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ABSTRACT

Reinforcement Learning from Human Feedback (RLHF) is the current dominating
framework to fine-tune large language models to better align with human pref-
erences. However, the underlying premise of algorithms developed under this
framework can be problematic when user preferences encoded in human feedback
are diverse. In this work, we aim to address this problem by developing methods
for building personalized language models. We propose a general Personalized-
RLHF (P-RLHF) framework, which requires one to jointly learn a user model and
a language (or reward) model. We develop new learning objectives for personalized
reward modeling and personalized Direct Preference Optimization. To demonstrate
the efficacy of our method, we test it on real-world text summarization data with
annotated preferences and annotator information. We fine-tune GPT-J 6B to obtain
personalized language (and reward) models, which outperform non-personalized
models in terms of aligning with individual preferences.

1 INTRODUCTION

Reinforcement Learning from Human Feedback (RLHF) is a widely adopted framework to align
pre-trained large language models (LMs) with human preferences (Ziegler et al., 2019). In the RLHF
pipeline, human users provide their feedback consisting of their rankings of two (or more) responses
for different prompts. The LM is subsequently fine-tuned using this data either directly (e.g., through
Direct Preference Optimization (Rafailov et al., 2023)) or by first learning a user preference model
(a.k.a. reward model) and then optimizing the LM against it. The goal for RLHF is to align LM
behaviors with user preferences encoded in their feedback.

Human preferences are inherently diverse and subjective. Current dominating RLHF approaches
implicitly assume that all crowdsourced human feedback (and preference) comes from the same
distribution and obscure the inter-user variations when modeling human preferences (Ziegler et al.,
2019; Stiennon et al., 2020; Ouyang et al., 2022; Rafailov et al., 2023). This assumption will
potentially lead to reward models prioritizing the preferences of the majority group in the data while
neglecting the preferences of the minorities (Casper et al., 2023; Feffer et al., 2023; Fleisig et al.,
2023; Prabhakaran et al., 2021). Consequently, LMs fine-tuned with such reward models may provide
responses that do not align with the preferences of users outside the majority (Santurkar et al., 2023).

To prevent such misalignments, the diversities in human preferences need to be explicitly accounted
for in RLHF (Kirk et al., 2023). In this paper, we propose a general personalized RLHF (P-RLHF)
framework. Our proposed framework jointly learns a user model that captures individual user
preference and a language (or reward) model for personalized language generation. Under the P-
RLHF framework, we develop new learning objectives for performing personalized reward modeling
(P-RM, Section 2.2) and personalized direct preference optimization (P-DPO, section 2.3). Using
a real-world preference dataset for text summarization Stiennon et al. (2020) and GPT-J 6B as the
base LM, we show that P-RM and P-DPO can effectively learn personalized LMs, improving the
alignment between LM behavior and individual user preferences (Section 3).

2 LEARNING FROM PERSONALIZED HUMAN FEEDBACK

A personalized human feedback (or preference) dataset Dp = {(xi, yi,1, yi,2, ui)}ni=1 consists of
n samples where ui ∈ U is the information of the user who annotates the data or provides the
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Figure 1: Our Personalized RLHF framework. For training, user information (u1, u2, u3) and
preference data (e.g. the preferences for detailed or concise responses) are collected from each
user. The user model maps the user information into user representations (user-specific embedding
e1, e2, e3 and generic e0 for unknown user information), which are learned jointly with the reward
model (or the language model in DPO) using the preference data. During language generation, for
users seen during training, the responses tailored to their individual preferences are generated based
on their own user representations (e1, e2, e3) and the prompt (x′), while for new users unseen during
training, the responses are generated using the generic user representation (e0) and the prompt (x′).

preferences, xi is the prompt, yi,1 and yi,2 are two generated texts such that yi,1 is preferred over yi,2
(i.e., yi,1 ≻ yi,2) under the prompt xi. In general, the space of user information U can contain the
user identifiers, user demographics, their historical texts, etc. As a running example, we consider
cases where the user information ui is the user id, i.e., U = {0} ∪ [m] where m is the maximum
number of known user ids, and we set ui = 0 when the user id is unknown.1

Given Dp, to obtain a personalized LM πp via personalized RLHF (P-RLHF), one may take different
approaches including: (1) first learn a personalized reward model (RM) and then optimize the LM
against it, similar to the vanilla RLHF pipeline (Section 2.2); or (2) directly learn a personalized LM
by adapting from the vanilla DPO procedure (Section 2.3). We denote their corresponding methods
P-RM and P-DPO, respectively. Similar to the vanilla RLHF, when building personalized RMs or
LMs, we start with a base LM, often times, a supervised fine-tuned LM πSFT that takes in texts (e.g.,
x for the LM or (x, y) for the RM). There are two additional components to specify:

• a learnable User Model fP that extracts a user embedding eu, which is a tensor, from the user
information u (e.g., user identifiers). For all u ∈ U , a user embedding is given by eu = fP(u);

• an Aggregator function that combines the user embedding eu with the text embedding ex (or ex,y
depending on whether the input is x or (x, y)). The text embedding is given by the base LM. For
example, it can be the input embedding or the last hidden state for the text. The aggregator outputs
a combined embedding for the user and text, to generate personalized language or rewards.

Below we first provide some examples of user models and then separately discuss how the aggregator
may be specified for P-RM and P-DPO . We will also present new learning objectives for them.

2.1 USER MODELS

The structure of a user model fP encodes one’s preference assumptions on how different users’
preferences are related to each other. In the following, we illustrate how fP can be defined.

Example 1 (Uniform Preference). For all u ∈ U , the user model fP(u) = e outputs the same
embedding (e can be an empty tensor).

Example 2 (Individualized Preference). Let U = {0} ∪ [m] be the set of user indices. The user
model outputs fP(0) = e0 for (unknown) users indexed by 0. For all u ∈ [m], the user model outputs
fP(u) = e0 + ou where ou is a user-specific offset tensor.

1We are only able to find publicly available human annotated preference learning datasets where U are the
user ids.
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The individualized user model assumes that each user u has their individualized preference offset ou
while maintaining a component e0 shared across users . The common tensor e0 can be understood as
the commonality across user preferences concerning topics like factuality and safety.

Example 3 (Cluster-based Preference). Let U = {0} ∪ [m] be the set of user indices. For all u ∈ U ,
the user model output fP(u) = V ·wu where V ∈ RK×d, K is the number of clusters, and wu ∈ RK

is a weight vector for each user.

Inspired by the crowdsourcing literature (Imamura et al., 2018), we develop this clustering-based user
model that assumes user embeddings (and hence preferences) span a common set of vectors given by
V ; each user embedding is a weighted combination of these vectors.

2.2 PERSONALIZED RM FOR PERSONALIZED LM

Given the learnable user model fP, we have a user embedding eu for each user u ∈ U . Our next task
is to decide how we want to include it into the personalized RM rp. We discuss two approaches: (1)
use eu as a soft prompt; or (2) when eu is a vector, use eu as a linear head.

In the case of soft prompting, the aggregator prepends eu to the input (text not positional) embedding
ex,y ∈ RTx,y×d given by the base LM, where Tx,y is the token length and d is the token-wise embed-
ding dimensionality. The user embedding eu ∈ RTu×d is a tensor with Tu being its corresponding
user token length. One factor that controls the expressivity of user embeddings is the size of their
corresponding user token length Tu. Then a linear layer is added to map the last hidden state of the
base LM (under the new input embedding (eu, ex,y)) to a scalar reward value, as in the RM in the
vanilla RLHF. In our experiments, we worked with this implementation.

In the case where eu is a linear head, the aggregator function can be taken as an inner product between
eu and the hidden state ex,y of the last transformer layer of the base LM, thus outputting a scalar
reward value. Here, the user embedding eu serves as the additional linear head.

To learn the RM (including the user model fP), we use the following objective:

min
rP

−Ex,y1,y2,u∼DP

[
α log σ(rP(x, y1, u)− rP(x, y2, u)) + (1− α) log σ(rP(x, y1, u0)− rP(x, y2, u0))

]
,

where α ∈ [0, 1]. Recall that u0 indicates empty user information. The loss can be viewed as a
combination of a user-specific loss term that relies on explicit user identifier u and a user-agnostic
loss term that depends on u0. The user-agnostic loss uses the same preference data but without any
user identifier. The hyper-parameter α is used to balance between the two loss components.

2.3 PERSONALIZED DPO FOR PERSONALIZED LM

To directly learn a personalized LM without the reward learning step, we propose a Personalized
DPO (P-DPO) procedure that adapts from vanilla DPO. Similar to the above, we need to first specify
how we want to aggregate the user embedding eu with the text embedding ex for the personalized
LM πP. Following how we build personalized RM, we propose two possible ways: (1) treating eu as
a soft prompt (or extra tokens) by prepending it to the input texting embedding ex; or (2) aggregate
eu and the last hidden state ex using a linear layer for a new hidden state before outputting the final
next-token probability. We adopt the first approach in our experiments.

Given the personalized LM πP (including the user model fP), we use the following learning objective:

min
πP

−Ex,y1,y2,u∼DP

[
α log σ

(
β log

πP(y1|x, u)
πSFT(y1|x)

− β log
πP(y2|x, u)
πSFT(y2|x)

)
+ (1− α) log σ

(
β log

πP(y1|x, u0)

πSFT(y1|x)
− β log

πP(y2|x, u0)

πSFT(y2|x)

)]
,

where β > 0 controls the deviance from the policy πSFT. The hyper-parameter α ∈ [0, 1] balances
between the user-specific loss terms that depend on the user identifier u and the user-agnostic loss
terms that replace u by the generic user identifier u0 under the same user feedback data.
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3 EXPERIMENTS

We empirically evaluate the performance of our methods on the Reddit TL;DR summarization dataset2
curated by Stiennon et al. (2020). In the dataset, each comparison includes a Reddit post x, two
summaries y1 and y2, with y1 ≻ y2 determined by a worker u represented by a unique worker id.
As we do not have access to the SFT model used by Stiennon et al. (2020), we initialize both the
personalized RM and the personalized LM using an open-source SFT3—a GPT-J 6B model Wang &
Komatsuzaki (2021) supervised fine-tuned using the TRLX library Havrilla et al. (2023). For both
P-RM and P-DPO, we experimented with user models that encode (1) individualized preference
assumption (Example 2), or (2) cluster-based preference assumption with K = 5 (Example 3). To
evaluate the effect of the user-agnostic loss, we experimented with (1) α = 1 where only user-specific
loss is used, and (2) α = 0.5 where user-specific loss and user-agnostic loss are equally weighted.

We evaluate the RMs by their accuracy of correctly assigning higher rewards to the chosen summaries
y1 than to the rejected summaries y2 for the validation set. For P-DPO, we evaluate the performance
using the accuracy of its implicit reward function rP(x, y, u) = β log πP(y|x,u)

πSFT(y|x) (the learning objective
of DPO can be viewed as deriving the optimal policy under this implicit reward function). We
compare their performances against the vanilla RLHF RM and vanilla DPO baselines which assume
preference uniformity across users. Specifically, we evaluate three accuracies:

• Accuracy-top: the accuracy of all comparisons annotated by known workers in the training set.
• Accuracy-average: the average and standard deviation of per-user accuracy of known workers.
• Accuracy-generic: the accuracy of comparisons annotated by unknown workers (id 0).

The performances of all RMs and DPO models are listed in Table 1. With α = 0.5 and individualized
user model, the P-RM and P-DPO models achieve the highest accuracy for known workers, outper-
forming the vanilla RM and DPO baselines. A similar trend is observed for accuracy-average. P-RM
and P-DPO also achieve higher accuracies on unknown workers than the baselines, and the two RMs
with cluster-based user models also achieve performances on par or better than the baseline. These
results demonstrate that based on our user preference assumption, P-RM and P-DPO are able to
effectively accommodate the personal preferences of known users, while also learning a meaningful
generic user representation which improves the alignment between the LM and unknown users.

Table 1: P-RM and P-DPO performances. All accuracies (ACC) are in %.

P-RM PERFORMANCE P-DPO PERFORMANCE
USER

MODEL
α

ACC
TOP

ACC
AVERAGE

ACC
GENERIC

ACC
TOP

ACC
AVERAGE

ACC
GENERIC

VANILLA N/A 60.27 61.10± 3.44 59.20 60.48 60.57± 3.14 60.99
INDIVIDUAL 1.0 58.59 58.76± 2.91 57.10 60.07 60.13± 3.75 60.53
INDIVIDUAL 0.5 61.72 62.09± 3.51 60.65 61.33 61.61± 3.49 61.97
CLUSTER 5 1.0 58.79 59.72± 3.76 59.94 59.24 60.20± 4.69 59.58
CLUSTER 5 0.5 59.66 60.19± 2.95 59.90 60.98 61.46± 4.77 61.27

For both the individualized and cluster-based user models, α = 0.5 achieve a better performance than
α = 1.0. This demonstrates the importance of the user-agnostic loss term in our learning objective,
which emphasizes the commonality in user preferences and serves as a natural regularization for
preventing the user model from overfitting to any individual user. Further details of the dataset,
experiments, and additional results are provided in Appendix A.

4 CONCLUSIONS

To enable building personalized LMs accounting for diverse human preferences, we propose P-RLHF—
a personalized RLHF framework for working with preference data that may contain user information.
Our framework jointly learns a user model which captures structural preference assumptions and a
LM (or RM). Through our experiments on a real-world preference dataset for text summarization,
we have demonstrated the effectiveness of our framework in aligning LMs with individual user
preferences seen during training and generalizing to unseen users with the generic user representation.

2https://huggingface.co/datasets/openai/summarize_from_feedback
3https://huggingface.co/CarperAI/openai_summarize_tldr_sft
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A EXPERIMENT DETAILS AND ADDITIONAL RESULTS

A.1 OPENAI SUMMARIZE FROM FEEDBACK DATASET

We use the Reddit TL;DR summarization dataset4 curated by Stiennon et al. (2020) for our exper-
iments. In the dataset, each comparison includes a Reddit post x, two summaries y1 and y2, with
y1 ≻ y2 determined by a worker u represented by a unique worker id. The summaries were sampled
from a wide variety of policies and the preferences over summary pairs were crowdsourced from
multiple workers. In addition, the dataset also includes how y1 and y2 are sampled, e.g., from prior
SFT or PPO checkpoints. To ensure that the summaries are close to the distribution of the SFT we use,
we only include the comparisons where both y1 and y2 are noted as sampled from the SFT models in
the dataset, and exclude comparisons which contain summaries sampled from other policies such as
different PPO checkpoints.

To ensure effective learning of individual user preferences with ample samples, we rank the workers
based on the number of annotated comparisons in the train split of the dataset and include the top 10
workers for training, resulting in 23, 292 comparisons in the training set. For evaluation, we utilize
all 16, 294 comparisons in the validation split, among which 4, 921 are annotated by the same 10
workers in the training set and the remaining 11, 373 are annotated by unseen workers. The number
of comparisons annotated by each worker in the training set and the validation set are listed in Table 2.

Table 2: Number of comparisons annotated by each worker in the training set and the validation set.

WORKER ID NUM OF TRAINING COMPARISONS NUM OF VALIDATION COMPARISONS

1 5, 244 1, 175
2 2, 919 643
3 2, 435 381
4 2, 366 604
5 2, 200 586
6 2, 125 360
7 1, 823 321
8 1, 606 263
9 1, 365 177
10 1, 209 411
0 0 11, 373

A.2 USER MODEL IMPLEMENTATION

In our experiments, we take the worker id as user information u. In descending order of the number of
annotated comparisons, workers in the training set are denoted by ids 1, 2, . . . , 10, and all unknown
workers in the validation set are denoted by id 0.

We implement the user model as a look-up (embedding) table which maps a user id to a single-token
user embedding eu ∈ Rd, where d is the same as the dimensionality of the input text embedding
of πSFT. The P-RM and P-DPO both prepend the user embedding to the text embedding similarly
as “soft prompts” Lester et al. (2021), and then the concatenated input embeddings flow through
the transformer as usual. We leave other implementations of the user model, such as taking textual
user description or historical data as user information input, and other methods to aggregate the user
embedding and the text embedding as interesting directions for future work.

A.3 P-RM EXPERIMENT DETAILS

All the reward models (RMs) are initialized from an SFT with a randomly initialized linear reward
head. The SFT we use is an open-source GPT-J 6B model5 fine-tuned with the Reddit TL;DR
reference summaries. In our user model, we utilize Tu = 1 user tokens for each user, and the user

4https://huggingface.co/datasets/openai/summarize_from_feedback
5https://huggingface.co/CarperAI/openai_summarize_tldr_sft
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embedding eu ∈ Rd is prepended to the input text embeddings ex,y ∈ RTx,y×d, where Tx,y and d
are the tokenized input sequence length and the dimension of the embedding space of the language
model (LM). This results in a concatenated input embedding (eu, ex,y) ∈ R(Tx,y+1)×d. Following
the initialization of the soft prompt tokens in Lester et al. (2021), we initialize the user embeddings to
word embeddings randomly sampled from the vocabulary of the LM, which we empirically verify
leads to faster convergence than random initialization.

All RMs, including the P-RM models and the vanilla baseline, are trained using AdamW Loshchilov
& Hutter (2017) optimizer with learning rate 5e-6 and batch size 64 for 1 epoch. The learning rate is
linearly warmed up from 0 to 5e-6 over 150 steps. All reward models are trained using a PyTorch
based, personalized Reward Trainer we develop based on the Reward Trainer in the TRL library von
Werra et al. (2020).

A.4 P-DPO EXPERIMENT DETAILS

All the LMs in P-DPO experiments are initialized to the same SFT as in P-RM experiments, and the
user embeddings are prepended and initialized in the same fashion. Following the experiment setup
in Rafailov et al. (2023), we set β = 0.5 for the TL;DR dataset, and all the DPO models are trained
with learning rate 1e-6 and batch size 64 for 1 epoch, with the learning rate warmed up from 0 to
1e-6 over 150 steps. All DPO models are trained with a PyTorch based, personalized DPO Trainer
we develop by extending the DPO Trainer in the TRL library von Werra et al. (2020).

A.5 ADDITIONAL EXPERIMENT RESULTS

In addition to the Accuracy-average we reported in Section 3, the accuracy of each individual worker
with id 1, . . . , 10 for P-RM and P-DPO are provided in Tables 3 and 4. The Accuracy-average
reported in Section 3 are computed as the mean and standard deviation of the 10 individual worker
accuracies.

Table 3: The accuracies of P-RM on each individual worker. All accuracies are in %.

WORKER ID VANILLA RM INDIVIDUAL
(a = 1.0)

INDIVIDUAL
(a = 0.5)

CLUSTER 5
(a = 1.0)

CLUSTER 5
(a = 0.5)

1 57.45 56.85 60.77 56.34 58.98
2 61.74 62.05 61.90 60.50 59.41
3 65.88 61.15 64.83 63.78 62.47
4 55.79 57.12 58.11 54.80 55.63
5 62.80 58.19 63.65 58.70 60.24
6 66.11 65.00 70.28 66.39 66.39
7 61.06 55.76 60.75 56.70 58.57
8 62.36 58.94 59.70 63.50 63.12
9 61.58 57.06 63.28 61.02 59.89
10 56.20 55.47 57.66 55.47 57.18

B RELATED WORK

Reinforcement learning from human feedback (RLHF) RLHF optimizes LMs as RL policies
to generate responses aligned with human preferences, using reward models learned from human
feedback. In the RLHF literature, human feedback is typically collected by asking annotators to
compare or rank multiple candidate responses. This type of data is easier to collect than demonstration
data, especially for tasks where the ground truth responses may not exist due to inherent subjectivity
among annotators. RLHF has been utilized to improve the LM performances on a variety of NLP tasks,
including summarization (Ziegler et al., 2019; Stiennon et al., 2020), question answering (Nakano
et al., 2021; Menick et al., 2022), instruction following Ouyang et al. (2022) and improving helpfulness
and harmlessness (Bai et al., 2022; Glaese et al., 2022). While vanilla RLHF tends to model the
reward of a whole sequence using a scalar score output by a single reward model, recent studies have
imposed more sophisticated structures on reward learning, e.g., training separate reward models for
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Table 4: The accuracies of P-DPO on each individual worker. All accuracies are in %.

WORKER ID VANILLA DPO INDIVIDUAL
(a = 1.0)

INDIVIDUAL
(a = 0.5)

CLUSTER 5
(a = 1.0)

CLUSTER 5
(a = 0.5)

1 59.40 59.49 59.32 54.89 56.60
2 61.90 58.79 61.43 59.56 62.83
3 64.83 66.67 66.67 63.25 64.04
4 57.62 56.79 59.11 57.12 58.94
5 60.07 61.77 62.63 60.58 64.33
6 61.39 62.50 65.28 65.83 65.28
7 60.75 61.99 60.12 63.86 65.73
8 65.02 63.12 66.16 67.68 66.92
9 53.67 52.54 54.80 52.54 50.85
10 61.07 57.66 60.58 56.69 59.12

different targets (Glaese et al., 2022), assigning fine-grained rewards to small text segments (Wu et al.,
2023), or training individual reward models to capture pre-defined dimensions of user preferences
and then merging the fine-tuned LMs for personalization Jang et al. (2023). The need for separate
reward modeling and policy optimization makes RLHF a complex procedure and prone to instabilities
during training. Direct Preference Optimization (DPO) has emerged as an RL-free algorithm. DPO
circumvents the reward modeling step, directly fine-tunes the language model using the preference
data, and significantly improves the training efficiency of RLHF Rafailov et al. (2023).

Our work differs from previous RLHF approaches in two ways: firstly, we model user-specific
preferences instead of assuming that all users share the same preference distribution (over responses).
Secondly, our personalized reward and language models are learned directly using personalized
feedback data, rather than requiring additional fine-grained learning signals or pre-defined preference
dimensions.

Crowdsourcing When collecting large sets of labeled data (like in the preference data collection
phase of RLHF), crowdsourcing is often adopted by first dispatching the unlabeled samples to multiple
annotators and then estimating the ground-truth labels by aggregating the noisy annotations (Snow
et al., 2008; Greenspan et al., 2016). The observed annotations are often modeled as the confused
outputs for the hidden ground-truth labels and the confusion of each annotator is characterized by an
individual confusion matrix (Dawid & Skene, 1979; Raykar et al., 2010; Rodrigues & Pereira, 2018).
Recent research has introduced novel methods to better capture real-world annotator behaviors. For
instance, Imamura et al. (2018) modeled the confusion matrices at a cluster level to capture the shared
confusion patterns among annotators. Inspired by the behavioral assumptions (on annotators) in
crowdsourcing literature, we design analogous strategies to model user preferences at the population,
cluster, and individual levels through different user model structures.

Conditional Natural Language Generation With the advent of autoregressive pre-trained LMs
such as GPT-3 Brown et al. (2020) and PaLM (Chowdhery et al., 2022), natural language generation
tasks are often performed via prompting or in-context learning approaches Maynez et al. (2023); Shin
et al. (2020); Deng et al. (2022); Prasad et al. (2022). To personalize language generations without
re-training the LM, prompts with relevant historical data are used to align the LM outputs with user
intents Madaan et al. (2022) or opinions Hwang et al. (2023). The methods most closely related
to our work include prefix-tuning Li & Liang (2021) and soft-prompt learning Lester et al. (2021),
which prepend task-specific continuous embeddings to the transformer layers or the embedded inputs
to adapt the pre-trained LMs to specific downstream tasks. While the previous approaches learn
task-specific embeddings from datasets with reference outputs, our approach instead focuses on the
personalization setting by learning user-specific representations from preference datasets (instead of
traditional text generation or labeling datasets).
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