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Abstract

Energy-based models (EBMs) offer flexible distribution parametrization. How-
ever, due to the intractable partition function, they are typically trained via con-
trastive divergence for maximum likelihood estimation. In this paper, we propose
pseudo-spherical contrastive divergence (PS-CD) to generalize maximum likeli-
hood learning of EBMs. PS-CD is derived from the maximization of a family
of strictly proper homogeneous scoring rules, which avoids the computation of
the intractable partition function and provides a generalized family of learning
objectives that include contrastive divergence as a special case. Moreover, PS-CD
allows us to flexibly choose various learning objectives to train EBMs without
additional computational cost or variational minimax optimization. Theoretical
analysis on the proposed method and extensive experiments on both synthetic data
and commonly used image datasets demonstrate the effectiveness and modeling
flexibility of PS-CD, as well as its robustness to data contamination, thus showing
its superiority over maximum likelihood and f -EBMs.

1 Introduction

Energy-based models (EBMs) provide a unified framework for generative and discriminative learning
by capturing dependencies between random variables with an energy function. Due to the absence
of the normalization constraint, EBMs offer much more flexibility in distribution parametrization
and architecture design compared to properly normalized probabilistic models such as autoregressive
models [53, 23], flow-based models [14, 15, 46] and sum-product networks [72]. Recently, deep
EBMs have achieved considerable success in realistic image generation [17, 66, 12, 30], molecular
modeling [90] and model-based planning [16], thanks to modern deep neural networks [54, 49, 35]
for parametrizing expressive energy functions and improved Markov Chain Monte Carlo (MCMC)
techniques [62, 75, 40, 17, 66] for efficiently sampling from EBMs.

Training EBMs consists of finding an energy function that assigns low energies to correct config-
urations of variables and high energies to incorrect ones [55], where a central concept is the loss
functional that is used to measure the quality of the energy function and is minimized during training.
The flexibility of EBMs does not come for free: it makes the design of loss functionals particularly
challenging, as it usually involves the partition function that is generally intractable to compute. As a
result, EBMs are typically trained via CD [37], which belongs to the “analysis by synthesis” scheme
[31] and performs a sampling-based estimation of the gradient of KL between data distribution and
energy-based distribution. Since different loss functionals will induce different solutions in practice
(when the model is mis-specified and data is finite) and KL may not provide the right inductive
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bias [25, 91], inspired by the great success of implicit generative models [28, 67, 3], [89] proposed
a variational framework to train EBMs by minimizing general f -divergences [10]. Although this
framework enables us to specify various modeling preferences such as diversity/quality tradeoff,
they rely on learning additional components (variational functions) within a minimax framework,
where the optimization is complicated by the notion of Nash equilibrium and local optimality [42]
and suffers from instability and non-convergence issues [59]. Along this line, noise contrastive
estimation (NCE) [34] can train EBMs with a family of loss functionals induced by different Bregman
divergences. However, in practice, NCE usually relies on carefully-designed noise distribution such
as context-dependent noise distribution [41] or joint learning of a flow-based noise distribution [21].

In this paper, we draw inspiration from statistical decision theory [13] and propose a novel perspective
for designing loss functionals for training EBMs without involving auxiliary models or variational
optimization. Specifically, to generalize maximum likelihood training of EBMs, we focus on
maximizing pseudo-spherical scoring rules [76, 27], which are strictly proper such that the data
distribution is the unique optimum and homogeneous such that they can be evaluated without the
knowledge of the normalization constant. Under the “analysis by synthesis” scheme used in CD and
f -EBM [89], we then derive a practical algorithm termed Pseudo-Spherical Contrastive Divergence
(PS-CD). Different from f -EBM, PS-CD enables us to specify flexible modeling preferences without
requiring additional computational cost or unstable minimax optimization. We provide a theoretical
analysis on the sample complexity and convergence property of PS-CD, as well as its connections to
maximum likelihood training. With experiments on both synthetic data and commonly used image
datasets, we show that PS-CD achieves significant sample quality improvement over conventional
maximum likelihood training and competitive performance to f -EBM without expensive variational
optimization. Based on a set of recently proposed generative model evaluation metrics [61], we further
demonstrate the various modeling tradeoffs enabled by PS-CD, justifying its modeling flexibility.
Moreover, PS-CD is also much more robust than CD in face of data contamination.

2 Preliminaries

2.1 Energy-Based Distribution Representation and Sampling

Given a set of i.i.d. samples {xi}Ni=1 from some unknown data distribution p(x) defined over the
sample space X ⊂ Rm, the goal of generative modeling is to learn a θ-parametrized probability
distribution qθ(x) to approximate the data distribution p(x). In the context of energy-based mod-
eling, instead of directly parametrizing a properly normalized distribution, we first parametrize an
unnormalized energy function Eθ : X → R, which further defines a normalized probability density
via the Boltzmann distribution:

qθ(x) =
qθ(x)

Zθ
=

exp(−Eθ(x))

Zθ
, (1)

where Zθ :=
∫
X exp(−Eθ(x))dx is the partition function (normalization constant). In this paper,

unless otherwise stated, we will use q to denote an unnormalized density and q to denote the
corresponding normalized distribution. We also assume that the exponential of the negative energy
belongs to the L1 space, E :=

{
Eθ : X → R :

∫
X exp(−Eθ(x))dx <∞

}
, i.e., Zθ is finite.

Since energy-based models (EBMs) represent a probability distribution by assigning unnormalized
scalar values (energies) to the data points, we can use any model architecture that outputs a bounded
real number given an input to implement the energy function, which allows extreme flexibility in
distribution parametrization. However, it is non-trivial to sample from an EBM, usually requiring
MCMC [75] techniques. Specifically, in this work we consider using Langevin dynamics [62, 88], a
gradient-based MCMC method that performs noisy gradient descent to traverse the energy landscape
and arrive at the low-energy configurations:

x̃t = x̃t−1 −
ε

2
∇xEθ(x̃t−1) +

√
εzt, (2)

where zt ∼ N (0, I). The distribution of x̃T converges to the model distribution qθ(x) ∝
exp(−Eθ(x)) when ε → 0 and T → ∞ under some regularity conditions [88]. In order to
sample from an energy-based distribution efficiently, many scalable techniques have been proposed
such as learning non-convergent, non-persistent, short-run MCMC [66] and using a sample replay
buffer to improve mixing time and sample diversity [17]. In this work, we leverage these recent
advances when we need to obtain samples from an EBM.
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2.2 Maximum Likelihood Training of EBMs via Contrastive Divergence

The predominant approach to training explicit density generative models is to approximately minimize
the KL divergence between the (empirical) data distribution and model distribution. Minimizing KL
divergence is equivalent to the following maximum likelihood estimation (MLE) objective:

min
θ
LMLE(θ; p) = min

θ
−Ep(x) [log qθ(x)] = min

θ
Ep(x)[Eθ(x)] + logZθ. (3)

Because of the intractable partition function (an integral over the sample space), we cannot directly
optimize the above MLE objective. To tackle this issue, [37] proposed contrastive divergence (CD)
algorithm as a convenient way to estimate the gradient of LMLE(θ; p) using samples from qθ:

∇θLMLE(θ; p) = Ep(x)[∇θEθ(x)] +∇θ logZθ = Ep(x)[∇θEθ(x)]− Eqθ(x)[∇θEθ(x)], (4)

which can be interpreted as decreasing the energies of real data from p and increasing the energies of
fake data generated by qθ. As discussed above, evaluating Equation (4) typically relies on MCMC
methods such as the Langevin dynamics sampling procedure defined in Equation (2) to produce
samples from the model distribution qθ, which induces a surrogate gradient estimation:

∇θLCD−K(θ; p) = Ep(x)[∇θEθ(x)]− EqKθ (x)[∇θEθ(x)], (5)

where qKθ denotes the distribution after K steps of MCMC transitions from an initial distribution
(typically data distribution or uniform distribution), and Equation (4) corresponds to LCD−∞.

2.3 Strictly Proper Scoring Rules

Stemming from statistical decision theory [13], scoring rules evaluate the quality of probabilistic
forecasts by assigning numerical scores based on the predictive distributions and the events that
materialize. Formally, consider a compact sample space X . Let M be a space of all locally 1-
integrable non-negative finite measures and P be a subspace consisting of all probability measures
on the sample space X . A scoring rule S(x, q) specifies the utility of forecasting using a probability
forecast q ∈ P for a given sample x ∈ X . With slightly abused notation, we write the expected score
of S(x, q) under a reference distribution p as:

S(p, q) := Ep(x)[S(x, q)]. (6)

Definition 1 (Proper Scoring Rules [26]). A scoring rule S : X × P → R is called proper relative
to P if the corresponding expected score satisfies:

∀p, q ∈ P, S(p, q) ≤ S(p, p). (7)

It is strictly proper if the equality holds if and only if q = p.

In prediction and elicitation problems, strictly proper scoring rules encourage the forecaster to
make honest predictions based on their true beliefs [22]. In estimation problems, where we want to
approximate a distribution p with another parametric distribution qθ, strictly proper scoring rules
provide attractive learning objectives:

arg max
qθ∈Pθ

S(p, qθ) = arg max
qθ∈Pθ

Ep(x)[S(x, qθ)] = p (when p ∈ Pθ). (8)

When a scoring rule S is strictly proper relative to P , the associated generalized entropy function and
divergence function are defined as:

G(p) := sup
q∈P

S(p, q) = S(p, p), D(p, q) := S(p, p)− S(p, q) ≥ 0. (9)

G(p) is convex and represents the maximally achievable utility, while D(p, q) is the Bregman
divergence [6] associated with the convex function G and the equality holds only when p = q.

Next, we introduce a specific kind of scoring rules that are particularly suitable for learning unnor-
malized statistical models.
Definition 2 (Homogeneous Scoring Rules [69]). A scoring rule is homogeneous if it satisfies (here
the domain of the score function is extended to X ×M):

∀λ > 0,x ∈ X , S(x, q) = S(x, λ · q). (10)
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Since scaling the model distribution q by a positive constant λ does not change the value of a homo-
geneous scoring rule, such homogeneity allows us to evaluate it without computing the intractable
partition function of an energy-based distribution. Thus, strictly proper and homogeneous scoring
rules are natural candidates for new training objectives of EBMs.
Example 1. A notable example of scoring rules is the widely used logarithm score: S(x, q) =
log q(x). The associated generalized entropy is the negative Shannon entropy: G(p) =
Ep(x)[log p(x)], and the associated Bregman divergence is the KL divergence: D(p, q) =
Ep(x) [log(p(x)/q(x))]. From Definitions 1 and 2, we know that the logarithm score is strictly proper
but not homogeneous. Specifically, for a θ-parametrized energy-based distribution qθ = qθ/Zθ,
since S(x, qθ) = S(x, Zθ · qθ) = S(x, qθ) + logZθ 6= S(x, qθ) and logZθ cannot be ignored
during the optimization of θ, we need to use tailored methods such as contrastive divergence [37] or
doubly dual embedding [11] to tackle the intractable partition function.

3 Training EBMs by Maximizing Homogeneous Scoring Rules

In this section, we derive a new principle for training EBMs from the perspective of optimizing
strictly proper homogeneous scoring rules. All proofs for this section can be found in Appendix B.

3.1 Pseudo-Spherical Scoring Rule

In this section, we introduce the pseudo-spherical scoring rule, which is a representative family of
strictly proper homogeneous scoring rules that have great potentials for training deep energy-based
models and allow flexible and convenient specification of modeling preferences, yet have not been
explored before in the context of energy-based generative modeling.
Definition 3 (Pseudo-Spherical Scoring Rule [76, 27]). For γ > 0, the pseudo-spherical scoring
rule is defined as:

S(x, q) :=
q(x)γ

(
∫
X q(y)γ+1dy)

γ
γ+1

=
q(x)γ

(
∫
X q(y)γ+1dy)

γ
γ+1

=

(
q(x)

‖q‖γ+1

)γ
(11)

where ‖q‖γ+1 :=
(∫
X q(y)γ+1dy

) 1
γ+1 .

The expected pseudo-spherical score under a reference distribution p is defined as:

Sps(p, q) := Ep(x)[S(x, q)] =
Ep(x)[q(x)γ ]

(
∫
X q(y)γ+1dy)

γ
γ+1

(12)

Example 2. The classic spherical scoring rule [19] is a special case in the pseudo-spherical family,
which corresponds to γ = 1:

S(x, q) =
q(x)

(
∫
X q(y)2dy)

1
2

=
q(x)

‖q‖2
(13)

The family of pseudo-spherical scoring rules is appealing because it introduces a different and
principled way for assessing a probability forecast. For example, the spherical scoring rule has an
interesting geometric interpretation. Suppose the sample space X contains n mutually exclusive and
exhaustive outcomes. Then a probability forecast can be represented as a vector q = (q1, . . . , qn).
Let vector p = (p1, . . . , pn) represent the oracle probability forecast. The expected spherical score
can be written as:

S(p, q) = Ep(x)[S(x, q)] =

∑
i piqi√∑
i q

2
i

= ‖p‖2
〈p, q〉
‖p‖2‖q‖2

= ‖p‖2 cos(∠(p, q)) (14)

where 〈p, q〉 and ∠(p, q) denote the inner product and the angle between vectors p and q respectively.
In other words, when we want to evaluate the expected spherical score of a probability forecast q
under real data distribution p using samples, the angle between p and q is the sufficient statistics.
Since we know that both p and q belong to the probability simplex P = {v|

∑
x∈X v(x) =

1 and ∀x ∈ X ,v(x) ≥ 0.}, the expected score will be minimized if and only if the angle is zero,
which implies p = q. More importantly, since all we need to do is to minimize the angle of
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the deviation, we are allowed to scale q by a constant. Specifically, when q is an energy-based
distribution q =

(
exp(−E1)∑
i exp(−Ei) , . . . ,

exp(−En)∑
i exp(−Ei)

)
, we can instead evaluate and minimize the angle

between data distribution p and the unnormalized distribution q = (exp(−E1), . . . , exp(−En)),
since ∠(p, q) = ∠(p, q). More generally, we have the following theorem to justify the use of
pseudo-spherical scoring rules for training energy-based models:
Theorem 1 ([26, 70]). Pseudo-spherical scoring rule is strictly proper and homogeneous.

As the original definition of pseudo-spherical scoring rule (Equation (11)) takes the form of a fraction,
for computational considerations, in this paper we instead focus on optimizing its composite scoring
rule (Definition 2.1 in [44]):
Definition 4 (γ-score [20]). For the expected pseudo-spherical score Sps(p, q) defined in Equa-
tion (12) with γ > 0, the expected γ-score is defined as:

Sγ(p, q) :=
1

γ
log(Sps(p, q)) =

1

γ
log
(
Ep(x)[q(x)γ ]

)
− log(‖q‖γ+1) (15)

Since 1
γ log(u) is strictly increasing in u, Sγ(p, q) is a strictly proper homogeneous composite score:

arg max
q∈P

Sγ(p, q) = arg max
q∈P

1

γ
log(Sps(p, q)) = arg max

q∈P
Sps(p, q) = p. (16)

3.2 Pseudo-Spherical Contrastive Divergence

Suppose we parametrize the energy-based model distribution as qθ ∝ qθ = exp(−Eθ) and we want
to minimize the negative γ-score in Equation (15):

min
θ
Lγ(θ; p) = min

θ
− 1

γ
log
(
Ep(x)[qθ(x)γ ]

)
+ log(‖qθ‖γ+1) (17)

In the following theorem, we derive the gradient of Lγ(θ; p) with respect to θ:
Theorem 2. The gradient of Lγ(θ; p) with respect to θ can be written as:

∇θLγ(θ; p) = − 1

γ
∇θ log

(
Ep(x)[exp(−γEθ(x))]

)
− Erθ(x)[∇θEθ(x)] (18)

where the auxiliary distribution rθ is also an energy-based distribution defined as:

rθ(x) :=
qθ(x)γ+1∫

X qθ(x)γ+1dx
=

exp(−(γ + 1)Eθ(x))∫
X exp(−(γ + 1)Eθ(x))dx

.

In App. B.1, we provide two different ways to prove the above theorem. The first one is more
straightforward and directly differentiates through the term log(‖qθ‖γ+1). The second one leverages
a variational representation of log(‖qθ‖γ+1), where the optimal variational distribution happens
to take an analytical form of r∗θ(x) ∝ qθ(x)γ+1, thus avoiding the minimax optimization in other
variational frameworks such as [89, 11, 12]. The main challenge in maximizing γ-score is that it is
generally intractable to exactly compute the gradient of the second term in Equation (15).

During training, estimating the second term of Equation (18) requires us to obtain samples from the
auxiliary distribution rθ ∝ exp(−(γ + 1)Eθ), while at test time, we want to sample from the model
distribution qθ ∝ exp(−Eθ) that approximates the data distribution. Due to the restrict regularity
conditions on the convergence of Langevin dynamics, in practice, we found it challenging to use
the iterative sampling process in Equation (2) with a fixed number of transition steps and step size
to produce samples from rθ and qθ simultaneously, as the temperature γ + 1 in rθ simply amounts
to a linear rescaling to the energy function during training. Thus for generality, as in contrastive
divergence [37, 17, 66] and f -EBM [89], we make the minimal assumption that we only have a
sampling procedure to produce samples from qθ for both learning and inference procedures.

In this case, we can leverage the analytical form of rθ and self-normalized importance sampling [68]
(which has been used to derive gradient estimators in other contexts such as importance weighted
autoencoder [7, 18]) to obtain a consistent estimation of Equation (18):
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Algorithm 1 Pseudo-Spherical Contrastive Divergence.

1: Input: Empirical data distribution pdata. Pseudo-spherical scoring rule hyperparameter γ.
2: Initialize energy function Eθ.
3: repeat
4: Draw a minibatch of samples {x+

1 , . . . ,x
+
N} from pdata.

5: Draw a minibatch of samples {x−1 , . . . ,x
−
N} from qθ ∝ exp(−Eθ) (e.g., using Langevin

dynamics with a sample replay buffer).
6: Update the energy function by stochastic gradient descent:

̂∇θLNγ (θ; p) = −∇θ
1

γ
log

(
1

N

N∑
i=1

exp(−γEθ(x
+
i ))

)
−
∑N
i=1 exp(−γEθ(x

−
i ))∇θEθ(x

−
i )∑N

i=1 exp(−γEθ(x
−
i ))

7: until Convergence

Theorem 3. Let x+
1 , . . . ,x

+
N be i.i.d. samples from p(x) and x−1 , . . . ,x

−
N be i.i.d. samples from

qθ(x) ∝ exp(−Eθ(x)). Define the gradient estimator as:

̂∇θLNγ (θ; p) := −∇θ
1

γ
log

(
1

N

N∑
i=1

exp(−γEθ(x+
i ))

)
−
∑N
i=1 ωθ(x−i )∇θEθ(x−i )∑N

i=1 ωθ(x−i )
(19)

where the self-normalized importance weight ωθ(x−i ) := rθ(x−i )/qθ(x−i ) = exp(−γEθ(x−i )).
Then the gradient estimator converges to the true gradient (Equation (18)) in probability, i.e., ∀ε > 0:

lim
N→∞

P
(∥∥∥ ̂∇θLNγ (θ; p)−∇θLγ(θ; p)

∥∥∥ ≥ ε) = 0.

We summarize the pseudo-spherical contrastive divergence (PS-CD) training procedure in Algo-
rithm 1. In Appendix A, we also provide a simple PyTorch implementation for stochastic gradient
descent (SGD) with the gradient estimator in Equation (19).

3.3 Connections to Maximum Likelihood Estimation and Extension to γ < 0

From Equation (9) in Section 2.3, we know that γ-score induces the following Bregman divergence
(the divergence function associated with proper composite scoring rule is analogously defined in Def.
2.1 in [44]):

Dγ(p, qθ) = Sγ(p, p)− Sγ(p, qθ)

and maximizing γ-score is equivalent to minimizing Dγ(p, qθ). In the following lemma, we show
that when γ → 0, Dγ(p, qθ) will recover the KL divergence between p and qθ, and the gradient of
PS-CD will recover the gradient of CD.
Lemma 1. When γ → 0, we have:

lim
γ→0

Dγ(p, qθ) = DKL(p‖qθ); lim
γ→0
∇θLγ(θ; p) = ∇θLMLE(θ; p).

Inspired by [86, 56] that generalize Rényi divergence beyond its definition to negative orders, we
now consider the extension of γ-score with γ < 0 (although it may not be strictly proper for these γ
values). The following lemma shows that maximizing such scoring rule amounts to maximizing a
lower bound of logarithm score (MLE) with an additional Rényi entropy regularization.
Lemma 2. When −1 ≤ γ < 0, we have:

Sγ(p, q) ≤ Ep(x)[log q(x)] +
γ

γ + 1
Hγ+1(q)

whereHγ+1(q) is the Rényi entropy of order γ + 1.

4 Theoretical Analysis

In this section, to gain a deeper understanding of our PS-CD algorithm and how the proposed estimator
behaves, we analyze its sample complexity and convergence property under certain conditions. All
the proofs for this section can be found in Appendix C.
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4.1 Sample Complexity

We start with analyzing the sample complexity of the consistent gradient estimator in Equation (19),
that is how fast it approaches the true gradient value. We first make the following assumption:
Assumption 1. The energy function is bounded by K and the gradient is bounded by L:

∀x ∈ X , θ ∈ Θ, |Eθ(x)| ≤ K, ‖∇θEθ(x)‖ ≤ L.

This assumption is typically easy to satisfy because in practice we always use a bounded sample
space (e.g. normalizing images to [0,1] or truncated Gaussian) to ensure stability. For example, in
image modeling experiments, we use L2 regularization on the outputs of the energy function (hence
bounded energy values), as well as normalized inputs and spectral normalization [60] for the neural
network that realizes the energy function (hence Lipschitz continuous with bounded gradient).

With vector Bernstein inequality [47, 32], we have the following theorem showing a sample complex-
ity of O

(
log(1/δ)

ε2

)
such that the estimation error is less than ε with probability at least 1− δ:

Theorem 4. For any constants ε > 0 and δ ∈ (0, 1), when the number of samples N satisfies:

N ≥ 32L2e8γK (1 + 4 log(2/δ))

ε2

we have:

P
(∥∥∥ ̂∇θLNγ (θ; p)−∇θLγ(θ; p)

∥∥∥ ≤ ε) ≥ 1− δ.

4.2 Convergence

Typically, convergence of SGD are analyzed for unbiased gradient estimators, while the gradient
estimator in PS-CD is asymptotically consistent but biased. Building on the sample complexity bound
above and prior theoretical works for analyzing SGD [8, 24], we analyze the convergence of PS-CD.
For notational convenience, we use L(θ) to denote the loss function Lγ(θ; p) = −Sγ(p, qθ). Besides
Assumption 1, we further make the following assumption on the smoothness of L(θ):
Assumption 2. The loss function L(θ) is M -smooth (with M > 0):

∀θ1,θ2 ∈ Θ, ‖∇L(θ1)−∇L(θ2)‖ ≤M‖θ1 − θ2‖.

This is a common assumption for analyzing first-order optimization methods, which is also used in
[24, 8]. Also this is a relatively mild assumption since we do not require the loss function to be convex
in θ. Since in non-convex optimization, the convergence criterion is typically measured by gradient
norm, following [64, 24], we use ‖∇L(θ)‖ ≤ ξ to judge whether a solution θ is approximately a
stationary point.
Theorem 5. For any constants α ∈ (0, 1) and δ ∈ (0, 1), suppose that the step sizes satisfy
ηt < 2(1 − α)/M and the sample size Nt used for estimating ĝt is sufficiently large (satisfying
Equation (36)). Let L∗ denote the minimum value of L(θ). Then with probability at least 1− δ, the
output of Algorithm 2 (in Appendix C.2), θ̂, satisfies (constant C := αML2e4γK):

E[‖∇L(θ̂)‖2] <
2(L(θ1)− L∗) + 12C

∑T
t=1 η

2
t∑T

t=1(2(1− α)ηt −Mη2
t )

The above theorem implies the following corollary, which shows a typical convergence rate of
O(1/

√
T ) for non-convex optimization problems:

Corollary 1. Under the conditions in Theorem 5 except that we use constant step sizes: ηt =
min{(1− α)/M, 1/

√
T} for t = 1, . . . , T . Then with probability at least 1− δ, we have (constant

C := αML2e4γK):

E[‖∇L(θ̂)‖2] < 2M(L(θ1)− L∗)

(1− α)2T +
2(L(θ1)− L∗) + 12C

(1− α)
√
T

In Appendix C.2, we discuss more on the strongly convex (Theorem 7) and convex cases (Theorem 8).

7



5 Related Work

Direct KL Minimization. Under the “analysis by synthesis” scheme, [37] proposed Contrastive
Divergence (CD), which estimates the gradient of the log-partition function (arising from KL) using
samples from some MCMC procedure. To improve the mixing time of MCMC, [17] proposed
to employ Persistent CD and a replay buffer to store intermediate samples from Markov chains
throughout training, and [66] proposed to learn non-convergent short-run MCMC. Both approaches
(long-run and short-run MCMC) work well with PS-CD in our experiments. PS-CD may also benefit
from recent advances on unbiased MCMC [40, 73], which we leave as interesting future work.

Fenchel Duality. By exploiting the primal-dual view of KL, recent works [11, 12, 2] proposed to
cast maximum likelihood training of EBMs as minimax problems, which introduce a dual sampler
and are approximately solved by alternating gradient descent ascent updates. Along this line, to
allow flexible modeling preferences, [89] proposed f -EBM to enable the use of any f -divergence
to train EBMs, which also relies on minimax optimization. By contrast, in this work, we leverage
the analytical form of the optimal variational distribution and self-normalized importance sampling
to reach a framework that requires no adversarial training and has no additional computational cost
compared to CD while allowing flexible modeling preferences. Besides convenient optimization,
PS-CD and f -EBM trains EBMs with two different families of divergences (hence complementary)
with KL being the only shared one, since any pseudo-spherical scoring rule corresponds to a Bregman
divergence (Section 2.3) and the only member in f -divergence that is also Bregman divergence is
α-divergence (with KL as special case) (Theorem 4 in [1]).

Homogeneous Scoring Rules. [84] proposed to learn unnormalized statistical models on discrete
sample space by maximizing γ-score, which uses empirical data distribution (p̂(x) = nx/n, where
nx is the number of appearance of x in the dataset and n is the total number of data) as a surrogate
to the real data density p and relies on a localization trick to bypass the computation of ‖qθ‖γ+1.
Consequently, it is only amenable to finite discrete sample space such as natural language [51],
whereas PS-CD is applicable to any unnormalized probabilistic model in continuous domains.
Another popular homogeneous scoring rule is the Hyvärinen score, which gives rise to the score
matching objective [39] for EBM training. However, score matching and its variants [87, 82]
have difficulties in low data density regions and do not perform well in practice when training
EBMs on high-dimensional datasets [80]. Moreover, since the score matching objective involves
the Hessian of log-density functions that is generally expensive to compute [58], methods such as
approximate propagation [45], curvature propagation [58] and sliced score matching [83] are needed
to approximately compute the trace of the Hessian.

Noise Contrastive Estimation. Another principle for learning EBMs is Noise Contrastive Esti-
mation (NCE) [34], where an EBM is learned by contrasting a prescribed noise distribution with
tractable density against the unknown data distribution. Using various Bregman divergences, NCE
can be generalized to a family of different loss functionals [33, 85]. However, finding an appropriate
noise distribution for NCE is highly non-trivial. In practice, NCE typically works well in conjunction
with a carefully-designed noise distribution such as context-dependent noise distribution [41] or joint
learning of a flow-based noise distribution [21].

In this work, we focus on generalizing maximum likelihood by deriving novel training objectives for
EBMs without involving auxiliary models (e.g., the variational function in [89], the flow-based noise
distribution in [21] and the amortized sampler in [50, 12, 29]).

6 Experiments

In this section, we demonstrate the effectiveness of PS-CD on several 1-D and 2-D synthetic datasets
as well as commonly used image datasets.

Setup. The 2-D synthetic datasets include Cosine, Swiss Roll, Moon, Mixture of Gaussian, Funnel
and Rings, which cover different modalities and geometries (see Figure 2 in App. D.1 for illustration).
To test the practical usefulness, we use MNIST [54], CIFAR-10 [48] and CelebA [57] in our
experiments for modeling natural images. Following [80], for CelebA, we first center-crop the images
to 140 × 140, then resize them to 64 × 64. More experimental details about the data processing,
model architectures, sampling strategies and additional experimental results can be found in App. D.
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Figure 1: The effects of different γ values
when fitting a mixture of Gaussian with a
single Gaussian.

Effects of Different γ Values. To illustrate the model-
ing flexibility brought by PS-CD and provide insights
on the effects of different γ values, we first conduct a
1-D synthetic experiment similar to the one in [89]. As
shown in Figure 1, when fitting a mixture of Gaussian
with a single Gaussian (i.e., model mis-specification
case), the family of PS-CD offers flexible tradeoffs
between quality and diversity (i.e., mode collapse vs.
mode coverage). Although in the well-specified case
these objectives induce the same optimal solution, in
this example, we can see that a larger γ leads to higher
entropy. More importantly, compared to f -EBM [89]
that also provides similar modeling flexibility and includes CD as a special case, PS-CD does not
require expensive and unstable minimax optimization (no additional computational cost compared to
CD). In App. D.2, we further visualize the objective landscapes for different γ values. As shown in
Figure 3 and 4, when the model is well-specified, different objectives will induce the same optimal
solution since they are strictly proper; when the model is mis-specified (corresponding to practical
scenarios), different objectives will exhibit different modeling preferences.

Furthermore, to better demonstrate the modeling flexibility brought by PS-CD in high-dimensional
case, we conduct experiments on CIFAR-10 using a set of indicative and reliable metrics (Density,
Coverage, Precision, Recall) proposed by [61] to evaluate the effects of γ from various perspectives.
Please refer to App. D.3 for experimental results (Table 4) and detailed discussions.

Table 1: FID scores for CIFAR-10 condi-
tional and CelebA unconditional image gen-
eration. We list comparisons with results
reported by CD [17], Noise-Conditional
Score Network (NCSN) [81] and f -EBMs
[89]. γ = 1.0 corresponds to maximizing
spherical scoring rule (Example 2).

Method FID

CIFAR-10 (32× 32) Conditional
Contrastive Divergence (KL) 37.90
f -EBM (KL) 37.36
f -EBM (Reverse KL) 33.25
f -EBM (Squared Hellinger) 32.19
f -EBM (Jensen Shannon) 30.86

Pseudo-Spherical CD (γ = 2.0) 33.19
Pseudo-Spherical CD (γ = 1.0) 29.78
Pseudo-Spherical CD (γ = 0.5) 35.02
Pseudo-Spherical CD (γ = −0.5) 27.95

CelebA (64× 64)
Contrastive Divergence (KL) 26.10
NCSN (w/o denoising) 26.89
NCSN (w/ denoising) 25.30
NCSNv2 (w/o denoising) 28.86
NCSNv2 (w/ denoising) 10.23
Pseudo-Spherical CD (γ = 1.0) 24.76
Pseudo-Spherical CD (γ = −0.5) 20.35

2-D Synthetic Data. For quantitative evaluation of the
2-D synthetic data experiments, we follow [79] and
report the maximum mean discrepancy (MMD, [5]) be-
tween the generated samples and validation samples in
Table 3 in App. D.1, which demonstrates that PS-CD
outperforms its CD counterpart on all but the Funnel
dataset. From the histograms of samples shown in
Figure 2 in App. D.1, we can also have similar obser-
vations. For example, CD fails to place high densities
in the center of the right mode in MoG, while PS-CD
places the modes correctly.

Image Generation. In Figure 5 in App.D.4, we show
MNIST, CIFAR-10 and CelebA samples produced by
PS-CD (with γ = 1.0), which demonstrate that our
approach can produce highly realistic images with sim-
ple model architectures. As suggested in [17], we use
Fréchet Inception Distance (FID) [36] as the quantita-
tive evaluation metric for CIFAR-10 and CelebA, as
Langevin dynamics converge to local minima that ar-
tificially inflate Inception Score [77]. From Table 11,
we can see that various members (different γ values) in
the family of PS-CD can outperform CD significantly,
and more surprisingly, PS-CD also shows competitive
performance to the recently proposed f -EBMs, with-
out requiring expensive minimax optimization. While
our method currently does not outperform the state-
of-the-art image generation methods such as improved
denoising score matching [81], which relies on care-
fully selected noise schedule and specially designed
noise-dependent score network (modified U-Net architecture, hence not directly comparable to our
results), we think that our work opens up a new research direction by bridging statistical decision
theory (homogeneous proper scoring rules) and deep energy-based generative modeling. Moreover,

1For CelebA dataset, we reproduced the short-run MCMC method [66] using our code base. Moreover, the
f -EBM paper only reported results on CelebA 32x32 and we empirically found it is not comparable to our
method in CelebA 64x64 (higher resolution), indicating better scalability of PS-CD to high-dimensional case.
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Table 2: Robustness to data contamination on Gaussian datasets. The data distribution is N (−1, 0.5)
and the contamination distribution is N (2, 0.05). We measure the KL divergence between clean
target distribution p and converged model distribution qθ, DKL(p‖qθ).

Contamination Ratio CD PS-CD (γ = 0.5) PS-CD (γ = 1.0) PS-CD (γ = 2.0)

0.01 0.0067 1e-5 1e-7 1e-6
0.05 0.0851 0.00027 1.6e-6 0.00011
0.1 0.1979 0.00173 1.86e-6 0.00012
0.2 0.3869 0.1858 6.4e-6 0.00017
0.3 0.5438 0.5429 0.3118 0.00029

under the setting of simple model architectures and the same hyperparameter configuration (e.g.,
batch size, learning rate, network structure, etc.), our empirical results suggest clear superiority of
PS-CD over traditional CD and recent f -EBMs.

OOD Detection & Robustness to Data Contamination. We further test our methods on out-of-
distribution (OOD) detection tasks. For the conditional CIFAR-10 model, we follow the evaluation
protocol in [17] and use s(x) = maxy∈Y −E(x, y) as the score for detecting outliers. We use SVHN
[65], Textures [9], Uniform/Gaussian Noise, CIFAR-10 Linear Interpolation and CelebA as the OOD
datasets. We summarize the results in Table 5 in App. D.6, from which we can see that PS-CD
consistently outperforms CD and other likelihood-based models.

Inspired by the OOD detection performance and previous work on robust parameter estimation
under data contamination [43], we further test the robustness of CD and PS-CD on both synthetic
and natural image datasets. Specifically, suppose p(x) is the underlying data distribution and
there is another contamination distribution ω(x), e.g. uniform noise. In generative modeling
under data contamination, our model observes i.i.d. samples from the contaminated distribution
p̃(x) = cp(x) + (1 − c)ω(x), where 1 − c ∈ [0, 1/2) is the contamination ratio. A theoretical
advantage of pseudo-spherical score is its robustness to data contamination: the optimal solution
of minθ Sps(p̃, qθ) is close to that of minθ Sps(p, qθ) under some conditions (e.g. the density of
ω(x) mostly lies in the region for which the target density p(x) is small) [20, 43]. From Table 2,
we can see that CD suffers from data contamination severely: as the contamination ratio increases,
the performance degrades drastically. By contrast, PS-CD shows good robustness against data
contamination and a larger γ leads to better robustness. For example, PS-CD with γ = 1.0 can
properly approximate the target distribution when the contamination ratio is 0.2, while PS-CD with
γ = 2.0 can do so when the contamination ratio is up to 0.3.

We conduct similar experiments on MNIST and CIFAR-10 datasets, where we use uniform noise
as the contamination distribution and the contamination ratio is 0.1 (i.e. 10% images in the training
set are replaced with random noise). After a warm-up pretraining2 (when the model has some OOD
detection ability), we train the model with the contaminated data and measure the training progress.
We observe that CD gradually generates more random noise and diverge after a few training steps,
while PS-CD is very robust. As shown in Table 6 in App. D.6, for a slightly pre-trained unconditional
CIFAR-10 model (a simple 5-layer CNN with FID of 68.77), we observe that the performance of CD
degrades drastically in terms of FID, while PS-CD can continuously improve the model even using
the contaminated data. We provide visualizations and theoretical explanations in App. D.6.

7 Conclusion
From the perspective of maximizing strictly proper homogeneous scoring rules, we propose pseudo-
spherical contrastive divergence (PS-CD) to generalize maximum likelihood estimation of energy-
based models. Different from prior works that involve joint training of auxiliary models [89, 21, 50,
12, 29], PS-CD allows us to specify flexible modeling preferences without additional computational
cost compared to contrastive divergence. We provide a theoretical analysis on the sample complexity
and convergence property of the proposed method, as well as its connection to maximum likelihood.
Finally, we demonstrate the effectiveness of PS-CD with extensive experiments on both synthetic
data and commonly used image datasets.

2Note that it is impossible for a randomly initialized model to be robust to data contamination since without
additional inductive bias, it will simply treat the contaminated distribution p̃(x) as the target.
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