
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RECYCLED ATTENTION: EFFICIENT INFERENCE FOR
LONG-CONTEXT LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Processing long-context input imposes a heavy computational burden when de-
ploying large language models. Recently proposed inference-time methods accel-
erate generation by attending only to local context. Despite its efficiency gains,
this approach fails to capture all relevant information in the input, showing sub-
stantial performance drop in long-context benchmarks. We propose recycled at-
tention, an efficient and effective method which alternates between full context
attention and attention over a subset of input tokens. When performing partial
attention, we leverage the attention pattern of a nearby token that has performed
full attention and attend only to the top K most attended tokens. We evaluate
our methods on RULER, a suite of tasks designed to comprehensively evaluate
long-context abilities, and long-context language modeling tasks. Applying our
inference method to off-the-shelf LLMs achieves comparable speedup to base-
lines which only consider local context while improving the performance by 2x.
We further experiment with continued pre-training the model with recycled atten-
tion to improve the performance-efficiency trade-off.

1 INTRODUCTION

Recent large language models (LLMs) are trained to ingest extremely long inputs and generate long
outputs (Meta, 2024; Gemini, 2024) to support a wide range of applications. However, deploying
such long-context LLMs can be very costly. As the context length increases, LLMs see a linear
increase in memory to store the Key-Value (KV) cache and a quadratic increase in time for attention
computation. These two factors lead to high latency during inference; Adnan et al. (2024) showed
that as context length increased 16x for the MPT-7B model (MosaicML, 2023), the inference latency
increased by 50x, where 40% of the increase was due to the data movement of the KV cache.

To improve efficiency, prior work put a limitation on the size of KV cache, i.e. the number of past
tokens that are available at each generation step. This leads to a meaningful gain along two axes:
memory requirement and time for attention computation. To form a smaller KV cache, they make
a locality assumption, only keeping most recent input tokens (Beltagy et al., 2020; Child et al.,
2019) along with a fixed number of globally available initial tokens (i.e., StreamingLLM (Xiao
et al., 2023)). Another line of work (e.g., H2O (Zhang et al., 2024), Keyformer (Adnan et al.,
2024)) maintains a dynamically constructed fixed sized KV cache by identifying key past tokens
from observed attention patterns and dynamically evicting the rest during generation.

These approaches reported little degradation in perplexity-based evaluation for the next token pre-
diction task. However, they show a significant drop in performance (Sun et al., 2024) on long-context
benchmarks that require synthesizing information from non-local contexts (Hsieh et al., 2024). For
example, on the simple needle-in-a-haystack (NIAH) task, both StreamingLLM (Xiao et al., 2023)
and H2O (Zhang et al., 2024) report less than 8% accuracy compared to 100% for vanilla attention.
Keeping a smaller KV cache is problematic when LLMs is tasked with synthesizing information
from long context, going beyond next token prediction where local contexts suffice. Once a key in-
put token is eliminated from the KV cache (either through locality assumption or by eviction during
the generation process), there is no way to recover access to the eliminated token. When LLMs are
tasked to generate long text, it gets harder to predict which input tokens are useful in advance.

In this work, we propose a novel approach, Recycled Attention, that focuses on reducing inference
time while comprehensively capturing long-context inputs. We keep the full KV cache throughout

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

KV Cache Size =
L tokens

KV Cache Size =
K tokens (local +

sink tokens)

KV Cache Size = K
tokens (local + most

influential past tokens)

(a) Full Attention (b) StreamingLLM (c) H2O

Evicted Tokens can never be recovered!

Ours: Recycled Attention

Full KV Cache () Size = L tokens Cf

Recycled KV Cache () Size = K
tokens (local + topK tokens from
previous full attention step)

Cr

Full attention
every S steps

Recycling Step:
only attends to
topK tokens
from prev. full
attention step.

Current Token Local Tokens
Sink Tokens (for StreamingLLM)

Evicted Tokens from KV
Key Tokens (for H2O and ours)

/

Figure 1: Illustration of our Recycled Attention method (right) compared to baselines (left). Our
approach alternates between full attention steps (i.e. over all past tokens) and recycled attention
steps (i.e. over a reduced KV cache of key tokens) during generation. By restricting the full attention
computation to once in every S steps, Recycled Attention is able to achieve comparable speedups to
baseline models with smaller KV without degrading performance on long-context benchmarks.

the inference (thus no gain in memory footprint), but perform attention over a dynamically con-
structed smaller KV cache, retaining gain in inference speedups. Our method flexibly alternates
between two modes of generation: generation that involves an attention over the full KV cache and
generation that computes an attention over a subset of tokens (see Figure 1). We choose this subset
of tokens by taking top K attended tokens from the most recent generation step involving attention
over the full KV cache (thus the term recycling attention). In this work, we have a fixed strategy for
alternation: full attention every S steps and recycled attention for the next S − 1 steps. Our design
choices is supported by the analysis that neighboring tokens during generation place high attention
mass over a similar subset of past tokens. Our work (no KV eviction, dynamically constructed
smaller KV) establishes a middle ground between full attention (no KV eviction, high latency, high
performance) and sparse attention (KV eviction, reduced latency, low performance).

We evaluate our approach in language modeling task and RULER (Hsieh et al., 2024) benchmark,
a suite of tasks designed to evaluate long-context models, as well as datasets from LongBench(Bai
et al., 2023). Applying our inference method to two off-the-shelf LLMs (Meta, 2024; Yang et al.,
2024a) achieves comparable speedup to prior work with limited KV cache while improving the
performance on long-context benchmark by 2x. We further experiment to continued pre-training the
model with recycled attention, bringing further gains. To summarize, our contributions are

• We propose recycled attention, an inference-time method to accelerate generation with long input.
• We comprehensively evaluate our methods to two long-context models and a suite of long-context

tasks, including downstream tasks and language modelling tasks. We find that our method
achieves up to 2x wall clock time speedup while preserving performance, especially on down-
stream tasks which require access to information throughout the input.

• We investigate further improvements: continued pre-training LLM with recycled attention and
deciding when to perform full attention based on query similarity.

2 RECYCLED ATTENTION FOR LONG-CONTEXT LLMS

2.1 PROBLEM SETTING AND NOTATION

Let M be a language model trained to estimate the conditional probability of all output sequences
given an input x. At inference time, M generates an output ŷ ∼ M(x) in two steps: (1) Pre-filling
stage: M ingests the input x = x1, · · ·xL and stores the KV cache for all L tokens across all
layers of the transformer model, and (2) Generation stage: generate one token yi at a time from the
conditional distribution PM (yi|x, y1 · · · yi−1). At each step, the model attends to the KV cache of
all previous tokens, and also updates the KV cache to include the current token’s key-value pairs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Our goal is to reduce the inference latency during this second stage of the generation process.
There are two main factors that contribute to this increased latency; first, the attention computation
increases quadratically with input length L. Second, a large L necessitates maintaining a large KV
cache of past tokens, and 40% of the inference latency can be attributed to the data movement of
this large KV cache from the GPU HBM (Adnan et al., 2024).

Prior approaches (Xiao et al., 2023; Zhang et al., 2024; Adnan et al., 2024) achieve inference time
speed-ups by limiting the size of the KV cache to a fixed size K. StreamingLLM (Xiao et al.,
2023) constructs this fixed size KV cache by retaining only the initial and recent tokens (illustrated
in Figure 1(b)) while H2O (Zhang et al., 2024) retain a mix of local tokens and key past tokens
dynamically identified during generation (see Figure 1(c)). For both approaches, once tokens are
evicted from the KV cache, they cannot be recovered in subsequent generation steps. This can be
particularly catastrophic in long-context scenarios where key tokens are challenging to identify in
advance, e.g. cases where instructions inquiring about the past tokens are located towards the end of
the input. Consequently, methods that evict tokens from the KV cache often report poor performance
on benchmarks like RULER (Hsieh et al., 2024) that are designed to test reasoning and information
synthesis capabilities over long-contexts.

Instead of permanently evicting tokens for all future steps, we ask: can we distinguish between
important and unimportant tokens for the attention computation for the next S time steps?
Our key hypothesis is that consecutive tokens in a sequence likely place the majority of the atten-
tion weights over a similar subset of tokens in the context, and this can be leveraged to increased
inference efficiency. We test this hypothesis for the LLaMA-3.1-8B model in the subsection below.

2.2 ATTENTION MASS OVERLAP BETWEEN NEIGHBORING TOKENS
R

ec
ov

er
ed

 A
tte

nt
io

n
M

as
s

Time step I from full attention step

Figure 2: Fraction of the total attention
mass recovered at time t = T + i by
the topK past tokens in the KV cache,
where these topK tokens are selected
based on attention scores at t = T .
Compared to StreamingLLM, topK to-
kens recover a larger fraction of the total
attention mass.

Setting: We randomly sample five examples from the
Arxiv split of the RedPajama dataset (Together, 2023)
and compute the attention weights over past tokens for
all layers and all time steps. Next, for time step t = 8K,
we identify the topK(= 1024) past tokens based on at-
tention weights independently for each layer. Then, for
subsequent attention computations for tokens at times
steps t = 8K + i, varying i from 1 to 10, we compute
the fraction of the attention mass placed on t = 8K’s
topK tokens. Figure 2 shows this attention recovery rate
for different step i from the full attention step, averaged
across all layers of the transformer model (shown in blue).
The graph clearly demonstrates that the topK tokens at
t = 8K include the past tokens that contribute, on aver-
age, more than 90% of the attention weights at subsequent
times t = 8K + i. Based on this observation, our key
idea is to alternate between full attention over the entire
KV cache of past tokens every S steps, and a more time-
efficient attention over only K tokens for the next S − 1
steps, where these K tokens are selected to be the highest
weighted tokens during the previous full attention step. We call this strategy Recycled Attention, as
we recycle the topK tokens from a previous time step in lieu of full attention.

Note that the graph in Figure 2 also reports the fraction of the full attention weight placed on tokens
corresponding to StreamingLLM’s cache of similar size K (shown in orange), comprising of the
initial “sink” tokens and the local tokens (see Figure 1b for KV construction strategy). Compared
to our proposed strategy, StreamingLLM reports a much lower attention mass recovery rate (∼ 0.65
compared to 0.9 for our approach) and is consequently worse at approximating full attention.

2.3 METHODOLOGY AND IMPLEMENTATION

Given a language model M and a sequence of input tokens x1, ..., xL, we present the pseudocode
for generating the output sequence of tokens using Recycled Attention in Figure 3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Input: Language model , input
Hyperparameters: recycle cache size , stride

M x1, . . . , xL
K S

Output: Sequence of generated tokens O

Algorithm 1: Generation using Recycled Attention

1. Prefill with
1. Initialize full KV cache
2. Let attention scores for over past tokens for all layers.
3. Initialize recycle KV cache reverse(arg top-k)

2. // Initialize empty output sequence

3. for do

4. if () then // Recycle Steps
5. , .append // Generate using recycle KV
6. // Update recycle KV

7. else if () then // Full Attention Step
8. // Update with new tokens in
9. .append() // Generate using full attention
10. reverse(arg top-k)// Re-initialize with topK tokens

M x1, . . . , xL
Cf

aL ← xL
Cr ← x∈Cf

aL
O ← []

i ∈ 1,2,⋯, T
i mod S ≠ 0

o ∼ M(Cr) O (o)
Cr = Cr[1 :] + KV(L + i) Cr

i mod S = 0
Cf ← [Cf; Cr[−S :]] Cf Cr
o, a ← M(Cf), O o
Cr ← x∈Cf

a Cr

11. return O

In
iti

al
iz

at
io

n
G

en
er

at
io

n

Full KV Cache () Size = L tokens Cf

Recycled KV Cache () Size = K
tokens (local + topK tokens from)

Cr
aL

Attention update
(evict and add)

Cr

Recycle Steps

KV Initialization

Full
Attention

Full Attention Step
 update (include new tokens from)Cf Cr

Re-initialize Recycled
KV Cache ()Cr

i = 1

i = 2

Figure 3: Pseudocode for Recycled Attention. We use M(C) to denote performing a forward pass
with the language model while computing attention over the key-value pairs in cache C.

Our approach maintains two separate KV caches Cf and Cr (size ∝ K), corresponding to the full
and recycle attention steps respectively. Given input x1, ..., xL, we first prefill M using the vanilla
full attention computation and initialize our full KV cache Cf with the first L tokens. We also obtain
the attention scores aL for the last token xL at each layer of model M . We initialize our recycle KV
cache Cr with the key-value pairs of the topK tokens at each layer based on attention scores.

At each recycle steps, i.e. S−1 contiguous steps after every full attention step, we generate the next
token yt ∼ M(Cr) using the smaller recycled KV cache Cr to compute attention. This leads to a
reduction in both the attention computation FLOPs as well as the latency due to movement of KV
cache (we only move the smaller KV Cr instead of the larger full KV Cf , where |Cr| << |Cf |).
As Cr is updated with the KV cache of the new input tokens (i.e. the generated token from previous
step) in the forward pass, we remove the recycled token which received the lowest attention score
from Cr to maintain a fixed size.

At each full attention step that occurs every S steps, we first update the Cf KV cache with the key-
value pairs of the S−1 tokens from the recycle step. Next, we generate the next token yt ∼ M(Cf)
using the full KV cache Cf . Finally, we follow the same procedure as above to reset the recycle
cache Cr with the topK tokens from each layer of the current time step.

Compatibility with Flash Attention FlashAttention (Dao, 2024) improves standard attention
computation on GPU by reducing data movement, significantly improving the memory and speed
efficiency. It achieves this by directly producing the output for the attention blocks, without storing
the O(L2) attention matrix. However, we rely on these attention scores to select the topK tokens
during the full attention steps and construct our recycled KV cache Cr (lines 9-10 of Algorithm 3).
To make our method compatible with FlashAttention, we implement an extra step to re-compute the
attention score when we perform full attention. As we only perform full attention at stride of S, this
does not introduce significant overhead. Additionally, note that other methods that use attention pat-
terns (e.g. H2O) will also show reduced speed-gain when using in conjunction with FlashAttention.

Memory and time requirements Table 1 shows a comparison of the memory and attention com-
pute requirements for our Recycle Attention method and baseline approaches. Recycle Attention
uses a similarly sized KV cache memory compared to vanilla attention (L+K vs L, where K << L)
but larger than efficient KV strategies like StreamingLLM and H2O . Our method substantially re-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Comparison of the time and memory requirements of Recycle Attention and baseline ap-
proaches. Suppose an LLM ingests a sequence of L input tokens and generates T output tokens. We
report the memory requirement for storing the input KV cache and time required to generate the T
output tokens. Let K denote the size of the reduced KV cache of baseline non-vanilla approaches.
We use the same size K for our recycle KV cache in Recycle Attention and use S to denote the
stride. Additionally, we report NIAH performance measured for the Llama-3.1-8B model, with
K = 4096 and L = 32, 768 for all approaches.

Vanilla H2O StreamingLLM SnapKV Recycled Attention (Ours)

Memory L K K K L+K
Time T × L T ×K T ×K T × (K + T) T × L

S
+ T ×K

NIAH Accuracy 100 8 7 77 98

duces the time for the attention computation compared to vanilla attention by setting the recycle KV
size K << L. Our strategy also allows us to remain performant on tasks such as NIAH compared
to vanilla attention, in contrast with other KV eviction strategies. We provide a detailed comparison
of wallclock times and performances on various tasks against baslines in Section 3.

3 EXPERIMENTAL SETTINGS

We evaluate our method on two long-context language models Llama-3.1-8b (Meta, 2024) and
Qwen-2-7b (Yang et al., 2024a). Llama-3.1 is pre-trained with 8K tokens, followed by a continued
pre-training stage to increase the context window to 128K. Qwen-2 is continued pre-trained with up
to 32k tokens, and adopted YARN (Peng et al., 2024) and Dual Chunk Attention (An et al., 2024) to
enable processing of up to 128k tokens. As both models employ Grouped Query Attention (Ainslie
et al., 2023), we use a single aggregated attention score for all query heads (max over all query
heads) in the same group to identify the top K tokens.1

3.1 TASKS

We evaluate our approach on language modeling and a suite of downstream proxy tasks for long-
context evaluation (Hsieh et al., 2024). For both tasks, report the task performance and inference
speed measured by wall clock time.

Downstream tasks We test our method on RULER (Hsieh et al., 2024), a suite of tasks designed
to evaluate long-context models. It includes tasks that require retrieval capabilities (e.g. Needle-
in-a-Haystack) as well as those that require aggregating information over the long context. We
follow Hsieh et al. (2024) and evaluate our methods on 13 tasks from four categories of RULER.
We evaluate on context length of 32K and 64K, with 100 examples for each {task, context length}.
We additionally report on two tasks from LongBench in Section A.2 in the Appendix.

Language Modeling We evaluate language modeling perplexity on the Arxiv and Book split of
RedPajama (Together, 2023), and PG19 (Rae et al., 2019). We evaluate on 16k and 100k context
size for the two respectively. We report results on 100 sequences for each domain. Following prior
work (Yen et al., 2024b), we report the perplexity on the last 256 tokens of each sequence.

3.2 BASELINES

We compare Recycle Attention against the following baselines: (1) Vanilla attention baseline which
uses the entire KV cache to generate tokens. (2) StreamingLLM (Xiao et al., 2023) inferences by
attending to a KV cache consisting of “sink tokens” and recent tokens, discarding all other tokens.
Following previous work, we maintain a cache with 4 sink tokens and K - 4 recent tokens. (3)

1Our ablations show that taking the max outperforms other aggregation method such as mean, or relying
solely on one of the query head in the group. We detail this more in Table 7 in the Appendix.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 2: Performance on the RULER benchmark for LLama-3.1-8B and Qwen-2-7B. The results
show that Recycled Attention achieves a comparable speedup to prior approaches, while substan-
tially outperforming them based on accuracy across all settings.

LLama-3.1 QWEN-2
32K 64K 32K 64K

Method stride K Acc ↑ time(s) ↓ Acc ↑ time(s) ↓ Acc ↑ time(s) ↓ Acc ↑ time(s) ↓
Vanilla - - 90 1.71 82 2.40 79 2.55 57 4.93
H2O - 4096 21 2.15 11 2.29 16 1.94 11 1.94
StreamingLLM - 4096 22 1.23 17 1.21 21 1.17 11 1.19
StreamingLLM++ 50 4096 22 1.25 17 1.33 21 1.21 11 1.29
SnapKV (kernel=7, w=32) - 4096 72 1.64 62 1.73 57 1.43 31 1.60
Recycled 50 4096 63 1.27 50 1.29 32 1.21 20 1.20
Recycled (kernel=7) 50 4096 79 1.26 65 1.29 58 1.20 31 1.20

StreamingLLM++: we also implement a modified version of StreamingLLM that is equivalent to
our Recycled Attention method in terms of both computation and memory requirements. Similar to
our approach, StreamingLLM++ performs full attention at a stride S, i.e. every S steps, to match
the attention operations of Recycle Attention. (4) H2O (Zhang et al., 2023) maintains a KV cache
which contains recent tokens and “heavy hitters”, defined by high cumulative attention scores. We
set the heavy hitter size and recent cache size to be K/2. (5) SnapKV (Li et al., 2024) considers the
average attention scores of the last few tokens (“observation window”) in the prompt to decide the
KV cache to keep. It further applies max pooling over consecutive tokens’ attention score, instead
of relying on the token’s attention score, to decide token to keep. We set the observation window
size to 32 and kernel size to 7 following Li et al. (2024).2

3.3 INFERENCE SETTINGS

We prefill the model with the input and measure wall clock time for the generation phase for each of
the method. We generate 50 tokens for the RULER tasks and 256 tokens for the language modeling
task. We perform our experiments on 1 A100 80GB GPU with Flash Attention (Dao, 2024). We
report a fixed set of K and S for the tasks, and perform ablation study on varying these two hyper-
parameters in Section A.1 in the Appendix. We include a variant of Recycled Attention with max
pooling with kernel size=7 to cluster KV cache, same as SnapKV.

4 RESULTS

RULER For this set of experiments, we set K = 4096 for all baseline models, where applicable.
For Recycled attention and Streaming++, we set stride S = 50.

Aggregate accuracy results and the generation time per example for the RULER benchmark are re-
ported in Table 2. All methods aiming to achieve inference speedup by evicting tokens from the KV
cache permanently (e.g. StreamingLLM, H2O) shows substantial degradation. Recycled attention
significantly outperforms other non-vanilla approaches by over 2x in terms of aggregate accu-
racy. However, we note that the performance degrades substantially compared to vanilla attention.
In terms of speed-up, our method achieves similar speedup to StreamingLLM/StreamingLLM+, fol-
lowed by H2O model. As input context length increases, inference time for vanilla method scales
linearly, while the other methods’ inference time remain at the same ballpark with a fixed K.

Note that H2O relies on calculating attention scores at each time step to identify the “heavy hitter”
tokens which FlashAttention does not store. Thus, the inference speed-up is not as significant in
certain setting (with 1/8 KV cache size for 32K input) when used with Flash Attention. For our
Recycled Attention approach, we only explicitly re-compute the attention score every S steps, which
do not introduce as heavy an overhead.

2Our proposed method of constructing the top K cache is equivalent to SnapKV with a window size of 1 and
kernel size of 1. While it is not feasible to apply a window size greater than 1 for our method as it will require
access to attention scores at each decoding step, it is possible to apply the kernel method to our approach.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Per-task performance of Llama-3.1-8B on RULER subtasks. For non-vanilla methods, we
set the K = 4096.

Method niah single multi key multi query multi value fwe vt cwe qa
Context size: 32K

Vanilla 100 98 99 99 93 99 65 61
H2O 7 7 6 6 78 38 39 34
Streaming 8 13 13 13 93 12 4 42
StreamingLLM++ 8 13 13 13 93 10 5 43
SnapKV (kernel=7, w=32) 77 68 99 98 83 99 56 61
Recycled 98 35 59 37 90 99 20 59
Recycled (kernel=7) 99 60 98 99 83 99 44 63

Context size: 64K
Vanilla 100 90 96 99 91 98 3 54
H2O 3 2 2 4 52 3 8 20
Streaming 8 7 7 8 90 5 0 33
StreamingLLM++ 8 7 7 8 90 5 0 35
SnapKV (kernel=7, w=32) 74 42 90 88 71 92 5 48
Recycled 80 30 26 17 79 95 3 51
Recycled (kernel=7) 96 41 85 84 72 93 4 49

As RULER consists of a diverse range of task, we report per-task fine-grained performance for
Llama-3.1 in Table 3. Recycled attention performs the best at tasks that require retrieving a piece
of information in the context (including Needle-in-a-haystack (NIAH), Question Answering (QA)
and Variable Tracking (VT)). H2O and StreamingLLM suffers at these tasks as the information
falls out of the KV cache. However, recycled attention does not perform well for task that requires
aggregating the information in the context, such as frequent word extraction (fwe), lagging behind
H2O and StreamingLLM. Performances for tasks which requires retrieving for multiple pieces of
information (multiple keys or multiple queries) are worse compared to the task with (single key,
single value) when using the same K. We later show in ablation study in Section A.1 increasing the
size of K leads to improvements in such tasks.

Language Modeling For context size 16K, we fix K = 2048 and S = 10 both LLaMA-3.1 and
QWEN-2. For context size 100K, we report results using K = 2048 and 32, 768, and S = 256.

Table 4 outlines the perplexity-based performance of the baselines and recycled attention approach.
For LLaMA-3.1, recycled attention achieves better perplexity and comparable inference speeds com-
pared to StreamingLLM when the KV cache size is 1/8 of a 16K context. This shows that the model
benefits from attending to tokens outside of local context window. We observe that H2O outperforms
our approach by a small margin, but at the cost of a substantially higher inference time per example
(10.77 for H2O vs 6.05 for our method). Overall, our recycled attention approach achieves a bet-
ter trade-off between inference speeds and task accuracy compared to non-vanilla approaches
for both LLaMA-3.1 and QWEN-2 models for the 16K context size setting.

When we scale up the context length to 100K, we find differing trends between the LLaMA-3.1 and
QWEN-2 models. For LLaMA-3.1, we observe that recycled attention reports better perplexity but
worse inference speeds compared to non-vanilla baseline methods. However, baseline approaches
outperform recycle attention for the QWEN-2 model. We analyze the attention pattern to investigate
this in Section A.1.

5 CONTINUED PRE-TRAINING WITH RECYCLED ATTENTION

So far, we use the off-the-shelf LLMs as is, only modifying the inference method. This creates a
discrepancy between model training and inference assuming LLM is trained with vanilla full at-
tention setting. In this section, we experiment with continued pre-training the model with recycled

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Perplexity results on language modeling task for LLama-3.1-8B and QWEN-2-7B. We
report performances for Arxiv (the first number) and Book (the second number) and PG19.

Method K Stride LLama-3.1-8B QWEN-2-7B
time(s) ↓ PPL ↓ time(s) ↓ PPL ↓

Context size: 16 K (Arxiv and Book)
Vanilla - - 7.63 2.22 / 7.07 8.85 2.33 / 8.26
H2O 2048 - 10.77 2.48 / 7.60 11.57 2.68 / 9.02
StreamingLLM 2048 - 6.92 2.62 / 7.94 5.71 2.75 / 9.10
StreamingLLM++ 2048 10 7.21 2.59 / 7.88 6.08 2.71 / 9.05
SnapKV (kernel=7, w=32) 2048 - 7.77 2.48 / 7.68 6.90 2.65 / 8.97
Recycled 2048 10 7.14 2.36 / 7.49 6.33 2.57 / 9.01
Recycled (kernel=7) 2048 10 7.14 2.32 / 7.40 6.33 2.47 / 8.73

Context size: 100 K (PG19)
Vanilla - - 18.11 8.24 40.42 13.28
H2O 2048 - 10.56 17.04 9.96 13.39
StreamingLLM 2048 - 5.94 9.53 5.72 13.58
StreamingLLM++ 2048 256 6.04 9.53 5.92 13.58
Recycled 2048 256 6.10 9.31 5.90 14.90
H2O 32,768 - 26.89 8.63 23.55 13.36
StreamingLLM 32,768 - 13.38 8.55 15.81 12.31
StreamingLLM++ 32,768 256 13.43 8.55 15.87 12.32
Recycled 32,768 256 13.52 8.46 15.89 13.50

attention, with the goal of teaching the models to adapt to attending over discontinuous tokens in the
recycled cache.

Data We sample 200k data from the Arxiv split of RedPajama dataset3 and filter out sequences
with less than 8192 tokens. We split the data into 80%, 10% and 10% train/dev/test splits, resulting
in 120k training data.

Training We train the model to adapt to recycled attention when predicting a sequence with 8142
with a prefilling length of 8092, K = 2048 and a stride of 50. Concretely, for the last 50 tokens ti
in the sequence, attention is calculated over the 2048 tokens that received the highest attention score
according to t8092, as well as {t8093, ... ti}. For {t0, ... t8092}, attention is calculated with regular
causal mask. We train the model with next token prediction loss for all the tokens in the sequence.
We report implementation details in Section A.3 in the Appendix.

Comparison sytstems We compare fine-tuning with other inference methods (Vanilla,
StreamingLLM, StreamingLLM++). For each method, we report the base performance from the
pre-trained checkpoint (Base) and the performance after continued fine-tuning (+CPT).

Results We report the results of continued pre-training in Table 5 for both the language modelling
and the 14 RULER tasks. We see that continued pre-training does not improve performance with
vanilla inference method, likely as the model is highly optimized in this setting and trained with this
data. We also observe very little performance gain through continued pre-training in other inference
methods (StreamingLLM, StreamingLLM++). Yet, with Recycled Attention, we see a meaningful
gain from continued pre-training in two stride setting (25, 50). Continued pre-training achieves a
lower perplexity and higher accuracy with higher stride (50) compared to base model with a smaller
stride (25), leading to a better performance-efficiency trade-off.

6 NEW SECTION: DYNAMIC STRIDE

Our experiments in Section 3 employs a fixed schedule for all layers. In this section, we explore a
dynamic scheduler to alternate between full and recycling attention steps. Intuitively, if the query
vector of a particular layer and head for the current step is similar to the query vector of the most

3https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T

8

https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Results on continued pre-training LLaMA-3.1. The context length is 8K and we decode
non-vanilla methods with K = 2048. We report perplexity on the last 50 tokens.

Model Method Stride Dev PPL Test PPL RULER Acc

Base Vanilla - 2.83 2.68 93
+ CPT Vanilla - 2.83 2.68 93
Base Streaming - 3.20 3.14 37
+ CPT Streaming - 3.19 3.14 37
Base Streaming++ 50 3.19 3.13 37
+ CPT Streaming++ 50 3.18 3.13 36
Base Recycled 50 3.09 2.96 83
+ CPT Recycled 50 3.01 2.87 84
Base Recycled 25 3.03 2.90 83
+ CPT Recycled 25 2.97 2.81 85

recent full attention step, the attention pattern should be similar. Based on this, for dynamic schedul-
ing, we only perform the full attention step when this similarity falls below a threshold.

Approach At every Sth decode step, we first determine whether we need to perform full attention
instead of always performing full attention by default. We calculate the cosine similarity between
query vectors of the input token t averaged across all query heads in layer l, with the averaged query
vector of the most recent full attention step for that layer. If the similarity is higher than a threshold
s, we decode with recycle cache, and otherwise use full attention for layer l. Our approach offers the
flexibility of using different schedules for different layers, but uses the same schedule for all heads
in the same layer. Since we perform this similarity check every S steps, setting threshold s = 1 is
equivalent to decoding with the fixed stride S. We perform the comparison only every S steps to
reduce computational overhead; we call this query comparison (QC) stride.

Setup We run experiments with Llama-3.1-8B on the Arxiv and Books corpus. As before, we
report perplexity and decoding time measured on one A100 with batch size of 1 for the last 256
tokens of each test sequence. We run dynamic scheduler with two different query comparison strides
{5, 10} and a similarity threshold of 0.8. We compare against Recycled Attention with fixed strides
10 and 15. For RULER, we report performance on two tasks which require generating longer outputs
(multi-query and multi-value). We run a dynamic scheduler with two different query comparison
strides 10 and a similarity threshold of {0.8, 0.9}. We compare against Recycled Attention with
fixed strides {10, 15}. For dynamic schedules, we report the effective stride across layers, i.e. the
average stride at which full attention is performed.

Dynamic stride strategy improves perplexity compared to fixed strategy when using similar
decoding times. Table 6 reports our results. We observe that using dynamic strides improves
the performance-efficiency trade-off across all settings. Compared to fixed stride of 10 (row 2),
dynamic stride with query comparison stride of 5 (row 3) achieves lower perplexity with a slightly
faster decoding time on both domains. Similarly, employing a dynamic stride with query comparison
stride of 10 (last row) achieves better or on-par performance with less decoding time compared to
having a fixed stride of 15 (row 4). We observe a similar trend for RULER tasks. This better trade-off
can be attributed to the larger effective stride size, i.e. less frequent full attention steps, that result
from using dynamic schedules. Overall, our experiment demonstrates that dynamically deciding
when to refresh the recycle cache can improve performance when using similar decode times.

7 RELATED WORK

Efficient inference methods There are multiple paths to improve decoding efficiency of long-
context LMs. Prior work (Dao, 2024) achieves significant gain in inference latency by optimizing
attention computations on GPUs. A line of work (Xiao et al., 2022) achieves efficiency through
quantization of KV caches. We note that these are orthogonal to and can be combined with our ap-
proach. Other lines of work introduce changes to model architecture, which involves further training
the model: Cai et al. (2024a) adds extra decoding heads to predict multiple subsequent tokens in par-
allel to further speed-up speculative decoding (Leviathan et al., 2022). Yen et al. (2024a) encodes

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Results comparing fixed stride and dynamic stride based on query similarity.

Method Schedule Language Modeling

Time PPL Stride Time PPL Stride
Arxiv Book

Vanilla - 7.63 2.22 - 7.63 7.07 -

Recycled Fixed 7.17 2.36 10 7.17 7.49 10
Recycled Dynamic (QC = 5, s=0.8) 7.07 2.32 25 7.07 7.42 24
Recycled Fixed 6.88 2.41 15 6.94 7.53 15
Recycled Dynamic (QC = 10, s=0.8) 6.86 2.36 32 6.83 7.54 31

RULER

Time Acc Stride Time Acc Stride
multi-query multi-value

Vanilla - 1.71 99 - 1.71 99 -

Recycled Fixed 1.48 69 10 1.48 44 10
Recycled Dynamic (QC=10, s=0.9) 1.32 69 15 1.32 44 17
Recycled Fixed 1.43 62 15 1.43 37 15
Recycled Dynamic (QC=10, s=0.8) 1.26 62 36 1.24 40 38

chunks of long context in parallel with an encoder model, which are used as input to the decoder
model. We note that our method can be used as a training-free method, and show that it is possible
to fine-tune the model to further improve the performance-efficiency trade-off.

Dynamic KV cache Recent work (Sun et al., 2024) introduces a hierarchical speculative decoding
method, which uses the model with a small KV cache constructed with attention pattern as draft
model for the model with the full cache. While we share the motivation of using the attention pattern
to construct a smaller KV cache, we directly leverages the dynamic cache to accelerate inference and
study the performance-efficiency trade-off. Another line of recent work (Xiao et al., 2024a) proposes
building a dynamic KV cache by mapping distant tokens into chunks and retrieving chunks that are
similar to the current token, with the focus of extending the context size of the language model.
Quest (Tang et al., 2024) uses the minimal and maximal key values to estimate import tokens for the
query embedding of the current input token and load the KV cache of these tokens to decode.

KV cache eviction As performing attention over the full KV cache imposes a high memory and
computation burden, KV cache eviction methods have been extensively studied. Strategies include
keeping only “sink” and recent tokens in the KV cache (Xiao et al., 2023); or tokens with high
accumulative attention scores (Zhang et al., 2024). Building on the idea of attention-based eviction
strategy, PyramidInfer(Yang et al., 2024b) retains different number of tokens per layer. Another line
of work proposed query-aware eviction strategies, using the attention scores of the last few tokens
in the prompt to select tokens to keep (Li et al., 2024; Cai et al., 2024b; Chen et al., 2024). Other
works design eviction strategies based on attention patterns of different heads (Ge et al., 2024; Xiao
et al., 2024b) or different layers (Yang et al., 2024b).

8 CONCLUSION

We propose recycled attention, an inference-time method which maintains a small, dynamic KV
cache based on attention patterns of neighboring tokens. Our work follows a line of work leveraging
the locality assumption during the attention computation. Instead of using locality to directly decide
which tokens to attend to (only selecting nearby tokens), we recycle the attention pattern of nearby
tokens, allowing more flexible and dynamic sparse attention patterns. We apply our method to two
off-the-shelf long-context model and show that our method reduces inference wall-clock time while
better preserving performance compared to prior methods which keep a KV cache of recent tokens.
Finally, we show that continued pre-training the model with recycled attention and employing a
dynamic stride can further improve the performance-efficiency trade-off.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Muhammad Adnan, Akhil Arunkumar, Gaurav Jain, Prashant Nair, Ilya Soloveychik, and Pu-
rushotham Kamath. Keyformer: Kv cache reduction through key tokens selection for efficient
generative inference. Proceedings of Machine Learning and Systems, 6:114–127, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebr’on, and
Sumit K. Sanghai. Gqa: Training generalized multi-query transformer models from multi-head
checkpoints. ArXiv, abs/2305.13245, 2023. URL https://api.semanticscholar.org/
CorpusID:258833177.

Chen An, Fei Huang, Jun Zhang, Shansan Gong, Xipeng Qiu, Chang Zhou, and Lingpeng Kong.
Training-free long-context scaling of large language models. ArXiv, abs/2402.17463, 2024. URL
https://api.semanticscholar.org/CorpusID:268032518.

Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong,
and Xipeng Qiu. L-eval: Instituting standardized evaluation for long context language models,
2023. URL https://arxiv.org/abs/2307.11088.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv:2004.05150, 2020.

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, De huai Chen, and
Tri Dao. Medusa: Simple llm inference acceleration framework with multiple decoding
heads. ArXiv, abs/2401.10774, 2024a. URL https://api.semanticscholar.org/
CorpusID:267061277.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal
information funneling. CoRR, 2024b.

Yilong Chen, Guoxia Wang, Junyuan Shang, Shiyao Cui, Zhenyu Zhang, Tingwen Liu, Shuo-
huan Wang, Yu Sun, Dianhai Yu, and Hua Wu. NACL: A general and effective KV cache
eviction framework for LLM at inference time. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 7913–7926, Bangkok, Thailand, August 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.428. URL https:
//aclanthology.org/2024.acl-long.428.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. ArXiv, abs/1904.10509, 2019. URL https://api.semanticscholar.
org/CorpusID:129945531.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In Inter-
national Conference on Learning Representations (ICLR), 2024.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-
wise quantization. CoRR, abs/2110.02861, 2021. URL https://arxiv.org/abs/2110.
02861.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells
you what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=uNrFpDPMyo.

Gemini. Google. gemini 1.5: Unlocking multimodal understanding across millions of tokens of
context. arXiv preprint arXiv:2403.05530, 2024.

11

https://api.semanticscholar.org/CorpusID:258833177
https://api.semanticscholar.org/CorpusID:258833177
https://api.semanticscholar.org/CorpusID:268032518
https://arxiv.org/abs/2307.11088
https://api.semanticscholar.org/CorpusID:267061277
https://api.semanticscholar.org/CorpusID:267061277
https://aclanthology.org/2024.acl-long.428
https://aclanthology.org/2024.acl-long.428
https://api.semanticscholar.org/CorpusID:129945531
https://api.semanticscholar.org/CorpusID:129945531
https://arxiv.org/abs/2110.02861
https://arxiv.org/abs/2110.02861
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. SAMSum corpus: A human-
annotated dialogue dataset for abstractive summarization. In Lu Wang, Jackie Chi Kit Cheung,
Giuseppe Carenini, and Fei Liu (eds.), Proceedings of the 2nd Workshop on New Frontiers in Sum-
marization, pp. 70–79, Hong Kong, China, November 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-5409. URL https://aclanthology.org/D19-5409.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
long document summarization. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek
Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao Zhou
(eds.), Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 1419–1436, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.112. URL
https://aclanthology.org/2021.naacl-main.112.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan
(eds.), Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Com-
putational Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/
P17-1147.

Marzena Karpinska, Katherine Thai, Kyle Lo, Tanya Goyal, and Mohit Iyyer. One thousand and one
pairs: A ”novel” challenge for long-context language models, 2024. URL https://arxiv.
org/abs/2406.16264.

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The NarrativeQA reading comprehension challenge. Transactions of
the Association for Computational Linguistics, 6:317–328, 2018. doi: 10.1162/tacl a 00023.
URL https://aclanthology.org/Q18-1023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, 2022. URL https://api.
semanticscholar.org/CorpusID:254096365.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics, 2002. URL https://aclanthology.org/
C02-1150.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=poE54GOq2l.

Meta. The llama 3 herd of models. ArXiv, abs/2407.21783, 2024. URL https://api.
semanticscholar.org/CorpusID:271571434.

NLP Team MosaicML. Introducing mpt-7b: A new standard for open-source, commercially usable
llms, 2023. URL www.mosaicml.com/blog/mpt-7b. Accessed: 2023-05-05.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. YaRN: Efficient context win-
dow extension of large language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=wHBfxhZu1u.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar, Chloe Hillier, and Timothy P Lillicrap.
Compressive transformers for long-range sequence modelling. arXiv preprint, 2019. URL
https://arxiv.org/abs/1911.05507.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong Tian, and Beidi Chen. Triforce: Lossless
acceleration of long sequence generation with hierarchical speculative decoding. arXiv preprint
arXiv:2404.11912, 2024.

12

https://aclanthology.org/D19-5409
https://aclanthology.org/2021.naacl-main.112
https://aclanthology.org/P17-1147
https://aclanthology.org/P17-1147
https://arxiv.org/abs/2406.16264
https://arxiv.org/abs/2406.16264
https://aclanthology.org/Q18-1023
https://api.semanticscholar.org/CorpusID:254096365
https://api.semanticscholar.org/CorpusID:254096365
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
https://openreview.net/forum?id=poE54GOq2l
https://api.semanticscholar.org/CorpusID:271571434
https://api.semanticscholar.org/CorpusID:271571434
www.mosaicml.com/blog/mpt-7b
https://openreview.net/forum?id=wHBfxhZu1u
https://arxiv.org/abs/1911.05507

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference, 2024.

Together. Redpajama: an open dataset for training large language models, 2023. URL https:
//github.com/togethercomputer/RedPajama-Data.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue:
Multihop questions via single-hop question composition. Transactions of the Association for
Computational Linguistics, 10:539–554, 2022. doi: 10.1162/tacl a 00475. URL https:
//aclanthology.org/2022.tacl-1.31.

Chaojun Xiao, Pengle Zhang, Xu Han, Guangxuan Xiao, Yankai Lin, Zhengyan Zhang, Zhiyuan
Liu, Song Han, and Maosong Sun. Infllm: Unveiling the intrinsic capacity of llms for under-
standing extremely long sequences with training-free memory. arXiv, 2024a.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. ArXiv, abs/2211.10438, 2022.
URL https://api.semanticscholar.org/CorpusID:253708271.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. ArXiv, abs/2309.17453, 2023. URL https://api.
semanticscholar.org/CorpusID:263310483.

Guangxuan Xiao, Jiaming Tang, Jingwei Zuo, Junxian Guo, Shang Yang, Haotian Tang, Yao Fu,
and Song Han. Duoattention: Efficient long-context llm inference with retrieval and streaming
heads. arXiv, 2024b.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou,
Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-Yang Chen, Kexin Yang,
Mei Li, Min Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xi-
aodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren,
Yang Fan, Yang Yao, Yichang Zhang, Yunyang Wan, Yunfei Chu, Zeyu Cui, Zhenru Zhang,
and Zhi-Wei Fan. Qwen2 technical report. ArXiv, abs/2407.10671, 2024a. URL https:
//api.semanticscholar.org/CorpusID:271212307.

Dongjie Yang, Xiaodong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. PyramidInfer:
Pyramid KV cache compression for high-throughput LLM inference. In Lun-Wei Ku, An-
dre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational Lin-
guistics ACL 2024, pp. 3258–3270, Bangkok, Thailand and virtual meeting, August 2024b.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.195. URL
https://aclanthology.org/2024.findings-acl.195.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov,
and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question
answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceed-
ings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–
2380, Brussels, Belgium, October-November 2018. Association for Computational Linguistics.
doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Howard Yen, Tianyu Gao, and Danqi Chen. Long-context language modeling with parallel context
encoding. ArXiv, abs/2402.16617, 2024a. URL https://api.semanticscholar.org/
CorpusID:268032128.

Howard Yen, Tianyu Gao, and Danqi Chen. Long-context language modeling with parallel context
encoding. In Association for Computational Linguistics (ACL), 2024b.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Re, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/
forum?id=RkRrPp7GKO.

13

https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://aclanthology.org/2022.tacl-1.31
https://aclanthology.org/2022.tacl-1.31
https://api.semanticscholar.org/CorpusID:253708271
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:263310483
https://api.semanticscholar.org/CorpusID:271212307
https://api.semanticscholar.org/CorpusID:271212307
https://aclanthology.org/2024.findings-acl.195
https://aclanthology.org/D18-1259
https://api.semanticscholar.org/CorpusID:268032128
https://api.semanticscholar.org/CorpusID:268032128
https://openreview.net/forum?id=RkRrPp7GKO
https://openreview.net/forum?id=RkRrPp7GKO

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 7: Results comparing different methods to aggregate attention scores for GQA models. We
evaluate perplexity on sequences of length 16K for Llama-3.1-8B, where 4 query heads share the
same KV head.

Method K Stride Agg Arxiv PPL Book PPL

Vanilla - - - 2.22 7.07
StreamingLLM 2048 - - 2.62 7.94
StreamingLLM++ 2048 10 - 2.57 7.85
Retrieval 2048 10 First 2.43 7.62
Retrieval 2048 10 Mean 2.39 7.51
Retrieval 2048 10 Max 2.36 7.49

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024.

Yanli Zhao, Andrew Gu, Rohan Varma, Liangchen Luo, Chien chin Huang, Min Xu, Less
Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, and Shen Li. Pytorch fsdp: Experiences on scal-
ing fully sharded data parallel. Proc. VLDB Endow., 16:3848–3860, 2023. URL https:
//api.semanticscholar.org/CorpusID:258297871.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadal-
lah, Asli Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir Radev. QMSum: A new benchmark
for query-based multi-domain meeting summarization. In Kristina Toutanova, Anna Rumshisky,
Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy
Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
pp. 5905–5921, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/
2021.naacl-main.472. URL https://aclanthology.org/2021.naacl-main.472.

A APPENDIX

A.1 ABLATING K AND S

Our method depends on two hyperparameters, the size of the recycle cache K and the stride S which
governs how often we perform full attention and update the recycle KV cache. Here, we analyze
the impact of varying these two values for Llama-3.1. We experiment with 100 ArXiv sequences
with L = 16, 354 and 14 RULER tasks with L = 32, 768. Results are reported in Table 8 and
Figure 4. We see that Recycled Attention outperforms baselines with similar inference time budget
for both tasks. For example, Recycled Attention with K = 2048, S = 16 achieves better perplexity
than StreamingLLM with K = 4096. In fact, Recycled Attention with K = 4096 achieves better
accuracy than StreamingLLM with a larger K = 8192 for RULER. Overall, we find that increasing
K is more effective than decreasing the stride S. While decreasing stride S generally benefits
Recycled Attention, it has negligible effect on StreamingLLM++. This shows that the improvement
does not merely come from performing full attention, but also from refreshing the recycle cache.

We further report the detailed breakdown of each RULER tasks in Table 9. We see that decreasing
the stride benefits certain tasks, such as the multi-key version of NIAH and common word extraction.

A.2 LONGBENCH EXPERIMENTS

We evaluate our method on eight long-context datasets from LongBench(Bai et al., 2023), covering
multiple tasks: (1) Single-document QA: NarrativeQA(Kočiský et al., 2018); (2) Multi-document
QA: Musique(Trivedi et al., 2022) and HotpotQA(Yang et al., 2018); (3) Summarization: GovRe-
port(Huang et al., 2021) and QMSUM(Zhong et al., 2021); (4) Few-shot learning: TriviaQA(Joshi

14

https://api.semanticscholar.org/CorpusID:258297871
https://api.semanticscholar.org/CorpusID:258297871
https://aclanthology.org/2021.naacl-main.472

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 8: Updated: Recycled attention and baseline performances when varying K and S on RULER
tasks with 32K context length (left) and Arxiv with 16K context length (right). We report results for
LLama-3.1-8B with decoding time measured on a single A100 machine.

Method K S PPL Time K S Accuracy Time
ArXiv Perplexity (16K) RULER performance (32K)

Vanilla - - 2.22 7.39 - - 90 1.71
Streaming 2048 - 2.62 6.64 4096 - 22 1.23
H2O 2048 - 2.48 10.77 4096 - 21 2.15
SnapKV 2048 - 2.48 7.77 4096 - 72 1.64
Streaming++ 2048 32 2.61 6.61 4096 50 22 1.25
Recycled 2048 32 2.48 6.72 4096 50 63 1.27
Recycled (k=7) 2048 32 2.44 6.71 4096 50 79 1.26

Streaming++ 2048 16 2.59 6.77 4096 10 22 1.4
Recycled 2048 16 2.40 6.90 4096 10 65 1.48
Recycled (k=7) 2048 16 2.36 6.96 4096 10 82 1.48

Streaming 4096 - 2.44 6.94 8192 - 26 1.46
Streaming++ 4096 32 2.43 7.05 8192 50 26 1.47
Recycled 4096 32 2.33 7.12 8192 50 70 1.48

Table 9: NEW: Per-task performance of Llama-3.1-8B on RULER subtasks. For non-vanilla meth-
ods, we set the K = 4096 and ablate of S.

Method stride time niah single multi key multi query multi value fwe vt cwe qa

Context size: 32K
Vanilla - 1.71 100 98 99 99 93 99 65 61
H2O - 2.15 7 7 6 6 78 38 39 34
Streaming - 1.23 8 13 13 13 93 12 4 42
StreamingLLM++ 50 1.25 8 13 13 13 93 10 5 43
StreamingLLM++ 10 1.40 8 13 13 13 93 12 5 43
SnapKV - 1.64 77 68 99 98 83 99 56 61
Recycled 50 1.25 98 35 59 37 90 99 20 59
Recycled 10 1.48 99 37 69 44 90 99 22 59
Recycled (kernel=7) 50 1.25 99 60 98 99 83 99 44 63
Recycled (kernel=7) 10 1.48 100 73 98 99 84 99 45 63

Ar
xi

v
Pe

rp
le

xi
ty

 ↓

2.1

2.25

2.4

2.55

2.7

6.5 6.725 6.95 7.175 7.4

K=2048, S=32

K=2048

K=4096

K=2048, S=16

K=4096, S=32

K=4096, S=16
K=2048, S=32

K=2048, S=16
K=4096, S=32

K=4096, S=16

R
U

LE
R

 a
cc

ur
ac

y
 ↑

10

31.25

52.5

73.75

95

1.15 1.313 1.475 1.638 1.8

Vanilla StreamingLLM StreamingLLM++ Recycled

K=4096, S=50

K=4096, S=10K=4096

K=8192

K=4096, S=50
K=4096, S=10

K=8192, S=50

Decoding time (s/example)

Figure 4: New: Recycled Attention and baseline performances when varying K and S on Arxiv
with 16K context length (left) and RULER tasks with 32K context length (right) for Llama-3.1-8B.
Recycled Attention achieves better performance than baselines (StreamingLLM, StreamingLLM++)
with the same or less decoding time for both task.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 10: NEW:Performance on eight datasets with average input length greater than 5,000 from
LongBench. benchmark for LLaMA-3.1-8B and Qwen-2-7B. For tasks with context length greater
than 10K, we set K = 2048. Otherwise, we set K = 1024. We highlight the method with decoding
time longer than vanilla in red.

NarrativeQA Musique HotpotQA TriviaQA TREC SAMSum QMSUM GovReport
Method stride F1 ↑ t(s) ↓ F1 ↑ t(s) ↓ F1 ↑ t(s) ↓ F1 ↑ t(s) ↓ Acc ↑ t(s) ↓ R-L ↑ t(s) ↓ R-L ↑ t(s) ↓ R-L ↑ t(s) ↓

LLama-3.1
Vanilla - 40 2.93 31 1.38 46 0.8 90 0.83 70 1.55 47.70 3.27 25.17 14.07 29.29 13.42
Streaming - 88 2.47 25 1.2 88 0.76 36 0.7 58 1.54 46.12 3.12 20.62 12.64 18.28 12.33
Streaming++ 10 - - - - - - - - - - - - 21.18 13.28 18.88 13.01
Streaming++ 15 - - - - - - - - - - - - 20.98 12.60 18.34 12.83
H2O - 29 4.37 29 1.62 42 1.35 89 1.35 64 1.70 45.73 5.53 22.68 21.46 18.44 20.78
SnapKV - 40 3.21 32 1.47 50 0.86 90 0.86 69 1.70 46.67 3.73 22.98 15.16 18.36 15.06
Recycled - 39 2.56 32 1.23 48 0.7 90 0.76 68 1.54 47.27 3.15 23.15 13.22 19.97 13.00
Recycled 10 - - - - - - - - - - - - 22.73 13.85 27.15 13.36
Recycled 15 - - - - - - - - - - - - 23.24 12.76 25.96 13.03

QWEN-2-7B
Vanilla - 15 9.33 41 1.71 56 1.00 83 0.96 73 1.71 46.67 3.67 25.62 16.74 35.55 15.77
Streaming - 9 2.30 33 1.12 47 0.71 83 0.71 54 1.59 46.62 2.92 21.64 11.84 20.48 11.06
Streaming++ 10 - - - - - - - - - - - - 21.65 12.59 21.09 11.82
Streaming++ 15 - - - - - - - - - - - - 21.65 12.40 21.39 11.63
H2O - 11 4.03 28 1.98 49 1.16 87 1.16 66 2.45 45.30 5.21 23.68 19.13 22.83 18.75
SnapKV - 13 2.86 41 1.33 55 0.85 83 0.85 67 1.67 46.58 3.36 25.24 13.37 26.16 13.61
Recycled - 13 2.28 40 1.15 55 0.73 83 0.72 70 1.47 45.36 2.98 24.90 11.94 26.70 11.82
Recycled 10 - - - - - - - - - - - - 25.44 12.61 31.01 12.49
Recycled 15 - - - - - - - - - - - - 25.21 12.45 30.03 12.25

et al., 2017), TREC(Li & Roth, 2002). and SAMSum(Gliwa et al., 2019). We additionally report
results for datasets with input length less than 5K in Table 11, where we observe less inference
speed-up.

Setting We report performances for Recycled Attention and baseline approaches, as discussed
in Section 3. For dataset with average context length greater than 10K (NarrativeQA, Musique,
QMSum), we set K = 2048 for all methods. For others, we set K = 1024. We report SnapKV with
recent window size of 32 and kernel size of 7; and Recycled Attention with kernel size of 7. For each
task, we set the maximum tokens to generate following prior work (Li et al., 2024). As refreshing
the recycle cache benefits longer generation (e.g. summarization), we set the stride for Recycled
Attention to generation length (no refresh during generation) and additionally report a stride of {10,
15} for QMSum and GovReport. We also report a stride of {10, 15} for the StreamingLLM++
baseline. For datasets with less than 5K context, we report the result for Recycled Attention with
stride at generation length, as decreasing the stride will further slow decoding down.

Results Experiment results are reported in Table 10. We find that Recycled Attention performs
comparably or better compared to SnapKV (the best performing baseline), with faster decoding
speed. SnapKV is slower than vanilla decoding in most of the cases for LLaMA-3.1-8B, as it is
primarily designed for memory efficiency, instead of decoding speed.

We see that Recycled Attention outperforms SnapKV and baseline methods for the two tasks that
require long generation (QMSUM and GovReport), especially when we decrease the strides. This
demonstrates that maintaining the full KV cache enables the model to flexibly leverage comprehen-
sive information in the context, which might have been evicted by methods such as SnapKV.

Results for LongBench datasets with less than 5K input length is reported in Table 11. Overall, we
see a similar trend but with less efficiency gains.

A.3 CONTINUED PRE-TRAINING IMPLEMENTATION DETAILS

Implementation details We train Llama-3.1 for one epoch with a global batch size of 64 and a
learning rate of 5e-6. We use 20 warm-up steps and a linear schedule with 0 weight decay. We use
the AdamW Optimizer. We use Fully Sharded Data Parallel (Zhao et al., 2023) and 8-bit optimizer
(Dettmers et al., 2021) to improve training efficiency. Training is done on 4 H100 80 GB GPUs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 11: NEW:Performance on five datasets with average input length smaller than 5,000 from
LongBench for LLaMA-3.1-8B and QWEN-2-7B. We set K = 1024. We highlight the method
with decoding time longer than vanilla in red.

Qasper MFQA 2WMQA MultiNews RepoBench
Method stride F1 ↑ t(s) ↓ F1 ↑ t(s) ↓ F1 ↑ t(s) ↓ R-L ↑ t(s) ↓ Sim ↑ t(s) ↓

LLama-3.1
Vanilla - 26 1.52 46 1.55 27 1.57 26.12 12.13 49.73 1.70
Streaming - 16 1.53 32 1.53 20 1.53 23.64 12.38 44.35 1.56
H2O - 25 2.76 31 2.81 28 2.77 25.54 16.39 52.22 2.09
SnapKV - 27 1.86 45 1.88 24 1.85 24.95 15.04 48.31 1.91
Recycled - 27 1.55 42 1.54 27 1.55 25.07 12.42 47.25 1.58

QWEN-2-7B
Vanilla - 39 1.63 51 1.69 56 0.85 24.83 12.56 50.79 1.90
Streaming - 30 1.45 26 1.46 48 0.72 22.49 11.86 45.52 1.46
H2O - 33 2.51 34 2.53 46 1.24 25.11 15.21 51.14 2.54
SnapKV - 35 1.66 49 1.67 54 0.83 24.43 13.43 51.58 1.70
Recycled - 37 1.48 48 1.48 55 0.73 24.53 11.96 45.12 1.48

A.4 ATTENTION PATTERN ANALYSIS

We analyze the recovery rate of recycled attention and StreamingLLM for LLaMA-3.1 and QWEN-
2 (similar to the setting in Section 2). Figure 6 shows the aggregated attention recovery rate. We
observe a consistent trend across the two domains. While for both models recycled attention recovers
more attention mass than StreamingLLM, the gap between the two methods is much smaller for
QWEN-2.

A.5 DYNAMIC STRIDE ANALYSIS

We reported an aggregated effective stride in Table 6. We further investigate the effective stride
patterns across different layers, shown in Figure 7. We can see that our method enables setting a
different stride at different layers, with the earlier layer having a larger stride.

A.6 RULER CONFIGURATION

We follow the suite of evaluation tasks introduced in Hsieh et al. (2024), which consists of the 13
tasks4. We group them based on the types:

Single NIAH An NIAH-styled task with one key and one value to retrieve. We include three
variations of the task with different types of key, value and haystack.

Multi-key NIAH An NIAH-styled task with distracting keys. We include three variations of the
task with different types of key, value and haystack.

Multi-values NIAH An NIAH-styled task with multiple values corresponding to the key.

Multi-queries NIAH An NIAH-styled task with multiple queries, each corresponding to a distinct
key.

Variable Tracking A NIAH-styled task that requires tracing through multiple hops.

Common word extraction and Frequent word extraction require extracting the words based on
the pattern in a list of words.

4https://github.com/hsiehjackson/RULER

17

https://github.com/hsiehjackson/RULER

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0.5

1.0
Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7

0.5

1.0
Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13 Layer 14 Layer 15

0.5

1.0
Layer 16 Layer 17 Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23

0 200

0.5

1.0
Layer 24

0 200

Layer 25

0 200

Layer 26

0 200

Layer 27

0 200

Layer 28

0 200

Layer 29

0 200

Layer 30

0 200

Layer 31

recycled streaming

0.6

0.8

1.0

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6

0.6

0.8

1.0

Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 Layer 13

0.6

0.8

1.0

Layer 14 Layer 15 Layer 16 Layer 17 Layer 18 Layer 19 Layer 20

0 100 200

0.6

0.8

1.0

Layer 21

0 100 200

Layer 22

0 100 200

Layer 23

0 100 200

Layer 24

0 100 200

Layer 25

0 100 200

Layer 26

0 100 200

Layer 27

recycled streaming

Figure 5: Recovery rate of StreamingLLM and recycled attention on 5 samples from the Arxiv split
of RedPajama (Left: LLaMA-3.1, Right: Qwen-2). We calculate recovery rate with a prefill length
of 8K, K of 1024 and S = 256.

Question Answering A task that requires answering a question given a set of documents. We
include two variations of the tasks, corresponding to two question answering datasets.

We refer the readers to Hsieh et al. (2024) for detailed description and examples of each task.

A.7 NEW: CHAIN OF KEY EXPERIMENTS

As most of the downstream tasks do not require long-form generation, we design a synthetic task
where model needs to generate a long sequence leveraging various information in the context. We
name it “chain-of-key” and provide the definition below.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

LLaMA-3.1

ArXiv

QWEN-2

Book

X axis: time step i from full attention step

LLaMA-3.1

ArXiv

QWEN-2

Book

X axis: time step i from full attention step

LLaMA-3.1

ArXiv

QWEN-2

Book

X axis: time step i from full attention step

LLaMA-3.1

ArXiv

QWEN-2

Book

X axis: time step i from full attention step

LLaMA-3.1 QWEN-2
ArXiV ArXiVBook Book

Time step i from full attention step Time step i from full attention step Time step i from full attention step Time step i from full attention step

R
ec

ov
er

ed
 A

tte
nt

io
n

M
as

s

R
ec

ov
er

ed
 A

tte
nt

io
n

M
as

s

Figure 6: Recovery rate of StreamingLLM and recycled attention on 5 samples each from the Arxiv
and Book split of RedPajama (Left: LLaMA-3.1, Right: Qwen-2). We calculate recovery rate with
a prefill length of 8K, K of 1024 and S = 50.

Figure 7: Layer-wise effective stride for LLaMA-3.1-8B with query similarity dynamic strides.

Task set-up The model is provided with context which consists of names of keys, each
of which contains W number of words, for instance: apricot-waggish where W =
2. The model is tasked to generate a sequence which consists of a list of T keys from
the context, such that the first word of the next key is the last word of the current
key. For example: waggish-fishery, fishery-mosquito, mosquito-perfume,
perfume-panda, panda-juice, juice-willow for T = 6. We provide an example
input in Table 13.

Evaluation We evaluate correctness of the generated output by the length of a valid chain, divided
by T . A valid chain needs to satisfy two criteria: (a) the key must be in the context and (b) the first
word of the current key must be the last word of the previous key. We provide example outputs and
their correctness score in Table 14.

Experiment setting We report performance for all baseline methods in Section 3 as well as decod-
ing time for all methods. Our initial experiment showed that LLaMA-3.1-8B is unable to perform
this task. We thus conduct experiment with LLaMA-3.1-70B model. Decoding time is measured
on 4 A100 with batch size of 1 for all methods. For Recycled Attention and StreamingLLM++, we
experiment with S = {5, 10, 15, 20}.

Results Results are reported in Table 12. We find that Recycled Attention consistently out-
performed baselines that evicts token from KV cache (SnapKV, StreamingLLM) as well as the
StreamingLLM++ method, which perform full attention occasionally. SnapKV achieves an accu-
racy of 0.11, meaning that it is only able to generate a valid key for the first step. We also find that
decreasing stride consistently improves performance for Recycled Attention and StreamingLLM++,
with Recycled Attention outperforming StreamingLLM++ at every stride. Yet, having a stride that
is too small (e.g. 5) might increase decoding time due to computational overhead.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 12: NEW:Results for the chain-of-key task of LLaMA-3.1-70B. We highlight the method with
decoding time longer than vanilla in red.

Method K Stride Score↑ Time↓
Vanilla - - 0.53 13.78
StreamingLLM 4096 - 0.03 12.23
SnapKV 4096 - 0.11 14.43
StreamingLLM++ 4096 20 0.03 12.41
Recycled 4096 20 0.14 12.88
StreamingLLM++ 4096 15 0.03 12.47
Recycled 4096 15 0.17 13.21
StreamingLLM++ 4096 10 0.04 12.61
Recycled 4096 10 0.19 13.69
StreamingLLM++ 4096 5 0.06 12.82
Recycled 4096 5 0.38 15.20

Table 13: Example input for the chain-of-key task where W = 2 and T = 10.

Input
“You are given many keys composed of a few words. Your task is to generate a chain of 10 keys
such that the first word of the current key is the last word of the previous key. Separate the keys with
comma. Example: waggish-fishery, fishery-mosquito, mosquito-perfume, perfume-panda, panda-
juice, juice-willow, willow-bronco, bronco-creditor, creditor-bathhouse, bathhouse-woman. You
must generate keys that are in the context. DO NOT REPEAT THE EXAMPLE.
Context:Name of key: toga-roommate
Name of key: appetiser-cenario
Name of key: normalization-tacit
Name of key: intensity-ping
Name of key: innate-cummerbund
Name of key: tentacle-lining [...omitted...]
Name of key: breath-yielding
Name of key: schema-festive
You are given many keys composed of a few words. Your task is to generate a chain of 10 keys such
that the first word of the current key is the last word of the previous key. Separate the keys with
comma.You must generate keys that are in the context. Chain of ten keys:”

Table 14: Example output for the chain-of-key task where W = 2 and T = 10 and their score. Keys
that are not in the context are highlighted in red.

Output Score
impossible-crawdad, crawdad-vehicle,
vehicle-uncertainty, uncertainty-welfare,
welfare-outrigger, outrigger-historical,
historical-gator, gator-hugger, hugger-debris,
debris-precious

1 (fully correct)

annoying-pentagon, pentagon-fit, fit-waggish,
waggish-fishery, fishery-mosquito,
mosquito-perfume, perfume-panda, panda-juice,
juice-willow, willow-bronco

0.2 (correct up to the
second key)

impossible-crawdad, crawdad-vehicle,
vehicle-uncertainty, welfare-outrigger,
outrigger-historical, historical-gator,
gator-hugger, hugger-debris, debris-precious,
uncertainty-welfare

0.3 (correct up to the
third key)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.8 LIMITATIONS AND FUTURE WORK

Proposed method While we focus on accelerating inference speed, our method does not reduce
memory requirement for using long-context LLMs, which can be a bottleneck for certain use cases.
Our method is focused on a setting where we generate long output given a long input. When the
output length is very small, the efficiency gain will be minimal. In this study, we focus on employing
a fixed stride across all layers and explore dynamic scheduling based on query-similarity. Setting a
custom stride per layer, or exploring other methods for deciding when to recycle the cache could be
future avenue to improve performance.

Experimental Settings We have conducted experiment with two open-sourced long-context mod-
els and two evaluation tasks setting. We did not test out more language models and other long-
context benchmarks (An et al., 2023; Karpinska et al., 2024) given our limited compute resources.
Finally, our method is not limited to the language domain. Future work can explore applying recy-
cled attention to other modalities, for instance, vision transformers.

21

	Introduction
	Recycled Attention for Long-Context LLMs
	Problem Setting and Notation
	Attention Mass Overlap between Neighboring Tokens
	Methodology and Implementation

	Experimental settings
	Tasks
	Baselines
	Inference settings

	Results
	Continued pre-training with recycled attention
	New section: Dynamic Stride
	Related Work
	Conclusion
	Appendix
	Ablating K and S
	LongBench experiments
	Continued Pre-training implementation details
	Attention pattern analysis
	Dynamic Stride analysis
	Ruler configuration
	NEW: Chain of key experiments
	Limitations and Future Work

