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ABSTRACT

We propose an inferential framework testing the general community combinatorial
properties of the stochastic block model. We aim to test the hypothesis on whether
a certain community property is satisfied, e.g., whether a given set of nodes belong
to the same community, and provide p-values for uncertainty quantification. Our
framework is applicable to all symmetric community properties. To ease the chal-
lenges caused by the combinatorial nature of community properties, we develop a
novel shadowing bootstrap method. Utilizing the symmetry, our method can find a
shadowing representative of the true assignment and the number of tested assign-
ments in the alternative is largely reduced. In theory, we introduce a combinatorial
distance between two community classes and show a combinatorial-probabilistic
trade-off phenomenon. Our test is honest as long as the product of the combi-
natorial distance between two community property classes and the probabilistic
distance between two connection probabilities is sufficiently large. Besides, we
show that such trade-off also exists in the information-theoretic lower bound. We
also implement numerical experiments to show the validity of our method.

1 INTRODUCTION

Clustering is an important feature for network studies, which refers to the presence of node com-
munities in the underlying graph. Community partitions the nodes into subgroups, within which a
higher level of connectivity is perceived. Its broad spectrum of applications includes the fields of
sociology (Wasserman & Faust, 1994), biology (Barabasi & Oltvai, 2004), physics (Newman, 2003)
and internet (Albert et al., 1999). Stochastic block model (SBM) (Holland et al., 1983) is one of the
most widely studied statistical models depicting the network community structures. It is a random
graph model which divides the nodes into disjoint communities and assigns the probability of con-
nection between two nodes according to their community memberships. One of its central problems
in previous studies is community detection. However, most of the existing research focused on esti-
mating the community labeling without uncertainty quantification (Choi et al., 2012; Mossel et al.,
2012; Airoldi et al., 2013; Massoulié, 2014; Abbe et al., 2016; Mossel et al., 2016). Some funda-
mental limits of community recovery have also been established in previous studies. For example,
Abbe et al. (2016) showed the optimal phase transition for the exact recovery of the community as-
signments using the maximum likelihood. The semi-definite relaxation methods (Abbe et al., 2016;
Hajek et al., 2016; Agarwal et al., 2017; Bandeira, 2018) and the spectral methods (Yun & Proutiere,
2014; Abbe & Sandon, 2015; Gao et al., 2017; Abbe et al., 2020) are also shown to be optimal in
exact recovery. Besides the exact recovery, Zhang & Zhou (2016) quantified the statistical rate of the
community estimation via the mismatch ratio and showed the minimax rate of the mismatch ratio
for community detection. In summary, the community estimation studies have two major limits: 1)
it does not provide the p-values to evaluate the uncertainty of the estimation, which are essential
in many scientific applications, and 2) it requires the recovery of community assignments for all
nodes, while in many scientific applications, we are interested in the community properties of a spe-
cific subset of nodes, e.g., whether two sets of nodes belong to the same community. We formulate
the following examples of statistical hypotheses for illustration.
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Example 1.1 (Same community test for m nodes). We want to test whether m given nodes are in
the same cluster or not. Without loss of generality, we have the hypothesis:

Hp : Nodes 1, ..., m belong to the same community,
H; : There exists two nodes 1 < j # k < m belonging to two different communities.

Example 1.2 (Group community test). For two groups of nodes, we know in prior that nodes within
each group belong to the same community. We aim to further test whether these two groups belong
to the same community. We denote one node set as S,, = {1,...,m} and the other as S, =
{m+1,...,m+ m'}. The group community hypothesis is

Hp : Nodes in S,,, U S;,,» belong to the same community,
H; : Nodes in S, belong to community a, but nodes in S, belong to community b # a.

Example 1.3 (Equal-sized communities test). Given an SBM of n nodes and K communities, we
aim to test whether each community has the same size. Namely, we aim to test the hypothesis:

Hy : Each community has the size n/ K,
H; : At least one of the communities has size not equal to n/K.

In order to conduct hypothesis tests including the above examples, we develop a general community
property test. We consider the SBM with n nodes and K communities. Denote the community
assignment of the nodes by z = (2(1), ..., 2(n)) € {1,..., K}". The homogeneous SBM assumes
that the edges of the random graph are independent Bernoulli random variables with connection
probability p if z(i) = z(j) and q if z(¢) # z(j). We reparameterize p,q as p = ppA; and
q = pnA2, Where \; and )\, are constants independent of n, and p,, is the signal strength. Let
Co,C1 C {1,..., K}™ be two disjoint community assignment families. We are interested in the
general community property test:

Hy:zeCyversus Hy : z € C4. (1.1)

We characterize the hardness of the test by two kinds of “distances™: the probabilistic distance
between p and ¢, and the combinatorial distance between Cy and C;. The existing literature on
community detection only focused on the probability distance, e.g., the Rényi divergence I(p, q) =

—2log (, /pq + /(1 —p)(1— q)) (Zhang & Zhou, 2016). In comparison, our paper introduces
a novel combinatorial distance between Cy and C; denoted as d(Cy,C1) (see Definition 2.4) and
proposes a general testing method that is honest and powerful when

Combinatorial-Probabilistic Trade-Off: I(p, ¢)d(Co,C1) = Q(n°) (1.2)

for some arbitrarily small ¢ > 0. On the other hand, we show the minimax lower bound of the test in
the sense that Hy and H; in (1.1) cannot be differentiated when I(p, ¢)d(Co,C1) < clogn for some
constant ¢ > 0.! The multiplication between I(p, q) and d(Cp, C1) reveals the trade-off between the
probabilistic distance and the combinatorial distance in the general community property test.

2 COMMUNITY PROPERTIES OF THE STOCHASTIC BLOCK MODEL

In our paper, we consider the fixed assignment stochastic block model, denoted by M (n, K, p, q, z).
Denote by [n] = {1,...,n} for any integer n. For simplicity, we start with the scenario where the
community sizes are even, and will generalize to the uneven case in Appendix B. We denote the
even assignment class by K" := {z € [K|" : |{i : 2(¢) = k}| = n/K,Vk € [K]}. In our paper,
we assume K to be bounded. Let A € {0,1}™*™ be the symmetric adjacency matrix of the random
graph generated from the SBM. In the following part of the paper, we will study the community
property test with an observation of the adjacency matrix A ~ M(n, K, p, q, z).

2.1 SYMMETRIC COMMUNITY PROPERTIES

In this section, we aim to define the community property and the distance between two community
families. In general, we say a community property is a subset of [K]™. However, such a defini-
tion is too general and may include some ill-posed examples. For instance, if we can transfer one

"We refer to Theorem 3.2 and Theorem 4.1 for the rigorous arguments about the upper and lower bounds.
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assignment to another under certain permutation of the community labels, they are essentially the
same assignment and should belong to the same community property. This motivates us to give the
following definition of equivalent assignments.

Definition 2.1 (Equivalent community assignments). Let Sk be the symmetric group containing all
bijections from [K] to itself. We say two assignments z and 2z’ € [K]™ are equivalent, denoted as
z ~ 2/, if there exists a permutation o € Sk such that o(z) = z’. Here o(z) means implementing
the permutation o to each entry of the vector z. More generally, given a node set N' C [n], we
denote by z,r the sub-vector of z with entries in . We say zxr =~ 2\, if there exists a permutation
o € Sk such that o(zpr) = 2.

With Definition 2.1, we give the definition of symmetric community properties as follows.

Definition 2.2 (Symmetric community properties). We say a community property Cy is symmetric,
if there exist a node set A C [n] and an assignment z € K™, such that Cy = {z € K" : zpr >~ Zyr }.
We say some C; C K™\Cy is an alternative property of Cy if C; is closed under permutations on the
support NV, i.e., for any z € C; C K™\Co, if some 2’ satisfies z)\, ~ zx, then 2’ € C; as well.

Intuitively, the node set A and the assignment 2 in Definition 2.2 are the representative node set and
assignment generating all possible assignments in the community property via permutation. The
community property Cg is “symmetric” in the sense that all its assignments are equivalent on the
support of node set A. We impose the following assumption on testing symmetric properties.

Assumption 2.1 (Symmetric community property test). In the hypothesis test Hy : z € Cy v.s.
H; : z € C1, we assume Cy,C; C K™ and Cy is symmetric and C; is an alternative property of Co.

By Definition 2.2, C; = C§ is an alternative property of Cy. Meanwhile, C; satisfying the assumption
above could be a strict subset of C§, allowing more examples in practice. In fact, we can show that
Examples 1.1 and 1.2 satisfies Assumption 2.1, whose concrete forms of A" and Z are given below.

e Example 1.1: Same community test for m nodes. We can define
Co={z€K":2(1)=---=2z(m)}and C; = K"\ (o, 2.1)
while A = [m] and 7 is any assignment satisfying zZy = (1,...,1) € [K]™.

e Example 1.2: Same community test for groups. We have

Co={z€eK":2(1)=---=z2(m)=z(m+1)=---=z(m+m')} 22
Ci={zeK":z(1)=---=z(m)#z(m+1)=---=2(m+m')}, )
where Cy is symmetric by choosing A" = [m +m/] and Zy = (1,...,1) € [K]™*™.

2.2 COMBINATORIAL DISTANCE BETWEEN COMMUNITY PROPERTIES

In order to depict the relationship between Cy and Cy, we propose a metric of distance in terms of the
number of misaligned edges. We first define the set of misaligned edges between two assignments.

Definition 2.3. For any two assignments zy € Cy and z; € Cq, we define the two sets of misaligned
edges as

51(2()721) = {(27]) 11 < ]7Za.7 € ["]7«30(2) = 20(])721(7’) 7& Zl(])} and
&2(20,21) = {(6,4) 20 < j, i, € [n], 20(2) # 20(5), 21 (1) = 21(4)},
where &1 (2o, z1) contains the edges whose corresponding nodes are assigned to the same community

in zg but to two different communities by 21, and £>(zp, z1) is the opposite. See Figure 1 for
illustration. We define n;(zo, z1) = |€i (%0, z1)|, for i = 1,2 as the cardinality of the two edge sets.

Now we are ready to propose the metric of assignment distance defined as follows.
Definition 2.4 (Community property distance). We define the distance between two assignments
zo and 21 as d(zo,21) = n1(20,21) V n2(z0,21). Correspondingly, we also define d(zp,C1) =
inf,, ec, d(20, z1) and the distance between two community properties

d(CQ, Cl) = inf d(Zo, 2’1).

20€Co,2z1€Cq
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Community 1 Community 2
&1(z0,21) (20, 21)
201 2 3 45 6 201 2 3 4 5 6
11 2 345 6 211 2 3456

Figure 1: Example of misaligned edges in Definition 2.3.

By definition, the distance d(Cy, Cy) is the minimal number of misaligned edges between Cy and C; .
We refer the computation of d(Cy, C1) for more general examples to Section 2.4.

2.3 LIKELIHOOD-RATIO TEST FOR COMMUNITY PROPERTIES

Our method starts with defining a likelihood-ratio test statistic. We denote the observed adjacency
matrix from the true model as A ~ M(n, K, p, q, 2*), where z* is the true assignment. The likeli-
hood function of the stochastic block model is

f(A;2,p,q) = 1‘[1.<jp11(2(i):z(.7’))Au(1_p)ﬂ(Z(i):Z(J’))(lfAu)q]l(Z(i#Z(j))Au(1_q)]1(Z(i)#z(j))(lfAn).
We then denote the log-likelihood ratio statistic as

Sup,ec, f(Aa Z,Ps q)
SupzeCoucl f(Aa Z, D, (1)

LRT = log (2.3)

In order to conduct the property test, we study the limiting distribution of the likelihood ratio statistic.
In specific, when 1/p,, = o(n!~2) for some constant c; > 0, we are able to decompose the LRT as
follows

LRT = sup log f(A;z,p,q) —log f(A;2",p,q) + o(1)

z2€Cy
= sup g(p, q)( oA - D] Aij) +o(1), (2.4)
2€C (i,§)E€Ea(z*,2) (i,§)€EL (2% ,2)

where g(p, q) = log p(1 —q)/ (¢(1 — p)). We observe that the leading term in (2.4) is the difference
of edges in two edge sets: 5(z*, z) and &1 (2*, z). By Definition 2.4, the property distance d(Cy, C1)
is larger when the two edge sets are larger, which makes the leading term larger as well. This implies
why d(Co, Cy) characterizes the difficulty of the test.

Remark 2.1. The likelihood ratio statistic in (2.3) is similar to the one in Wang & Bickel (2017).
They considered the hypothesis on a specific community property: the number of communities.

Co={z|z € [K —1]"} and C1 = {z]z € [K]"}\Co. 2.5)

They showed that the suprema sup, ¢, f(A;z,p,q) in (2.3) is unique, as illustrated in Figure 2(a),
which makes their LRT asymptotically normal for Cy, Cy in (2.5). However, this is not always true
for the general community properties. For some properties, there will be an exponential number
of candidate assignments maximizing the likelihood in (2.3), as illustrated in Figure 2(b). Thus the
LRT is no longer asymptotically normal for the general case. Therefore, despite the similar formality
of the LRT, our testing procedure will be different from theirs.

To characterize the suprema in the LRT, we define the boundary of the alternative properties.

Definition 2.5 (Boundary of community class). For a given null assignment 2z, € Cy, we define the
boundary of C; as:
Bzo = {Z eC: d(ZQ,Z) = d(ZO,Cl)}.

Namely, B,, is the projection of z, onto C;. Our analysis shows that under the null, the likelihood
maximizer is asymptotically equivalent to the boundary B.,.? In the next section, we will study the
asymptotic property of the LRT under such case by studying the structure of B, .

?See Lemma D.2 in the Appendix for the rigorous argument.
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(a) Unique projection (b) Non-unique projection
Co Ci Co C
»»_x»x‘x
G
g B,
Z0 e xZ1

Figure 2: The boundary of C; given zy. On the left panel, the projection is unique and B,, = z;.
On the right panel, the projection is not unique, where 2, is the shadowing assignment of z*, and
B~ and B, have similar structures.

2.4 SHADOWING BOOTSTRAP FOR THE PROPERTY TEST

There are two major challenges to estimate the p-value of LRT. First, the suprema of the likelihood
are not unique and therefore the limiting distribution of LRT is not necessarily normal. By (2.4), we
can in turn study the limiting distribution of the leading term

L := sup g(p, q)< Z A — Z Aij>. (2.6)

2€C (1,5)EEa (2*,2) (1,)€E1 (2*,2)

Chernozhukov et al. (2013) studied the limiting distribution of the maximal of high dimensional
empirical process and proposed to estimate its quantile by multiplier bootstrap. However, their
method imposes that the dimension d of the empirical process and the sample size n satisfies
logd/n'/> = o(1), whereas in (2.6), the dimension d = |C;| could be of the order K™ and vio-
lates the scaling condition. To handle this problem, our key observation is that the supremum over
the alternative C; can be represented by the supremum over its boundary B.... In particular, we show
that the leading term L is asymptotically the same as the following statistic:

Lo := sup g(p, Q)< Z A — Z Aij>o (2.7)

#€ B (1,§)EEa(2*,2) (i,§)EEL (2*,2)

The cardinality of B« is much smaller than that of C; (usually polynomial to n), and therefore sat-
isfies the scaling condition of high dimensional multiplier bootstrap. However, we cannot construct
B, in practice as z* is unknown. This leads to the second challenge: how to find B, - in practice?
Our key insight to solve the second challenge is to utilize the symmetry property in Definition 2.2.
This insight relies on the following lemma characterizing the covariance of two processes.

Lemma 2.2 (Shadowing symmetry). For a given z € Cy, we list the assignments in the boundary

B. as z1,2,...,2p,|. Define a | B, |-dimensional vector L as
(Lz)k:g(paq)< Z Aij_ Z AZJ), fork:1,2,...,|Bz|.
(i,5)€€2(7,2k) (1,7)€€1(%,2k)

Suppose Assumption 2.1 holds. For any zo, z; € Co, we have |B.,| = |B.;| and Cov(L.,) equals
to Cov(L.; ) up to permutation, i.e., there exists a permutation T € S|p_ | such that Cov(L., ) =
COV(Lzé)T(k)T(l) for all k,l = 1, ey |BZU |

We refer to Appendix F.1 for the proof of Lemma 2.2. Therefore, we can avoid directly constructing
B~ and choose instead any z € Cy as a “shadowing assignment” to construct the shadowing statistic

Lo(z0) := sup g(p,q)< oA )] Aij>. (2.8)
2€B=, (2,7)€E2(20,%) (i,7)€€1(20,2)

The following proposition shows that the quantiles of Lo (zg) and Ly are asymptotically the same.
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Proposition 2.3. Suppose Assumption 2.1 holds, log | B.«| = O(logn) and 1/p,, = o(n'~¢?) for
some constant c; > 0. For any 2y € Cy, we have
lim sup |P(Lo < t) —P(Lo(20) < t)] = 0.

n—oo teR

We defer the proof to Appendix D.1. Now we are ready to present the shadowing bootstrap pro-
cedure. Based on the previous discussion, we aim to estimate the p-value based on Lg(zp). To
achieve this, we take an arbitrary zy € Cy, and generate one realization of the adjacency matrix

A~ M(n, K,p,q, zo). Here p and G are the maximum likelihood estimator

(p,q) = argmax(, .y sup f(A;z,p,q) (2.9)
2€CoUCy
The likelihood ratio statistic is
LRT = log sup f(A;z,p,q) —log sup f(A;z,p,q). (2.10)
z€Cy 2€CoUC,

The next step is to find the assignments in B,,. We can construct B, by Definition 2.5 in general.
We will show later how to construct B, for the concrete examples. To estimate the p-value, we ap-
ply the Gaussian multiplier bootstrap. Let {e;; }1<;<;j<n be independent standard Gaussian random
variables and define

Wo=sup > (A —E5q(As))(L[(i,)) € Eal0,2)] — 1[(i. 5) € E1(20, 2)])esj 2.11)

2€Bz 1<ici<n

where ]E,;a(;&”) = pif z9(¢) = 20(j) and IE,;@(KU—) = q otherwise. Then we estimate the p-value
via the multiplier bootstrap

pw = P(9(B, )W + g(5,3)fio > LRT|A, A), (2.12)

where fig = d(Co,C1)(q — p) is the estimator of the mean of the process in (2.8). Finally, we reject
the null Hy : z* € Cp if pyy < « and do not reject Hy otherwise.

Now we provide concrete steps to construct B, and calculate d(Cy, C1) for Examples 1.1 and 1.2.

Community 1 Community 2 Community 1 Community 2

Swap Swap
-

— .
21 23 45 678 910 201 2 3[4 5][6 7]8 9 10

2110 2 3 4 56 78 91 zil 23 6 7 4 58 910

(a) Example 1.1 (b) Example 1.2

Figure 3: Procedure to construct the assignment in the boundary B, . Panel (a) is to test whether
the first 3 nodes belong to the same community, and Panel (b) is to test whether node sets {1, 2, 3}
and {4, 5} belong to the same community.

e Example 1.1: For any 2y € Cp, to construct B,,, we aim to find assignments whose distance to zg
is d(zp,C1). The simplest way is to exchange the community assignment of one node s € [m] with
another node s’ from a different community (see z; in Figure 3(a) for an example when n = 10,
m = 3, and K = 2). Itis easy to check all such assignments belong to B,. On the other hand, any
other operation will incur more node-wise misclassification and the edge-wise misalignment will be
much larger. As for d(Cy,C1), we start with evaluating n4 (2o, z1) for some z; € B,,. The edges
whose connection probability is changed from p to ¢ will be the edges between the swapped nodes
and the rest of the nodes in their original communities. Therefore, we have nq (29, 21) = 2(n/K—1).
Similarly, ns(z0,21) = 2(n/K — 1) and thus d(Coy,C1) = 2(n/K — 1). In summary, B,, is
composed of all the assignments obtained from swapping two nodes from different communities in
2. The distance between two classes is d(Cy,C1) = 2(n/K — 1).
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e Example 1.2: In this example, without loss of generality, we can assume that m’ < m. Then
to project an arbitrary zg € Cy onto Cq, we will exchange the cluster assignment of the set S,,,y =
{m+1,...,m+ m'} with another set S, from a different cluster of cardinality m’ to obtain the
smallest number of misaligned edges. See Figure 3(b). Correspondingly, for z; € B,,, we have
d(z0,21) = n1(20, 21) = n2(20,21) = 2m/(n/K —m’), and thus d(Cy,C1) = 2m/(n/K —m’). In
summary, B, is composed of all the assignments which can be obtained from reassigning the label
of nodes m+1,...,m-+m’in zy. The distance between two classes is d(Co,C1) = 2m/(n/K —m/).

3  VALIDITY OF COMMUNITY PROPERTY TEST

In this section, we show that our testing method is honest and powerful. Before presenting our
theorems, we first give the following assumption for the alternative class Cj.

Assumption 3.1 (Scattering of C;). For any zy € Cp, we have |B,,| = O(n®) for some constant
co > 0.

We call this assumption the scattering assumption as it ensures that the assignments in C; are scat-
tered and not too concentrated on the boundary. In general, if relabeling a constant number of nodes
can change an assignment from Cy to Cy, then |B,,| will be upper bounded by (Z(L)) = O(n®) for
some integer ¢y > 0. The following main theorem shows that our test is honest and powerful for
general symmetric community properties.

Theorem 3.2. Suppose Assumptions 2.1 and 3.1 hold, d(Cy,C1) = o(n°") for some constant ¢; <
2, and 1/p,, = o(n'~¢?) for some constant c, > 0. We have
lim sup P(pw < a) =cwand lim sup P(reject Hy) = .

n—oo Z*GCO n— oo Z*GCO
Moreover, if d(Co, C1)I(p, q¢) = ©2(n®) for some arbitrarily small constant € > 0, we have

lim inf P(reject Hy) = 1.

n—oo z*€Cq

We defer the proof to Appendix D.2. One may note that under the regime of Theorem 3.2, exact
recovery can be achieved. However, previous exact recovery methods cannot provide uncertainty
quantification. On the other hand, our approach can provide the p-values for the general community
properties which is more challenging compared to estimating the community labeling. We now
apply Theorem 3.2 to Examples 1.1 and 1.2 by checking Assumption 3.1. The following proposition
shows that Assumption 3.1 is satisfied for Examples 1.1 and 1.2.

Proposition 3.3. For Example 1.1, we have |B,,| = O(mn) and d(Cy,C1) = 2(n/K — 1) =
O(n/K). For Example 1.2, | B, | = O(K (n/K)™™') and d(Co,C1) = 2(mAm/)(n/ K —mAm/).

Plugging these results to the general Theorem 3.2, we have the following corollary.

Corollary 3.4 (Examples 1.1 and 1.2). Suppose 1/p, = o(n'=¢?) for some constant cp >
0. If m < n/K for Example 1.1 or m A m'" = O(1) for Example 1.2, we have
lim,, s o0 SUP,« ¢, P(reject Hy) = a. Moreover, if I(p,q)n/K = Q(n®) for some small positive
constant £, we have lim,, o sup, ¢, P(reject Hg) = 1.

4 INFORMATION-THEORETIC LOWER BOUND

In this section, we discuss the information-theoretic lower bound of community property test. We
will give the lower bound of the minimax risk of all possible test 1 defined as

r(Co,C1) = inf{ sup P.(¢p =1) + sup P, (¢ = O)}
P 2€Co zeCy
We will show that the combinatorial-probabilistic trade-off phenomenon appears in the lower bound
as well, thus it essentially characterizes the hardness of the community property test. In order to
establish the lower bound, we first introduce the concept of packing number for C;. A key element
in defining the packing number is the metric assigned to C;. Our first insight is that the more
misaligned edges there are between Cy and C;, the easier it is to differentiate C; from Cy. This
motivates us to consider the misaligned edge set &1 2(2¢, 21) = &1(20, 21) U E2(%0, 21) and use its
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cardinality as a “metric”. Our second insight is that how hard it is to differentiate C; from Cy does
not depend on the complexity of the entire C; but the boundary set B,,, which is also implied by
our shadowing bootstrap statistic in (2.11). Therefore, we give the following definition of packing
number of B, to characterize the hardness of test.

Definition 4.1 (s-packing of B,,). For any z € Cy, we say {z1, 22, ..., 2n } C B,, is an e-packing
of B, if for any z; # 2, we have |€1 2(20, z;) N €1 2(20, 2)| < €. The e-packing number of B,
denoted as N (B,,, ¢), is the maximum cardinality of any e-packing of B, .

By Definition 2.5, B, collects the alignments in C; which are closest to 2y € Cp, which are the
hardest cases to test. The following theorem shows the lower bound of the community property test
can be characterized by the packing number of these hardest cases.

Theorem 4.1. Suppose Cy,C1 € K", 1/p,, = o(n'~2) for some constant c; > 0 and p < 1 —§ for
some constant § > 0. If there exists a zg € Co such that log N (B.,, v/d(z0,C1)) = O(logn) and

lim sup dz0,C)I(pg) 1, (4.1)

n— oo IOg N(BZO, d(207cl))

then lim inf r(Co,Cy) > 1/2.
n— oo

We defer the proof to Appendix E.1. From (4.1), we see that the packing entropy
log N(B.,,/d(z0,C1)) is the lower bound of the signal strength. In general, the packing entropy
is O(logn). Comparing to the upper bound d(Co,C1)I(p,q) = Q(n®) for some arbitrarily small
constant ¢ > 0 in Theorem 3.2, there is a gap to O(logn) in the lower bound. We conjecture that
this gap exists as both our upper and lower bounds are for general community property test. We
will find a finer analysis in future research. The following theorem gives an alternative lower bound
result relaxing the scaling conditions in Theorem 4.1.

Theorem 4.2. Suppose Cy,C; C K™, 0 < g < p < 1 — ¢ for some constant 6 > 0 and
lim,, o d(Co, C1)p = oc. If one of the following conditions:

(1) d(Co,C1)I(p,q) < c for some sufficiently small constant c;
(2) limy,— 00 d(Co, C1)I(p,q) = o0, but there exists a zg € Cy such that

. d(z0,C1)I(p, q)
lim sup ——0 -4
P Tog N(Bo,,0)

is satisfied, then lim inf (Cop, C1) > 1/2.
n— o0

We defer the proof to Appendix E.1. Theorems 4.1 and 4.2 both show the lower bound with the
combinatorial-probabilistic trade-off. Theorem 4.1 has a sharper lower bound on d(zg,C1)I(p, q)
under a stronger scaling condition. In comparison, Theorem 4.2 has a less sharp lower bound
with weaker scaling conditions. When d(Cy, C1)I(p, q) is bounded, we cannot differentiate two
hypotheses. When d(Cy,C1) goes to infinity, Theorem 4.2 condition (2) gives the lower bound
d(Co,C1)I(p,q) < log N(B.,,,0). If we have stronger scaling conditions in Theorem 4.1, we get a
sharper lower bound d(Cy,C1)I(p,q) < log N(B.,,/d(20,C1)). Now we apply the general theo-
rems for the lower bound to Examples 1.1 and 1.2. By (4.1) in Theorem 4.1, a key quantity for the
lower bound is the packing number N (B.,, v/d(z0,C1)). The following proposition gives concrete
results for the two examples.

Proposition 4.3. The packing number for Example 1.1 is N (B.,, v/d(20,C1)) = m, and the pack-
ing number for Example 1.2 is N(B.,, v/d(20,C1)) = N(B,,,0) = 1.

Applying Proposition 4.3 to Theorem 4.1 and Theorem 4.2, we provide the lower bound for Exam-
ples 1.1 and 1.2 in Corollary 4.4 and Corollary 4.5 respectively.

Corollary 4.4. For Cq and C; in (2.1), if 1/p,, = o(n'~2) for some constant ¢ > 0, p < 1 — § for
some constant 6 > 0 and lim sup 2nI(p, q)/(K logm) < 1, then lim inf r(Cy, C1) > 1/2.
n—oo

n—oo
Corollary 4.5. For Cy and C; in (2.2), if np — 00,0 < ¢ < p < 1 — ¢ for some constant § > 0 and
limsupnl(p,q) < c for some sufficiently small constant ¢ > 0, then lim inf r(Co,C1) > 1/2.
n—oo

n— oo
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5 NUMERICAL RESULTS ON SYNTHETIC DATA

We conduct the shadowing bootstrap on Examples 1.1 and 1.3. We test both hypotheses at the sig-
nificance level @ = 0.05, and consider K = 2 and n = 200, 600, 1000. The connection probabilities
are settobe p = (1+A)p, and ¢ = (1—A)p,,, where p,, = (n/K)~°3 and A is the parameter con-
trolling the difference between p and q. We set A from 0 to 0.8. The maximum likelihood estimator
is initialized by the singular value decomposition estimator to boost computation. For Example 1.1,
we set m = [(n/K)?/2] for § = 0.3,0.5, 0.7 to explore the influence of m on type-I and II errors.

(a) Different n (b) Different m

[ 1.0 . Graph Size [ 1.00; 3 log(2m)/log(n/K)
200 y 03
+ 600 { - 05

0.75 1000 0.75 “:< /b 0.7

o

=

a
o
S
@

0.50

Type 1 Error
Type 2 Error

3

g :
Type 1 Error
Type 2 Error

o

g

025 H 0.25 ‘ 0.25 \ 0.25

0.05f----=-* e b L= 0051 - == === -} - sl pnargongrnng -
0.00 L4 0.00{ ——s 0.0( L4 0.00

Figure 4: Type-I and type-II errors for Example 1.1. Panel (a) shows the results for different graph
sizes n = 200, 600, 1000 with m set as [(n/K)°-/2]. Panel (b) shows the results m = [(n/K)°/2]
with § = 0.3, 0.5, 0.7 and the graph size n = 600.

In Figure 4, we show how the type-I and type-II errors vary with A, n and m for Example 1.1 (via
500 Monte Carlos). As A increases, the type-I error converges to the nominal level 0.05, which
shows that our method is honest. Type-II error is small when A is around zero as the test will
always reject the null when the signal strength is too small, while it increases drastically as the type-
I error drops to 0. When A is large enough, the type-II error converges to 0, showing that our test
is powerful. In Figure 4(b), we can see that the type-I and type-II errors for different m’s converge
similarly as A increases. This is consistent with Corollary 3.4 as the scaling condition is irrelevant
to m. Simulation results for Example 1.3 are shown in Figure 5. The type 1 and type 2 error rates
vary similarly as in Example 1.1. In summary, the type-I and type-II errors will not converge to
the nominal levels until the metric product d(Co,C1)I(p, q) is approximately larger than 10, which
matches the theoretical lower bound (please refer to Tables 2 and 3 in the appendix).
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Figure 5: Type-I and type-II errors for Example 1.3 as A varies in [0, 0.8] and the graph size n =
200, 600, 1000.

6 CONCLUSION

We propose a likelihood ratio test for the community property test with uncertainty quantification,
implemented via a “shadowing bootstrap” method by utilizing the symmetry of Cy and C;. We show
that our test is generally honest and powerful as long as Cy and C; are symmetric. We also prove the
minimax lower bound of the general community property test.
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A DISCUSSION AND REMARKS ON MAIN RESULTS

In this section, we provide some remarks on the results in the main text to offer insight into our
settings that differ from classical hypothesis testing.

A.1 FORM OF LIKELIHOOD RATIO STATISTIC

In this paper, our proposed likelihood ratio statistic (LRT) in (2.3) differs from that in the classical
hypothesis testing:

sup.cc, f(A;2,p,q)

SUPzecouCy f(A7 Z,Ps Q) ’
where on the numerator we take the supremum over C; instead of Cy. Here we adopt a different
form of LRT to reduce the number of potential candidates in the alternative. More specifically, the
traditional LRT in classical hypothesis testing is for the continuous parameter space, whereas when
the null and the alternative are both combinatorial, the LRT will have a fundamentally different be-
havior due to the discrete optimization over an exponential number of candidates. In the numerator,
we replace sup, ¢, by sup,cc, such that under the null, the number of potential candidates on the
numerator can be significantly reduced to the supremum over the boundary B, , and we can take
advantage of the symmetric community property to characterize the null distribution of the LRT,
which is not feasible when the numerator is over Cj.

(A1)

A.2 PLUG-IN ESTIMATORS FOR p AND g

In (2.10), we estimate the connection probabilities p and g from (2.9) by taking the supremum over
z € Cy UCy. Here we apply p and ¢ obtained from SUp, ec,uc, forboth Co UCy and Cy in (2.10) be-
cause p and q here act like nuisance parameters, and our inferential interest lies in the combinatorial
parameter space of the community assignments (Cy and C;) rather than the continuous parameter
space of p and ¢. Differentiation of p and ¢ between Cy and C; will have a minor contribution to the
test statistic. So long as their plug-in estimators are consistent (which is the case for sup,cc,uc, )
we will have a valid test statistic. Hence we also use p and g obtained from sup,cc, ¢, for C1 to
improve computational efficiency.

A.3 METRIC FOR PACKING NUMBER

In Definition 4.1, we define the packing number based upon the combinatorial metric |1 2(20, 2;) N
E1,2(20, 21)|s 2(%0, z1;) being the union of misaligned edge sets &1 (2o, 1) and Ex(zo, 21)
defined in Definition 2.3. The intuition is that for any two assignments z;, z;, € Cy, |€1,2(%0, zj) N
&1,2(%0, z1;)| measures how many common misaligned edges they share. Intuitively, the more
misaligned edges there are, the closer z; and z; should be, and hence the packing constraint
|€1,2(20,25) N E1,2(20, 21)| < €is comparable to the constraint ||§; — 6;|| > e for the traditional
definition of packing number. When e = 0, the constraint forces that z; and z;, should be suffi-
ciently different from each other. For example, in Example 1.1, for a null assignment zy € Cp, and
Zi,2; € B, if z; and z; are obtained by relabeling nodes i1 € [m] and iy € [m] of z respec-
tively, then |&1 2(%0, 2j) N €1 2(20, 2)| > 1 since the edge (i1,i2) will always be contained in the
misaligned set &1 2(20, z;) N &1,2(20, 2k ), Which results in N(B,,,0) = 1. On the other hand, if we
relax the packing constraint by taking ¢ = 4/d(z9, C1 ), more common misaligned edges are allowed
and we will have N (B,,, \/d(z,C1)) = m for Example 1.1.

B GENERAL FRAMEWORK FOR UNEVEN COMMUNITY SIZES

In this section, we generalize our theory to the community property tests when the community sizes
in Cy and C; are not necessarily even, e.g., Example 1.3. For any z € Cy UCy, denote the community
size n(z) = |{z(i) = k | i € [n]}| for k € [K]. Let

= —-n/KJ. B.1
K= LB B0 B~ K B

12



Published as a conference paper at ICLR 2023

When the community sizes are even, we have cx = 0. In this section, we consider the cases when
ck could be larger than zero. We will show that the shadowing bootstrap method in Section 2.4 can
be applied to test the uneven community property as well. The information-theoretic lower bound is
also similar to the one in Section 4.

B.1 GENERAL SYMMETRIC COMMUNITY PROPERTIES

For the uneven community class, we still need some symmetry property for the assignments in Cy
and C;. When community sizes are even, Definition 2.2 depicts the symmetry via the representative
node set A and the representative assignment z. However, for many community properties of inter-
est, e.g., the community size test in Example 1.3, we cannot find such A and Z. In Example 1.3, we
are interested in testing the community size and thus there is no representative nodes. See Figure 6
for illustration.

Therefore, we define the following generalized symmetric community property pair.

Definition B.1 (Generalized symmetric community property pair). We say two disjoint community
properties Co and C; is a generalized symmetric property pair if for any z,2’ € Cp, there exist
permutations o € Sk and 7 € S, such that

(1) Too(z):=(o(2(7(1))),...,0(2(r(n)))) = 2’ and
(2) C; is also closed under such transform 7 o o, i.e., for any 2" € C1, T o o(2") € C;.

Definition B.1 generalizes the concept of symmetric community property in Definition 2.2 via in-
troducing the permutation transform. We can check that Examples 1.1 and 1.2 are still symmetric
by Definition B.1. See Figure 6(a) for an example of choosing ¢ and 7. On the other hand, the
community sizes properties

Co = {z € [K]" : all community sizes = n/K} and C; = Cg, (B.2)

are also symmetric by Definition B.1 but not by Definition 2.2. See Figure 6(b) for illustration. In
fact, the following proposition shows that Definition 2.2 is a special case of Definition B.1.

Proposition B.1. If Cy,C; C K™ satisfy Assumption 2.1, then Cy and C; is a generalized symmetric
property pair. Moreover, the property pairs in (2.1), (2.2) and (B.2) are generalized symmetric
property pairs.

We defer the proof of the proposition to Appendix C.2. In Figure 6, we show how to choose concrete
permutation transforms o and 7 for Examples 1.1 and 1.3.

Community 1 Community 2 Community 1 Community 2
N
—_—
z1 2 3 45 6 78 910 z1 3 6 78 2 45 910
| ! | |
Community permutation Community permutation
0:(2,1)—(1,2) 0:(1,2) = (1,2)

T T T 7
o(2) 12345 678910 0(2)136782450910
| RN R R R S S N S N S|

Node permutation Node permutation
7:(4,5,6,7,8,9,10) 7:(3,6,7,8,2,4,5)
— (6,8,4,5,7,10,9) —(2,3,4,5,6,7,8)
L— L — T | — I 1 1
s 1 23 6 8 457 109 21 23 45 67 8 910
(a) Example 1.1 (b) Example 1.3

Figure 6: Permutation of null assignments in Example 1.1 and Example 1.3
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B.2 SHADOWING BOOTSTRAP FOR GENERAL CASE

We now generalize the testing method proposed in Section 2.4 to the uneven case. A key step is to
generalize the boundary B, in Definition 2.5. Recall that for the even case, our insight is that the
statistic L in (2.6) taking the supremum over C; is asymptotically equal to the Lg in (2.7) taking
the supremum over B, -, which is much smaller than C;. Similar insight applies to the uneven case
using the following generalized definition of the boundary.

Definition B.2. For a given 2y € Cy, we define the boundary centered at zy with radius r as

B,,(r) = {z € C1]d(z0,2) < r}.

We illustrate the two types of boundary in Figure 7. From Figure 7(a), we can see that B,, =
B,,(d(Cy,Cy)). Therefore, Definition B.2 is a generalization of Definition 2.5. For the uneven case,
Ly is no longer asymptotically equal to L. We need to enlarge B, to B, (r) for some r > d(Cp,C1)
and modify the statistic L in (2.7) by taking the supremum over B, (r).

CO C 0

(a) Boundary B, in Definition 2.5  (b) Generalized boundary B, (r)

Figure 7: The boundary B, defined previously for even cases is in essence a ball centered at zg
with radius r = d(Cyp, C1)

In fact, we can still apply the shadowing bootstrap method in Section 2.4 to the uneven case. All
procedures are exactly the same as in Section 2.4 except that we need to replace the bootstrap statistic
W, in (2.11) by

Wom swp Y (Ry-BpalRi) (1) € EaCeo, )~ 1[.7) € E1Cao,2))erss (B
2€B20(r) 1<i<j<n

where r is a tuning parameter to be specified in the following theorem.

Theorem B.2. Suppose Cy and C; are generalized symmetric community property pair and cx =
O(1). Suppose d(Cy,C1) = o(n°') for some constant ¢; < 2, and 1/p,, = o(n'=°2) for some
constant co > 0. We choose the radius r in (B.3) as r > rg := d(Co,C1) + ¢%pK /(2(p — q)) and
r = d(Co,C1) + O(1). If for any zy € Co, we have |B,,(r)| = O(n) for some positive constant
cg, then

lim sup P(pw < a)=aand lim sup P(reject Hy) = a.

n—oo 2* GC[) n— oo 2* Eco

Moreover, if d(Co, C1)I(p, q¢) = ©(n®) for some arbitrarily small constant € > 0, we have

lim inf P(reject Hy) = 1.

n—o0 z*€Cy

We defer the proof of the theorem to Appendix D.2. The scaling assumptions in Theorem B.2 are
similar to Theorem 3.2. The condition | B, (r)| = O(n) for some ¢o > 0 is similar to Assumption
3.1. We need ck in (B.1) to be bounded to prevent a specific community from being too large.
By the theorem, we need to choose r > rx = d(Co,C1) + c¢%pK/(2(p — q)), while p,q,ck
are unknown. In practice, we suggest to choose the radius as r = d(Co,C1) + CpK/(p — q) for
some sufficiently large C. In fact, for many concrete examples, even though rx is unknown, we
can directly construct B, (rx). The following proposition shows how to construct B, (rx) for
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Examples 1.1-1.3. Moreover, it shows the conditions on d(Co,C1) and |B,, (rx)| in Theorem B.2
are true for all these examples.

Proposition B.3. For any z € Cy, B.,(rk) can be constructed as follows.

(1) Example 1.1: B, (rx) is composed of all the assignments obtained from reassigning one
node of any zg € Cp in [m] to a different community. See Figure 8(a) for an illustration.
Moreover, we have d(Cy,C1) = n/K and |B,,(rx)| = m(K — 1).

(2) Example 1.2: Suppose m A m’ < ck, B,,(rk) is composed of all the assignments ob-
tained from reassigning nodes m+1,...,m+m’ inany zy € Cy collectively to a different
community. Moreover, we have d(Cy,C1) = n(m A m')/K and |B,,(rkx)| = K — 1.
Suppose m Am’ > ck, B,,(rk) is composed of all the assignments obtained from ex-
changing label of nodes m + 1,...,m + m’ collectively with another m’ nodes from a
different community for any zp € Cy. See Figure 8(b) for an illustration. Moreover, we

have d(Co,Cy) = 2m Am/(n/K —m Am') and | B., (ri)| = O(K (n/K)™ ™).

(3) Example 1.3: For an arbitrary zop € Co, B,,(rk) can be constructed by reassigning any
node of z to a different community. See Figure 8(c) for an illustration. Moreover, we have
d(CQ,Cl) = TL/K and ‘BZO(TK)l = n(K — 1)

We defer the proof to Appendix C.3. The construction of B, (k) is visualized in Figure 8. We
also summarize the results in Table 1.

Community 1 Community 2 Community 1 Community 2 Community 1 Community 2

Move Move Move

(a) Example 1.1 (b) Example 1.2 (c) Example 1.3

Figure 8: Construction of B,, in Proposition B.3: (a) Cy is that nodes {1, 2, 3} belong to the same
community; (b) Cy is that the nodes set {1, 2, 3} and {4, 5} belong to the same community; (c) Cy is
that community 1 and community 2 have an equal size of 5.

We, therefore, have the following corollary of Theorem B.2.

Corollary B.4 (Examples 1.1 -1.3). Suppose 1/p, = o(n'~¢2) for some constant c; > 0 and
cx = O(1). We assume that m Am’ = O(1) in Example 1.2. For Examples 1.1 -1.3, with B, (rx)
constructed in Proposition B.3 our test for the hypothesis Hg : 2* € Cp versus Hy : z* € Cy is
honest, i.e.,

lim sup P(reject Hp) = av.

n—00 yxcC,

Moreover, if I(p, ¢)n/K = (n®) for some small positive constant €, we have

lim sup P(reject Hy) = 1.

n—=00 Lx ey

B.3 GENERAL LOWER BOUND

We can also generalize the information-theoretic lower bound in Theorem 4.1 and Theorem 4.2 to
the uneven case. Similar to the even case, we need to define the packing number of B, (r), which
follows the same definition of N (B.,,¢) in Definition 4.1. We then have the lower bound of the
general case as follows.

Theorem B.5. Suppose 1/p,, = o(n'=¢2) for some constant c; > 0, p < 1 — § for some constant
d > 0 and cxk = O(1). If there exists a zgp € Cy and some r = d(zp,C1) + O(1) such that
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d(20,C1) | B, (7K )| N (B, (1), V/d(20,C1))
Example 1.1 n/K m(K —1) m
E le 1.2
m)fl;;ﬁeg o nimAm')/K K-1 1
E le 1.2 /
AT S 2mam! (/K —mAm') | O(K (n/K)™ ™) 1
Example 1.3 n/K n(K —1) n

Table 1: Important values for general cases of Examples 1.1-1.3.

log N (B.,(7), \/d(20,C1)) = O(logn), and

lim s d(20,C1)I(p, q)
im sup
n—00 IOg N(Bzo (7"), d(Zo,Cl))

<1, (B.4)

then lim inf r(Co,Cy) > 1/2.
n—oo

Remark B.1. If we choose r = d(z9,C1), as B,, = B,,(d(z9,C1)), (B.4) reduces to (4.1). The
relaxed assumption on r = d(zp,C1) + O(1) can give us a better lower bound.

We can also generalize Theorem 4.2 to the following theorem.

Theorem B.6. Suppose 0 < ¢ < p < 1 — ¢ for some constant § > 0 and lim,,_, d(Co, C1)p = 0.
If one of the following conditions:

(1) d(Co,C1)I(p,q) < c for some sufficiently small constant c;

(2) lim,, o d(Co,C1)I(p, q) = 0o, but there exists a zg € Cy and some r = d(zp,C1) + O(1)
such that lim sup,,_, . d(20,C1)I(p,q)/log N(B,,(r),0) < 1,

is satisfied, then lim inf (Co, C1) > 1/2.
n—oo

We defer the proof of the above two theorems to Appendix E.1.

To apply the general lower bound theorem to Examples 1.1-1.3, we need the following proposition
on the packing number.

Proposition B.7. We have the packing number N(B,,(rk), /d(z0,C1)) for three examples as
follows:

» Example 1.1: N(B,,(rk), /d(z20,C1)) = m;
» Example 1.2: N(B,,(rk),\/d(20,C1)) = 1;
 Example 1.3: N(B,,(rk), /d(z0,C1)) = n.

We defer the proof to Appendix C.4. The results is also summarized in Table 1.

Since 1 = d(Co,Cy1) + cApK/(2(p — q)), where c%pK/(2(p — q)) = O(1) and d(Co,C1) =
d(20,Cy) by the symmetry of Cy,C;, we have that 7 = d(z9,C1) + O(1). Applying Theorem B.5
and Proposition B.7, we have the following lower bound of same community test in Example 1.1.

Corollary B.8. For Cy and C; defined in Example 1.1, if 1/p, = o(n'=¢2) for some constant
¢ > 0,p < 1— ¢ for some constant § > 0, cx = O(1) and

limsupnl(p,q)/(Klogm) < 1,
n—oo
we have lim inf (Co,Cy) > 1/2.
n—roo

Applying Theorem B.6 and Proposition B.7, we have the following lower bound of same community
test for groups in Example 1.2.
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Corollary B.9. For Cj and C; defined in (2.2), if np — 00,0 < g < p < 1 — § for some § > 0 and
limsupnl(p,q) < c,

n—oo

for some sufficiently small constant ¢ > 0, we have lim inf (Cy,Cy) > 1/2.
n— oo

For Example 1.3, applying Theorem B.5 and Proposition B.7, we have the following result.

Corollary B.10. For Cy and C; defined in (B.2), if 1/p, = o(n'=¢) for some constant c; > 0,
p < 1 — ¢ for some constant 4 > 0 and

limsupnl(p,q)/(Klogn) <1,

n—oo

we have lim inf r(Co,Cy) > 1/2.
n—roo

C PROOFS OF COMMUNITY PROPERTIES

In this section, we mainly focus on the proofs concerning community properties, including the
generalization of symmetric community property pairs from even to uneven cluster sizes, the size of
the ball B,, (k) in three examples, and the packing number of the ball in each case.

C.1 PROOF OF PROPOSITION 4.3

Example 1.1: In this case, for a given zp € Cy, we have derived the form of B,,. For any
2,25 € P(BZO, d(zo,Cl)), we know from Section 2.4 that they are transformed from z; by
swapping one of the first m nodes with another node from a different cluster. The node among
the first m to be swapped s € [m] cannot be the same for the two assignments, otherwise

|5172(2’0,2i) n 51)2(20,2j)| > ‘51(2:0,,%) n 51(20,Zj)| = n/K -1 > \/d(Zo,Cl). Thus each
z € P(BZO, d(zO,Cl)) corresponds to a different swapped node among the first m nodes, and

we have N (BZO, d(zo,Cl)) < m. On the other hand, for the given assignment zy, we can
construct the following set {z;}7 ,: we take a set of nodes S = {s1, s, ..., S, } from a cluster
different from the cluster to which the first m nodes of zy belong. Then for each k, we swap the
cluster assignment of node k with node s, k = 1,...,m, and obtain the corresponding alternative
assignment z;. Then for any two alternative assignments z; and z; obtained this way, we have
|5172(Zo, Zi) n 5172(20, ZJ)‘ S 4. Thus N(BZO, d(Zo,Cl)) = m.

Example 1.2: For a given 2y € Cy and the corresponding boundary B, , it can be perceived that
N(B.,,/d(z0,C1)) = N(B,,,0) = 1, because any z € B,, involves swapping the set Sy so that
Vzi,2j € By, |€1,2(%0,2i) N E1,2(20,25)] > mAm/ (n/K —m Am').

C.2 PROOF OF PROPOSITION B.1

To prove that Definition 2.2 is a special case of Definition B.1 when the community size is even, it
suffices for us to construct a concrete community label permutation o and node label permutation
7 satisfying Definition B.1 based on A and z. Here we use Figure 6 to illustrate the construction.
Given any z,2’ € Co, we first construct o. Since zx+ =~ 2z, ~ Zar, by Definition 2.2, there must
exist a o € Sk mapping z to 2’ on the support N, i.e., o(zx’) = 2. For example, in Figure 6,
we construct a o swapping communities 1 and 2. After matching the community labels, we now
construct 7 in order to transform o (z) to z’. Since the community size is even and o (2x7) = 2z},
o(z) and 2’ have equal cluster sizes on the support of N'¢. Therefore, there exists 7 € S, such that
T(0(2)ne) = Zpre and T(0(2) ) = 0(2)nr = 2. We can see the example of 7 in Figure 6. Using
o and 7 constructed above, we can check that 7 o o(z) = 2’. We now check the last condition in
Definition B.1. For any 2" € Cy, since 7 is invariant on AV, we have 7 o 0 (2}/) = o (2};) =~ 2}/
By Definition 2.2, the alternative community C; is closed under permutation on the support of A/,
we have 7 o g(2”) € C;. Therefore, we check that Definition 2.2 is a special case of Definition B.1.

Since the property pairs in (2.1) and (2.2) are symmetric property pairs, they are also generalized
symmetric property pairs following the preceding arguments. As for the property pair in (B.2), we
can see from Figure 6(b) that for any two assignments z, z’ € Cy, since they have equal community
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sizes, we can take o to be the identity map and there exists 7 € .S,, such that 7(z) = z’. Then for
any z” € Cy, since 7 does not change the community sizes, we know that 7(z"’) still have uneven
community sizes and 7(z”) € C;. Therefore, by Definition B.1, the property pair in (B.2) is a
generalized symmetric property pair.

C.3 PROOF OF PROPOSITION B.3

Example 1.1: To construct B, (rx ), we need to find all the assignments in C; whose distance from
2o is no larger than d(Cy,C;) by an extra constant term. To construct assignments in C; closest
to zp, we would pick one node in [m] and reassign it to a different community (see Figure 8 (a)).
Assignments constructed in such ways will satisfy d(zg,21) = d(Co,C1) = n/K. If we make
community changes to any other nodes on the basis of such construction, then d(zg, 21) would
increase by at least n/K — 2, which exceeds the constant level. Thus B, (rx) consists of all
assignments constructed by moving one node of zq in [m] to a different cluster. Since we can pick
m nodes in total and reassign them to K — 1 different clusters, | B, (rx)| = (K — 1)m = O(m).

Example 1.2: For an arbitrary zg € Cp, without loss of generality, we assume that m’ < m. Then
when m’ < c, to construct assignments in C; that are closest to zg, we need to reassign nodes
m+ 1,...,m + m’ collectively to a different community (see Figure 8 (b). Such constructed
assignments have distance d(zg, z1) = d(Co,C1) = m/n/K. Similar to the previous example, any
community changes to other nodes on the basis of such construction would result in an increase
of d(zg,21) by at least n/K — m’ — 1. Therefore, B,,(rx) consists of those assignments in C;

constructed by reassigning nodes m + 1,...,m + m’. Since there are K — 1 other clusters to
reassign in total, we have |B,,(rx)] = K — 1 = O(1). On the other hand, when m’ > cg, then
we cannot reassign nodes m + 1,...,m + m’ collectively without exchanging with other nodes,

otherwise, the community size bound will be violated. Then d(Co,C1) and B, (rk) is exactly the
same as the even case and the claim follows.

Example 1.3: As for the ball B, (rx) for an arbitrary zy € Cp, to transform z( into an assignment
z1 € Cq, the simplest way is to reassign an arbitrary node to a different community, and d(zo, z1) =
d(Cp,C1) = n/K =< n. Further community changes will result in increasing in d(zg, 21) that
exceeds the constant level. Since we can obtain such z; by reassigning any one of the n nodes into
the other K — 1 clusters, we have |B,,(rx)| = n(K — 1) = O(n).

C.4 PROOF OF PROPOSITION B.7

The arguments for Example 1.1 and Example 1.2 are almost the same as in the even cases and are
hence omitted.

Example 1.3: For a given 2y € Cy, from previous discussion we can see that the ball B, (r) with
r = d(29,C1) + O(1) is composed of all the assignments that differ from zo by one mis-aligned
node. For any z;,z; € P (BzO (r), v/ d(zo, Cl)), the misaligned node s cannot be the same, otherwise
|5172(Zo, Z7) N 5172(2’0, Zj)| Z n/K > \/d(Zo,Cl). Thus we have N(BZO(T’), d(Zo,Cl)) S n.
Also since the set {2 }_, where each zj, is obtained by reassigning the node k into another cluster
obviously satisfies the condition that |1 (20, ;) N €1(20, 25)| + |E2(20, 2i) N E2(20,25)| < 1, we
have that N (B, (), /d(20,C1)) = n.
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D PROOF OF INFERENCE RESULTS

In this section, we provide the proofs of the theorems on inference results. We will first prove Propo-
sition 2.3 which implies that the p-value based on the maximal leading term L( can be estimated
without knowing the true assignment, then we prove the main Theorem 3.2 using Proposition 2.3
along with other lemmas. The proof of the technical lemmas will be deferred to Section F.

In the following part of our paper, we use ¢, C, ¢, c3, C1, Cs, . .. to represent generic constants and
their values may vary in different places.

D.1 PROOF OF PROPOSITION 2.3

To prove Proposition 2.3, we need the following generalized version of Lemma 2.2 stated previously

Lemma D.1 (Shadowing symmetry lemma). For a given z € Cy and a given radius r > 0, we list
the assignments in the ball B.(r) as z1, 22, . . ., 2|B_(r)|- Define a | B.(r)|-dimensional vector L as

(Lz)k:g(p,q)< doA- D) Aij),fork:1,2,...,|BZ(r)|.

(1,5)€E2(2,21) (1,7)€E1(2,21)

Suppose Co and C; satisfy definition B.1, then for any 2, z; € Co, we have |B., (r)| = |B.;(r)| and
Cov(L,) is equal to Cov(L_;) up to permutation, i.e., there existing a permutation T € S|, ()|
such that Cov(L., )k = Cov(L.; )c(r)xq) forall k,l =1,...,[B;,(r)|.

We defer the proof of Lemma D.1 to Section F.1. Now we are ready to prove Proposition 2.3. In
fact, the boundary in the definition of Lo can be generalized to the ball B,(r) with r > rx :=
d(Co,C1) + % pK /(2(p—q)) and r = d(Cp,C1) + O(1). For the true assignment z* € Cy, we have
that

Ly= sup {g(p,q)( >oA- Y, Az‘j)}

2 €8x (r) (i,)€E2(2*,2k) (1,5)€€1 (2 ,2k)

g(p,q) sup { Z {(Aij —E(Ay)) (1[(4,4) € Ea(2*, 2k)] — 1(4,]) € 51(2*721@)])}}

zR€B.x (1) L

1
+9(p.q)o + 0n = g(p,q)o0  sup {f Z(Xij)k} +9(p, q)pto + On.
ke[|B.«(r)]] ~ 90 i<j

where the vector X ;; € RIB=~("l and

(Xij)k = (Ay —E(A)) (1[0, 4) € E2(2", 21)] — 1[(4,4) € E1(z%, 21)]), O = O(pn),

and o9 = \/d(Co.C1) (p(1 ~p) +a(1 — ). po = d(Co,C1)(q — p).
We can see that for different (¢, j), the vector X;; are independent of each other. For a fixed
k € [|Bz* (’I“)”, when (Z,j) ¢ 51’2(2’*,2%), (Xij)k = 0. When (Z,]) S 5172(2’*7216), under the
regime 1/p,, = o(n'~¢2) for some positive co, there exists B,, = 1/,/p, = o(n(17¢2)/2) such that

’(Xij)k/, /pn’ < B, and B2(log2d(Cy,C1)|B., (r)])7/n < n=¢/2, where d(Co,C1) = o(n?).
Therefore, following a very similar proof as Theorem 2.2 and Corollary 2.1 in Chernozhukov et al.
(2013), we have

. _
9(p,q)  sup {Z(Xij)k/go}—) sup  Zg,
kellB.- ) L5 ke(1B.- ()]
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where Z ~ N(0, 3, /od), and ¥, = Cov(L,~). Therefore, we have that

P(Lo <t) —P(op sup Zy + 9(p, @)po < t)
ke[| B.=(r)]]

sup
teR

P(Lo <t)—P(oo  sup  Zn+g(p,q)po +0n < t)
kel| B (1))

< sup
teR

Plog  sup  Zk +9(p,q)po + 00 <t) —P(og  sup  Zy +g(p,q)po < t)
kel B.n ()] kel Bor (0]

+ sup
teR

< o(1) +sup
teR

P(|  sw  Zy—(t—g(pa)io) /0| < bu/c0)
ke[| B« (r)|]

We know that minge( .. ()] Var(Z) = Qg(p,q)?) = Q(1), log|B.-(r)] = O(logn) and
6n/o0 = O(n~1/2). Then by Lemma 2.1 in Chernozhukov et al. (2013), we have

sup ]P(| sup Zk*(t*Q(I%Q)MO) /00| S §7L/JO>

1R |\ hel|Bn ()]

<o 2log | B, ()| + min  Var(Zy)oo/6n p < n 2,
~ o9 ke[| B.x(r)]] (=

And thus we have

P(Lo <t)—P(og sup Zx+g(p,q)po <t)
kel Bar (0]

sup
teR

=o(1).

Following the same procedure with z* replaced by zg, we also have

sup
teR

= o(1),

P(Lo(20) <t) — P(Uo ke[ﬁgup( )H(Z’)k +9(p, o < t)
2o (T

where Z' ~ N(0,%.,/02), and X, = Cov(L.,). By Lemma D.1 we know that . and 3., are
equal up to permutation. Therefore, the claim follows. We may also note that the validity of the proof
does not depend on the values of p, g as long as the regime is 1/p,, = o(n'~°2) for some constant

¢y > 0, and thus the statement is also true for Ly := SUpP,, eB.. (r) {g(ﬁ, 7)( D) eEa(er o) Dij —

Do) (2% 12) Ajj) } with plugged-in estimators p, g.

D.2 PROOF OF THEOREM 3.2

In fact, Proposition B.1 shows that the symmetric community property pairs defined in Section 2 are
general symmetric property pairs under the general framework, and Theorem B.2 is a generalization
of Theorem 3.2 under uneven cluster sizes. Thus we can just prove the more general Theorem B.2
and the proof will also apply to Theorem 3.2.

The proof of the main theorem requires the help of Proposition 2.3 and the following lemma that
shows why the maximizer in the alternative assignment space can be restricted to the ball centered
at the true assignment zg € Co.

Lemma D.2. We denote z* as the true assignment, and B« (rx) is the ball centered at z* with
radius rx = d(z*,C1) + 2(2715(1)0%(, ¢k = O(1). Under the same conditions of Theorem B.2, when
z* e Cy

sup log f(A;2,p,q) = sup log f(A;2,p,q) + Op(pn); (D.1)
z€Cy 2EB, = (TK)
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Moreover, for any true assignment z*, we have

sup log f(A;z2,p,q) = log f(A;2",0,q) + Op(pn). (D.2)
z€CoUC,

With help of this lemma, instead of taking the supremum over the entire assignment space C;, we
are able to restrict the maximizer to a much smaller set B, (r ) so that the Central Limit Theorem
can be applied. Recall that the boundary B, - defined in Section 2.3 is in essence a ball with radius
d(z*,Cy). We defer the proof of Lemma D.2 to Appendix F.2.

Now we are ready to present the proof of Theorem B.2:

We first define the o quantile of the LRT statistic. Let Cw () be the 1 — o quantile of W, condi-
tioning on A and A, i.e., P(W,, < Cw(«a)|A,A) = 1 — a. We then estimate the quantile of LRT
by

then it can be seen that the two events {iﬁ’ > ¢o} and {pw < a} are equivalent. Therefore,

it suffices to show that lim,, .o Sup,» e, P(LRT < ¢go) = «. The proof is mainly composed
of three parts. The first part is to briefly illustrate the derivation of L as the leading term of the
log-likelihood ratio, the second part is to control the error caused by plugging in the estimators of
connection probabilities p, ¢, and the third part is to illustrate the multiplier bootstrap as a valid
approximation of the LRT quantile.

D.2.1 DERIVATION OF THE LEADING TERM FOR LRT

For a given true assignment z* € Cy, by Lemma D.2 we have:

Sup,ec, f(A7 272/9\7 ZI\)

SUPzecoucl f(A7 Zafi a\)

= SH(I? IOg f(Aa 271/)\, Z]\) - IOg f(A7 Z*aﬁa ZJ\) + OP(pn)
zeCy

sup (108 /(Ai21,5,) ~ log £ (452", 5. D) +Or(pn),
zrEB, « (1

Iﬁﬁ“:log

where 7 > 7 := d(Co,C1) + ¢5pK /(2(p — q)) and r = d(Cp,C1) + O(1). In practice, due to the
consistency of p, g, when we choose the radius r = d(Cy,C1) + CpK/(p — q) for some sufficiently
large C, we can make sure that the conditions on the radius is satisfied with probability 1 — o(1).

Thus we can see that the LRT is essentially the supremum of the log-likelihood difference between
the true assignment z* and the alternative assignments in the ball B,-(r). We further expand the
log-likelihood terms and can write

LRT = sup {g(ﬁ,&)( Z A — Z Aij)+10g(1_g)(ﬂ1(z*’zk)ﬂz(z*’zk))}

#€B.= () G)ea(z"z) ()€1 (=" )
+ OP(pn)
= Lo+ 6.

where 6, = sup.,cp_. {log‘((l 9/ fﬁ))(nl(z*,zk) —ng(z*,zk))} + Oplpy) =
Op(pn), and Lo = g(p,q) SUD.,eB,« (r) (Z(i,j)€£2(z*,zk)Aij - Z(i,j)ec‘,‘l(z*,zk)Aij)' From
Proposition 2.3 we have that lim,,_, o sup,cp |P(Lo < t) — P(Lo(2z0) < t)| = 0 for any zy € Cp.

Therefore, it suffices for us to prove that ]P’(ITﬁ > ¢o) = a + o(1) for one given true assignment
zo € Co. Now we are ready to prove the validity of the multiplier bootstrap for estimating the
quantile based on the leading term.
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D.2.2 BOUNDING OF ERROR CAUSED BY PLUGGING IN P, ¢

From previous sections, we know that

Lo(z0) = 9(5, D)o {5 XX} + 96.Dro + Orlon).

kel Bas ()] =

where (X ;) = (Aij —]E(Aij)) (]l[(i,j) € E(z0, 21)] — 1[(4, j) € &1(o, zk)]) For any zg € Cg,
we give the following notations:

Ty = {—Z (X5 } =0 = sup( )]{1 Z{&j}k}’ =p =

ke[\Bm(rm o0 {7

[

> &k}

1<j

ke[\Bzo ){

and denote

W, = W,/0o = sup {Ai Z(X\ij)keij}y

k€[|B.y (r)]] 00 i<j
where (Xij)x = (Ay — Epa(Asy)) (1[0, 5) € Ea(20,21)] — 1[(i,§) € &(20,21)]) and the ad-
jacency matrix A s generated by p, q, and 59 = \/d(CmCl) (]3(1 —-p)+q(1— qA)) &;; and @j

are the independent mean zero Gaussian vectors with covariance matrix equal to that of X ;; and

X\ij respectively ({&;;}x = 0if (4,5) ¢ &1,2(%0, 21), and the same for {g”}k ). {eij}ic; areiid
standard Gaussian. By Corollary 2.1 in Chernozhukov et al. (2013), we have

Sup IP(To <t) =P (S0 <t)] = o(1);

Also, by Lemma 3.2 and Corollary 3.1 of Chernozhukov et al. (2013) we have

sup ’IP’ (Wn < t\f(i]) -P(Z) < t)‘ =op(1).
teR

We let ©%0 and X0 be the covariance matrix of the vectors {ZZ <j{£ij}k/00}k and

{ZKJ.{@j}k/&O}k respectively. Thus for k, 1 € [| B, (r)|] we have:
= 1
Xp = s Cov(d {&ite Y _{&ih)
j ]

= OCOV(Z(Xij)mZ(Xij)l)
_ [&2(20,26) N E2(20, 21) (1 = @) + &1 (20, 2) N €1 (20, 21) [P(1 = p)
d(Co,C1)(p(1 = p) +q(1 — q)) '

Accordingly,
Shh = 52 COV(Z()?ij)k,Z()?ij)l)
_ 1&2(20, 21) N E2(20, 21)|q(1 — ) + [€1(20, 2) N &1 (20, 21) [P(1 — D)
d(Co,C1)(P(1 = p) +q(1 — 7))
_ €220, 21) N Ea(20, 21)|a(1 = q) + [E1(20, 28) N E1(20, 21)[P(1 = p) + Op(d(Co, C1)/Pr/7)
d(Co,C1)(p(1 = p) +q(1 — ) + Op(d(Co,C1)\/Pr/n) '

Then we have

= = Op(d(Cy,C /N 50 Op(d(Cy,C /T 1
B0 = x5y - w53 < | 22NN |y OP(ECO SNV | (),
i 7 3 Now
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Thus by Lemma 3.1 in Chernozhukov et al. (2013), there exists a constant C' such that
sup [P (2o < 1) = P(Zp < )] < CAY® (1V1og (|B2y ()|/A0))*/* = op(n=1/07e2/12),
te

and thus
sup [P (2o < t) —P(Z < t)| = op(1),
teR

and in turn we have

sup |[P(Tp <t)—P (Wn < t|§<”)) =op(1).
teR

D.2.3 VALIDITY OF MULTIPLIER BOOTSTRAP IN ESTIMATING LRT QUANTILE

Now recall that Cj5; («) is the o quantile of W,, conditional on X; 7, and we would like to control

the order of C5; (c) in order to bound the error in estimating the quantile of LRT. Give a constant
t > v/2cy, we have

P(W,, > t\/logn|X,;) = P(Z > t1/logn) + op(1)
1 N
< P {* ij } =
< Z % Z{fy}k ty\/logn | +op(1)
ke[| Bzo (r)l] i<j
2

S |By(nle™ 7 5" 4 0p(1) = Op (n~/2) + 0p(1) = 0p (1),
Thus we know that C; () = Op(y/logn). We know that go = g(p, 7)00C;, (@) + g(P; @)Ho,
LRT = Lo + 6, and also lim,, o SUP;cR IP(Ly < t) — P(Lo(20) < t)| = 0. Therefore,

P(LRT > qo) = P(Lo + 6 > ¢a) = P(Lo(20) + 6n > o) + (1)
= P(g(p.Do0oTo + 9(B. Do + 0n > 9(5. DFCrir. (@) + 9(B,9)fi0) + 0(1)

0o Ho — po On )
=P|Ty> —Cx (a) + - — +o0(1).
< 0 o] W"( ) o] g(p’Q)Uo ( )

We have that [0y — 0| = Op(+/d(Co,C1)/n) and |fig — po| = Op(d(Co,C1)\/pn/n). Therefore,
_— C14/d(Cy,C Cod(Cy,C n n
P(LRT > ¢,) = P(To > C () + OVHCC) () 4 LU COVPn 8 ) +o(1)

oon Wn oon g(ﬁv (/1\)0—0

= P(TO > C’W (Oé) + Cl\/ logn/(nQpn) =+ 02\/ d(C(),Cl)/TL + Cg d(CpnC)> + 0(1)
" 0,41
=P(Tp > Cyw (a) + Ay) +o(1),
where A,, = op(n~°) for some positive constant ¢ > 0. Now from previous results we have
IP(LRT > g4) — a| < [P(Ty > O (@) + An) = P(W,, > Cir () + Ay)|
+[P(Wo > Cip (@) + Ay) = P(W,, > Oy ()] + 0(1)
< P(|Wn — C (a)] < An) + 0p(1).
Now we study the distribution of Wn: if we denote Yy, = 3—10 Doic 3(3(\13) k€ij. then Yk|3(\ ~
N(0,07), where 07 = 32, (X5)} /33, and supy, [E(0}) — 1| < [63/53 — 1] + 0p(1) = op(1).

Also, |(X;)2| < 1. Under the event A = {p = o(1)} N {§ = o(1)} with P(A) = 1 — o(1), by
Bernstein’s inequality, we have

1+1b\,4

3562
Ps(lo2 —Eg(02)| > 1/2) < 2ex (_80>_2 (_0>’
x(| k x( k)| / )_ €xXp (% 1)Ag exp 12
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where P5 and @f{ denotes probability and expectation with p and ¢ fixed and consider only the
randomness of X. Also
Pg(mino? < 1/2) < 3" Pg(lof ~ Bg(o?)| > 1/2)
k

302
=24, exp (52 ) = op),

where the last 0p(1) term is due to the fact that 55 = Qp(np,) = Qp(n?) and | B,, (r)| = O(n).
Then by Lemma 2.1 in Chernozhukov et al. (2013), we have

P(IW — O, (a)] < Ay) = P(|max Y — Gy ()] < A) < supP(|max Vi — 2| < A,)
n n ZER

—0r (&, { VETRTE, 0]+ floglminaf /8, ) = or(1),

and thus lim,,_, oo SUpP,+ec, P(iﬁ > qo) = a.

As for the Type I error, from the preceding proof we see that P(LRT > ¢,) = « + op(1), and the
convergence of the op (1) term is independent of z* € Cy due to the symmetry of Cy. Therefore, we
have

sup P(reject Hy) = sup P(LRT > g,) = a4+ op(1),
z*€Co z*€Co

and hence the claim follows. As for the Type II error, when the true assignment is z* € Cq, by (D.2)
in Lemma D.2, we have

Supzecl f(A7 Zaﬁa Z]\)

LRT = log L
SuszCOUC1 f(Aa Z,D, Q)
sup, f A7Z7ﬁaa A;Z*,A,A
f(A’ 25D, q) SuszCUUC1 f(Aa Z, P, q)

And since 5o < /d(Co, C1)P, fio < —d(Co,C1)p = —Qp(n*) and C; (a) = Op(y/logn), we
have g, = 9(p, 7)00C5; () + g(p, @)t — —oo. Since the convergence is independent of 2*, we
have for any true assignment z; € Cy,

inf P(reject Hy) =1 — sup P(LRT < ¢,) =1—o0p(1).
z*eCy 2*€Cy

E PROOF OF THEOREMS FOR THE LOWER BOUND

In this section, we will prove the theorems for the lower bound. Similar to the upper bound, since
Theorem B.5 and Theorem B.6 are general versions of Theorem 4.1 and Theorem 4.2, we will only
prove the general versions and the proof can be applied to Theorem 4.1 and Theorem 4.2, too. Also,
the proof of Theorem B.5 is actually based on the proof of Theorem B.6 under a stronger regime.
Therefore, we will prove the two theorems together: we will first prove Theorem B.6 under more
general conditions, and then we will apply the proof of Theorem B.6 to the proof of Theorem B.5
under stronger conditions.

E.1 PROOF OF THEOREM B.5 AND THEOREM B.6

The proof proceeds in the following order: we first prove the results under the two conditions of
Theorem B.6, namely the proof of Theorem B.6 (1) and the proof of Theorem B.6 (2), then we
provide the proof of Theorem B.5.
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E.1.1 PROOF OF THEOREM B.6 (1)

As for the minimax rate, we have:

r(Ca, €)= win{ supP (6 = 1) + supPo (6 = 0}

2€Co z2€Cy
> I%II{PZO W=1)+P,,(v= O)}

where zp and z; are fixed cluster assignments in Cy and C; respectively. For a given adja-
cency matrix A, we know that 1) is a function of A, and the only information of A relevant to
classification of the true assignment is {A,;, (¢,7) € &i(20,21)U&2(%0,21)}. Larger sizes of
E1(z0, 21) and E(z0, z1) will provide more information and lead to smaller type I and type II er-
rors. Thus, the worst case is when the size of &£;(zg, 21) and E(2g, z1) obtains the infimum, i.e.,
d(20,21) = n1(20,21) V n2(20, 21) = d(Co, C1). N

To obtain infy { sup,ce, Po(¥ = 1) 4 sup,ce, P.(¥ = 0)}, the optimal method 1 must be
the mode of the posterior distribution. For the convenience of notations, we denote L(z, A) as
f(A; z,p,q), and n; as n; (20, 21), ¢ = 1,2 for short:

L(ZO7 A) X pz(’id)egl(m»n) Aij (1 — p)nl_z(’id)esl(m»n) Aij qz(id)efz(zo,zl) Aij (1 — q)nz_z(ivj)esg(myﬂ) Aij
L(Zh A) X pz“’”esﬂzwn A (1 - p)nz_z(ifﬂGS’z(Z(}»Zl) Aij qz(hj)Efl(Zole) Aij (1 - Q)nl_z(ivj)é“?l(Zo,Zl) Aij
and correspondingly,

L(ZlvA)7
L

v(A)=4 q] ifL(zo,A)Z (21,A).

Then P, (¢ = 1) = P,,(L(z0,A) < L(z1,A)) and P, (vp = 0) = P,, (L(20,A) > L(21,4)).
Without loss of generality, we assume that n1(zo, 21) > n2(20, 21). Then, if we expend the size
of E5(20, 21) to be the same as &1 (20, 21), adding i.i.d entries {A,;, (i,7) € EF (20, 21)\E2(20,21)}
conforming to the same distribution as {A;;, (4, §) € E2(20, 21)}, more information will be provided
and the error rate will decrease, where £ (zo, 21) denotes the set expended on E(zp, 21), and we
have:

~ { 0, if L(zp,A)

Z(2707A) x pz“’ﬂesﬂzmﬂ) A”(l —p)"l_zu,ﬂesl(zo,zn Aij qzu,a‘)eeé(zo,zn Aij(l _ q)”l—zu,j)esg(zo,zl) Aj

L(z1,A) o p= ek comn A (1 _ )M 2tiieek oo A g Diipees o, At (1 — )™ " Dtipees oz A
Thus we can obtain a lower bound on the minimax rate:
r(9) = Poy(L(z0, A) < L(z1, A)) + Psy (L(20, A) > (21, A))

> P, (L(20, A) < L(z1,A)) + P., (L(20, A) > L(z1,A))

_ lP’zD( . YEEEDY Aij) - JP’zl( Y. Ay> )] Aij)

(4,5)€E1(20,21) (4,5)€EX (20,21) (4,5)€€1(20,21) (4,5)€EX (20,21)
ny ny
2op(3 w02 300
u=1 u=1
where { X, } £ Ber(q), {Y"} £y Ber(p), and { X"} are independent to {Y*}.
Now n; = d(Co, C1), and both p and g change with n;. We have E(| X% — Y* — E[X* — Y¥]3) <
p(l —q)+q(l —p). Since 0 < ¢ < p < 1— 4, wehave ép < p(1 — ¢) + q(1 — p) < 2p. Thus
E(| X" - Y% —E[X" —Y"]|3) < p. Similarly Var(X* — Y*) =< p. Thus,
S E(XU YU —EXY YY) mp(-g+el-p] _ 1

- = -0
Var (L (X = v w321 = q) +p(1-p)*? ~ up
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Therefore, by the Lyapunov’s Central Limit Theorem and the independence of {X*} and {Y™“}, as
n — oo, we have Y L X% — Sy 4 N(ni(q — p),n1g(1 — q) + n1p(1 — p)). Therefore,

u S U\ __ u — u _ \/7(p q)
ZX >ZY ZX ZY >0)=1 \/pli +q1—q))+0(1).

When limsupniI(p,q) = O(1), we can see that p — ¢ = o(1). We have

n—oo

_ (VP—v2)?+ (T—p—T—q)?
I(p,q) = —2log (1 - > )

— )2 2
<((p Q)) 7 (r—a) )(1+o(1))
5
2

VPHVD? (VTI—-p++v1—¢)?
(r—a)°
p(1=p)+q(1—q)
Thus, if limsupniI(p,q) < §®-1(3/4)%/2,  namely, limsup,mni(p -

n— oo n— oo

q)/\/P(1 —p) + q(1 — q) < limsup \/2n11(p,q)/6 < ®~1(3/4), we have

n— oo

Vv

(1+ o(1)).

B X > SOV > 1 e(yin — )/vVe(—p) T a0 —) > 1/4.
u=1 u=1

and

r(Co,C1) > 2(1 — ®(yni(p — q)//p(1 —p) + (1 — q))) > 1/2.

E.1.2 PROOF OF THEOREM B.6 (2)
When d(zy,C1)I(p,q) — oo, if there exists a zyp € Cp and some r = d(zp,C1) + O(1) such

that lim sup,,_, .. d(Co,C1)I(p,q)/log N(B.,(r),0) < 1, then we take a 0-packing P(B,,(r),0)
(denoted P(0) for short) of the ball B, (), and we have:

7(Co,C1) = mlgn{sup]P’Z(z/J =1)+ supP,(¢ = 0)} > mwin{]P’ZO(z/J =1)+ sup P,(¢ = 0)}

z2€Co 2€Cy z€P(0)
_ min{ 3 (PZO(¢ —1JA=A)P. (A=A)+ sup P.(¢) =0[A = AP, (A = A))}
Y A z€P(0)

—mind 37 (100(40) = P (A = ) + 1(5(8) = 0)_swp F.(A =),

A z€P(0)

where the sum over A is the summation over all possible realizations of the adjacency matrix A.
Thus the optimal method ¢ in this scenario should be:

TOA) — 0, if L(zg,A=A)> SUp.cp(0) L(z,A=A);
VAY =11, i L(20, A = A) < sup.cpio) L(2 A = A).

and we have L(zp, A = A) < sup,cp() L(2, A = A)
r(Co,C1) > P. (p =1)+ sup P.(¢ =0) =P, (L(zo, A=A)< sup L(z,A = A))
z€P(0) z€P(0)

+ sup P, (L(zO,A =A)> sup L(z,A = A))
z€P(0) z€P(0)

= IP’ZO( sup logL(z, A = A) —log L(zp,A = A) > 0)
z€P(0)

+ sup IP’Z( sup log L(z,A = A) — log L(z0, A = A) < 0).
2€P(0) 2€P(0)
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Similar with the case when d(z2¢,C1)I(p,q) = O(1), we can expand each (20, 2) to £ (20, 2) (or
&1 (20, 2) to EE (20, 2), we use the former notation for convenience) so that & (2, z) and Ex(2o, 2)
are of equal sizes, and then we have

r(Co,Cl)szO< sio (Y Ay- Y Az-j)>o)

€PO) % i j)eet (20.2) (1:9)€1(20,2)

+ sup IP’Z( sup ( Yo A Y A”) SO)
2€P(0) 2€P0) ™ (5 j)EEE (0,2) (1,5)€E1(20,2)
(s a0

2€P(0) (4,5)EEL (20,2) (4,5)€E1(20,2)
nl(Z(), ni ZO:
:PZ()( sup ( Z Xu Z Y“)>O>
z€P(0)
iid 11d

where {X7'} '~ Ber(q), {Y;"} ~ Ber(p), {XZ} L {XZ}i # . {2} L {YS}i# jand
{X%} L {Y22},Vi,j. By Lemma 5.2 in Zhang & Zhou (2016), we know that there exists 7 — 0
such that

n1(z0,2) n1(20,2)
( Z X - Z NS >0) > exp (— (1 +n)d(20,C1)I(p,q))-
u=1

When limsup,,_, . d(z0,C1)I(p,q)/log|P(0)] < 1, for sufficiently large n we have (1 +
1)d(z0,C1)I(p,q) < log|P(0)|, and since x > 1 — (1/2)* for z > 0, we have that for n large
enough

n1 (2o n1(z0,2)
( Z Y2 > 0) > exp (— (14 m)d(0.C)I(p. )

xp (- log |[P(0 ):1/|7> 0)] > 1— (1/2)Y/POI

and thus

n1(z0,2) n1(zo0,2z n1(z0,%z) n1(20,2)
r(Co,C1) ZPZ()( sup < Z X¥— Z yu) )_ an0< sup ( Z Xg_z qu) S())

z€P(0) z€P(0) u—=1

u=1
nl(ZmZ) m(zo z) PO
=1 zep«»PZO( 2 XD Y“<0) {a POl <,
u=1

The statement is true for any O-packing of the ball B, (), and thus the statement follows.

E.1.3 PROOF OF THEOREM B.5

Under the regime 1/p,, = o(n'~¢?), we take one \/d(29, C1)-packing P(B.,,(r), \/d(z0,C1)) (de-
noted P for short) of the ball B, (r), similar with the proof of Theorem 3.2, by Corollary 2.1 in
Chernozhukov et al. (2013), we have:

ny Zo, ni (Zo,z) Zo,cl d(Z07cl)
r(Co,C1) > Py, < sup ( Z Xu Z qu) > O> =P, <su13 ( Z Xy — Z qu) > 5n>
z€P u=1 u=1 z€P u=1 u=1

d(Z(),C1) d(ZO,Cl)

= ZO(sup( > Xr- ) Yf+d<zO,cl><p—q>)>d<20,cl><p—q>+an)
zeP u=1 u=1

d(20,C1)(p — q)

gd

:P20<suE§Z > —|—5n/ad> +o(1).

z€P
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where 5, = s, (I Xr - SIGOVE) s (S X -

S (0,2) Y“) = 0(1) and 0q = \/d(20,C1)(p(1 —p) +a(1 —q)), and {£.}_ 5 are stan-

dard Gaussian variables with the same covariance matrix as {(Zi(z‘f €1 XY - Zig’cl) Y+
d(zov Cl)(p - Q))/Ud}zeﬁ'

By Lemma 2.1 in Chernozhukov et al. (2013), combined with the fact that d(z9,C;) = Qp(n) and
1/pn = o(n'~2), we have that

IFDZ()(suEfZ > W—&—én/ad) -P,, (sugé“z > d(zo,C1)(p—q)>‘ < i—z\/logn = o(1).

zeP z2eP gd

We let {)?g}uz be i.i.d Ber(g) random variables and {Y/z“}u,z be i.i.d Ber(p) random variables,
and {X"}, , and {Y*}, . are independent of each other. Then for each z € P, Zd (z0,C1) X“ -
Zz(ﬁ’cl) Y +d(20,C1)(p — q) shares the same distribution with Zd(zo € xu Zi(z‘f € yu g

d(z0,C1)(p — ¢q). We let {fz}‘2673 be the corresponding Gaussian analog of {(ZZ(:Z‘{ ) ¥ Xy —

Zd(zmcl) Yu + d(ZO’ Cl)(p — Q))/Ud}zeﬁ' Then we have:

u=1
- 0 ifi=j,
| Cov (&, &z;) — Cov(E,,, &) = owﬁ) if i j.

Thus by Lemma 3.1 in Chernozhukov et al. (2013), we have Ag = O(1/4/d(2,C1)), and

0 (SuR ¢ > t) — P (Sulzﬁl > t) | < Cay/*0g [P1/80)** = o(1),

teR z€P zEP
and thus
d(20,C1) d(20,C1)
(sup( dooxr— Y, YZ“+d(zo,C1)(p—Q)) >d(zO701)(p—q))
z€P u=1 u=1
Zo,C1 d(ZO7cl) _
=P, (SUE ( YoOXi— Y Yr4d(,C)(p - (1)) > d(z0,C1)(p — q)> +o(1).
2€P u=1 u=1
Then similar with previous proof, we have when lim sup lim,, -, d(zo,C1)I(p,q)/log |P| < 1,
n1(z0,2) n1(z0,z) _
(Co,C1) > IPZO( sup ( dooxr- Y Y) > 0> +0(1) > 1/2+ o(1).
ZGB(TK) u=1 u=1

Also the results hold for any /d(zg, Cy)-packing of the ball B, (r). Therefore, we proved the
claim.

F PROOF OF TECHNICAL LEMMAS

Now we will provide proofs for the technical lemmas used for the proof of Theorem B.2.

F.1 PROOF OF LEMMA 2.2

It suffices for us to prove Lemma D.1, the more general version of Lemma 2.2. Due to the structure
of L., it suffices for us to prove that the edge-wise distance between assignments is permutation-
invariant.
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For any given zg € Cy and 21, 2} € Cy, we have:
n1(z0,21) = Z 1(20(7) = 20(5), 21(2) # 21(4))
i<j,i,j€[n]
Z ]l(a(zo(i)) =0(20(5)),0(21(3)) # U(Zl(j))>
1<j,i,j€[n]

S 1(rool) (7)) =7o0(0) (1), T o a1 (1(0)) £ 7o 0(21) (7)) )

(1) <T(4), 6,5 €[n]

=ni(to0(z),700(21)).

Then very similarly we have ns (20, 21) = na(700(29), 700 (21)) and thus d(z0, 21) = n1 (20, 21) V
n2(z0,21) = n1(100(20),700(21)) Vng(ro0(2),700(21)) = d(r 00(20), 7 0 o(21)). This
suggests that the permutation 7 o ¢ does not change the distance between assignments. Also,
|81(20721)051(ZO7Z1)| = Z ]l(ZO(Z) :ZO(])7Z1(Z) #21(3)72’1(2) #Zi(]n
1<j,4,j€[n]
= Y L(roo(z)i) =To0(20)(), To0(21)(i) # Too(21)()), Too(21) (i) # T 0 a(21)(4))
i<j,i,5€[n]
= ‘51 (7‘ oo(zp), 7o a(zl)) Nné& (7’ oo(zp), 70 O‘(Zi))‘
And similarly,
|€2(20, 21) N E2(20, 21)| = |E2(T 0 0(20), T 0 0(21)) N E2(T 0 0 (20), 7 0 0 (27))-

Thus the cardinality of the intersection of the sets &;,4 = 1, 2 is also invariant under the permutation
Too.

Now for any zg, 2, € Co, if 7 0 0(20) = 2{, and d(z¢, 21) = d(29,C1), from previous results we
have d(z{, T o 0(z1)) = d(z0,C1). If there exists an assignment z{ € C; such that d(z(, 2]) <
d(z), T 0 0(21)), then d(zo, (T 0 0)71(2])) = d(2{, 2}) < d(z20,C1) due to the fact that 7 o o is a
one to one mapping. Since zg = (7 o ) !(2(), we know that C; is closed under (7 o o)~! and
(to0)~!(z}) € Cy. This is contradictory to the fact that z; = argmin_ ., d(z0, z). Therefore,
Az Cr) = d(z,7 6 0(21)) = d(z0,Cr).

Similarly, if 21 € B.,(r), then 7 0 0(21) € B (r). If 2 € B.;(r), then (T 0 0) ! (2]) € B, (r).
Therefore, 7 o o is a one to one mapping from B, (r) to B, (r), and | B, (r)| = | B (r)|.

Now for a given radius r, we find the permutation T € S|g, () such that T(z;) = 70 0(2;) = 2;
0
for z; € B,,(r) and 2] € B, (r).

When the true assignment is zg, the (k,[)-th entry of the covariance matrix for the vector L, can
be expressed as

Cov(Ly,)r = 9(p, Q)2(|52(20, 2) N E2(20, 21)|q(1 — q) + |E1(20, 2) N E1(20, 21) |p(1 —p))
=g(p.q)® (|52(T 00(20), 70 0(z)) NEA(T 00 (20),700(2))]g(l —q)
+IE(r o 0(z0). 0 0(2)) NE(r 0 0(z0). 70 a()lp(1L ~ 1)

= Cov (g(p, q)( Z A — Z Aij)7g(pa Q)( Z Ajj — Z Aij))
Ea(t(zf),t(z})) E1(T(2g),T(2y,)) E2(T(2p),T(2))) E1(T(2g),t(27))

= Cov (L1 )x(k)e(1)-

Hence we finish the proof.
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F.2 PROOF OF LEMMA D.2

The proof mainly follows from Lemma 2.3 and Lemma 2.6 in Wang & Bickel (2017) with modifi-
cations for the function F(-) and G(-). We provide the sketch of proof as follows:
We first define the count statistics as proposed in Wang & Bickel (2017):

Aij|(2(i) = a,2(j) = b) ~ Ber (Hap) ,i # j,a,b € [K].
where Hy p, =p = Aip,ifa=b,and H, p, = ¢ = Aopy, if a # b. H = p,S.

=33 1(2(i) = a,2(j) = b) Ay,

i=1 j#i

n n
L= Z Z Aij, [t =17 py.

i=1 j=i+1
For two assignments z, z’, The confusion matrix is:

n

Ria(z,2) =n"") 1(2(i) = k,2'(i) = a).

i=1

By definition, we have |n(z) — n/K| < cx,Vz € Co UCy,Vk = 1,2,..., K. We let nn(z) denote
the number of within-cluster edges, and assume

ng(2) =n/K + ag, |ag| < ek, k=1,2,..., K,

K
Z ap = 0.
k=1

Then
S /Kt —n /K —n | T o
~on e (/ ag)—n _n?/ n k=1 %
n(z) = = +
2 2 2
2
K —
< n/% K 2.

Therefore, Vz,z € Cy we have n(2) + na(z,2') — ni(z,2') = n(z'), |n2(z,2') — ni(z,2")] =
[n(z) —n(z")| < K %(/2 Thus, we denote z* as the true assignment, and Vz € Cy U C; we have

~

Ous(z)log ——) +7i(z) log(1 ~ §) + (n(n — 1)/2 - () log(1 ~ @)

P 1
1Og f(A7Z,p7 Q) = 7(
a,b

(

[\]

M= %Mx

1

Oa(2)(logSa + log p, — log(1 — ﬁa,b))) + C(2") + Op(pn)

DN =

a,b

(;

where C(z*) = n(z*)log(1 — p) + (n(n — 1)/2 — n(z*)) log(1 — 7). We let F( (2)/pn) =
Yooy 2ol log Set and F(RSR'(2)) = XN, (RSR'(2))aslog &, where
R(z) = R(z,2*) and RSR' (z) = R(z,2*)SR(z, 2 ) We denote C C Cy U C; as some subset

ab=1"p, °87"H,
of assignments, and we let V¢ denote the set of z € C that maximizes F(RSR' (z)). Obviously
F'(-) is Lipschitz, for €, — 0 slowly,

WER

w|F

o, a *
ﬁ{log Sap + OP(Pn)}> +log pnL + C(2%) + Op(pn).

o
Il

1

F(O(2)/un) — F(RSR (2) okl (2)/ i — (RSRT(z))kJ‘ = Op (e).
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We choose some positive §,, — 0 slowly enough such that 6,, /€, — oco. We take any Z’ € Vg, then
we define

Js, = {z e [K]" : F(RSR" (z)) — F(RSR' (2)) < —5n}.

Then we have

Z elos f(Azp.D) < f(A; Z',p, Q\)KneOP(MnEn)_Hnén/Q"FOP(/)n)

zEJ&n

= f(A;Z',p,@)op(1).

For z € C\{Js, UVg}, |F(RSR'(z)) — F(RSR"(Z'))] — 0 and |[RSR'(z) —
RSR"(Z)||.o — 0. Treating R(z) as a vector, choosing z; be such that R(z;) :=
MiNR(.0):z0eve [[R(2) — R (20)]|, for a given z € C\ {J5, UVc}. Due to the consistency of p, g,

the function F'(-) is a linear function with constant coefficients. We know that with probability
1—o0(1):

oF ((1 —O)RSR" (2) + eRSRT(z))
Oe

< 0.

e=0"+
Given a matrix A, we denote the matrix maximum norm ||Al| = max;j |A;x|. Letting z =
min, () |o(z) (2) = O(2)/ptn, — RSR (2), we have

P X X zZ—
(L 1XG) = X ()l > efz = 22l /)

< F (o 1% - X > )

z:2=Z,|Z—z1 |=m

n
<3 2KKnm K2 exp (—Ow) 0.
n
m=1

where S(z) = {o(z)|o € Sk}. Since RSR' (Z) — RSR' (z1) = Q(|Z — 21 |), we have that
Oz _O(z)
fin fin

And thus we probability 1 — o(1) uniform on all z, we have

F(O(Z)/pn) < F(O(z1)/pin) -

In turn, we have

IOg f(Aa Zaﬁa ZJ\) < logf (A7 ZJ_vﬁa E]\) + OP(pn)
Since from Lemma A.1 in Wang & Bickel (2017) the high probability is uniform on all assign-

ments, we have that, with probability 1 — o(1), for any z € CN\VG we can find 2’ € Vg such that
log f(A;z,p,q) = log f(A; 2, p,q) + Op(py), and therefore,

sup log f(A7 272/7\’ ZJ\) = Ssup lOg f(A7 Z7ﬁ7 Z]\) + OP(pn)
zeC 2€Va

Now we consider F(RSR" (2)):
F(RSR' (2)) = E(F(O(2)/n))

- lTln(Cl(Z ) + log ;12 g (ng(z*,z)q—nl(z*,z)p))
_ 1 07(1 ﬁ)nz*z ni (2%, z — co(%
= (O +log 2 T2 (2l 2) Ve, 2) 00 = M)+ eo(4)) ).
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where Ay = p/pn, Ao = §/pn and Cy (2*) = E_lﬁﬁ(z*)p + log %(n(n —1)/2 —n(z*))q, and

co(z) < MKc% [/2,Vz € Co UCy.

Thus when z* € Cy and C = Cy, it can be easily perceived that Vi C B, « (7)) with high probability,
and hence

sup logf(szvﬁa Z]\) = sup lng(A,Z,]/?\, Z]\) +OP(pn)

z2€Cy 2€B_x(rK)

Moreover, when z* € C, Ve C B.«(r*) with high probability, where r* = A\ Kc%/{2(\1 —
A2)} = O(1). By Lemma 5.3 in Zhang & Zhou (2016), for any z € B,«(r*), if z # z*, then
d(z*, z) = Q(n). Therefore, B« (r*) = {z*}. In other words, we have

suplog f(A;z,p,q) = log f(A;2",D,q) + Op(pn). (F.1)
2eC

More concretely, if we take C= Co UCq, we have

sup log f(A;z2,p,q) = log f(A;2",p,q) + Op(pn),

2€CoUCy

and if z* € Cy, we have

Sup log f(A;2,p,q) = log f(A;2%,0,q) + Op(pn).
zeC1

F.3 CONSISTENCY OF PROBABILITY ESTIMATION

Recall the estimators p and g are defined in (2.9), and that Xl = p/pn and /):2 = G/ pn- The following
lemma shows that A\; and Ay are consistent.

Lemma F.1. Under the same condition of Theorem B.2, we have
X = Xl = O(1/v/n?p,), i=1,2

Proof. From Lemma 1 and Theorem 2 in Bickel et al. (2013), we know that |log (p/(1 — p)) —
log (p/(1=p))| = O(1/y/npy) and |log (§/(1 - 7)) —log (¢/(1 = )| = O(1/\/npn). We let
v and v, denote the logit of p and ¢. Then since (v, 1/2) is a one-to-one function of (p, q), we know
the relationship between (71, 72) and (p, ) should be 7; = logp/(1 — p) and Uy = log q/(1 — q).
Then we have

v; —v; = log ~—— — log

= log \ipn — log Xipy +log(1 — Xipn) — log(1 — Xipy)

B PYRpY (\i = Ai)pn

1 1) ——
+(1+o(1) ==t

and thus by previous results we have

X — Nl = 0(1//n2p,), i=1,2

G ADDITIONAL NUMERICAL RESULTS

We present in this section some additional numerical results to further evaluate the performance of
our method. In Table 2 and Table 3, we provide the numerical results of the type-I and type-II errors
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corresponding to Figure 4 (a) and Figure 5 at different settings of A. We list the values of the metric
product d(Co, C1)I(p, q) corresponding to each setting for reference.

n = 200 n = 600 n = 1000
A | d(Co.C)I(pq) P P ey ci(pq) DPEE PRI ey ) 1(p,q) PET Typell
0.005 0.002 0.928  0.050 0.003 0.924  0.058 0.005 0934 0.104
0.010 0.007 0.922  0.056 0.013 0922 0.074 0.018 0930 0.110
0.020 0.027 0912 0.042 0.053 0.924  0.062 0.073 0.930 0.118
0.050 0.166 0.926  0.050 0.330 0.918 0.068 0.458 0.920 0.082
0.100 0.666 0.906 0.074 1.322 0.728 0.244 1.835 0.198  0.766
0.200 2.687 0.136  0.882 5.331 0.004 1.000 7.399 0.010  1.000
0.300 6.134 0.008 1.000 12.160 0.062 0.002 16.876 0.050  0.000
0.400 11.141 0.044  0.002 22.060 0.042  0.000 30.606 0.046  0.000
0.500 17.927 0.044  0.000 35.441 0.040  0.000 49.155 0.054  0.000
0.600 26.853 0.060  0.000 52.984 0.038  0.000 73.453 0.048  0.000
0.700 38.542 0.060  0.000 75.864 0.036  0.000 105.114 0.040  0.000

Table 2: Type-I and type-II errors of Example 1.1.

n = 200 n = 600 n = 1000
A @) oe e | G-I heT RECT | diCo.Colt ) R RS
0.005 0.001 0.942  0.054 0.002 0.922  0.088 0.002 0.936  0.068
0.010 0.003 0.944  0.058 0.007 0.910 0.086 0.009 0926 0.078
0.020 0.013 0.938  0.062 0.026 0916 0.078 0.037 0914 0.082
0.050 0.084 0.948  0.056 0.165 0.924 0.084 0.229 0916 0.088
0.100 0.336 0.902 0.082 0.663 0.788  0.232 0.919 0.236  0.786
0.200 1.357 0.122  0.844 2.674 0.000  1.000 3.707 0.002  1.000
0.300 3.098 0.000  0.998 6.100 0.002  0.994 8.455 0.004 0.994
0.400 5.627 0.008 0.982 11.067 0.042  0.000 15.334 0.044  0.000
0.500 9.054 0.050 0.086 17.780 0.050  0.000 24.627 0.030  0.000
0.600 13.562 0.044  0.000 26.581 0.042  0.000 36.800 0.038  0.000
0.700 19.465 0.040  0.000 38.059 0.034  0.000 52.662 0.036  0.000

Table 3: Type-I and type-II errors of Example 1.3.

We also compare our method with an alternative method SIMPLE proposed in Fan et al. (2019).
SIMPLE was designed to conduct a two-sample test on whether two nodes belong to the same
community. This is the case of Example 1.1 in our paper with m = 2. We compare SIMPLE with
our method under Example 1.1 with m > 2 by combining SIMPLE with Bonferroni correction.
We consider n = 600, K = 2 and m = 2, 3,28, where m = 28 is chosen by setting 6 = 0.7 in
the formula [(n/K)°/2]. The probabilities p and ¢ are chosen in the same way as in Section 5.
The results of the comparison are shown in Table 4. We applied the Bonferroni Correction to the
SIMPLE method when doing the multiple comparisons. From the results, our method outperforms
SIMPLE in both the single-pair testing and the multiple testing. For the multiple testing results,
Bonferroni Correction would result in a more conservative type-I error, yet the reported size from
SIMPLE is still larger than the desired size of 0.05, indicating a lack of accuracy of the method
under our setting of parameters. In comparison, the performance of our method is good and stable
under all settings.

To evaluate the performance of our method as the cluster size and the number of clusters increase,
we provide in Table 5 additional simulation results of Example 1.1 on the type-I error, type-II error
and runtime under different settings. Specifically, we set p, = n %=, where 0p, is the signal
strength parameter taking values at 0.15, 0.3 and 0.5 respectively, and we set p = 1.5p,, ¢ = 0.5py,
and m = [(n/K)%®/2]. Consistent with the results in Table 2 and Table 3, we have high type-I
and type-II errors when d(Co, C1)I(p, q) is approximately smaller than 10, suggesting that we need
large enough d(Cy,C1)I(p, q) to perform valid hypothesis testing.
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m =2 A 0.1 0.2 0.3 04 0.5 0.6 0.7
Our Method Size | 0.770 0.008 0.056 0.040 0.060 0.048 0.056
Power | 0.768 0.018 0.998 1.000 1.000 1.000 1.000

Size | 0.270 0.116 0.102 0.086 0.082 0.076 0.064
Power | 0.312 0.756 0.990 1.000 1.000 1.000 1.000

m=3 A 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Our Method Size | 0.752 0.014 0.048 0.048 0.044 0.046 0.046
Power | 0.728 0.018 0.998 1.000 1.000 1.000 1.000

Size | 0.344 0.118 0.070 0.074 0.070 0.084 0.070
Power | 0.426 0.816 0.992 1.000 1.000 1.000 1.000

m = 28 A 0.1 0.2 0.3 04 0.5 0.6 0.7
Our Method Size | 0.792 0.000 0.054 0.040 0.036 0.030 0.038
Power | 0.784 0.000 0.752 1.000 1.000 1.000 1.000

Size | 0938 0.232 0.126 0.088 0.072 0.06 0.044
Power | 0.950 0998 1.000 1.000 1.000 1.000 1.000

SIMPLE

SIMPLE

SIMPLE

Table 4: Comparison of our method with SIMPLE for Example 1.1 with m = 2, 3, 28.
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n/K K 0p, d(Cy,C1)I(p,q) Type-lerror Type-Il error Runtime (in seconds)

100 2 0.150 45.787 0.077 0.000 2.066
100 2 0.300 13.657 0.067 0.000 2.065
100 2 0.500 4.038 0.007 1.000 2.041
100 3 0.150 40.696 0.060 0.000 7.498
100 3 0.300 11.735 0.043 0.000 7.471
100 3 0.500 3.252 0.007 1.000 7.659
100 4 0.150 37.597 0.083 0.000 16.029
100 4 0.300 10.565 0.040 0.000 15.894
100 4 0.500 2.793 0.037 0.987 15.326
100 5 0.150 35.432 0.060 0.000 27.801
100 5 0.300 9.752 0.100 0.000 27.722
100 5 0.500 2.484 0.043 0.963 26.485
150 2 0.150 61.250 0.050 0.000 8.989
150 2 0.300 17.661 0.047 0.000 8.951
150 2 0.500 4.894 0.003 1.000 8.977
150 3 0.150 54.829 0.057 0.000 37.333
150 3 0.300 15.241 0.053 0.000 37.347
150 3 0.500 3.951 0.007 1.000 36.861
150 4 0.150 50.867 0.077 0.000 82.281
150 4 0.300 13.758 0.027 0.000 82.371
150 4 0.500 3.399 0.003 0.993 79.962
150 5 0.150 48.077 0.067 0.000 135.419
150 5 0.300 12.722 0.057 0.003 135.634
150 5 0.500 3.026 0.007 1.000 130.579
200 2 0.150 75.573 0.047 0.000 30.893
200 2 0.300 21.238 0.040 0.000 31.069
200 2 0.500 5.614 0.007 1.000 30.606
200 3 0.150 67.937 0.063 0.000 115.165
200 3 0.300 18.375 0.053 0.000 115.183
200 3 0.500 4.540 0.010 1.000 114.633
200 4 0.150 63.188 0.070 0.000 232.970
200 4 0.300 16.614 0.027 0.000 233.203
200 4 0.500 3.909 0.007 1.000 227.977
200 5 0.150 59.828 0.077 0.000 372.845
200 5 0.300 15.380 0.030 0.003 371.971
200 5 0.500 3.483 0.003 1.000 363.691
300 2 0.150 102.076 0.057 0.000 133.766
300 2 0.300 27.609 0.040 0.000 131.782
300 2 0.500 6.821 0.007 1.000 125.900
300 3 0.150 92.227 0.053 0.000 406.462
300 3 0.300 23.964 0.060 0.000 412.823
300 3 0.500 5.526 0.007 1.000 409.896
300 4 0.150 86.047 0.067 0.000 867.116
300 4 0.300 21.708 0.040 0.000 865.617
300 4 0.500 4.763 0.007 1.000 867.681
300 5 0.150 81.647 0.047 0.000 1490.006
300 5 0.300 20.123 0.030 0.000 1514.533
300 5 0.500 4.247 0.000 1.000 1450.086
400 2 0.150 126.694 0.060 0.000 377.973
400 2 0.300 33.311 0.037 0.000 374.540
400 2 0.500 7.838 0.000 1.000 374.889
400 3 0.150 114.825 0.057 0.000 1349.159
400 3 0.300 28.969 0.037 0.000 1353.448
400 3 0.500 6.356 0.007 1.000 1336.669
400 4 0.150 107.334 0.037 0.000 2715.127
400 4 0.300 26.274 0.053 0.000 2810.849
400 4 0.500 5.483 0.000 1.000 2796.724
400 5 0.150 101.982 0.063 0.000 4626.111
400 5 0.300 24.376 0.033 0.000 4583.932
400 5 0.500 4.891 0.003 1.000 4525.389

Table 5: Type-I error, type-II error and runtime (in seconds) for Example 1.1 under different cluster
size n/ K, number of clusters K and signal strength parameter 6, .
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