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Abstract

Knowledge distillation (KD) has proven to be a highly effective approach for
enhancing model performance through a teacher-student training scheme. How-
ever, most existing distillation methods are designed under the assumption that
the teacher and student models belong to the same model family, particularly the
hint-based approaches. By using centered kernel alignment (CKA) to compare
the learned features between heterogeneous teacher and student models, we ob-
serve significant feature divergence. This divergence illustrates the ineffectiveness
of previous hint-based methods in cross-architecture distillation. To tackle the
challenge in distilling heterogeneous models, we propose a simple yet effective
one-for-all KD framework called OFA-KD, which significantly improves the distil-
lation performance between heterogeneous architectures. Specifically, we project
intermediate features into an aligned latent space such as the logits space, where
architecture-specific information is discarded. Additionally, we introduce an adap-
tive target enhancement scheme to prevent the student from being disturbed by
irrelevant information. Extensive experiments with various architectures, including
CNN, Transformer, and MLP, demonstrate the superiority of our OFA-KD frame-
work in enabling distillation between heterogeneous architectures. Specifically,
when equipped with our OFA-KD, the student models achieve notable performance
improvements, with a maximum gain of 8.0% on the CIFAR-100 dataset and
0.7% on the ImageNet-1K dataset. PyTorch code and checkpoints can be found at
https://github.com/Hao840/OFAKD.

1 Introduction

In recent years, knowledge distillation (KD) has emerged as a promising approach for training
lightweight deep neural network models in computer vision tasks [1, 2, 3, 4]. The core idea behind KD
is to train a compact student model to mimic the outputs, or soft labels, of a pretrained cumbersome
teacher model. This method was initially introduced by Hinton et al.. [5], and since then, researchers
have been actively developing more effective KD approaches. One notable improvement in KD
methods is the incorporation of intermediate features as hint knowledge [6, 7, 8]. These approaches
train the student to learn representations that closely resemble those generated by the teacher, and
have achieved significant performance improvements.
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Existing hint-based approaches have predominantly focused on distillation between teacher and
student models with homogeneous architectures, e.g., ResNet-34 vs.ResNet-18 in [9], and Swin-S
vs.Swin-T in [8], leaving cross-architecture distillation relatively unexplored. However, there are
practical scenarios where cross-architecture distillation becomes necessary. For example, when the
objective is to improve the performance of a widely used architecture like ResNet50 [10], as our
experiments will demonstrate, distilling knowledge from ViT-B [11] to ResNet50 can readily surpass
the performance achieved by distilling knowledge from ResNet152. Cross-architecture distillation
thus presents a viable alternative, providing more feasible options for teacher models. It may not
always be possible to find a superior teacher model with a homogeneous architecture matching the
student’s architecture. Moreover, the emergence of new architectures [12, 13] further compounds
this challenge, making it difficult to find readily available pre-trained teacher models of the same
architecture online. This limitation necessitates the need for researchers to resort to pre-trained
teachers of different architectures for knowledge distillation in order to enhance their own models.

The few attempts that have been made in this direction mainly involve using heterogeneous CNN
models for knowledge transfer [14, 15, 16]. In a recent study, Touvron et al. [17] successfully trained
a ViT student by using a CNN teacher and obtained promising results. These endeavors have sparked
our interest in studying the question: whether it is possible to distill knowledge effectively across any
architectures, such as CNN [10, 18, 19], Transformer [20, 21, 11, 17, 22], and MLP [13, 23, 24].

In previous studies where teachers and students share similar architectures, their learned represen-
tations naturally exhibit similarity in the feature space. Simple similarity measurement functions
such as mean square error (MSE) loss, are sufficient for information distillation [6]. However, in the
case that the teacher and student architectures are heterogeneous, there is no guarantee of successful
alignment of the learned features, due to the fact that features from heterogeneous models reside in
different latent feature spaces, as shown in Figure 1. Therefore, directly matching these irrelevant
features is less meaningful and even impedes the performance of the student model, as shown in
the third row of Table 1, highlighting the difficulty in exploring cross-architecture distillation at
intermediate layers.

To address above challenges, we propose a one-for-all KD (OFA-KD) framework for distillation
between heterogeneous architectures, including CNNs, Transformers, and MLPs. Instead of di-
rectly distilling in the feature space, we transfer the mismatched representations into the aligned
logits space by incorporating additional exit branches into the student model. By matching the
outputs of these branches with that from teacher’s classifier layer in logits space, which contains
less architecture-specific information, cross-architecture distillation at intermediate layers becomes
achievable. Furthermore, considering that heterogeneous models may learn distinct predictive dis-
tributions due to their different inductive biases, we propose a modified KD loss formulation to
mitigate the potential impact of irrelevant information in the logits. This includes the introduction
of an additional modulating parameter into the reformulated loss of the vanilla KD approach. The
modified OFA loss adaptively enhances the target information based on the predictive confidence of
the teacher, effectively reducing the influence of irrelevant information. To evaluate our proposed
framework, we conduct experiments using CNN, Transformer, and MLP architectures. We consider
all six possible combinations of these architectures. Our OFA-KD framework improves student model
performance with gains of up to 8.0% on CIFAR-100 and 0.7% on ImageNet-1K datasets, respectively.
Additionally, our ablation study demonstrates the effectiveness of the proposed framework.

2 Related works

Recently, significant advancements have been made in the design of model architectures for computer
vision tasks. Here we briefly introduce two prominent architectures: Transformer and MLP.

Vision Transformer. Vaswani et al. [25] first proposed the transformer architecture for NLP tasks.
Owing to the use of the attention mechanism, this architecture can capture long-term dependencies
effectively and achieves remarkable performance. Inspired by its great success, researchers have
made great efforts to design transformer-based models for CV tasks [26, 27, 28]. Dosovitskiy et
al. [11] split an image into non-overlapped patches and projected the patches into embedding tokens.
Then the tokens are processed by the transformer model like those in NLP. Their design achieves
state-of-the-art performance and sparks the design of a series of following architectures [21, 29].
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MLP. MLP has performed inferior to CNN in the computer vision field for a long time. To explore
the potential of the MLP, Tolstikhin et al. [13] proposed MLP-Mixer, which is based exclusively
on the MLP structure. MLP-Mixer takes embedding tokens of an image patch as input and mixes
channel and spatial information at each layer alternately. This architecture performs comparably
to the best CNN and ViT models. Touvron et al. [24] proposed another MLP architecture termed
ResMLP.

The most advanced CNN, Transformer, and MLP achieve similar performance. However, these
architectures hold distinct inductive biases, resulting in different representation learning preferences.
Generally, there are striking differences between features learned by heterogeneous architectures.

Knowledge distillation. KD is an effective approach for compressing cumbersome models [30, 31,
32, 33, 34, 35], where a lightweight student is trained to mimic the output logits of a pretrained
teacher. Such an idea was originally proposed by Bucila et al. [36] and improved by Hinton et
al. [5]. Following works further improve logits-based KD via structural information [37, 38], model
ensemble [39], or contrastive learning [40]. Recently, Touvron et al. [17] proposed a logits distillation
method for training ViT students. Huang et al. [9] proposed to relax the KL divergence loss for
distillation between teacher and student with a large capacity gap. Besides logits, some KD approaches
also use intermediate features as hint knowledge. Romero et al. [6] first proposed the hint-based
distillation approach. They adopted a convolutional layer to project student features into the space of
the teacher feature size, and then constrained the projected feature to be like the teacher feature via
mean square loss. Zagoruyko et al. [7] proposed to force the student to mimic attention maps. Yim et
al. [41] adopted the flow of solution procedure matrix generated by the features as hint knowledge.
There are also many other feature distillation approaches using various hint design [42, 43, 8].
Recently, applying KD to compress dataset has emerged as a popular topic [44, 45, 46].

Although existing hint-based distillation methods have achieved remarkable performance, they assume
that student and teacher architectures are homogeneous. When the architectures are heterogeneous,
existing approaches may fail because features of the student and the teacher are distinct. How to
conduct hint-based distillation under this circumstance is still an open problem.

3 Method

3.1 Revisit feature distillation for heterogeneous architectures

Discrepancy among architectures. For a long time, CNN is the dominant architecture for CV tasks.
Its inductive biases of locality and spatial invariance are strong priors for learning natural images,
and restrict CNNs from learning global representations. Vision transformers [11, 21, 47] inherited
from the NLP field are attention-based models. This architecture lacks inductive biases inherent to
CNNs and thus can learn global representations easily. Moreover, inspired by the success of ViTs,
pure MLP-based vision models have been proposed [13, 24], which are also low-priori models.

Knowledge distillation. KD trains a tiny student model to learn knowledge from a large pre-trained
teacher model. Logits and features are the most common used types of knowledge in KD.

Logits depict the predictive distribution of a model. Logits-based distillation trains the student to
mimic output logits of the teacher, which can be formulated as:

LKD = λE(x,y)∼(X ,Y)[DCE(p
s, y) + (1− λ)DKL(p

s,pt)], (1)

where (X ,Y) is the joint distribution of samples and class labels. ps and pt are predictions of the
student model and the teacher model on sample x, respectively. DCE denotes the cross-entropy
function. DKL denotes the Kullback-Leibler divergence function. λ is a hyperparameter controls the
trade-off between one-hot label y and soft label pt.

hint-based distillation adopts more fine-grained teacher activations at intermediate layers to train the
student, which can be formulated as:

LFD = E(x,y)∼(X ,Y)[
∑
i||FTi − ψ(FSi )||2], (2)

where FT and FS are features of the teacher and the student at layer i, respectively. ψ is a feature
projector that maps student features to match dimension of teacher features [6]. Knowledge from
logits and features are not opposites. In most cases, feature distillation approaches also adopt logits
as an auxiliary supervision.
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Figure 1: Similarity heatmap of intermediate features measured by CKA. We compare features
from MobileNetV2 (CNN), ViT-Small (Transformer) and Mixer-B/16 (MLP model). The first
three figures illustrate similarity between homogeneous models, and the last three illustrate feature
similarity between heterogeneous models. Coordinate axes indicate the corresponding layer index.

Challenges in heterogeneous feature distillation. Existing feature distillation methods are designed
under the assumption of teacher and student belonging to the same model family. Simply adopt a
convolutional projector is able to align their features for distillation. However, heterogeneous models
learn diverse features because of there distinct inductive biases. Under this circumstance, directly
forcing features of the student to mimic the teacher may impede the performance. Moreover, ViTs
use embedded image patches as input, and some architectures even adopt an additional classification
token [11, 17], which further aggregates the feature mismatch problem.

Centered kernel alignment analysis.2 To demonstrate the representation gap among heterogeneous
architectures, we adopt centered kernel alignment (CKA) [48, 49] to compare features extracted by
CNN, ViT, and MLP models. CKA is a feature similarity measurement allowing cross-architecture
comparison achievable, as it can work with inputs having different dimensions.

CKA evaluates feature similarity over mini-batch. Suppose X ∈ Rn×d1 and Y ∈ Rn×d2 are features
of n samples extracted by two different models, where d1 and d2 are their dimensions, respectively.
CKA measures their similarity by:

CKA(K,L) =
DHSIC(K,L)√

DHSIC(K,K)DHSIC(L,L)
, (3)

where L = XXT and K = YYT are Gram matrices of the features, andDHSIC is the Hilbert-Schmidt
independence criterion [50], a non-parametric independence measure. The empirical estimator of
DHSIC can be formulated as:

DHSIC(K,L) =
1

(n− 1)2
tr(KHLH), (4)

where H is the centering matrix Hn = In − 1
n11

T .

Figure 1 shows feature similarity heatmaps measured by CKA. From figures at the first row, models
of homogeneous architectures tend to learn similar features at layers of similar positions. On the
country, heatmaps at the second row demonstrate that features of heterogeneous architectures are
remarkably different. In particular, MobileNet v2 can only learn features similar to shallower layers
of ViT-S or Mixer-B/16. Moreover, features of ViT-S and Mixer-B/16 are quite different as well.

From the CKA analysis, directly using hint-based distillation methods for cross-architecture KD is
unreasonable. Although only using logits for distillation is feasible, the absence of supervision at
intermediate layers may lead to suboptimal results. New designs of distilling at intermediate layers
are needed to improve heterogeneous KD.

3.2 Generic heterogeneous knowledge distillation

To bridge the gap of heterogeneous architectures in KD, we propose a one-for-all cross-architecture
KD method, which can perform KD between models of any architectures, such as CNN, ViT, and
MLP. Figure 2 provides an overview of the proposed framework.

Learning in the logits space. Following the CKA analysis results, heterogeneous models learn
distinct representations, which impedes the feature distillation process. Hence, the key for heteroge-
neous feature distillation is to align the mismatched representations. However, existing approaches

2Detailed settings of our CKA analysis are provided in our supplement.
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Figure 2: Comparison of different KD approaches. (a) Logits-based distillation: student only learns
from final predictions of the teacher; (b) hint-based distillation: besides final predictions, student also
learns to mimic intermediate features of the teacher; and (c) our OFA-KD framework: student learns
from final predictions of the teacher via multiple branches, where the OFA distillation loss adaptively
adjusts the amount of target information to be learned based on the confidence of teacher. Note: Only
three stages are shown for convenience. In our experiment, all models are split into four stages.

directly align dimension of features via a convolutional projector [6], which is not a generic solution
for all heterogeneous architectures. Inspired by early-exit model architecture [51], we align features
in the logits space by introducing additional exit branches into the student. In particular, we build
each exit branch with a feature projector and a classifier layer. On the teacher side, we direct adopt
its final output as the knowledge. In the logits space, redundant architecture-specific information
is removed, and thus feature alignment across any architectures is achievable. When training the
student, the additional exit branches are optimized together with the student backbone. At test time,
these branches are removed and render no extra inference overhead.

Adaptive target information enhancement. Although different models learn the same targets in
the logits space, their different inductive bias leads them to variant destinations, i.e., their predictive
distributions are not the same. For example, a CNN model may predict a sample with similar
probabilities of belonging to cars and trucks, as CNNs tend to catch the shared local information of
the two classes, e.g., round wheels. In contrast, ViTs may differentiate these samples better, as its
attention mechanism is apt to learn the distinct global features, e.g., arc-shaped and rectangle-shaped
bodies. This difference results in an inconsistent understanding of the dark knowledge of the teacher
and the student. To bridge this gap, we propose to enhance the information of the target class as it
always relates to the real class of a sample and brings no concern about information mismatch.

We take the first step by reformulating the original distillation loss to decouple information about the
target class:3

LKD = − log psĉ − Ec∼Y [ptc log psc]
= −(1 + ptĉ) logp

s
ĉ − Ec∼Y/{ĉ}[ptc log psc],

(5)

where we ignored the denominator term in KL-divergence as it does not contribute to the gradient. c
is a predicted class and ĉ indicates the target class. To enhance information from the target class, we
add a modulating parameter γ ≥ 1 to the (1 + ptĉ) term:

LOFA = −(1 + ptĉ)
γ log psĉ − Ec∼Y/{ĉ}[ptc log psc]. (6)

3Without loss of generality, we omit the hyperparameter λ.
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Discussion. To learn the behavior of the OFA loss with different γ values, we take the case of γ ∈ Z+

as an example expand the binomial term:4

LOFA = −
∑γ
k=0

(
γ
k

)
(ptĉ)

k log psĉ − Ec∼Y/{ĉ}[ptc log psc]
= −(1 + ptĉ) logp

s
ĉ − Ec∼Y/{ĉ}[pti log psi ]− (

∑γ
k=1

(
γ
k

)
(ptĉ)

k − ptĉ) logp
s
ĉ

= LKD +−(
∑γ
k=1

(
γ
k

)
(ptĉ)

k − ptĉ) logp
s
ĉ.

(7)

When γ = 1, the OFA distillation loss is identical to the logits-based KD loss. To study cases of
γ ≥ 1, we take γ = 2 as an example:

LOFA,γ=2 = LKD +−(ptĉ + (ptĉ)
2) logpsĉ. (8)

Besides the KD loss term, the OFA distillation loss has an additional positive term that only relates
to the target class. If the teacher is confident at the target class, the high order term (ptĉ)

2 decays
slowly. Otherwise, the high order term decays faster, which prevents the student to learn from a less
confident teacher and achieves adaptive enhancement of target information. The top-right corner of
Figure 2 provides a brief illustration about effect of the high order term in the OFA loss.

Heterogeneous models inherently possess differences in their learning capabilities and preferences.
Our proposed adaptive target information enhancement method bridges this gap by mitigating the
impact of soft labels when the teacher provides suboptimal predictions. Moreover, the efficacy of
distillation between heterogeneous architectures can be further enhanced by combining the multi-
branch learning paradigm in the aligned logits space.

4 Experiment

4.1 Experimental setup

We conducted comprehensive experiments to evaluate the proposed OFA-KD framework. In this
section, we offer a concise overview of our experimental settings. Additional details can be found in
our supplementary materials.

Models. We evaluated a variety of models with heterogeneous architectures. Specifically, we
employed ResNet [10], MobileNet v2 [18], and ConvNeXt [12] as CNN models, ViT [11], DeiT [17],
and Swin [21] as ViT models, and MLP-Mixer [13] and ResMLP [24] as MLP models.

In our OFA-KD framework, incorporating additional exit branches into the student model requires
identifying appropriate branch insertion points. For models with a pyramid structure, we consider
the end of each stage as potential insertion points, resulting in a total of four points. In the case of
other models like ViT, we evenly divide them into four parts and designate the end of each part as
feasible insertion points for the branches. Exit branches in CNNs are constructed using depth-width
convolutional layers, while exit branches in ViTs and MLPs employ ViT blocks.

When used as the student model, the smallest variant of Swin-T demonstrates superior perfor-
mance compared to several teachers when trained from scratch. For example, Swin-T outperforms
Mixer-B/16 on the ImageNet-1K dataset. To facilitate comparisons between such teacher-student
combinations, we introduce two modified versions of Swin-T: Swin-Nano and Swin-Pico, referred to
as Swin-N and Swin-P respectively.

Datasets. We adopt the CIFAR-100 dataset [52] and the ImageNet-1K dataset [53] for evaluation.
CIFAR-100 comprises 50K training samples and 10K testing samples of 32×32 resolution, while the
ImageNet-1K dataset is more extensive, containing 1.2 million training samples and 50,000 validation
samples, all with a resolution of 224×224. Since ViTs and MLPs accept image patches as input, we
upsample the images in CIFAR-100 to the resolution of 224x224 for all subsequent experiments to
facilitate the patch embedding process.

Baselines. We employ both logits-based and hint-based knowledge distillation (KD) approaches as
our baselines. Specifically, the hint-based approaches include FitNet [6], CC [54], RKD [37], and
CRD [40], while the logits-based baselines consist of KD [5], DKD [55], and DIST [9].

4We take the assumption of γ ∈ Z+ above just for convenience, and there is no limitation of requiring γ to
be an integer in practice.
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Table 1: KD methods with heterogeneous architectures on ImageNet-1K. The best results are indicated
in bold, while the second best results are underlined. †: results achieved by combining with FitNet.

Teacher Student From Scratch hint-based Logits-based

T. S. FitNet CC RKD CRD KD DKD DIST OFA

CNN-based students

DeiT-T ResNet18 72.17 69.75 70.44 69.77 69.47 69.25 70.22 69.39 70.64 71.34
Swin-T ResNet18 81.38 69.75 71.18 70.07 68.89 69.09 71.14 71.10 70.91 71.85

Mixer-B/16 ResNet18 76.62 69.75 70.78 70.05 69.46 68.40 70.89 69.89 70.66 71.38
DeiT-T MobileNetV2 72.17 68.87 70.95 70.69 69.72 69.60 70.87 70.14 71.08 71.39
Swin-T MobileNetV2 81.38 68.87 71.75 70.69 67.52 69.58 72.05 71.71 71.76 72.32

Mixer-B/16 MobileNetV2 76.62 68.87 71.59 70.79 69.86 68.89 71.92 70.93 71.74 72.12
ViT-based students

ResNet50 DeiT-T 80.38 72.17 75.84 72.56 72.06 68.53 75.10 75.60† 75.13† 76.55†
ConvNeXt-T DeiT-T 82.05 72.17 70.45 73.12 71.47 69.18 74.00 73.95 74.07 74.41
Mixer-B/16 DeiT-T 76.62 72.17 74.38 72.82 72.24 68.23 74.16 72.82 74.22 74.46
ResNet50 Swin-N 80.38 75.53 78.33 76.05 75.90 73.90 77.58 78.23† 77.95† 78.64†

ConvNeXt-T Swin-N 82.05 75.53 74.81 75.79 75.48 74.15 77.15 77.00 77.25 77.50
Mixer-B/16 Swin-N 76.62 75.53 76.17 75.81 75.52 73.38 76.26 75.03 76.54 76.63

MLP-based students

ResNet50 ResMLP-S12 80.38 76.65 78.13 76.21 75.45 73.23 77.41 78.23† 77.71† 78.53†
ConvNeXt-T ResMLP-S12 82.05 76.65 74.69 75.79 75.28 73.57 76.84 77.23 77.24 77.53

Swin-T ResMLP-S12 81.38 76.65 76.48 76.15 75.10 73.40 76.67 76.99 77.25 77.31

Optimization. In our implementation, we employ different optimizers for training the student models
based on their architecture. Specifically, all CNN students are trained using the SGD optimizer, while
those with a ViT or MLP architecture are trained using the AdamW optimizer. For the CIFAR-100
dataset, all models are trained for 300 epochs. When working with the ImageNet-1K dataset, CNNs
are trained for 100 epochs, whereas ViTs and MLPs are trained for 300 epochs.

4.2 Distillation results on ImageNet-1K

We first conduct experiments on the ImageNet-1K dataset. To make a comprehensive comparison,
we adopt five student models and five teacher models belonging to three different model architecture
families, and evaluate KD approaches on fifteen heterogeneous combinations of teacher and student.
We report the results in Table 1.

In comparison to previous KD methods, our distillation framework achieves remarkable performance
improvements. Specifically, when training a student based on CNN architecture, our proposed method
achieves performance improvements ranging from 0.20% to 0.77% over the second-best baselines.
When the student model is based on a ViT or MLP architecture, which utilizes image patches as
input, our OFA-KD also achieves remarkable performance improvement, with a maximum accuracy
gain of 0.71%. Significantly, the hint-based baseline FitNet exhibits noteworthy performance when
the teacher model is ResNet50 and the student model is a ViT or MLP. We speculate that designs
based on traditional 3×3 convolution of ResNet50 have the capability to capture local information,
such as texture details, better than ViT/MLP. In the process of "patchify", ViT/MLP might overlook
these local details. Therefore, when ResNet50 serves as the teacher, FitNet can provide valuable
intermediate representations. We thus report the results of logit-based methods obtained by combining
FitNet and OFA-KD when adopting ResNet50 as the teacher.

Based on our experimental results, we observe that the second-best performance is not consistently
achieved by the same baseline approach. FitNet, vanilla KD, and DIST take turns in attaining
the second-best results, indicating that previous KD approaches face challenges in consistently
improving performance when distilling knowledge between heterogeneous architectures. However,
our proposed approach consistently outperforms all baselines in all cases, showcasing its effectiveness
in cross-architecture distillation.
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Table 2: KD methods with heterogeneous architectures on CIFAR-100. The best results are indicated
in bold, while the second best results are underlined.

Teacher Student From Scratch hint-based Logits-based

T. S. FitNet CC RKD CRD KD DKD DIST OFA

CNN-based students

Swin-T ResNet18 89.26 74.01 78.87 74.19 74.11 77.63 78.74 80.26 77.75 80.54
ViT-S ResNet18 92.04 74.01 77.71 74.26 73.72 76.60 77.26 78.10 76.49 80.15

Mixer-B/16 ResNet18 87.29 74.01 77.15 74.26 73.75 76.42 77.79 78.67 76.36 79.39
Swin-T MobileNetV2 89.26 73.68 74.28 71.19 69.00 79.80 74.68 71.07 72.89 80.98
ViT-S MobileNetV2 92.04 73.68 73.54 70.67 68.46 78.14 72.77 69.80 72.54 78.45

Mixer-B/16 MobileNetV2 87.29 73.68 73.78 70.73 68.95 78.15 73.33 70.20 73.26 78.78
ViT-based students

ConvNeXt-T DeiT-T 88.41 68.00 60.78 68.01 69.79 65.94 72.99 74.60 73.55 75.76
Mixer-B/16 DeiT-T 87.29 68.00 71.05 68.13 69.89 65.35 71.36 73.44 71.67 73.90

ConvNeXt-T Swin-P 88.41 72.63 24.06 72.63 71.73 67.09 76.44 76.80 76.41 78.32
Mixer-B/16 Swin-P 87.29 72.63 75.20 73.32 70.82 67.03 75.93 76.39 75.85 78.93

MLP-based students

ConvNeXt-T ResMLP-S12 88.41 66.56 45.47 67.70 65.82 63.35 72.25 73.22 71.93 81.22
Swin-T ResMLP-S12 89.26 66.56 63.12 68.37 64.66 61.72 71.89 72.82 11.05 80.63

4.3 Distillation results on CIFAR-100

In addition to the ImageNet-1K dataset, we also evaluate the proposed method on the CIFAR-100
dataset. We conduct experiments with twelve combinations of heterogeneous teacher and student
models, and report the results in Table 2.

On this small-scale dataset, the hint-based approaches exhibit inferior performance, particularly when
the student model is of ViT or MLP architecture, highlighting its limitations in distilling knowledge
across heterogeneous architectures. For instance, FitNet only achieves a 24.06% accuracy when used
in combination with a ConvNeXt-T teacher and a Swin-P student. By contrast, the OFA-KD method
continues to achieve significant performance improvements, ranging from 0.28% to 8.00% over the
second-best baselines.

Notably, when evaluating on the ImageNet-1K dataset, DIST achieves the second-best results at
most times. while on the CIFAR-100 dataset, DKD tends to achieve the second-best results more
frequently. This is because DIST relaxes the strict prediction imitation by correlation mimicry, which
is more advantageous for learning from a stronger teacher trained on ImageNet-1K. On the other hand,
DKD enhances the dark knowledge in teacher predictions, which proves beneficial when working
with a smaller teacher trained on CIFAR-100. However, our OFA-KD method can enhance target
information adaptively, enabling the student model to consistently achieve the best performance.

4.4 Ablation study

Table 3: Impact of exit branch num-
ber and position on ImageNet-1K.
∅: only learning at the last layer.

Stage T: DeiT-T T: ResNet50
S: ResNet18 S: DeiT-T

∅ 70.62 75.18
{1} 70.75 75.35
{2} 70.70 75.21
{3} 70.78 75.17
{4} 70.78 75.28

{1,4} 71.04 75.52
{1,2,4} 71.08 75.61

{1,2,3,4} 71.34 75.73

Number and position of exit branches. In our OFA-KD
method, branches are integrated into the student to facilitate
learning at intermediate layers. We conduct experiments to
learn the impact of the number and position of branches. As the
student models are divided into four stages, we use numbers
1 to 4 to indicate the insertion points of branches. As shown in
Table 3, when comparing learning at the last layer with learn-
ing from intermediate layers, the ResNet18 student presents
no preference to the position of the branch, as they all help
improve the performance. However, DeiT-T only performs
better when branches are added at the end of stage 1 or stage
4. In the evaluation of using multiple branches. The results
demonstrate that learning at the end of all the four stages is the
best configuration for the OFA-KD method.
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Figure 3: Ablation study on different modulating parameter γ settings on ImageNet-1K.

Table 5: KD methods with homogeneous architectures on ImageNet-1K. T: ResNet34, S: ResNet18.
T. S. KD [5] OFD [56] Review [43] CRD [37] DKD [55] DIST [9] OFA

Accuracy 73.31 69.75 70.66 70.81 71.61 71.17 71.70 72.07 72.10

Table 6: Comparison of homogeneous and heterogeneous teacher on ImageNet-1K.
Teacher T. S.(ResNet50) RKD [37] Review [43] CRD [37] DKD [55] DIST [9] OFA

ResNet152 82.83 79.86 79.53 80.06 79.33 80.49 80.55 80.64
ViT-B 86.53 79.86 79.38 79.32 79.48 80.76 80.90 81.33

Table 4: Comparison of scaling factors and
clip grad settings on ImageNet-1K. The scal-
ing factors are directly multiplied to the OFA
loss. We adopt a ResNet50 teacher and a
DeiT-T student with γ = 1.1.

Scaling factor Acc. Clip grad Acc.

0.5 75.29 1 75.39
0.8 75.58 3 75.61
1.0 75.73 4 75.52
1.2 75.54 5 75.73
1.4 75.64 6 75.32
1.6 75.46 7 75.36

Scale of OFA loss. The modulation parameter is intro-
duced at the exponential position of the term 1 + ptĉ,
which has a value greater than 1. This increases the
overall loss scale. To ensure a stable training pro-
cess, we compare two schemes: multiplying a scaling
factor to the OFA loss and clipping gradient by set-
ting a maximum norm value. As shown in Table 4,
the best configuration is setting the scale factor to 1
and the maximum gradient norm to 5. Considering
that searching the optimal scale factor and gradient
clipping settings for each combination of teacher and
student is expensive, we adopt the aforementioned
best settings in all experiments.

Modulating parameter. The modulation parameter γ controls the strength of the adaptive target
information enhancement. To investigate its impact, we compare different configurations of the γ
value setting on ImageNet-1K and present the results in Figure 3. Specifically, when the teacher
model is DeiT-T and the student model is ResNet18, the best student performance is achieved when
γ is set to 1.4. For the teacher-student pair of ResNet50 and DeiT-T, the optimal configuration for γ
is 1.1. This difference in optimal γ values can be attributed to the varying strengths of the teacher
models. As DeiT-T is a weaker teacher model compared to ResNet50, a larger γ value is required
to mitigate the additional interference information. By increasing the γ value, the adaptive target
information enhancement compensates for the limitations of the weaker teacher model, enabling the
student model to better utilize the available information and improve its performance.

Distillation in homogeneous architectures. We adopt the commonly used combination of ResNet34
teacher and ResNet18 student on ImageNet-1K to further demonstrate the effectiveness of our method
across homogeneous architectures. As the results shown in Table 5, the OFA method achieves
performance on par with the best distillation baseline.

Homogeneous vs. heterogeneous teachers To assess the impact of utilizing a larger heterogeneous
teacher model, we train a ResNet50 student with both a ResNet152 teacher (homogeneous archi-
tecture) and a ViT-B teacher (heterogeneous architecture). As indicated in Table 6, our OFA-KD
approach achieves a notable 0.41% performance improvement when utilizing the ViT-B teacher
compared to the ResNet152 teacher. This result underscores the significance of cross-architecture
knowledge distillation (KD) in pursuing better performance improvement.
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5 Conclusion

This paper studies how to distill heterogeneous architectures using hint-based knowledge. We
demonstrate that the distinct representations learned by different architectures impede existing
feature distillation approaches, and propose a one-for-all framework to bridge this gap in cross-
architecture KD. Specifically, we introduce exit branches into the student to project features into the
logits space and train the branches with the logits output of the teacher. The projection procedure
discards architecture-specified information in feature, and thus hint-based distillation becomes
feasible. Moreover, we propose a new loss function for cross-architecture distillation to adaptive target
information enhancement, which is achieved by adding a modulating parameter to the reformulated
KD loss. We conduct extensive experiments on CIFAR-100 and ImageNet-1K. Corresponding results
demonstrate the effectiveness of the proposed cross-architecture KD method.

Limitation. While our approach achieves remarkable performance improvements in distilling
ResNet50, it is worth noting that for some architectures, e.g., ResNet18, the performance distilled
by a heterogeneous teacher is lower than that achieved by a homogeneous teacher. Furthermore, the
requirement of finding an optimal setting for the modulating parameter adds a level of complexity.
Improperly setting this parameter could potentially lead to inferior performance.

Border impact. Our work mainly studies hint-based distillation for heterogeneous architecture
and proposes a generic framework. The performance improvement achieved by our OFA-KD
demonstrates that there exists useful information between heterogeneous architectures. We hope that
our research will bring new perspective to KD community for seeking better aligning approaches and
inspire future works for cross-architecture distillation.
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