihop questions via single-hop question composition. *Transactions of the Association for Computational Linguistics*, 10:539–554, 2022. doi: 10.1162/tacl_a_00475. URL https:
 //aclanthology.org/2022.tacl-1.31.
- ⁶⁵⁷ Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan Liu, Song Han, and Maosong Sun. Infilm: Unveiling the intrinsic capacity of llms for understanding extremely long sequences with training-free memory. *arXiv*, 2024a.
- Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant: Accurate and efficient post-training quantization for large language models. *ArXiv*, abs/2211.10438, 2022. URL https://api.semanticscholar.org/CorpusID:253708271.
- Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 language models with attention sinks. ArXiv, abs/2309.17453, 2023. URL https://api.
 semanticscholar.org/CorpusID:263310483.
- Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu, and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming heads. *arXiv*, 2024b.
- 670 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, 671 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong 672 Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, 673 Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin Yang, 674 Mei Li, Min Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, 675 Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xi-676 aodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru Zhang, 677 and Zhi-Wei Fan. Qwen2 technical report. ArXiv, abs/2407.10671, 2024a. URL https: 678 //api.semanticscholar.org/CorpusID:271212307. 679
- Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. PyramidInfer:
 Pyramid KV cache compression for high-throughput LLM inference. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics ACL 2024*, pp. 3258–3270, Bangkok, Thailand and virtual meeting, August 2024b.
 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.195. URL https://aclanthology.org/2024.findings-acl.195.
- ⁶⁸⁶Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii (eds.), *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2369– 2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.
- Howard Yen, Tianyu Gao, and Danqi Chen. Long-context language modeling with parallel context encoding. ArXiv, abs/2402.16617, 2024a. URL https://api.semanticscholar.org/ CorpusID:268032128.
- Howard Yen, Tianyu Gao, and Danqi Chen. Long-context language modeling with parallel context
 encoding. In *Association for Computational Linguistics (ACL)*, 2024b.
- Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
 Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy hitter oracle for efficient generative inference of large language models. In *Thirty-seventh Confer- ence on Neural Information Processing Systems*, 2023. URL https://openreview.net/
 forum?id=RkRrPp7GKO.

Table 7: Results comparing different methods to aggregate attention scores for GQA models. We
 evaluate perplexity on sequences of length 16K for Llama-3.1-8B, where 4 query heads share the
 same KV head.

Method	K	Stride	Agg	Arxiv PPL	Book PPL
Vanilla	-	-	-	2.22	7.07
StreamingLLM	2048	-	-	2.62	7.94
StreamingLLM++	2048	10	-	2.57	7.85
Retrieval	2048	10	First	2.43	7.62
Retrieval	2048	10	Mean	2.39	7.51
Retrieval	2048	10	Max	2.36	7.49

712 713 714

705 706

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H20: Heavy-hitter oracle for efficient generative inference of large language models. *Advances in Neural Information Processing Systems*,
36, 2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liangchen Luo, Chien chin Huang, Min Xu, Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Bernard Nguyen, Geeta Chauhan, Yuchen Hao, and Shen Li. Pytorch fsdp: Experiences on scaling fully sharded data parallel. *Proc. VLDB Endow.*, 16:3848–3860, 2023. URL https://api.semanticscholar.org/CorpusID:258297871.

724 Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadal-725 lah, Asli Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir Radev. QMSum: A new benchmark 726 for query-based multi-domain meeting summarization. In Kristina Toutanova, Anna Rumshisky, 727 Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy 728 Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North Amer-729 ican Chapter of the Association for Computational Linguistics: Human Language Technologies, 730 pp. 5905–5921, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/ 731 2021.naacl-main.472. URL https://aclanthology.org/2021.naacl-main.472.

732 733 734

735

A Appendix

736 A.1 ABLATING K AND S

737 Our method depends on two hyperparameters, the size of the recycle cache K and the stride S which 738 governs how often we perform full attention and update the recycle KV cache. Here, we analyze 739 the impact of varying these two values for Llama-3.1. We experiment with 100 ArXiv sequences 740 with L = 16,354 and 14 RULER tasks with L = 32,768. Results are reported in Table 8 and 741 Figure 4. We see that Recycled Attention outperforms baselines with similar inference time budget 742 for both tasks. For example, Recycled Attention with K = 2048, S = 16 achieves better perplexity 743 than StreamingLLM with K = 4096. In fact, Recycled Attention with K = 4096 achieves better 744 accuracy than StreamingLLM with a larger K = 8192 for RULER. Overall, we find that increasing 745 K is more effective than decreasing the stride S. While decreasing stride S generally benefits Recycled Attention, it has negligible effect on StreamingLLM++. This shows that the improvement 746 does not merely come from performing full attention, but also from refreshing the recycle cache. 747

We further report the detailed breakdown of each RULER tasks in Table 9. We see that decreasing the stride benefits certain tasks, such as the multi-key version of NIAH and common word extraction.

751 752

A.2 LONGBENCH EXPERIMENTS

We evaluate our method on eight long-context datasets from LongBench(Bai et al., 2023), covering multiple tasks: (1) Single-document QA: NarrativeQA(Kočiský et al., 2018); (2) Multi-document QA: Musique(Trivedi et al., 2022) and HotpotQA(Yang et al., 2018); (3) Summarization: GovReport(Huang et al., 2021) and QMSUM(Zhong et al., 2021); (4) Few-shot learning: TriviaQA(Joshi

Table 8: Updated: Recycled attention and baseline performances when varying K and S on RULERtasks with 32K context length (left) and Arxiv with 16K context length (right). We report results forLLama-3.1-8B with decoding time measured on a single A100 machine.

Method	К	S	PPL	Time	К	S	Accuracy	Time
	ArX	iv Per	plexity (16K)	RUL	ER pe	erformance (3	2K)
Vanilla	-	-	2.22	7.39	-	-	90	1.71
Streaming	2048	-	2.62	6.64	4096	-	22	1.23
H_2O	2048	-	2.48	10.77	4096	-	21	2.15
SnapKV	2048	-	2.48	7.77	4096	-	72	1.64
Streaming++	2048	32	2.61	6.61	4096	50	22	1.25
Recycled	2048	32	2.48	6.72	4096	50	63	1.27
Recycled (k=7)	2048	32	2.44	6.71	4096	50	79	1.26
Streaming++	2048	16	2.59	6.77	4096	10	22	1.4
Recycled	2048	16	2.40	6.90	4096	10	65	1.48
Recycled (k=7)	2048	16	2.36	6.96	4096	10	82	1.48
Streaming	4096	-	2.44	6.94	8192	-	26	1.46
Streaming++	4096	32	2.43	7.05	8192	50	26	1.47
Recycled	4096	32	2.33	7.12	8192	50	70	1.48

Table 9: NEW: Per-task performance of Llama-3.1-8B on RULER subtasks. For non-vanilla methods, we set the K = 4096 and ablate of S.

Method	stride	time	niah_single	multi_key	multi_query	multi_value	fwe	vt	cwe	qa
			Context	size: 32K						
Vanilla	-	1.71	100	98	99	99	93	99	65	61
H_2O	-	2.15	7	7	6	6	78	38	39	34
Streaming	-	1.23	8	13	13	13	93	12	4	42
StreamingLLM++	50	1.25	8	13	13	13	93	10	5	43
StreamingLLM++	10	1.40	8	13	13	13	93	12	5	43
SnapKV	-	1.64	77	68	99	98	83	99	56	61
Recycled	50	1.25	98	35	59	37	90	99	20	59
Recycled	10	1.48	99	37	69	44	90	99	22	59
Recycled (kernel=7)	50	1.25	99	60	98	99	83	99	44	63
Recycled (kernel=7)	10	1.48	100	73	98	99	84	99	45	63

Figure 4: New: Recycled Attention and baseline performances when varying K and S on Arxiv with 16K context length (left) and RULER tasks with 32K context length (right) for Llama-3.1-8B.
Recycled Attention achieves better performance than baselines (StreamingLLM, StreamingLLM++) with the same or less decoding time for both task.

810	Table 10: NEW:Performance on eight datasets with average input length greater than 5,000 from
811	LongBench. benchmark for LLaMA-3.1-8B and Qwen-2-7B. For tasks with context length greater
812	than 10K, we set $K = 2048$. Otherwise, we set $K = 1024$. We highlight the method with decoding
813	time longer than vanilla in red.

814

832 833

834

835

836 837

838

839

840

841

842

843

844

845

846 847

858

315			Narra	ativeOA	Mu	siaue	Hoti	ootOA	Triv	iaOA	TR	EC	SAM	Sum	OMS	SUM	GovR	eport
816	Method	stride	$F1\uparrow$	t(s) ↓	$F1\uparrow$	$t(s)\downarrow$	F1 ↑	$t(s)\downarrow$	F1 ↑	$t(s)\downarrow$	Acc ↑	$\mathbf{t}(\mathbf{s})\downarrow$	R-L↑	$t(s)\downarrow$	R-L ↑	$\mathbf{t}(\mathbf{s})\downarrow$	R-L ↑	t(s) ↓
817								LLama-	3.1									
318	Vanilla	-	40	2.93	31	1.38	46	0.8	90	0.83	70	1.55	47.70	3.27	25.17	14.07	29.29	13.42
10	Streaming	-	88	2.47	25	1.2	88	0.76	36	0.7	58	1.54	46.12	3.12	20.62	12.64	18.28	12.33
19	Streaming++	10	-	-	-	-	-	-	-	-	-	-	-	-	21.18	13.28	18.88	13.01
20	Streaming++	15	-	-	-	-	-	-	-	-	-	-	-	-	20.98	12.60	18.34	12.83
	H_2O	-	29	4.37	29	1.62	42	1.35	89	1.35	64	1.70	45.73	5.53	22.68	21.46	18.44	20.78
321	SnapKV	-	40	3.21	32	1.47	50	0.86	90	0.86	69	1.70	46.67	3.73	22.98	15.16	18.36	15.06
22	Recycled	-	39	2.56	32	1.23	48	0.7	90	0.76	68	1.54	47.27	3.15	23.15	13.22	19.97	13.00
	Recycled	10	-	-	-	-	-	-	-	-	-	-	-	-	22.73	13.85	27.15	13.36
323	Recycled	15	-	-	-	-	-	-	-	-	-	-	-	-	23.24	12.76	25.96	13.03
324							Ç	QWEN-2	2-7B									
325	Vanilla	-	15	9.33	41	1.71	56	1.00	83	0.96	73	1.71	46.67	3.67	25.62	16.74	35.55	15.77
000	Streaming	-	9	2.30	33	1.12	47	0.71	83	0.71	54	1.59	46.62	2.92	21.64	11.84	20.48	11.06
526	Streaming++	10	-	-	-	-	-	-	-	-	-	-	-	-	21.65	12.59	21.09	11.82
327	Streaming++	15	-	-	-	-	-	-	-	-	-	-	-	-	21.65	12.40	21.39	11.63
00	H_2O	-	11	4.03	28	1.98	49	1.16	87	1.16	66	2.45	45.30	5.21	23.68	19.13	22.83	18.75
528	SnapKV	-	13	2.86	41	1.33	55	0.85	83	0.85	67	1.67	46.58	3.36	25.24	13.37	26.16	13.61
329	Recycled	-	13	2.28	40	1.15	55	0.73	83	0.72	70	1.47	45.36	2.98	24.90	11.94	26.70	11.82
000	Recycled	10	-	-	-	-	-	-	-	-	-	-	-	-	25.44	12.61	31.01	12.49
530	Recycled	15	-	-	-	-	-	-	-	-	-	-	-	-	25.21	12.45	30.03	12.25
31																		

et al., 2017), TREC(Li & Roth, 2002). and SAMSum(Gliwa et al., 2019). We additionally report results for datasets with input length less than 5K in Table 11, where we observe less inference speed-up.

Setting We report performances for Recycled Attention and baseline approaches, as discussed in Section 3. For dataset with average context length greater than 10K (NarrativeQA, Musique, QMSum), we set K = 2048 for all methods. For others, we set K = 1024. We report SnapKV with recent window size of 32 and kernel size of 7; and Recycled Attention with kernel size of 7. For each task, we set the maximum tokens to generate following prior work (Li et al., 2024). As refreshing the recycle cache benefits longer generation (e.g. summarization), we set the stride for Recycled Attention to generation length (no refresh during generation) and additionally report a stride of $\{10,$ 15} for QMSum and GovReport. We also report a stride of $\{10, 15\}$ for the StreamingLLM++ baseline. For datasets with less than 5K context, we report the result for Recycled Attention with stride at generation length, as decreasing the stride will further slow decoding down.

Results Experiment results are reported in Table 10. We find that Recycled Attention performs 848 comparably or better compared to SnapKV (the best performing baseline), with faster decoding 849 speed. SnapKV is slower than vanilla decoding in most of the cases for LLaMA-3.1-8B, as it is 850 primarily designed for memory efficiency, instead of decoding speed. 851

We see that Recycled Attention outperforms SnapKV and baseline methods for the two tasks that 852 require long generation (QMSUM and GovReport), especially when we decrease the strides. This 853 demonstrates that maintaining the full KV cache enables the model to flexibly leverage comprehen-854 sive information in the context, which might have been evicted by methods such as SnapKV. 855

856 Results for LongBench datasets with less than 5K input length is reported in Table 11. Overall, we 857 see a similar trend but with less efficiency gains.

859 **CONTINUED PRE-TRAINING IMPLEMENTATION DETAILS** A.3 860

861 **Implementation details** We train Llama-3.1 for one epoch with a global batch size of 64 and a learning rate of 5e-6. We use 20 warm-up steps and a linear schedule with 0 weight decay. We use 862 the AdamW Optimizer. We use Fully Sharded Data Parallel (Zhao et al., 2023) and 8-bit optimizer 863 (Dettmers et al., 2021) to improve training efficiency. Training is done on 4 H100 80 GB GPUs.

Table 11: NEW:Performance on five datasets with average input length smaller than 5,000 from LongBench for LLaMA-3.1-8B and QWEN-2-7B. We set K = 1024. We highlight the method with decoding time longer than vanilla in red.

		Qa	sper	M	FQA	2WI	MQA	Multi	News	RepoBench		
Method	stride	F1↑	$\hat{\mathbf{t}}(\mathbf{s})\downarrow$	F1 ↑	$\mathbf{t}(\mathbf{s})\downarrow$	F1 ↑	$\mathbf{t}(\mathbf{s})\downarrow$	R-L↑	$\mathbf{t}(\mathbf{s})\downarrow$	Sim ↑	$t(s)\downarrow$	
					LLama	-3.1						
Vanilla	-	26	1.52	46	1.55	27	1.57	26.12	12.13	49.73	1.70	
Streaming	-	16	1.53	32	1.53	20	1.53	23.64	12.38	44.35	1.56	
H_2O	-	25	2.76	31	2.81	28	2.77	25.54	16.39	52.22	2.09	
SnapKV	-	27	1.86	45	1.88	24	1.85	24.95	15.04	48.31	1.91	
Recycled	-	27	1.55	42	1.54	27	1.55	25.07	12.42	47.25	1.58	
				Ç	QWEN-	2-7B						
Vanilla	-	39	1.63	51	1.69	56	0.85	24.83	12.56	50.79	1.90	
Streaming	-	30	1.45	26	1.46	48	0.72	22.49	11.86	45.52	1.46	
H ₂ O	-	33	2.51	34	2.53	46	1.24	25.11	15.21	51.14	2.54	
SnapKV	-	35	1.66	49	1.67	54	0.83	24.43	13.43	51.58	1.70	
Recycled	-	37	1.48	48	1.48	55	0.73	24.53	11.96	45.12	1.48	

882 883 884

885

891

893

897

867 868

A.4 ATTENTION PATTERN ANALYSIS

We analyze the **recovery rate** of recycled attention and StreamingLLM for LLaMA-3.1 and QWEN-2 (similar to the setting in Section 2). Figure 6 shows the aggregated attention recovery rate. We observe a consistent trend across the two domains. While for both models recycled attention recovers more attention mass than StreamingLLM, the gap between the two methods is much smaller for QWEN-2.

892 A.5 DYNAMIC STRIDE ANALYSIS

We reported an aggregated effective stride in Table 6. We further investigate the effective stride
patterns across different layers, shown in Figure 7. We can see that our method enables setting a
different stride at different layers, with the earlier layer having a larger stride.

898 A.6 RULER CONFIGURATION

We follow the suite of evaluation tasks introduced in Hsieh et al. (2024), which consists of the 13 tasks⁴. We group them based on the types:

Single NIAH An NIAH-styled task with one key and one value to retrieve. We include three variations of the task with different types of key, value and haystack.

905
 906
 906
 907
 907
 908
 907
 908
 907
 908
 908
 909
 909
 909
 907
 908
 908
 909
 909
 909
 909
 909
 909
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900
 900

908 **Multi-values NIAH** An NIAH-styled task with multiple values corresponding to the key.

910 Multi-queries NIAH An NIAH-styled task with multiple queries, each corresponding to a distinct key.
 912

913 **Variable Tracking** A NIAH-styled task that requires tracing through multiple hops. 914

915 Common word extraction and Frequent word extraction require extracting the words based on
 916 the pattern in a list of words.
 917

⁴https://github.com/hsiehjackson/RULER

Figure 5: Recovery rate of StreamingLLM and recycled attention on 5 samples from the Arxiv split of RedPajama (Left: LLaMA-3.1, Right: Qwen-2). We calculate recovery rate with a prefill length of 8K, K of 1024 and S = 256.

Question Answering A task that requires answering a question given a set of documents. We include two variations of the tasks, corresponding to two question answering datasets.

We refer the readers to Hsieh et al. (2024) for detailed description and examples of each task.

A.7 **NEW:** CHAIN OF KEY EXPERIMENTS

As most of the downstream tasks do not require long-form generation, we design a synthetic task
where model needs to generate a long sequence leveraging various information in the context. We name it "chain-of-key" and provide the definition below.

Figure 6: Recovery rate of StreamingLLM and recycled attention on 5 samples each from the Arxiv and Book split of RedPajama (Left: LLaMA-3.1, Right: Qwen-2). We calculate recovery rate with a prefill length of 8K, K of 1024 and S = 50.

Figure 7: Layer-wise effective stride for LLaMA-3.1-8B with query similarity dynamic strides.

1000 1001 Task set-up The model is provided with context which consists of names of keys, each 1002 of which contains W number of words, for instance: apricot-waggish where W =2. The model is tasked to generate a sequence which consists of a list of T keys from 1003 the context, such that the first word of the next key is the last word of the current 1004 key. For example: waggish-fishery, fishery-mosquito, mosquito-perfume, 1005 perfume-panda, panda-juice, juice-willow for T = 6. We provide an example 1006 input in Table 13.

Evaluation We evaluate correctness of the generated output by the length of a valid chain, divided by T. A valid chain needs to satisfy two criteria: (a) the key must be in the context and (b) the first word of the current key must be the last word of the previous key. We provide example outputs and their correctness score in Table 14.

1013

1008

981

982

983

984 985

986

987

988

989

990 991

992 993

994 995

996 997

998 999

Experiment setting We report performance for all baseline methods in Section 3 as well as decoding time for all methods. Our initial experiment showed that LLaMA-3.1-8B is unable to perform this task. We thus conduct experiment with LLaMA-3.1-70B model. Decoding time is measured on 4 A100 with batch size of 1 for all methods. For Recycled Attention and StreamingLLM++, we experiment with $S = \{5, 10, 15, 20\}$.

1019

1020 Results Results are reported in Table 12. We find that Recycled Attention consistently out1021 performed baselines that evicts token from KV cache (SnapKV, StreamingLLM) as well as the
1022 StreamingLLM++ method, which perform full attention occasionally. SnapKV achieves an accuracy of 0.11, meaning that it is only able to generate a valid key for the first step. We also find that
1024 decreasing stride consistently improves performance for Recycled Attention and StreamingLLM++,
1025 with Recycled Attention outperforming StreamingLLM++ at every stride. Yet, having a stride that is too small (e.g. 5) might increase decoding time due to computational overhead.

Method	К	Stride	Score ↑	Time↓
Vanilla	-	-	0.53	13.78
StreamingLLM	4096	-	0.03	12.23
SnapKV	4096	-	0.11	14.43
StreamingLLM++	4096	20	0.03	12.41
Recycled	4096	20	0.14	12.88
StreamingLLM++	4096	15	0.03	12.47
Recycled	4096	15	0.17	13.21
StreamingLLM++	4096	10	0.04	12.61
Recycled	4096	10	0.19	13.69
StreamingLLM++	4096	5	0.06	12.82
Recycled	4096	5	0.38	15.20

Table 12: NEW:Results for the chain-of-key task of LLaMA-3.1-70B. We highlight the method with decoding time longer than vanilla in red.

Table 13: Example input for the chain-of-key task where W = 2 and T = 10.

1043 Input

"You are given many keys composed of a few words. Your task is to generate a chain of 10 keys
such that the first word of the current key is the last word of the previous key. Separate the keys with
comma. Example: waggish-fishery, fishery-mosquito, mosquito-perfume, perfume-panda, panda-
juice, juice-willow, willow-bronco, bronco-creditor, creditor-bathhouse, bathhouse-woman. You
must generate keys that are in the context. DO NOT REPEAT THE EXAMPLE.
Context:Name of key: toga-roommate
Name of key: appetiser-cenario
Name of key: normalization-tacit
Name of key: intensity-ping
Name of key: innate-cummerbund
Name of key: tentacle-lining [omitted]
Name of key: breath-yielding
Name of key: schema-festive
You are given many keys composed of a few words. Your task is to generate a chain of 10 keys such
that the first word of the current key is the last word of the previous key. Separate the keys with
comma. You must generate keys that are in the context. Chain of ten keys:"

Table 14: Example output for the chain-of-key task where W = 2 and T = 10 and their score. Keys that are not in the context are highlighted in red.

Output	Score
<pre>impossible-crawdad, crawdad-vehicle, vehicle-uncertainty, uncertainty-welfare, welfare-outrigger, outrigger-historical, historical-gator, gator-hugger, hugger-debris, debris-precious</pre>	1 (fully correct)
annoying-pentagon, pentagon-fit, fit-waggish, waggish-fishery, fishery-mosquito, mosquito-perfume, perfume-panda, panda-juice, juice-willow, willow-bronco	0.2 (correct up to the second key)
possible-crawdad, crawdad-vehicle, chicle-uncertainty, welfare-outrigger, utrigger-historical, historical-gator, utor-hugger, hugger-debris, debris-precious, ncertainty-welfare	0.3 (correct up to the third key)

1080 A.8 LIMITATIONS AND FUTURE WORK

Proposed method While we focus on accelerating inference speed, our method does not reduce memory requirement for using long-context LLMs, which can be a bottleneck for certain use cases. Our method is focused on a setting where we generate long output given a long input. When the output length is very small, the efficiency gain will be minimal. In this study, we focus on employing a fixed stride across all layers and explore dynamic scheduling based on query-similarity. Setting a custom stride per layer, or exploring other methods for deciding when to recycle the cache could be future avenue to improve performance.

 Experimental Settings We have conducted experiment with two open-sourced long-context models and two evaluation tasks setting. We did not test out more language models and other longcontext benchmarks (An et al., 2023; Karpinska et al., 2024) given our limited compute resources. Finally, our method is not limited to the language domain. Future work can explore applying recycled attention to other modalities, for instance, vision transformers.