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Abstract

World models – generative models that simulate
environment dynamics conditioned on past ob-
servations and actions – are gaining prominence
in planning, simulation, and embodied AI. How-
ever, evaluating their rollouts remains a fundamen-
tal challenge, requiring fine-grained, temporally
grounded assessment of action alignment and se-
mantic consistency – capabilities not captured
by existing metrics. Vision-Language Models
(VLMs) have shown promise as automatic eval-
uators of generative content due to their strong
multimodal reasoning abilities. Yet, their use in
fine-grained, temporally sensitive evaluation tasks
remains limited and requires targeted adaptation.
We introduce a evaluation protocol targeting two
recognition tasks – action recognition and char-
acter recognition – each assessed across binary,
multiple-choice, and open-ended formats. To sup-
port this, we present UNIVERSE (UNIfied Vision-
language Evaluator for Rollouts in Simulated En-
vironments), a method for adapting VLMs to roll-
out evaluation under data and compute constraints.
The resulting unified evaluator matches the per-
formance of task-specific baselines using a single
checkpoint. Alignment with human judgments is
additionally explored in an accompanying study,
establishing UNIVERSE as a scalable, semantics-
aware evaluator for world models.

1. Introduction
World models are generative models trained to predict fu-
ture observations conditioned on past observations and ac-
tions (Ha & Schmidhuber, 2018; Hafner et al., 2025; Alonso
et al., 2024). They offer a powerful abstraction for learning,
reasoning, and planning in complex interactive environ-
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ments, and are rapidly becoming foundational in domains
such as neural game engines (Kanervisto et al., 2025; Guo
et al., 2025; Gao et al., 2025; Chen et al., 2025), embodied
AI (Du et al.; Yang et al., 2024), and autonomous driv-
ing (Russell et al., 2025; Hu et al., 2023a; Ni et al., 2025).
As their capabilities grow, a persistent challenge remains:
evaluation.

Rollouts from world models are visually rich, temporally
grounded, and semantically structured, requiring evalua-
tion protocols that assess both (i) timestamp-level alignment
with control inputs (Yang et al., 2024) and (ii) consistency of
entities over time (Kanervisto et al., 2025). Existing metrics
fall short: distributional metrics target static images (Sali-
mans et al., 2016; Heusel et al., 2017), video metrics lack
semantic grounding (Unterthiner et al., 2018), and mul-
timodal metrics ignore action conditioning (Jayasumana
et al., 2024). While human evaluation (Agarwal et al., 2025;
Analysis, 2024) remains reliable, it is costly; recent T2V
benchmarks (Liu et al., 2024b; Huang et al., 2024; Liao
et al., 2024) emphasize open-ended generation and neglect
fine-grained temporal control.

Vision-Language Models (VLMs) generalize well across
multimodal tasks (Li et al., 2023; Driess et al., 2023; Chen
et al., 2023; Wang et al., 2024; Abdin et al., 2024; Liu et al.,
2024a; Deitke et al., 2024; McKinzie et al., 2024), and are
increasingly used to evaluate generative models (Lee et al.,
2024; Mañas et al., 2024; Lin et al., 2024; Chen et al., 2024).
We extend this direction by exploring VLMs as fine-grained
evaluators of world model rollouts—capturing semantic con-
sistency, temporal coherence, and control alignment. Virtual
environments provide ideal conditions for this, exposing
timestamped actions and object states. This setting demands
precise temporal grounding, action sensitivity, and multi-
frame reasoning under limited supervision. Off-the-shelf
VLMs struggle in this regime (see Section 4, Zero-Shot
Evaluation).

We propose a structured protocol targeting two axes:
action alignment and character consistency, formalized
as two recognition tasks—Action Recognition (AR) and
Character Recognition (CR)—evaluated across binary,
multiple-choice, and open-ended formats. To support this,
we introduce UNIVERSE (UNIfied Vision-language Evalua-
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Figure 1: Performance and efficiency of UNIVERSE (orange) vs. task-specific baselines (various colors). Left, Center:
Accuracy on Action and Character Recognition across binary, multiple-choice, and open-ended formats. Right: Sample
efficiency—UNIVERSE achieves strong performance with far fewer training samples per epoch. A single checkpoint matches
task-specific models, enabled by mixed supervision, efficient frame sampling, and lightweight fine-tuning.

tor for Rollouts in Simulated Environments), a method for
adapting VLMs to structured rollout evaluation. UNIVERSE
results from a systematic study of adaptation strategies, ana-
lyzing supervision regime, frame sampling, context length,
and training budget. The final recipe combines mixed super-
vision, efficient frame selection, and lightweight fine-tuning.
We validate UNIVERSE on WHAM (Kanervisto et al., 2025),
finding strong agreement with human judgments and demon-
strating its effectiveness as an automated evaluator.

2. Related Work

Challenges in Evaluating World Models. World mod-
els learn predictive representations of environment dynam-
ics (Ha & Schmidhuber, 2018), and have become cen-
tral to domains such as game engines (Kanervisto et al.,
2025; Guo et al., 2025), embodied AI (Du et al.), and au-
tonomous driving (Russell et al., 2025). Recent models like
Dreamer (Hafner et al., 2025), MuZero (Schrittwieser et al.,
2020), IRIS (Micheli et al., 2023), and DIAMOND (Alonso
et al., 2024) have improved rollout fidelity and control. How-
ever, evaluation remains limited. Most approaches rely
on downstream metrics such as game score or task suc-
cess (Bellemare et al., 2013; Kaiser et al., 2020), which pro-
vide indirect signals of rollout quality. While Genie (Bruce
et al., 2024) decouples agent training, it emphasizes percep-
tual quality over semantic fidelity. Structured protocols such
as Cosmos (Agarwal et al., 2025) combine distributional
metrics, 3D consistency, and human ratings, but remain
simulator-specific and labor-intensive. Human-in-the-loop
pipelines like the Video Generation Arena (Analysis, 2024)
are similarly difficult to scale.

Evaluation Metrics and Protocols for Visual Generation.
Early evaluations relied on full-reference metrics like PSNR
and SSIM (Wang et al., 2004), which capture low-level
fidelity but are sensitive to spatial shifts and lack seman-
tic grounding. Distributional metrics such as IS (Salimans
et al., 2016), FID (Heusel et al., 2017), KID (Binkowski
et al., 2018), and PPL (Karras et al., 2019) focus on per-

ceptual realism, but are limited to static images. For video,
FVD (Unterthiner et al., 2018) incorporates motion fea-
tures via I3D (Carreira & Zisserman, 2017), yet lacks
causal or semantic structure. CLIP-based metrics (Hes-
sel et al., 2021; Wu et al., 2021; Jayasumana et al., 2024)
improve semantic alignment, but operate at the frame level
and do not account for control inputs. Structured evalu-
ation protocols using VLMs have emerged: VQA Accu-
racy (Mañas et al., 2024), VQAScore (Lin et al., 2024),
and Prometheus (Lee et al., 2024) introduce query-based
evaluations but remain limited to single-frame settings. Re-
cent T2V benchmarks—EvalCrafter (Liu et al., 2024b),
VBench (Huang et al., 2024), and DEVIL (Liao et al.,
2024)—broaden coverage to text alignment, motion, and
consistency, yet lack timestamp-level grounding and action-
conditioned evaluation.

Vision-Language Model Adaptation. VLMs have shown
strong performance across multimodal tasks including cap-
tioning, retrieval, and instruction following (Li et al., 2023;
Driess et al., 2023; Chen et al., 2023; Wang et al., 2024; Ab-
din et al., 2024; Liu et al., 2024a; Deitke et al., 2024; McK-
inzie et al., 2024). Adaptation strategies fall into two cate-
gories: prompt-level and weight-level. Prompt-level meth-
ods include prompt tuning (Miyai et al., 2023; Zhou et al.,
2024), in-context learning (Brown et al., 2020; Alayrac
et al., 2022), and retrieval-augmented generation (Lewis
et al., 2020; Hu et al., 2023b), but these approaches struggle
with temporal alignment and structured rollouts. Weight-
level adaptation enables stronger domain alignment. Full
fine-tuning is effective but costly; partial (Ye et al., 2023)
and parameter-efficient strategies offer scalable alterna-
tives. Low-rank methods such as LoRA (Hu et al., 2022),
DoRA (Liu et al.), and QLoRA (Dettmers et al., 2023) en-
able efficient updates, while adapter-based methods insert
lightweight modules into frozen networks (Luo et al., 2023;
Zhao et al., 2024). Few-shot multimodal learning has also
emerged as a lightweight alternative (Tsimpoukelli et al.,
2021; Jin et al., 2022; Najdenkoska et al., 2023), though it
remains underexplored for structured, temporally grounded
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tasks.

3. Methodology
We study the problem of evaluating rollouts generated by
world models— generative models trained to predict fu-
ture observations ot from past observations and actions,
(o<t, a<t)→ ot, where ot ∈ O is typically an RGB frame.
These rollouts are temporally grounded and causally struc-
tured, requiring fine-grained, timestamp-level evaluation.

We propose UNIVERSE, an adapted Vision-Language Model
(VLM) that serves as a structured evaluator for world model
outputs. It operates as a function E : (V,Q) → Â, where
V = (ot1 , . . . , otk) is a sampled frame sequence, Q ∈ L
is a natural language question, and Â ∈ L is the predicted
answer.

Evaluation Protocol. We define two recognition tasks: (i)
Action Recognition (AR), which checks whether generated
sequences reflect agent actions at each timestep; and (ii)
Character Recognition (CR), which evaluates whether en-
tities maintain consistent identity over time. Each task is
cast as a visual QA problem: given a sequence of frames
and a natural language prompt (binary, multiple-choice, or
open-ended), the model generates a textual response. Predic-
tions are scored using Exact Match (EM) and ROUGE-F1 to
capture both literal and semantic alignment (Appendix E.1).

Dataset Construction. Effective VLM adaptation for roll-
out evaluation requires data that (i) captures realistic human
behavior in interactive environments, and (ii) aligns with
prior work in simulated settings to support comparability
and reproducibility. Since WHAM, the world model used in
our evaluation—is trained on Bleeding Edge, it is essential
that the adaptation dataset matches its distribution. To meet
these criteria, we partnered with Ninja Theory to curate a
dataset from internal and public Bleeding Edge gameplay,
focusing on the Skygarden map used in WHAM (Kanervisto
et al., 2025). The dataset offers high visual and behavioral
diversity (Pearce et al., 2025), includes a publicly available
evaluation split, and aligns closely with prior work (Kan-
ervisto et al., 2025; Pearce et al., 2025; Tot et al., 2025;
Sharma et al., 2024; Devlin et al., 2021), enabling cross-
method comparison.

Data preparation proceeds in three stages: (i) Preprocessing:
Segment gameplay into 14-frame clips with synchronized
video, control logs, and metadata; (ii) Description Gener-
ation: Convert structured annotations (e.g., actions, agent
states) into natural language summaries; (iii) QA Construc-
tion: Generate six QA pairs per clip (binary, multiple-choice,
and open-ended) spanning both AR and CR tasks. The final
dataset includes 32.453 training clips and 8.113 validation
clips, yielding 194.718 and 48.678 QA pairs, respectively.
See Appendix D for details.

Model Architecture. We adapt a model from the
PaliGemma family (Beyer et al., 2024; Steiner et al., 2024),
comprising a vision encoderMV , a projection headMP ,
and a language decoderML. Based on initial zero-shot eval-
uations (Appendix G.1), we use a single configuration for all
experiments—PaliGemma 2 3b, featuring a 2B-parameter
Gemma 2 decoder pretrained on 2T tokens.

Input frames are resized to 224 × 224 and tokenized into
256 patches each. Each model input sequence S =
{SI , S

PREF
T , SSUFF

T } includes visual tokens SI from k
frames, a textual prefix SPREF

T with the task-language cue
and question, and a suffix SSUFF

T containing the expected
answer (training only). This format enables the decoder to
attend jointly over visual and textual context. Architecture
and prompt details are in Appendix E.2.

Training Objective. We optimize a causal language mod-
eling loss on the answer suffix:

L(S) = −
TSUFF∑
t=1

logP (sSUFF
t | S<t′) (1)

where sSUFF
t is the t-th token in the suffix, and t′ = TI +

TPREF + t is the token position in the flattened sequence.

Adaptation Strategies. We explore three axes of adapta-
tion for pretrained VLMs: fine-tuning configuration, frame
sampling, and supervision composition.

Fine-Tuning Configurations. We compare five strategies
varying in trainable parameter count: (i) Zero-shot prompt-
ing: No tuning. (ii) Full fine-tuning: All parameters
θV ∪ θP ∪ θL. (iii) Dual- and single-component: Tune
two or one module(s), e.g., θP ∪ θL or θP only. (iv) LoRA
tuning: Apply low-rank adapters to attention and MLP lay-
ers (Hu et al., 2022) with r ∈ {8, 16, 32, 48, 64}, α = 8.

Frame Sampling Policy. We sweep over input lengths k ∈
[1, 8] and compare: (i) First-n: Select the first k frames;
(ii) Uniform-n: Sample k frames uniformly across the clip.

Supervision Composition. We tune a hierarchical QA mix-
ture across tasks (AR/CR) and formats (binary, MC, open-
ended) via a three-stage grid search: (i) Task weighting:
αAR, αCR; (ii) Format weighting: βOE, βbinary, βMC; (iii) Ra-
tio optimization for open-ended generalization and format
balance.

UNIVERSE: UNIfied Vision-language Evaluator for Roll-
outs in Simulated Environments. We consolidate these
findings into UNIVERSE, a compact and scalable method
for adapting VLMs to structured rollout evaluation. UNI-
VERSE balances efficiency and generalization using a single
partially tuned model across all QA formats and tasks. It
integrates three core components:

(I) Partial fine-tuning: Only the projection head (θP )
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Figure 2: Comparison of UNIVERSE and baseline models on Action and Character Recognition. Left: UNIVERSE outperforms
all baselines on AR. Right: On CR, it ranks third, behind models with either full vision encoder tuning or task-specific
training with greater supervision. Trained under a unified protocol with minimal parameter updates (0.07%) and reduced
per-task data, UNIVERSE delivers strong performance across both tasks, highlighting its efficiency and generalization.

is updated—just 0.07% of parameters—achieving
second-best performance overall, behind vision en-
coder tuning (∼11%).

(II) Efficient frame sampling: Inputs include k = 8
frames sampled uniformly from a 14-frame clip, bal-
ancing temporal coverage and token efficiency.

(III) Mixed supervision: We prioritize AR (αAR = 0.8)
and open-ended QA (βOE = 0.8), with binary (0.15)
and MC (0.05) for balance and stability.

4. Experiments

Baselines. We compare UNIVERSE to two baseline classes:
(i) Zero-shot VLMs: Seven off-the-shelf models, includ-
ing VideoLLaMA3 (2B, 7B) (Boqiang Zhang, 2025) and
PaliGemma v1 (3B) and v2 (3B, 10B) (Beyer et al., 2024;
Steiner et al., 2024), evaluated without adaptation using
8-frame inputs.1 (ii) Fine-tuned PaliGemma 2: Variants
adapted via full, partial, and parameter-efficient tuning,
selected based on a zero-shot performance sweep (Ap-
pendix G.1). The adaptation space includes 8 baselines:
(i) Single-component tuning: vision encoder (FV), projector
(FP), or language head (FL); (ii) Two-component tuning:
FV+P, FV+L, and FP+L; (iii) Full-model tuning: all compo-
nents (FV+P+L); (iv) LoRA-based tuning: parameter-efficient
adaptation with rank r = 8 (Appendix G.3). All models are
trained on 8-frame clips for a single epoch.

Results. Figure 2 (left, center) shows performance on Ac-
tion Recognition (AR) and Character Recognition (CR).
Zero-shot models perform poorly: VideoLLaMA3 scores
below 12.7% on AR and 6.4% on CR; PaliGemma variants
reach up to 29.7% (AR) and 17.2% (CR), confirming that
general-purpose VLMs lack the temporal grounding and
domain-specific understanding needed for structured rollout

1CLIPScore-based results (Appendix G.2) underperformed and
were limited to candidate sets, reinforcing the need for adaptation.

evaluation. In contrast, UNIVERSE outperforms all models
on AR and ranks third on CR. The top CR baselines either
fine-tune the full vision encoder (∼400M parameters) or use
5× more CR supervision, with each model trained in isola-
tion for a single task and format. UNIVERSE, by comparison,
fine-tunes only the 2.66M-parameter projector (0.07% of the
model) using a unified setup across both tasks, all prompt
formats, and reduced supervision. These results highlight
the efficiency and generality of our adaptation strategy for
temporally grounded evaluation.

5. Conclusion
In this paper, we explore the use of Vision-Language
Model (VLM) as automated evaluators for world model
rollouts, addressing the challenge of fine-grained, tempo-
rally grounded evaluation. We propose a structured protocol
centered on action and character recognition across binary,
multiple-choice, and open-ended formats. To support this,
we introduce UNIVERSE, a unified method for adapting
VLMs via mixed supervision, efficient frame sampling, and
lightweight fine-tuning. Our large-scale study shows that
UNIVERSE matches task-specific baselines using a single
checkpoint and aligns closely with human judgments (see
Appendix A), establishing it as a scalable, semantics-aware
evaluator—particularly valuable when explicit ground truth
is unavailable or costly.

Limitations While UNIVERSE performs well in simulation,
its generalization beyond simulated environments remains
an open challenge. The evaluation protocol targets two fi-
delity axes, which, while comprehensive, omit higher-order
reasoning over goals, causality, and multi-agent dynamics.
Our experiments focus on short to medium context lengths;
scaling to long-horizon rollouts remains an open challenge,
especially under limited supervision. Although compute-
efficient, training could be further improved with adaptive
curricula or progressive tuning. Finally, like all pretrained
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VLMs, UNIVERSE may reflect dataset biases and underper-
form on rare or ambiguous behaviors.

Impact Statement
As world models become integral to simulation, planning,
and decision-making in interactive environments, evalua-
tion remains a key bottleneck for both research progress
and safe deployment. We address this challenge by intro-
ducing a unified, sample-efficient framework for evaluating
world model rollouts using adapted VLMs, designed for
fine-grained, temporally grounded, and semantically coher-
ent assessment.

This capability has direct implications for high-impact do-
mains such as neural game engines (Kanervisto et al., 2025;
Guo et al., 2025; Gao et al., 2025; Chen et al., 2025), em-
bodied AI (Du et al.; Yang et al., 2024), and autonomous
driving (Russell et al., 2025; Hu et al., 2023a; Ni et al.,
2025), where world models simulate environment dynam-
ics and support downstream control and generalization. In
such contexts, precise and interpretable evaluation is critical
not only for benchmarking, but also for diagnosing failure
modes and ensuring alignment with intended behaviors.

By reducing dependence on human annotation and task-
specific fine-tuning, UNIVERSE offers a scalable alternative
that lowers the computational and environmental costs of
rollout evaluation. However, reliance on automated evalua-
tors introduces risks: adapted VLMs may inherit biases from
pretraining, struggle under distributional shift, or yield un-
reliable judgments in edge cases. These risks are amplified
in safety-critical settings, where miscalibrated evaluations
can propagate downstream errors.

We therefore advocate for cautious deployment, accompa-
nied by human oversight, rigorous validation, and transpar-
ent reporting. While UNIVERSE advances the automation
of world model evaluation, it must be situated within evalu-
ation pipelines that foreground robustness, interpretability,
and accountability.
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A. Evaluating World Model Rollouts with UNIVERSE

We evaluate UNIVERSE as an automated evaluator of world model rollouts using the WHAM benchmark (Kanervisto
et al., 2025), which provides pretrained world models and an evaluation set. Our analysis focuses on two axes: (i) in-
domain accuracy, measured on Skygarden—the environment used during fine-tuning—and (ii) generalization to six unseen
environments.

We compare UNIVERSE’s predictions on samples from two world models: (i) WHAM-140M, trained on Skygarden
with lower-quality rollouts (128 × 128 resolution), and (ii) WHAM-1.6B, trained on a diverse environment suite with
higher-resolution output (300 × 180). We prepare 30 rollouts for each model-environment pair, yielding a total of 240
rollouts. Each rollout is segmented into 14-frame clips and paired with six natural language questions, following our
evaluation protocol. UNIVERSE answers each question using majority voting over five greedy decoding samples. Human
annotators then rate each response on a four-point ordinal scale: Correct, Partially Correct, Incorrect, and Unclear. Each
response is independently rated by two annotators; in cases of disagreement, a third annotator serves as adjudicator.
Inter-annotator agreement is quantified using Cohen’s κ. Full details of the annotation protocol are provided in Appendix F.

Results. Figure 3 summarizes graded accuracy across models and environments. We observe a big performance gap
between rollouts from WHAM-140M and WHAM-1.6B. Despite being in-domain, WHAM-140M yields lower evaluation
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Figure 3: Graded accuracy of UNIVERSE across rollouts from WHAM-140M (Env. A) and WHAM-1.6B (Envs. A–G).
Performance improves markedly with higher-fidelity rollouts from WHAM-1.6B, even in out-of-domain settings (B–G).
Cohen’s κ (above bars) reflects inter-rater agreement.

accuracy likley due to a resolution mismatch: its 128× 128 frames are upsampled to 224× 224 for UNIVERSE input. In
contrast, WHAM-1.6B produces higher-quality inputs, enabling more reliable evaluation. On WHAM-1.6B Skygarden
rollouts, UNIVERSE achieves 75.02% graded accuracy on AR and 90.00% on CR. When applied to six previously unseen
environments, AR accuracy remains relatively stable with the lowest accuracy of 66.11% for environment G, and highest
accuracy of 83.33% for environment E. Overall, the results indicate strong generalization, especially for identity-focused
recognition tasks. Cohen’s κ scores further reflect the interpretability of UNIVERSE’s outputs: agreement is substantial
overall (κ = 0.73), with the lowest in Environment G (κ = 0.59) and highest in Environment A on WHAM-1.6B rollouts
(κ = 0.91). These results highlight that UNIVERSE remains aligned with human judgments.

B. Reproducibility Statement
To ensure reproducibility and support future research, we provide detailed instructions to reproduce all main experiments.
Detailed descriptions of model architectures, training procedures, and dataset construction are provided in Section 4 and
Appendix E. All experiments have been repeated for three runs. Plots and tables with quantitative results show the standard
deviation across these runs.

Use of Existing Assets. We experiment with a range of open-weight VLMs, including three PaliGemma variants (version 1
(3B) and version 2 (3B and 10B) (Beyer et al., 2024; Steiner et al., 2024)), VideoLLaMA3 (2B, 7B) (Boqiang Zhang, 2025),
and CLIP (Radford et al., 2021) with the following vision encoder configurations: ViT-B/32, ViT-B/16, ViT-L/14, and
ViT-L/14 with 336× 336 resolution. UNIVERSE is built on top of PaliGemma v2 (3B), using publicly released checkpoints
for initialization. Further architectural and implementation details are provided in Appendix E.2. For our software stack, we
use Matplotlib (Hunter, 2007) for plotting, NumPy (Harris et al., 2020) for data handling, openCV (Bradski, 2000), FFmpeg
(Tomar, 2006) and PIL (Umesh, 2012) for video and image processing, and NLTK (Bird & Loper, 2004) for text processing.
Parameter-efficient fine-tuning is implemented using the PEFT library (Mangrulkar et al., 2022).

Compute Resources. All experiments were conducted using NVIDIA A100 GPUs (40GB memory) on an internal compute
cluster. Each model was trained and/or evaluated using 8 GPUs. The compute breakdown is as follows: zero-shot evaluation
experiments consumed approximately 136 GPU-days; baseline fine-tuning experiments required around 864 GPU-days;
Human evaluation experiments—including rollout generation and response annotation using UNIVERSE—incurred an
additional 1.125 GPU-days. Additional compute was required for preliminary experiments, and failed runs not included in
the final paper. These development activities accounted for an estimated 429 GPU-days. In total, all experiments amounted
to approximately 1,430.12 GPU-days, equivalent to 3.92 GPU-years.

C. UNIVERSE: Implementation Details
This section presents a high-level implementation overview and pseudocode for our framework, UNIVERSE, which adapts
VLMs for evaluating the semantic and temporal fidelity of world model rollouts. The framework consists of two main
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stages:

(i) Adaptation: fine-tuning a VLM on task-specific question-answer (QA) supervision derived from ground truth;

(ii) Evaluation: using the adapted model to assess new rollouts via structured, prompt-based recognition tasks.

C.1. Adaptation Pipeline

The adaptation stage is composed of two modules: AdaptationDatasetBuilder and VLMAdapter.

AdaptationDatasetBuilder. This class constructs an adaptation dataset from raw ground truth data, initialized
via load_ground_truth_data (see Section 3 and Appendix D). The core method, build, takes four arguments:
alpha_task, which specifies the task mixture ratio; beta_format, which controls the distribution over QA prompt
formats; context_length, which determines the number of frames per QA instance; and sampling_strategy,
which defines how frames are sampled from rollouts. The builder first applies stratified_sample to select a subset of
annotated samples that match the specified configuration. For each sample, it invokes _sample_visual_context to
extract the relevant frames, and constructs a triplet consisting of frames, question, and answer.

VLMAdapter. This class applies an adaptation strategy to a base VLM, passed via the base_vlm argument. Given
an adaptation dataset adaptation_data, a tuning strategy specified by the strategy parameter, and a fixed number
of training steps num_steps, the adapter trains the model by iteratively sampling a batch, computing the loss via
compute_loss, and applying updates with update_model.

C.2. Evaluation Pipeline

To support downstream evaluation, we introduce two additional modules: RolloutsGenerator and Universe.

RolloutsGenerator. This component autoregressively samples rollout trajectories from a world model
(textttworld_model). Given an initial observation o_initial and an action sequence a_seq, the rollout method
generates a sequence of predicted observations by maintaining lists of past observations (o_lt) and actions (a_lt). At each
timestep, it calls predict_next_observation to obtain the next predicted frame, appends it to the rollout sequence
o_seq, and continues until timestamps is reached. This process produces a full trajectory simulating environment
dynamics.

Universe. This module serves as the inference engine of our framework. It wraps an adapted VLM passed via
adapted_vlm. Given a generated rollout and an evaluation specification, the method evaluate_rollout constructs
a prompt using generate_question, parameterized by a recognition target and complexity level. It then calls
evaluate, which queries the VLM with the resulting rollout and question, returning the model’s answer.

D. Dataset
This appendix details the construction and release of the dataset used to adapt VLMs for fine-grained evaluation of world
model rollouts. We curate a realistic, human-centered dataset derived from actual gameplay in a complex multi-agent
environment. Designed to provide temporally grounded and semantically structured supervision, the dataset aligns with the
downstream evaluation setting and supports adaptation to both action and character recognition tasks across all QA formats.
We describe the data construction pipeline, QA generation process, and release format below.

Construction Process. The ground truth dataset for adapting the evaluator (see Section 3) was developed in collaboration
with Ninja Theory using human gameplay recordings from Bleeding Edge, a 4v4 multiplayer combat game. Data use was
governed by a formal agreement with the studio, and collection adhered to the game’s End User License Agreement (EULA).
All protocols were approved by our Institutional Review Board (IRB), and personally identifiable information (PII) was
removed prior to analysis.

Each gameplay session is represented as a tuple s = (v, c,m), where v is a high-resolution MP4 video (60 FPS), c is the
synchronized controller action log, and m contains structured metadata (e.g., player roles, agent identities, action categories,
and map context). The full set of gameplay sessions is denoted by S = {(vi, ci,mi)}|S|

i=1.
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The dataset construction pipeline proceeds in three stages:

(i) Preprocessing. We begin by filtering out corrupted applying or inactive sessions and synchronizes the video,
controller logs, and metadata streams using internal game timestamps: Svalid = Preprocessing(S). Each
valid session is segmented into non-overlapping clips of fixed length L = 14 frames, each paired with con-
troller input and shared metadata; formally, for a session s = (v, c,m) ∈ Svalid, the segmentation produces
Segment(v, c,m,L) = {(f (1:L), c(1:L),m)}, where f (1:L) denotes the sequence of frames, c(1:L) the aligned con-
troller inputs, and m the associated metadata. The complete set of extracted clips across all valid sessions is defined as
V =

⋃
s∈Svalid

Segment(s, L), where each element v ∈ V is a triplet (f (1:L), c(1:L),m) consisting of video frames,
corresponding controller inputs, and metadata.

(ii) Description Generation. Next, for each sequence of frames f (1:L) ∈ V , we use the associated control log c(1:L) to
extract action information and the metadata m to obtain character-related attributes. These are combined to generate a
structured natural language description via d = Describe(c(1:L),m). This yields a set of paired video–text examples:
Z =

{
(f (1:L), d) | f (1:L) ∈ V

}
.

(iii) Question-Answer Pair Construction. Finally, we generate six QA pairs per clip, spanning two predefined tasks (AR and
CR), each instantiated in three question formats: binary, multiple-choice, and open-ended. To enable this, we define task-
specific answer spaces using GetAnswerSpace(Z), which returns YAR for action categories and YCR for character
identities, based on all video–text pairs in Z . For each clip, we extract the task-specific ground-truth answer from the
corresponding description as y = ExtractLabel(d, t), where t ∈ {AR,CR}. Each QA format is constructed as
follows: (i) Binary: Two binary question-answer pairs are generated per instance using FormatBinaryPrompt.
The positive question Qpos is constructed using the correct label y ∈ Y(t) and paired with the positive answer Apos.
The negative question Qneg is constructed using an incorrect label ỹ ∼ SampleDistractor(Y(t) \ {y}) and paired
with the negative answer Aneg. (ii) Multiple-Choice: A question Q is generated using the full set of candidate options,
formatted via FormatOptions(Yt). The question is constructed with FormatMCPrompt(t, O) and paired with
the correct answer y ∈ Yt. (iii) Open-Ended: A free-form question Q is generated using FormatOEPrompt(t),
prompting the model to produce the correct label y ∈ Yt without access to predefined answer choices.

The final dataset is represented as D = {(f (1:L)
i , QAi)}|D|

i=1, where each f (1:L) is a video clip and QA = {(Qj , Aj)}6j=1 is
the associated set of question–answer pairs, covering all combinations of three question formats (binary, multiple-choice,
open-ended) and two tasks (Action Recognition and Character Recognition). A detailed data pipeline is provided in
Algorithm 1.
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Algorithm 1 Dataset Construction Process
Procedure DatasetCreation(S, L):
Svalid ← Preprocessing(S)
V ← ∅
for (v, c,m) ∈ Svalid do
Vs ← Segment(v, c,m,L)
V ← V ∪ Vs

Z ← ∅
for (f (1:L), c(1:L),m) ∈ V do

d← Describe(m, c(1:L))
Z ← Z ∪ {(f (1:L), d)}

D ← ∅
YAR,YCR ← GetAnswerSpace(Z)
for (f (1:L), d) ∈ V do
QA ← GenerateQAPairs(d,YAR,YCR)
for (Q,A) ∈ QA do
D ← D ∪ {(f (1:L), Q,A)}

return D
Procedure GenerateQAPairs(d,YAR,YCR):
QA ← ∅
for t ∈ {AR,CR} do

y ← ExtractLabel(d, t)
QApos

bin , QAneg
bin ← CreateBinaryQA(t, y)

QA ← QA∪ {QApos
bin , QAneg

bin }
QAmc ← CreateMCQA(t, y,Yt)
QA ← QA∪QAmc
QAoe ← CreateOpenEndedQA(t, y)
QA ← QA∪QAoe

return Q
Procedure CreateBinaryQA(t, y):

ỹ ← SampleDistractor(Yt \ {y})
Qpos ← FormatBinaryPrompt(t, y)
Qneg ← FormatBinaryPrompt(t, ỹ)
return {(Qpos, Apos), (Qỹ, A

neg)}
Procedure CreateMCQA(t, y,Yt):

O ← FormatOptions(Yt)
Q← FormatMCPrompt(t, O)
return Q, y

Procedure CreateOpenEndedQA(t, y):
Q← FormatOEPrompt(t)
return Q, y

E. Experimental Details
In this section, we provide a detailed description of the dataset preparation process, model architecture, prompt templates,
training procedure. Additionally, we provide an overview of all results presented in the main paper in numerical table form,
an report additional experimental results leveraging alternate fine-tuning solutions.

E.1. Evaluation Metrics

In this section, we provide additional details on metrics used for quantitative evaluation. We employ two complementary
metrics: Exact Match (EM) and ROUGE-F1 (ROUGE), which together capture both syntactic precision and semantic
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alignment.

Exact Match Accuracy (EM ) measures whether the generated answer is identical to the expected answer, providing a
high-precision signal for correctness. Formally, it is defined as:

EM = 1(Â = A) (2)

where Â is the model’s prediction and A is the corresponding ground-truth answer. This metric is especially informative for
binary and multiple-choice formats where the output space is well-defined.

ROUGE F1 (ROUGE) captures token-level semantic overlap between generated and reference responses by computing
the harmonic mean of precision and recall. This allows us to account for partially correct or paraphrased answers. For
binary questions, we compute the metric on the bigram level, while for multiple-choice and open-ended formats, we use
trigram-level evaluation.

Formally, let G and R denote the sets of n-grams in the generated and reference answers, respectively. Precision and recall
are defined as:

P =
|G ∩R|
|G| , R =

|G ∩R|
|R| (3)

where |G ∩R| counts overlapping n-grams. The ROUGE score is then computed as:

ROUGE = 2× P ×R

P +R
(4)

Together, these metrics provide a robust view of model performance: EM reflects exact correctness, while ROUGE provides
a softer measure of semantic fidelity, particularly useful for evaluating open-ended generations.

E.2. Model

This section provides extended details on the architecture, pretraining configuration, and input formatting of the vision-
language models used in our experiments. Our primary backbone is PaliGemma (Beyer et al., 2024; Steiner et al., 2024),
which serves as the core of UNIVERSE

E.2.1. OVERVIEW

PaliGemma is a VLM that processes both images and text as input and autoregressively generates natural language output.
It follows the training paradigm of PaLI-3 (Chen et al., 2023), combining a ViT-based vision encoder (Dosovitskiy et al.,
2021) with a decoder-only Transformer language model. The architecture is fully modular, comprising three parameterized
components: (i) Vision encoder (MV ): based on SigLIP (Zhai et al., 2023), specifically the “shape optimized” So400m
(Alabdulmohsin et al., 2023). (ii) Multimodal projection head (MP ): a single linear layer for projecting visual features
into the language decoder’s embedding space. (iii) Language decoder (ML): a Transformer-based autoregressive model
from the Gemma family (Mesnard et al., 2024; Rivière et al., 2024). Below, we discuss the architecture in more details, the
general layer-level overview is also provided in Table 1.

Vision Encoder: SigLIP-So400m. The visual backboneMV is a ViT-style encoder pretrained using a Sigmoid contrastive
loss (SigLIP). It processes input images by dividing them into non-overlapping 14 × 14 patches. Each patch is linearly
projected into a 1152-dimensional embedding via a convolutional stem. To encode spatial structure, learned positional
embeddings are added before the representation is passed through a stack of 27 SigLIP encoder layers. Each encoder
layer contains multi-head self-attention with projection layers for queries, keys, and values, followed by an MLP block
with GELU-Tanh activations. All transformer blocks use LayerNorm and residual connections. The vision tower supports
multiple input resolutions (224, 448, 896), though our experiments fix resolution at 224px2 for consistency and efficiency.

Multimodal Projection Head. The projection headMP is a lightweight linear mapping from the vision encoder’s output
dimension (1152) to the language decoder’s input dimension (2304). It contains approximately 2.66M parameters and is
initialized with zero-mean weights. This head enables alignment between visual and linguistic modalities and is important
for bridging the representation gap between the vision and language components.

Language Decoder: Gemma. The language module ML is a decoder-only Transformer with 26 layers and 2304-
dimensional hidden states. Token embeddings are learned over a vocabulary of 257,216 tokens, encoded using the
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Table 1: Detailed architecture of the PaliGemma model, comprising a SigLIP-So400m vision tower, a multimodal projection
head, and a Gemma-based language decoder. All transformer layers follow standard design and include residual connections
around attention and MLP blocks.

Component Configuration

Vision Tower: SigLIP-So400m

Patch Embedding Conv2d(in=3, out=1152, kernel=14, stride=14)
Position Embedding Embedding(num_embeddings=256, emb_dim=1152)
Encoder 27 × Transformer Encoder Layers

Self-Attention —
Query / Key / Value projection Linear(1152→ 1152, bias=True)

Layer Normalization LayerNorm((1152,), eps=1e-6)
MLP Block —

Activation Function GELU-Tanh
Feedforward layer (up) Linear(1152→ 4304, bias=True)
Feedforward layer (down) Linear(4304→ 1152, bias=True)

Layer Normalization LayerNorm((1152,), eps=1e-6)
Post-Encoder Layer Norm LayerNorm((1152,), eps=1e-6)

Multimodal Projection Head

Linear Projection Linear(1152→ 2304, bias=True)

Language Model: Gemma

Token Embedding Embedding(vocab=257216, dim=2304)
Decoder Stack 26 × Transformer Decoder Layers

Self-Attention —
Query projection Linear(2304→ 2048, bias=False)
Key projection Linear(2304→ 1024, bias=False)
Value projection Linear(2304→ 1024, bias=False)
Output projection Linear(2048→ 2304, bias=False)

MLP Block —
Gating projection Linear(2304→ 9216, bias=True)
Down projection Linear(2304→ 9216, bias=True)
Up projection Linear(9216→ 2304, bias=True)
Activation Function GELU-Tanh

Normalization Layers —
Input Norm RMSNorm(2304, eps=1e-6)
Post-Attn Norm RMSNorm(2304, eps=1e-6)
Pre-FFN Norm RMSNorm(2304, eps=1e-6)
Post-FFN Norm RMSNorm(2304, eps=1e-6)

Rotary Embeddings GemmaRotaryEmbedding
LM Head Linear(2304→ 257216, bias=False)

SentencePiece tokenizer (Kudo & Richardson, 2018). Each Transformer block contains a self-attention mechanism with
separate linear projections for queries, keys, and values. The MLP block follows a gated architecture, where the input is
processed through parallel down projection and gating projection layers, modulated by a GELU-Tanh activation (Hendrycks
& Gimpel, 2016), combined via elementwise multiplication, and then passed through an up projection to return to the
model’s hidden dimension. RMSNorm is applied before and after both attention and MLP sublayers to stabilize training.
Rotary positional embeddings are added to enable relative position encoding. Output tokens are produced via a tied language
modeling head that projects back to the vocabulary space.
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Table 2: Component-wise parameter overview of the PaliGemma model.

Component Model / Variant Details # Params

Vision Encoder SigLIP-So400m Input resolutions: 224px2, 448px2, 896px2 400M

Multimodal Projection — Connects vision and language components 2.66M

Language Model
PG 1 Gemma 1 2B, pre-trained on 6T tokens 3B
PG 2 Gemma 2 2B, pre-trained on 2T tokens 3B
PG 3 Gemma 2 9B, pre-trained on 8T tokens 9.7B

E.2.2. CONFIGURATIONS

Table 2 summarizes the architecture components and parameter counts of the PaliGemma configurations available for
experimentation. While we focus on the PaliGemma 2 3b variant in our study, we include all publicly released configurations
for completeness and to clarify how our selected model compares to other available options. All three variants share the
same vision encoder and multimodal integration strategy, differing only in the language decoder. The first configuration,
PaliGemma 1 3b, pairs the visual encoder with Gemma 1 (2B), pretrained on 6 trillion tokens, resulting in a total model size
of approximately 3 billion parameters. The second configuration, PaliGemma 2 3b, replaces the decoder with Gemma 2 (2B),
pretrained on 2 trillion tokens, and maintains a comparable total parameter count. The third and largest variant, PaliGemma
2 10b, uses Gemma 2 (9B) as the decoder, pretrained on 8 trillion tokens, yielding a total model size of approximately 9.7
billion parameters.

E.2.3. PROMPT FORMAT

To generate textual responses, we adopt a unified prompt format for the decoder. Each input sequence consists of image
tokens SI , a textual prefix SPREF

T containing the question, and a suffix SSUFF
T containing the expected answer. The model

autoregressively generates the answer tokens, and training loss is applied only to the suffix.

Let n denote the number of input frames and p the number of visual tokens (patch embeddings) per frame. In our setting,
each frame is encoded as p = 256 visual tokens. The overall input schema is as follows:

S = <image>(1)
1 , . . . ,<image>(1)

p , . . . , <image>(n)
1 , . . . ,<image>(n)

p︸ ︷︷ ︸
SI : Visual tokens from n frames, each represented as p patches

<BOS>, answer en, <QUESTION>, <SEP>︸ ︷︷ ︸
SPREF
T : Prefix (cue + question)

<ANSWER>, <EOS>, <PAD>, . . . ,<PAD>︸ ︷︷ ︸
SSUFF
T : Suffix (answer)

Here, SI contains visual tokens produced by the vision encoderMV , and projected intoML space usingMP . The prefix
SPREF
T starts with a special <BOS> token and includes a task-language cue (e.g., “answer en”), the question, and a

separator <SEP>. The suffix SSUFF
T contains the target answer, terminated with <EOS> and padded with <PAD> tokens for

batching.

E.2.4. PRETRAINING DATA AND FILTERING

PaliGemma is pretrained on a mixture of large-scale vision-language datasets, including WebLI (Chen et al., 2022), CC3M-
35L (Sharma et al., 2018), VQ2A-CC3M-35L (Changpinyo et al., 2022), OpenImages (Piergiovanni et al., 2022), and WIT
(Srinivasan et al., 2021). Data quality and safety are maintained through pornographic content filtering, text safety and
toxicity filtering, and privacy-preserving measures.
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Table 3: Summary of hyperparameters used in our experiments.

Hyperparameter Value

Input resolution 224× 224
Image frames per input 1–8
Number of epochs 1–10
Batch size (per device) 1
Gradient accumulation steps 4
Optimizer AdamW (Loshchilov & Hutter, 2019)
Learning rate 5× 10−5, cosine annealing
Learning rate warmup 10%
Weight decay 1× 10−6

Gradient clipping Global norm, threshold 1.0
VLM backbone PaliGemma 2 (3B) (Beyer et al., 2024)

E.3. Main Quantitative Results

Hyperparameters. Table 3 summarizes the core training hyperparameters used across all adaptation experiments. We train
all models on 8 NVIDIA A100 GPUs with a batch size of 1 per device and accumulate gradients over 4 steps, yielding an
effective batch size of 32. Each epoch corresponds to a full pass over the adaptation dataset, and no early stopping is applied.
Models were trained for 1–10 epochs depending on task and setting. Optimization is performed using AdamW (Loshchilov
& Hutter, 2019) with parameters β1 = 0.9, β2 = 0.999, a base learning rate of 5× 10−5, and weight decay of 1× 10−6.
We use cosine learning rate annealing (Loshchilov & Hutter, 2022) with a linear warmup over the first 10% of training
steps. To stabilize training, we apply gradient clipping with a global norm threshold of 1.0. All models use PaliGemma 2
(3B) (Beyer et al., 2024) as the vision-language backbone unless otherwise noted. We vary the number of input frames
between 1 and 8 depending on task, and all images are resized to a fixed resolution of 224× 224. Training is conducted in
bfloat16 precision using data parallelism. Model selection is based on final validation accuracy.

Tabular Results Summary. The following tables summarize primary experimental findings across our study. Each
entry corresponds to a core evaluation or analysis in the paper, organized by experimental section and aligned with the
corresponding table description.

• Zero-Shot Evaluation (Section 4): Table 4 reports ROUGE-F1 zero-shot performance of pretrained PaliGemma and
VideoLLaMA3 models on Action and Character Recognition tasks. Models are evaluated in a zero-shot setting with 1
or 8 input frames, across binary, multiple-choice, and open-ended formats.

• Fine-Tuned Baselines (Section 4): Table 5 reports ROUGE-F1 and Exact Match performance of PaliGemma 2 variants
fine-tuned using full, partial, and parameter-efficient strategies. All models are trained on a single frame for one epoch,
and evaluated across binary, multiple-choice, and open-ended formats.

F. Human Evaluation Details
This appendix provides full details of our human evaluation protocol, including rollout generation, annotation procedures,
inter-annotator agreement, and evaluation metrics. The goal is to validate the adapted VLM’s fine-grained predictions on
generated video rollouts.

F.1. Study Design

Task Overview. Human annotators were presented with short video clips generated by a world model, each paired with a
natural language question and an answer generated by the VLM. They were asked to judge whether the model’s answer
accurately described what was shown in the video. Each QA pair was rated using one of four categories: Correct (score =
1), Partially Correct (0.5), Incorrect (0), or Unclear / Cannot Tell (excluded from accuracy computation).

Annotation Setup and Interface. Annotations were collected using a custom PowerPoint-based interface (see Figure 5).
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Table 4: Zero-shot ROUGE-F1-based evaluation of PaliGemma (PG) and VideoLLaMA3 (VL3) models on Action and
Character Recognition tasks using 1 and 8 input frames. “MC” denotes multiple-choice and “OE” open-ended formats.

Action Recognition Character Recognition

Fr Model Binary MC OE Binary MC OE

1

PG 1 3B 50.43 ± 0.13 8.12 ± 0.02 10.83 ± 0.01 50.73 ± 0.38 0.46 ± 0.06 0.00 ± 0.00
PG 2 3B 44.69 ± 0.03 9.30 ± 0.17 12.64 ± 0.01 48.58 ± 0.07 0.28 ± 0.06 0.01 ± 0.00
PG 2 10B 50.04 ± 0.03 26.98 ± 0.00 12.35 ± 0.21 50.08 ± 0.07 8.33 ± 0.50 0.00 ± 0.00

VL3-2B 3.24 ± 0.00 18.52 ± 0.06 6.27 ± 0.05 8.76 ± 0.04 3.44 ± 0.08 0.50 ± 0.01
VL3-7B 45.02 ± 0.28 15.53 ± 0.05 6.54 ± 0.04 39.09 ± 0.73 6.21 ± 0.05 0.51 ± 0.02

8

PG 1 3B 51.67 ± 0.02 10.68 ± 0.00 10.32 ± 0.00 51.39 ± 0.07 0.25 ± 0.00 0.00 ± 0.00
PG 2 3B 47.61 ± 0.19 6.73 ± 0.04 14.52 ± 0.00 48.37 ± 0.18 0.03 ± 0.00 0.01 ± 0.00
PG 2 10B 50.02 ± 0.06 26.93 ± 0.01 12.12 ± 0.00 50.09 ± 0.06 0.22 ± 0.00 0.00 ± 0.00

VL3-2B 13.92 ± 0.13 3.47 ± 0.02 0.32 ± 0.01 13.92 ± 0.13 3.46 ± 0.04 0.32 ± 0.01
VL3-7B 15.05 ± 0.21 16.67 ± 0.35 6.35 ± 0.06 12.76 ± 0.52 5.88 ± 0.01 0.54 ± 0.01

Table 5: Performance of fine-tuned PaliGemma 2 variants on Action and Character Recognition tasks. We compare full,
partial, and parameter-efficient tuning strategies. “MC” denotes multiple-choice and “OE” open-ended formats.

Binary Multiple-choice Open-ended

Model EM ROUGE EM ROUGE EM ROUGE

Action Recognition

FL 50.00 ± 0.00 50.00 ± 0.00 13.13 ± 0.00 27.57 ± 0.00 13.13 ± 0.00 27.57 ± 0.00
FP 83.97 ± 0.02 83.97 ± 0.02 61.43 ± 0.58 68.05 ± 0.70 61.68 ± 0.35 68.46 ± 0.19
FV 83.70 ± 0.97 83.70 ± 0.97 63.40 ± 0.45 69.87 ± 0.44 66.03 ± 0.10 71.92 ± 0.08
FP+L 74.47 ± 1.64 74.47 ± 1.64 13.13 ± 0.00 27.57 ± 0.00 55.74 ± 0.70 64.83 ± 0.29
FV+L 75.80 ± 0.16 75.80 ± 0.16 13.13 ± 0.00 27.57 ± 0.00 13.13 ± 0.00 27.57 ± 0.00
FV+P 73.46 ± 0.85 73.46 ± 0.85 61.21 ± 0.23 67.57 ± 0.21 64.70 ± 0.02 70.93 ± 0.01
Fall 74.35 ± 1.37 74.35 ± 1.37 13.13 ± 0.00 27.57 ± 0.00 13.13 ± 0.00 27.57 ± 0.00
FLoRA 44.66 ± 0.21 44.66 ± 0.21 0.02 ± 0.01 9.21 ± 0.01 0.00 ± 0.00 12.49 ± 0.00

Character Recognition

FL 50.00 ± 0.00 50.00 ± 0.00 98.92 ± 0.00 98.92 ± 0.00 98.98 ± 0.00 98.99 ± 0.01
FP 99.09 ± 0.11 99.09 ± 0.11 99.22 ± 0.33 99.22 ± 0.33 99.15 ± 0.07 99.15 ± 0.07
FV 99.31 ± 0.01 99.31 ± 0.01 99.14 ± 0.42 99.14 ± 0.42 99.61 ± 0.12 99.61 ± 0.12
FP+L 50.00 ± 0.00 50.00 ± 0.00 98.28 ± 0.00 98.30 ± 0.02 98.39 ± 0.00 98.39 ± 0.00
FV+L 50.00 ± 0.00 50.00 ± 0.00 96.88 ± 0.00 96.88 ± 0.00 98.45 ± 0.00 98.45 ± 0.00
FV+P 60.32 ± 0.02 60.32 ± 0.02 99.22 ± 0.00 99.22 ± 0.00 99.79 ± 0.00 99.79 ± 0.00
Fall 50.00 ± 0.00 50.00 ± 0.00 97.67 ± 0.06 97.67 ± 0.06 96.55 ± 0.01 96.55 ± 0.01
FLoRA 48.76 ± 0.00 48.76 ± 0.00 0.00 ± 0.00 0.32 ± 0.00 0.00 ± 0.00 0.01 ± 0.01

Figure 4: Instructional slides shown to annotators, illustrating the two recognition targets: actions (left) and characters
(center and right). The slides contain 20 reference videos in total (7 for actions, 13 for characters). These examples were
used to help annotators consistently evaluate VLM-generated responses during the labeling task.
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Table 6: Instructions provided to annotators prior to the evaluation task. The interface includes task context, rating criteria,
general guidelines, and detailed descriptions of supported action categories.

1. Task Overview
You will be presented with:
• A short video clip;
• A natural language question about the video;
• An answer generated by a vision-language model.
Your task is to evaluate whether the model’s answer accurately describes the events depicted in the video.
2. How to Rate Each Answer
Assign one of the following categories:
• Correct (1.0): Fully matches the event in the video;
• Partially Correct (0.5): Captures the general idea but contains a minor error;
• Incorrect (0.0): Wrong, hallucinated, or mismatched with the visual evidence;
• Unclear / Cannot Tell: Not enough evidence to confidently decide.
3. General Guidelines
• Watch the full video before rating;
• Base your decision solely on visible content;
• Use provided action and character references;
• If multiple plausible interpretations exist and the answer matches one, mark as Correct;
• If unsure even after review, mark Unclear / Cannot Tell;
• Optionally leave comments for ambiguous or interesting cases.
5. Action Label Definitions
• Evading Backwards: Moves backwards to avoid threat or reposition.
• Evading Forwards: Moves forwards.
• Evading Left / Right: Lateral movement left or right.
• Jumping Down: Jumps from a higher to a lower platform or level.
• Jumping on the Level: Jumps without elevation change.
• Jumping Up: Jumps upward to reach a higher platform.
• Mounting Hoverboard: Begins riding or is seen riding a hoverboard.

Each slide presented a short video, a question, and a generated answer. Annotators selected a rating from a predefined
rubric. The full annotation guidelines – including action and character definitions and rating instructions – were embedded
in the annotation deck for reference. For completeness, we also provide them in Table 6 and Figure 4. The annotation
study was carried out by a subset of the authors and close collaborators with prior experience in the environment. Judging
correctness required non-trivial familiarity with the visual dynamics and task ontology, making expert annotation necessary.
All annotators were compensated above local minimum wage rates.

Each QA pair was independently rated by two primary annotators. In cases of disagreement or if either annotator marked the
example as Unclear, a third, more experienced adjudicator reviewed the pair and assigned a final rating. When it comes to
annotators expertise, the two primary annotators spent several hours familiarizing themselves with the game environment and
became proficient in identifying characters, actions, and gameplay dynamics. The adjudicator further reviewed numerous
generated rollouts.

Selected World Models. We evaluate the VLM on video rollouts generated by two autoregressive world models of different
scales, both based on the WHAM architecture (Kanervisto et al., 2025), a publicly available world model. These models are
trained to model sequences of visual frames and controller actions, without any textual supervision. Each world model is a
decoder-only transformer (Radford et al., 2019; Vaswani et al., 2017) trained to autoregressively predict discrete tokens
representing visual observations and actions. Visual frames are first encoded using a VQGAN (Esser et al., 2021), while
joystick actions are tokenized using a learned discretization scheme based on action bucketization (Kanervisto et al., 2020).
The model is trained to predict the next token in the sequence, conditioned on prior visual and action tokens. Specifically,
we focus on two versions of WHAM with differing model capacities and training environments:
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• WHAM 140M: A 140M-parameter model trained for 100K steps on gameplay from a single environment (Environment
A / Skygarden) at 128× 128 resolution.

• WHAM 1.6B: A 1.6B-parameter model trained for 200K steps on gameplay from seven environments (Environments
A–G, including Skygarden) at 300× 180 resolution.

Rollouts Generation. Rollout generation follows a consistent protocol for both models: at inference time, the model is
conditioned on 1 second of ground-truth gameplay (visual and action tokens), after which it generates 10 seconds of future
gameplay conditioned only on a sequence of held-out controller actions. The generated rollout is then split into 14-frame
chunks for fine-grained evaluation. This setup enables a comprehensive analysis of the VLM’s evaluation capabilities across
two axes: (i) in-domain performance: evaluating on Skygarden (Environment A), the environment used for fine-tuning;
(ii) generalization: assessing performance on six unseen environments (Environments B–G). It also allows comparison
across generation quality and model capacity.

Rollout Filtering. To ensure quality and clarity, we filtered out rollouts that: (i) had no visible agents, (ii) featured stationary
agents, (iii) were taken from early uninformative environment segments, or (iv) had significant visual obstruction. We also
excluded sequences containing more than three characters to reduce annotation ambiguity.

UNIVERSE Response Generation. To obtain responses from UNIVERSE, we provide it with a video segment (resized to
match the evaluator’s input resolution) along with its corresponding question. We then sample five responses using greedy
decoding. We then select the most frequent response as the final answer. In cases where all five responses are unique (i.e., no
majority), one response is selected uniformly at random. The resulting dataset comprises rollouts from 8 model–environment
pairs: rollouts generated by WHAM 140M on Environment A (Skygarden), and rollouts generated by WHAM 1.6B across
seven distinct environments (Environments A–G). For each model–environment pair, we sample 30 rollouts. Each rollout is
annotated with 6 question–answer (QA) pairs, along with a corresponding response from the adapted evaluator. Each of the
resulting 1,440 QA instances was rated by 3 annotators, yielding 4,320 total human judgments.

F.2. Evaluation Metrics

Given the video clip and six corresponding question–
answer (QA) pairs, evaluate each answer.
For each QA pair, assign a label based on how accurately the 
answer reflects the visual content of the video:

Correct (1) // Partially Correct (0.5) // Incorrect (0) //
Unclear. 

Refer to the annotation rubric and examples provided in the 
guidelines.

Question Response Score
1. Is the character mounting hoverboard?
2. What is the character doing? Choose from: evading backwards, 
evading forwards, evading left, evading right, jumping down, jumping on 
the level, jumping up, mounting hoverboard.

3. What is the character doing?

4. Is the shown character Gizmo?

5. What character is shown? Choose from: Nidhoggr, Makutu, Prism, 
Ninja, Kulev, Azrael, Miko, Keyboardguy, Gizmo, Bruiser, Buttercup, 
Wrekko, Cass.

6. What character is shown?

Yes
Mounting 

hoverboard
Mounting 

hoverboard

Yes

Gizmo

Gizmo

1

1

1

1

1

1

Figure 5: Annotation interface example. Each
instance includes a video clip, task instructions,
and a table with: Question (generated via evalua-
tion protocol), Response (VLM output), and Score
(human-assigned label).

We report two accuracy-based metrics using the adjudicated labels:

Strict Accuracy.: The proportion of QA pairs labeled as Correct:

AccStrict =
NCorrect

NAnswerable
, (5)

Graded Accuracy.: Partial credit given to Partially Correct responses:

AccGraded =
NCorrect + 0.5×NPartial

NAnswerable
. (6)

Only examples not marked Unclear by adjudication are included in
NAnswerable.

Inter-Annotator Agreement. To quantify rating consistency, we com-
pute Cohen’s κ between the two primary annotators. The adjudicator’s
label is used only when disagreement occurs and is excluded from
agreement computation. Results are shown in Table 7.

Sample Size Justification. We sample 30 rollouts per
model–environment pair. With σ ≈ 0.2 and 95% confidence,
the CI width is CI Width = z 1−C

2
· σ√

n
. This yields ∼7.1% CI for

n = 30 (one environment), and 2.5% when aggregating over n = 240
rollouts.

F.3. Results

Table 8 reports graded and strict accuracy across environments, recognition targets (Action and Character Recognition), and
question formats (Binary, Multiple-Choice, Open-Ended).

22



Adapting Vision-Language Models for Evaluating World Models

Table 7: Inter-annotator agreement and valid QA coverage across environments. We report Cohen’s κ between the two
primary annotators for each world model–map pair. The total number of valid examples excludes QA pairs marked as
Unclear by at least one annotator.

Model Env. Valid QA Pairs Cohen’s κ

WHAM 140M A 24 0.79

WHAM 1.6B

A 29 0.91
B 28 0.67
C 28 0.74
D 29 0.87
E 30 0.67
F 29 0.61
G 30 0.59

Table 8: Graded / Strict accuracy of the adapted evaluator on Action and Character Recognition tasks across environments
and question formats, as evaluated by human annotators. We report accuracy for Binary, Multiple-Choice (MC), and
Open-Ended (OE) formats, disaggregated by recognition task and model. All scores reflect final adjudicated ratings.

Action Recognition Character Recognition

Model Env. Binary MC OE Binary MC OE

WHAM 140M A 92.9 / 89.3 35.7 / 32.1 41.1 / 39.3 85.7 / 85.7 10.7 / 10.7 60.7 / 60.7

WHAM 1.6B

A 98.3 / 96.7 51.7 / 46.7 75.0 / 73.3 93.3 / 93.3 83.3 / 83.3 93.3 / 93.3
B 96.7 / 96.7 60.0 / 60.0 65.0 / 60.0 99.9 / 99.9 90.0 / 90.0 93.3 / 93.3
C 96.7 / 96.7 63.3 / 63.3 80.0 / 80.0 99.9 / 99.9 86.7 / 86.7 93.3 / 93.3
D 93.3 / 93.3 43.3 / 43.3 73.3 / 73.3 96.7 / 96.7 96.7 / 96.7 99.9 / 99.9
E 80.0 / 76.7 76.7 / 73.3 93.3 / 93.3 96.7 / 96.7 99.9 / 99.9 99.8 / 99.8
F 71.7 / 70.0 56.7 / 56.7 75.0 / 70.0 96.7 / 96.7 93.3 / 93.3 96.7 / 96.7
G 68.3 / 66.7 50.0 / 46.7 80.0 / 76.7 93.3 / 93.3 90.0 / 90.0 96.7 / 96.7

We observe a clear gap in performance between rollouts generated by the two world models. The evaluator struggles with
outputs from WHAM 140M, achieving substantially lower accuracy compared to WHAM 1.6B. This is likely due to a
mismatch in image resolution: WHAM 140M generates frames at 128× 128 resolution, which must be upsampled to the
evaluator’s expected input of 224× 224. Despite resizing, the resulting frames often lack sharpness, making actions and
characters harder to recognize. In contrast, the VLM performs well on rollouts from WHAM 1.6B, even across diverse
environments. On the in-domain setting (Environment A), the model achieves strong results—averaging 75.02% graded
accuracy for Action Recognition (AR) and 90.00% for Character Recognition (CR). When evaluating on the six unseen
environments (Environments B–G), performance for AR drops slightly (from 75.02% to 73.52%), while CR remains stable
or improves, suggesting strong generalization in character grounding and visual consistency tracking.

Qualitative Examples. Figure 6 illustrates the diversity of generated rollouts across environments. WHAM 1.6B captures
greater visual variation and scene composition compared to WHAM 140M.

G. Supplementary Experimental Results
This appendix presents additional experimental results that support the main findings but are omitted from the main paper
for clarity and space. These include: (i) a zero-shot analysis of PaliGemma variants to motivate backbone selection, (ii)
CLIPScore-based baselines to contextualize performance without adaptation, and (iii) a study of low-rank adaptation (LoRA)
across different rank values. While these results are not central to the unified evaluation framework proposed in the main
text, they provide valuable insight into model selection, adaptation efficiency, and the limitations of standard evaluation
proxies in our setting.
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Table 9: Zero-shot accuracy-based evaluation of CLIP models and baseline methods on Action and Character Recognition
tasks using 1 and 8 input frames.

Fr Model Action Recognition Character Recognition

1

CLIP ViT-B/32 24.04 ± 0.00 13.32 ± 0.00
CLIP ViT-B/16 52.67 ± 0.00 16.47 ± 0.00
CLIP ViT-L/14 24.60 ± 0.00 9.95 ± 0.00
CLIP ViT-L/14-336 12.17 ± 0.00 8.85 ± 0.05

8

CLIP ViT-B/32 36.22 ± 0.00 14.41 ± 0.00
CLIP ViT-B/16 57.36 ± 0.00 17.24 ± 0.00
CLIP ViT-L/14 17.57 ± 0.00 10.10 ± 0.00
CLIP ViT-L/14-336 23.12 ± 0.00 8.64 ± 0.00

G.1. Zero-Shot Performance of PaliGemma Models

In this section, we benchmark three pretrained configurations—PaliGemma 1 3b, PaliGemma 2 3b, and PaliGemma 2
10b—under our proposed protocol and motivate our choice of PaliGemma 2 3b as the default backbone for subsequent
experiments. Each model receives a natural language prompt along with either 1 or 8 image frames as input and produces a
textual response. This experiment probes both model capacity and the role of temporal visual context in zero-shot settings.

Results. Figure 7 reports ROUGE scores across task types, question formats, and visual context lengths. While zero-shot
performance reveals some capacity for structured reasoning—particularly in the multiple-choice setting—it remains limited
overall. Binary accuracy hovers near chance, and open-ended responses frequently lack specificity. Performance is strongest
on action recognition (AR), likely reflecting pretrained models’ familiarity with generic visual dynamics. In contrast,
character recognition (CR) lags behind, underscoring a lack of grounding in domain-specific entities. Increasing the
number of input frames modestly improves AR, but yields diminishing returns for CR. Among the evaluated configurations,
PaliGemma 2 10b performs best in absolute terms. However, the margin over PaliGemma 2 3b is narrow, and PaliGemma
2 3b offers a substantially smaller footprint while using a newer Gemma 2 decoder architecture. We therefore adopt
PaliGemma 2 3b as the default model for all subsequent adaptation experiments, balancing performance, compute efficiency,
and architectural recency.

G.2. CLIPScore Comparisons

To further evaluate zero-shot recognition capabilities without adaptation, we apply CLIPScore to our rollout evaluation
protocol. Specifically, we assess four pretrained CLIP variants – ViT-B/32, ViT-B/16, ViT-L/14, and ViT-L/14-336 – across
both Action Recognition (AR) and Character Recognition (CR) tasks using 1-frame and 8-frame visual inputs. For each
evaluation instance, we extract either 1 or 8 frames from the video segment and compute the cosine similarity between each
image and a predefined set of textual labels (i.e., action verbs for AR, character names for CR). For single-frame settings, we
select the label with the highest similarity score as the predicted class. In the multi-frame setting, we compute predictions
for each frame independently and use a majority vote to produce the final prediction. We also report two reference baselines
for context: a random classifier, which achieves 12.5% on AR and 7.7% on CR, and a majority-class predictor, which yields
35.5% and 17.6% respectively. These are included only for calibration.

Results. Table 9 demonstrates the results. While CLIP ViT-B/16 performs relatively well on AR in both input settings,
performance remains inconsistent across model scales and tasks. In particular, CR accuracy remains low, reflecting CLIP’s
limited grounding in domain-specific visual semantics and fine-grained identity resolution. Larger CLIP models such as
ViT-L/14 do not consistently outperform smaller variants, and 8-frame inputs provide only marginal gains over single-frame
inputs.

Overall, these results suggest that while CLIPScore offers a lightweight and scalable evaluation proxy, it lacks the temporal
grounding and semantic specificity required for structured rollout evaluation. Performance falls short relative to our selected
baselines, and the method is inherently constrained to predefined candidate sets—limiting its applicability to open-ended or
compositional tasks. As such, we exclude CLIP-based scores from our primary comparisons and instead focus on adapted,
generative VLM-based evaluators.
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Table 10: Performance on Action and Character Recognition tasks after LoRA-based adaptation with varying ranks
(r ∈ {8, 16, 32, 48, 64}). Adapters are applied to attention and MLP layers in both vision and language components.

Binary Multiple-choice Open-ended

Rank EM ROUGE EM ROUGE EM ROUGE

Action Recognition

8 44.66 ± 0.21 44.66 ± 0.21 0.02 ± 0.00 9.21 ± 0.00 0.00 ± 0.00 12.49 ± 0.00
16 44.47 ± 0.43 44.47 ± 0.43 0.02 ± 0.00 9.21 ± 0.00 0.00 ± 0.00 12.49 ± 0.00
32 44.59 ± 0.03 44.59 ± 0.03 0.02 ± 0.00 9.21 ± 0.00 0.00 ± 0.00 12.49 ± 0.00
48 46.71 ± 3.20 46.71 ± 3.20 0.02 ± 0.00 9.21 ± 0.00 0.00 ± 0.00 12.49 ± 0.00
64 48.67 ± 0.13 48.67 ± 0.13 0.02 ± 0.00 9.21 ± 0.00 0.00 ± 0.00 12.49 ± 0.00

Character Recognition

8 48.76 ± 0.00 48.76 ± 0.00 0.00 ± 0.00 0.32 ± 0.00 0.00 ± 0.00 0.01 ± 0.01
16 48.62 ± 0.23 48.62 ± 0.23 0.00 ± 0.00 0.14 ± 0.00 0.00 ± 0.00 0.05 ± 0.00
32 48.98 ± 0.08 48.98 ± 0.08 0.00 ± 0.00 0.14 ± 0.00 0.00 ± 0.00 0.05 ± 0.00
48 48.91 ± 0.09 48.91 ± 0.09 0.00 ± 0.00 0.14 ± 0.00 0.00 ± 0.00 0.05 ± 0.00
64 48.72 ± 0.06 48.72 ± 0.06 0.00 ± 0.00 0.14 ± 0.00 0.00 ± 0.00 0.05 ± 0.00

G.3. Low-Rank Adaptation Comparisons

This section presents an extended analysis of low-rank adaptation (LoRA) as a parameter-efficient strategy for adapting
vision-language models to our protocol. We systematically vary the rank parameter r and measure its impact on Action
and Character Recognition performance across all prompt formats. All experiments in this section are conducted using
PaliGemma 2 (3B) as the backbone model, consistent with the main fine-tuning results. These experiments assess whether
increasing rank provides meaningful gains, and inform our decision to report only the rank-8 setting in the main paper.

Results. Table 10 presents the performance of LoRA-based adaptation across a range of rank values (r ∈ {8, 16, 32, 48, 64})
for both Action Recognition (AR) and Character Recognition (CR) tasks, across all prompt formats. We report exact match
(EM) and ROUGE-F1 averaged over three runs. Increasing the rank beyond r = 8 yields no consistent improvements across
tasks or formats. Performance on binary prompts remains close to random, while performance on multiple-choice and
open-ended formats stays near zero across all ranks. These results suggest that LoRA, even with increased capacity, is
insufficient for capturing the fine-grained temporal and semantic dependencies required by our evaluation protocol. Given
the lack of benefit from increasing rank—and the added parameter cost—it is inefficient to scale LoRA rank beyond r = 8.
Accordingly, all results reported in the main paper use r = 8, while extended comparisons with higher ranks are presented
here for completeness.
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Environment A, WHAM 140M

Environment A, WHAM 1.6B

Environment B, WHAM 1.6B

Environment C, WHAM 1.6B

Environment D, WHAM 1.6B

Environment E, WHAM 1.6B

Environment F, WHAM 1.6B

Environment G, WHAM 1.6B

Figure 6: Representative frames from rollouts generated across seven environments. WHAM 140M (top row) was trained
only on Skygarden (Environment A); WHAM 1.6B (rows 2-8) generalizes across seven environments.
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Figure 7: Zero-shot evaluation results for PaliGemma variants across tasks, prompt formats, and visual context sizes. Overall
performance remains limited, indicating the need for task-specific adaptation.

27


