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Figure 1. 3DiFACE is a novel diffusion-based method for synthesizing holistic 3D facial animation from an audio input (top). In addition,
users can seamlessly edit a synthesized or existing facial animation by defining part of the input as keyframes or by inserting new custom
keyframes. These custom keyframes can be either manually created or sourced from an existing motion database.

Abstract

Creating personalized 3D animations with precise con-
trol and realistic head motions remains challenging for cur-
rent speech-driven 3D facial animation methods. Editing
these animations is especially complex and time consum-
ing, requires precise control and typically handled by highly
skilled animators. Most existing works focus on controlling
style or emotion of the synthesized animation and cannot
edit/regenerate parts of an input animation. They also over-
look the fact that multiple plausible lip and head movements
can match the same audio input. To address these chal-
lenges, we present 3DiFACE, a novel method for holistic
speech-driven 3D facial animation. Our approach produces
diverse plausible lip and head motions for a single audio
input and allows for editing via keyframing and interpola-
tion. Specifically, we propose a fully-convolutional diffusion
model that can leverage the viseme-level diversity in our
training corpus. Additionally, we employ a speaking-style
personalization and a novel sparsely-guided motion diffu-
sion to enable precise control and editing. Through quanti-
tative and qualitative evaluations, we demonstrate that our
method is capable of generating and editing diverse holis-
tic 3D facial animations given a single audio input, with
control between high fidelity and diversity. Project page:
https://balamuruganthambiraja.github.io/3DiFACE

1. Introduction

Holistic 3D facial animation transforms digital figures into
expressive characters, pivotal for compelling narratives in
films and games. Artists craft these animations with great
detail, using precise and iterative editing to ensure every
glance and nod adds to the narrative. In this context, ‘holis-
tic’ refers to 3D facial animation that includes both lip and
head movements. Early works [5, 12] used procedural-rule
based systems to map audio features with facial animation
parameters, giving artists precise control and the ability to
edit specific-parts of the animation sequence. However, this
process is manual and labour intensive.

With advancements in machine learning, new learning-
based methods have emerged that allow for quicker audio-
driven facial animations [6, 16, 32, 34, 51, 53]. How-
ever, these methods mainly focus on controlling the emo-
tion [9, 32] and style [6, 16, 34, 47, 51] of the animation.
They cannot allow users to easily edit specific-parts of the
animation sequence. I.e., if a user wants to edit the style
of a part of an existing sequence, they have to generate a
new sequence with desired style and then blend it with the
original. Such an edit is often impractical, time-consuming
and requires frame-by-frame manual inspection to ensure
accurate lip-sync. Notably, diffusion-based facial motion
synthesis methods [1, 4, 40, 42], where such an editing
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could be considered as a byproduct of diffusion models, are
not demonstrating this. Further, recent works [1, 4, 40] fo-
cus on showcasing diversity in eye-blinks and upper face
motion, which have a weak (if any) correlation with the au-
dio. However, the ability to lip-sync animations in varied
but plausible ways is also essential, especially for the ani-
mation and movie dubbing. Because of these shortcomings
of learning-based methods, procedural methods, though te-
dious and labor-intensive, still dominate 3D animation in
movies and gaming, highlighting the need for a more effi-
cient alternative.

Our goal is to achieve diverse motion synthesis with pre-
cise control from partial control signals like keyframes (also
referred as Imputation signal). In this context, we face three
main challenges: (i) Facial movements are highly person-
specific. If the speaking style of the edited region isn’t
personalized and doesn’t match the imputation signal, it
results in unrealistic animations due to sudden style shifts
between edited and unedited motion (see Figure 2). (ii)
Diffusion models are known to require large training sets
[36], yet the size of existing high-quality speech-to-3D-
animation datasets is limited. Additionally, for personaliza-
tion of speaking-style the model should be capable of fine-
tuning on a short reference video (1min). (iii) Standard
diffusion-based editing on head motion often ignores the
imputation signal, as also observed in [25] (see Figure 2).

To tackle these challenges, we propose a diffusion-based
method for speech-driven holistic 3D facial animation syn-
thesis and editing. Specifically, to address the aforemen-
tioned challenges (i) and (ii), we employ a fully convolu-
tional 1D U-net architecture that can be trained on the small
VOCAset [6] and fine-tuned using a short 1min reference
video of the target subject. The fully convolutional de-
sign of our method allows to sub-divide the input sequence
into 1sec viseme-level motion segments during training and
generalize to sequences of arbitrary length at inference time.
Specifically, we leverage the viseme-level motion diversity
present in the dataset to train our method and generate di-
verse sequence-level samples for a single audio input at
inference. For head motion editing (iii), we introduce a
novel Sparsely-Guided Diffusion (SGDiff) approach. This
method involves replacing part of the noisy sequence with
ground truth data and enforcing the model to precisely repli-
cate the samples within the ground truth region. This ap-
proach prevents the model from ignoring the sparse impu-
tation signal, resulting in smoother and more natural head-
motion editing. Through quantitative, qualitative, and per-
ceptual evaluation, we demonstrate the superiority of our
method in producing diverse personalized facial animation
with natural head motions. Further, we demonstrate the im-
portance of our architecture design choices, data-efficiency
and robustness in detailed ablation studies.

Figure 2. Illustration of holistic 3D facial motion editing with and
without 3DiFACE. Head motion editing is shown in (a) and (b),
where one can see that standard diffusion is ignoring the imputa-
tion signal. Facial motion editing (c) shows the unrealistic style-
shifts for classical diffusion, refer Frame 39 and Frame 53.

In summary, our contributions are twofold:
• a fully convolutional speech-driven diffusion model that

leverages viseme-level diversity to synthesize diverse
holistic 3D facial animations of arbitrary length.

• employing personalization and sparsely-guided diffusion,
we demonstrate explicit 3D facial animation editing, in-
cluding seamless motion interpolation and keyframing.

2. Related Work

Speech-Driven 3D Facial Animation: Methods for 3D fa-
cial animation synthesis can be classified into 2 categories
namely procedural and learning-based methods. Procedu-
ral methods: Earlier works on 3D facial animation used
procedural rules [10, 12, 15, 23] to map audio to facial
rigs. The methods offer artists precise control and abil-
ity to modify part of the animation. Despite being man-
ual and labor-intensive, they remain the standard for 3D
animation in movies and gaming. Learning-based meth-
ods: using motion-captured 3D audio visual datasets like



VOCA [6] or BIWI [17], statistical approaches [3, 6, 9,
16, 22, 24, 31, 34, 39, 41, 45, 47, 48] learn to animate 3D
meshes or blendshapes from audio inputs. They produce fa-
cial animation with high lip-synchronization. However they
struggle to model head-motion and the many-to-many map-
ping between audio and facial animations. Concurrent to
our work, several methods [1, 4, 40, 42] employ Diffusion-
probabilistic models [20] to learn and synthesize 3D fa-
cial animation with diversity. DiffPoseTalk [42] and Me-
dia2Face [58] are closest to our 3D facial animation method
with head-motion synthesis. DiffPoseTalk [42] synthesizes
personalized 3D facial animation with head motion, how-
ever, it cannot offer any editing capabilities and the synthe-
sis quality is limited by the tracker. Media2Face [58] uti-
lizes an in-house 4D corpus over 200 subjects to learn a mo-
tion prior and subsequently builds a large in-the-wild train-
ing corpus with text annotations to train a diffusion model
with various global control signals. In contrast to the above
works, our approach focuses on synthesizing personalized
holistic facial animation, that can be precisely controlled us-
ing user-defined key-frames, thus, bridging the fine control
from procedural methods with diverse multi-modal synthe-
sis from learning-based methods.

Concurrent works [29, 43, 44] have focused on improv-
ing the generalization to different language, removing topo-
logical constraints and synthesizing animation with authen-
tic laughter. As this is not the focus of our work, we suggest
interested readers to check out the respective works.

3D Holistic Facial motion Editing: We define facial mo-
tion editing as the task of explicitly editing an input se-
quence, by defining keyframes and regenerating selected
parts of it. 3D animation artists can manually define these
key-frames (e.g. from a database, or an already generated
sequence) and refine them further to get desired expressions
and poses at specific points in the motion sequence.

Procedural animation methods [10, 12, 15, 23] allow this
precise control via modifying the animation curves in the
interested parts of the sequence. However as mentioned in
the previous section, they are labour intensive and limited
in terms of animation styles. Learning-based methods of-
fer to control style [1, 6, 16, 31, 34, 40, 42, 47, 51] and
emotion [4, 9] during animation synthesis, however, they
cannot regenerate or control part of the sequence. Fur-
ther, diffusion-based facial motion synthesis methods [1,
4, 40, 42], where editing might be considered as a byprod-
uct of diffusion models, are not demonstrating this. Design
choices such as auto-regressive mechanisms [1, 4, 40, 42],
self-attention with look-ahead masks [1, 42], and lack of
speaking style personalization [1, 40] prevent these models
from effectively editing facial motions. Concurrent work,
Media2face [58] demonstrate the ability to locally edit fa-
cial animation in one of the sequence in the paper. How-
ever, several questions regarding the effectiveness, head-

motion editing and adaptability to new subject remain open.
In this work, we propose a diffusion-based holistic facial
animation method that can synthesize 3D holistic anima-
tion from input audio and allowing to locally edit the gen-
erated or existing animation sequence. Further, through
detailed experiments, we demonstrate the effectiveness of
our method, adaptability to new subjects and ability to edit
head-motions.

Diffusion Guidance: Diffusion models have significantly
advanced generating images [19, 20, 35], videos [13, 18,
21, 37], audio [14, 26, 49], and motion [7, 25, 46, 50]. Con-
trol in these models is implemented through several meth-
ods: Classifier-guidance [11] uses a classifier’s gradient,
while classifier-free guidance [19] balances quality and di-
versity with conditional and unconditional models. Con-
trolNet [54] employs a trainable copy of a diffusion model
for processing conditions, and inpainting methods [25] gen-
erate consistent outputs from partial data. Guided motion
diffusion(GMD) [25] a full-body motion synthesis method,
is the work closest to ours. GMD support spatial guidance,
cannot offer keyframing and control on sparse pose.

3. Preliminaries
Denoising Diffusion Probabilistic Models: Our method
is based on the diffusion framework of Sohl et al. [38],
where a training sample x0 gradually transforms into white
noise through the addition of Gaussian noise across T steps.
Following Tevet et al. [46], we train a denoising model θ
that can reverse the forward diffusion and estimate the orig-
inal sample x0 from a noised version xt, conditioned on
input C: x̂0 = θ(xt, t, C). To generate new samples, we
start from random noise xT and apply iterative denoising
until reaching t = 0. To improve the diversity of the sam-
ples during inference, we employ Classifier-Free Guidance
(CFG) [19] and calculate the output as a weighted sum of
the conditional and unconditional prediction:

θ(xt, t, C) := θ(xt, t, ∅) + s · [θ(xt, t, C)− θ(xt, t, ∅)] ,
(1)

where s is the guidance scale and θ(xt, t, ∅) denotes the
unconditional prediction (audio conditions are set to zero).
While CFG is typically used with a guidance scale > 1 to
enhance alignment with the condition, we set it to < 1 to
increase diversity (0.5 unless specified otherwise).
Audio Encoding: Similar to [6, 16, 47, 51], we adopt the
pretrained Wav2Vec2.0 [2] to generate audio features from
the audio signal. Wav2Vec2.0 uses a self-supervised learn-
ing approach to map audio to quantized feature vectors with
768 channels. We resample the encoder output via linear
interpolation to match the sampling rate of the motion se-
quences (30fps for VOCAset [6]). A trainable linear layer is
applied to project the feature vectors to 64 channels, result-
ing in a speech representation Â ∈ RN×64 for N frames.



4. Method

Our goal is to synthesize and edit holistic 3D facial ani-
mation given an input audio signal. In this context, ‘holis-
tic’ refers to animation with facial and head motion, which
we model in two diffusion-based networks, see Figure 3.
This is motivated by the fact that the facial motion is highly
correlated to the speech signal, while the correlation w.r.t.
the head motion is weaker and, thus, requires a longer con-
text of information, hence, a different training scheme (and
data). The two diffusion models for facial (θf ) and head
(θh) motion are conditioned on the encoded audio signal
Â using a pretrained Wav2Vec2.0 [2] as explained in Sec-
tion 3. We leverage convolutional architectures for the de-
noising models which we describe in the following.

Figure 3. Overview of our method. We employ two diffusion-
based motion generators with shared audio encoder to model 3D
facial and head motion separately.

4.1. Facial motion generator

Our diffusion-based facial motion generator takes an audio
signal as input and produces a sequence of 3D vertex dis-
placements w.r.t. a template mesh by iterative denoising,
see Figure 4. Let x0 ∈ RN×D·3 denote such a sequence
of displacements, where N is the sequence length and D is
the number of vertices in the template mesh. The input to
our diffusion model parameterized by θf is a noisy vertex
displacement sequence xt ∈ RN×D·3. The task is then to
predict its noise-free counterpart x̂0 = θf (xt, t, Cf ), given
diffusion step t and conditions Cf . Note that in our for-
mulation, the condition Cf represents the set of both the
per-frame audio features Â and person-specific feature Si.

In contrast to state-of-the-art methods on 3D facial ani-
mation synthesis that utilize transformer architectures [16,
42, 47, 51], we adopt a 1D-convolution network inspired
from Pavllo et al. [30]. Specifically, we replace the com-
monly used attention-based condition injection with feature
concatenation. Our fully convolutional architecture, free
from attention, allows us to sub-divide the input sequence

Â

xt x̂0Si

Figure 4. Our facial motion generator takes noised vertex displace-
ments, denoted as xt, and the diffusion time step embedding as
inputs to predict a denoised sample x̂0, leveraging both the audio
features signal Â and a person-specific feature vector Si. Note
that N corresponds to the frame count of the sequence and D to
the number of vertices.

into viseme-level motion segments (e.g., 30 frames) during
training and to generalize to sequences of arbitrary length at
inference time. We empirically observed that these modifi-
cations to the architecture are critical to train on the limited
VOCA training dataset [6], especially in the unconditional
training setup (see Table 3, row 1-4). Note that this strat-
egy is not viable for transformer-based 3D facial animation
baselines, since it struggles to capture any longer-term de-
pendency beyond the predefined context length, leading to
context fragmentation [8] and subpar performance (see Ta-
ble 3, row 3). This issue becomes even more pronounced
in our training setting, where the sequences have only 30
frames. While auto-regressive motion synthesis could in
theory mitigate this limitation, it would make the animation
editing tasks, such as motion inbetweeing, impossible.

4.1.1 Training

We train our model to predict the vertex displacements x0

from their noised counterparts xt on VOCAset [6]:

Lsimple = ||x0 − θf (xt, t, Cf )||2. (2)

In contrast to predicting the applied noise which is common
practice [28, 36, 55], we empirically found that predicting
the ground truth displacements yields better convergence in
the unconditional and person-specific fine-tuning case. To
improve temporal smoothness [47], we add a velocity loss:

Lvel =
1

N − 1

N∑
n=1

||(x0,n − x0,n−1)− (x̂0,n − x̂0,n−1)||2,

(3)
where x0,n denotes the ground truth vertex displacements
in frame n. Our final training objective is formulated as:

Lface = Lsimple + λvel · Lvel, (4)

with λvel = 10.0. Note that during training, we randomly
set the audio features Â in the condition Cf to 0 for 10% of
the time to enable unconditional synthesis at inference time.



4.1.2 Person-specific fine-tuning

As described in the introduction, personalization of
speaking-style is indispensable for facial motion editing.
For capturing the speaking style of a subject that is not part
of the training set, we require a short reference video. The
facial movements are reconstructed with the state-of-the-
art monocular face tracker MICA [59]. We use the recon-
structed meshes as pseudo ground truth and fine-tune the
entire model to fit the expression distribution of the target
subject using the training objective from Eq. (4).

4.2. Head-motion generator with sparse guidance

Given an audio signal input, our head motion generator pro-
duces smooth and natural head motions y0 ∈ RN×3, where
N is the sequence length. We parameterize the head motion
via the neck joint rotation in the FLAME model [27], where
the rotation is represented via axis angle. Motivated by the
head-motion editing issue mentioned in the introduction, we
introduce a sparsely-guided diffusion (SGDiff) for the head
motion synthesis. Specifically, in addition to the audio fea-
tures, we inject an intra-sequence guidance to highlight the
relative importance of the different segments in the input
signal. As illustrated in Figure 5, during the forward dif-
fusion process, part of the noisy input (yt) is replaced with
ground truth signals, and a corresponding guidance flag of
0 or 1 (ground truth signal) is concatenated. A denoising
model parameterized by θh is trained to reverse this diffu-
sion process by leveraging this additional information.

Similar to the facial motion generator, we employ a fully
convolutional architecture as our backbone for the head-
motion denoising model. Additionally, we introduce skip
connections between the encoder and decoder layers, to aid
the model in reproducing the sparse ground truth signals.
For the audio encoding, we use the pre-trained audio en-
coder from the facial motion synthesis pipeline, which is
kept frozen during the head-motion training. The final dif-
fusion formulation for diffusion step t is ŷ0 = θh(yt, t, Â).

4.2.1 Training

The complete training procedure of the sparsely-guided dif-
fusion is detailed in Algorithm 1. In addition to the losses
used in the facial motion generator (Section 4.1.1), we add
an additional guiding mask loss to enforce the model to
faithfully reproduce the results of the ground truth signal
injected into the sequence. The guidance loss is:

Lmask = ||w0,n ⊙ (y0,n − θh(yt,n, t, Â))||2, (5)

where n indicates the nth frame in sequence y0, w0,n is
the guidance weight, 1 for ground truth frames and zero
otherwise and ⊙ is the Hadamard product.

Figure 5. Illustration of standard diffusion (left) and our sparsely-
guided diffusion (right), where in the forward diffusion process,
part of the noisy input signal is replaced with the ground truth
signal and a guidance flag of (0) and (1) is concatenated to the
noisy and ground truth regions respectively.

Algorithm 1 Our SGDiff Training
1: repeat
2: y0 ∼ q(y0) # sample from train distribution
3: t ∼ Uniform({1, . . . , T})
4: ϵ ∼ N (0, I)
5: yt =

√
ᾱty0 +

√
1− ᾱtϵ # ᾱt denotes diffusion noise schedule

6: ȳt = yt ⊕ (0) # ⊕ = concatenation operation
7: ȳ0 = y0 ⊕ (1)
8: yt = (1−Mt)⊙ ȳt +Mt ⊙ ȳ0 # Guidance injection

9: grad desc. ∇θh

∥∥∥y0 − θh(yt, t, Â)
∥∥∥2

10: until converged
11: # Mt = random imputation mask

Algorithm 2 Our SGDiff Sampling
1: Input signal Y0, if any
2: Imputation mask M0, if any
3: yT ∼ N (0, I)
4: Ȳ0 = Y0 ⊕ (1)
5: for t = T, . . . , 1 do
6: ȳt = yt ⊕ (0)
7: yt = (1−M0)⊙ ȳt +M0 ⊙ Ȳ0

8: ŷ0 = θh(yt, t, Â)
9: ŷ0 = (1−M0)⊙ ŷ0 +M0 ⊙ Y0

10: µ, σ ← µ(yt, ŷ0), σt

11: yt−1 ∼ N (µ, σ)
12: end for
13: return y0

4.3. Sampling and editing of a 3D facial animation

Following standard diffusion methods [20, 46], we gener-
ate new samples by starting from random noise (XT for
facial motion and YT for head motion) drawn from Gaus-
sian noise and iteratively denoise for T steps using the re-
spective denoising models θf and θh. For control and part-
regeneration, we replace the corresponding noisy sample
(xt or yt) with the imputation signal at each time t before
denoising. For facial motion editing, we personalize θf to
the target subject using the steps detailed in Section 4.1.2
before iterative denoising. For head motion editing, we fol-
low the procedure in Algorithm 2, replacing the input (yt)
with the imputation signal and adding a guidance flag.



5. Dataset
We train our facial motion model on VOCAset [6], since
it provides high-quality, speech-aligned 3D face scan se-
quences. Following previous works [16, 47, 51], we use
the train/val/test set split of 8, 2, 2 actors. All 40 sequences
of the training actors are used during training. However,
for the test and validation, only 20 sequences without over-
lap with the speech scripts of the training sequences are
used. We evaluate person-specific fine-tuning on in-the-
wild videos from Imitator [47]. The provided videos are
2 minutes long which we divide into 60/30/30 seconds for
train/val/test respectively. To train our head-motion gener-
ator, we use the HDTF [57] dataset, as the VOCAset does
not include head motion. Using the download and process-
ing script provided by the authors, we extract 352 videos
with 246 unique subjects and use the MICA tracker [59]
to extract head poses. For our experiments, we split the
dataset into 300/20/32 sequences for train/val/test accord-
ingly. We employ the VOCAset, HDTF, and Imitator’s in-
the-wild dataset to train our method for generating and edit-
ing 3D facial animations with head-motion. This choice
led us to exclude the Biwi dataset [17] from our study, as
it lacks sequences with full head model like FLAME [27],
which is essential for synthesizing head motion effectively.
For more details refer the supplemental document.

6. Results
We evaluate our method against state-of-the-art methods:
SadTalker [56] and TalkShow [52] on the holistic 3D facial
animation synthesis task and VOCA [6], Faceformer [16],
CodeTalker [51], EMOTE [9], FaceDiffuser [40] and Imita-
tor [47] on facial motion synthesis task. Figure 6 presents
the qualitative comparison on holistic 3D motion synthesis,
where our method produces more accurate lip-synced facial
animations with diverse head movements. Additional qual-
itative results are shown in the suppl. material and video.

Quantitative Comparison: In Table 1, we present a quan-
titative evaluation based on the following metrics: Lip-
Sync measures the lip synchronization using Dynamic Time
Warping to compute the temporal similarity [47]. Diversity
metric DivL and DivH proposed by Ren et al. [33] mea-
sures the diversity of lip motion and head motion generated
from the same audio. Similar to DiffPoseTalk [42], we em-
ploy a modified beat alignment BA to measure the synchro-
nization of the head movement beats. Please refer the suppl.
material for detailed information about the metrics.

From Table 1 (rows 1-3), we see that our method sig-
nificantly surpasses the baselines in holistic 3D facial ani-
mation synthesis, particularly in terms of lip-sync accuracy
and beat alignment, while offering greater diversity.

For the facial motion synthesis task without head motion,
we quantitatively compare our method on three different se-

Method DivL ↑ Lip-Sync ↓ BA ↑ DivH ↑
Holistic 3D Facial animation syn.

1 SadTalker [56] 1.59 4.01 0.285 0.004
2 TalkSHOW [52] 1.80 4.35 0.296 0.002
3 Ours composite 2.57 1.71 0.338 0.007

Non-Personalized regression

4 VOCA [6] − 5.30 − −
5 Faceformer [16] − 2.85 − −
6 Imitator [47] − 1.95 − −
7 CodeTalker [51] 1.40 2.55 − −
8 Ourss=0.5 (w/o sty) 2.57 1.71 − −

Non-Personalized diffusion

9 FaceDiffuser [40] 0.05 1.60 − −
10 Ourss=1.0 (w/o sty) 0.64 1.62 − −

Personalized synthesis

11 Imitator (w/ sty) − 1.35 − −
12 Ourss=0.5 (w/ sty) 1.57 1.56 − −
13 Ourss=1.0 (w/ sty) 0.24 1.42 − −

Table 1. Quantitative comparison: Our proposed method produces
better holistic 3D facial animations with high-fidelity lip and head
motions (refer row 1-3). On the non-personalized regression and
diffusion facial motion synthesis task (row 4-10), our method pro-
duces outperforms the baselines, except for FaceDiffuser, where
we match the performance on Lip-Sync despite producing more
diverse samples. Finally, our method is able to personalize facial
motions on the level of Imitator [47], while producing more di-
verse samples and allowing for motion editing using keyframes.

tups namely, non-personalized regression and diffusion and
personalized synthesis. In the non-personalized regression
and diffusion setup, our method outperforms the baselines,
except for FaceDiffuser, where we match the performance
on Lip-Sync despite producing more diverse samples (refer
to Table 1 rows 4-10). Note that we can adjust the guidance
scale parameter to control synthesis diversity and lip-sync
accuracy, which FaceDiffuser [40] cannot do. Please refer
the supplemental document for a more detailed study on the
impact of guidance scale s. Finally, in the personalization
synthesis setup, we achieve higher synthesis diversity com-
pared to Imitator [47] and match the performance closely in
terms of Lip-Sync (refer to Table 1 rows 11-13). Note that
Imitator is a deterministic model that does not allow for di-
verse lip-motion synthesis and facial motion editing.

User Study: We conducted A/B user studies to assess our
method’s perceptual performance. From Table 2 (row 1-
2), we see that our method outperforms the baselines on the
holistic 3D facial animation synthesis. For the facial motion
synthesis task, we compare our method in a high diversity
(s = 0.5) and high fidelity (s = 1.0) setup. In the high fi-
delity setup, we outperform the baselines in terms of both
expressiveness and lip-synchronization. Even in the high
diversity setup, we outperform CodeTalker [51] and per-
form closely to FaceDiffuser [40], which trades fidelity for
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Figure 6. Qualitative comparison: Our method outperforms the baseline in creating more accurate lip-synced facial animations with diverse
head movements. Specifically, TalkSHOW produces animations with jittery artifacts, while SadTalker yields muted and generic animations.

Holistic synthesis

Method Face Motion (%) Head motion (%)

1 Ours vs SadTalker [56] 88.13 86.43
2 Ours vs TalkShow [52] 90.77 87.96

Method Exprs (%) Lip-sync (%)

High-Fidelity (Ours s = 1.0)

3 Ours vs Imitator [47] 65.72 69.47
4 Ours vs Faceformer [16] 73.28 71.43
5 Ours vs FaceDiffuser [40] 67.85 66.71

High-diversity (Ours s = 0.5)

6 Ours vs CodeTalker [51] 53.64 53.80
7 Ours vs FaceDiffuser [40] 40.84 41.55

Table 2. User study on holistic motion synthesis and facial mo-
tion synthesis task: Compared to the baselines, our method pro-
duces consistently better holistic 3D facial animation in both low
diversity(s = 0.5) and high-fidelity setup(s = 1.0). Similar to
Imitator [47], we evaluate the person-specific speaking-style sim-
ilarity against [47], where 55% of users favored our method.

diversity. Furthermore, we assessed style-personalization
similar to Imitator [47]. The users rated the style-similarity
based on a reference video and the synthesized videos on
the VOCA test set, where 55% of the users preferred our
method. For more details on the user-study, see suppl. mat.

Motion Editing: To demonstrate head-motion editing, we
perform both keyframing and inbetweening on head-motion
data and present the results in the Figure 2 (a) and (b).
From which we infer that our sparsely-guided motion diffu-
sion matches the imputation signal in both, the keyframing

and inbetweening scenario and produces realistic motion
in the edited/re-generated part of the sequence. Similarly,
for facial motion editing, our method is able to match the
speaking-style of the target imputation signal and produce
smoothly edited sequences (refer Figure 2 (c)). We show
additional examples and a unconditional motion synthesis
and editing results in the suppl. mat. and video.

Ablation: In the following, we will address important ques-
tions regarding our design choices and robustness.

• Is a 1D-convolutional U-net architecture the right choice?
As discussed in Section 4, using our proposed architecture
instead of the transformer-based architecture from Face-
former (FF) or the attention-based Unet architectures used
in [28] results in significantly better performance on both
the Lip-Sync and diversity (refer to Table 3 rows 1-3).

• What is the effect of viseme-level window-based training?
Table 3 row 1 vs 4 shows that without window-based train-
ing the performance worsens in terms of both lip-sync and
diversity. Further, in the suppl. video, we demonstrate the
ability to generate 20 sec long motion compared to the base-
lines, despite being trained only on 1 sec segments.

• How much data do we need for person-specific fine-
tuning? Table 3 rows 5-8 indicate 30 and 60 seconds of
data are sufficient for good results, 100 seconds yield the
best lip-sync and diversity DivL.

• Does the sparsely-guided motion-diffusion help to gen-
erate diverse motion? In Table 3 rows 12-14, we an-
alyze the effect of our keyframe (KF mask) and inbe-



Method DivL ↑ Lip-Sync ↓
(a) Design choices

1 Ours (concat + win30) 2.57 1.71
2 Ours (attn + win30) 0 3.21
3 Ours (FF arch + win30) 0 3.49
4 Ours (concat + no win) 0 1.98

(b) Person-specific Fine-tuning

5 Ours (∼ 5s) 29.95 4.89
6 Ours (∼ 30s) 0.18 1.81
7 Ours (∼ 60s) 0.67 1.69
8 Ours (∼100s) 1.57 1.56

(c) GMD ablation

Method BA ↑ DivH ↑
9 Ours w. In mask 0.368 0.008
10 Ours w. KF mask 0.308 0.008
11 Ours w/o. mask 0.338 0.007

Table 3. Ablation study: (a) Design choices study on the VO-
CAset [6] shows the importance of a fully convolutional archi-
tecture and viseme-level training. (b) Fine-tuning Data require-
ment: 30s of video suffice to perform person-specific fine-tuning
while 100s further improve all scores (row 5-9). (c) GMD ab-
lation: shows the performance w.r.t the keyframing(sparse) and
inbetweeen(dense) based imputation signal.

Method DivL ↑ Lip-Sync ↓ BA ↑ DivH ↑
1 Ours (synthesis) 1.35 1.4 0.338 0.007

2 Ours (Ip 5%) 1.27 1.17 0.341 0.007
3 Ours (Ip 10%) 1.24 1.15 0.352 0.006
4 Ours (Ip 20%) 1.15 1.01 0.358 0.005
5 Ours (Ip 50%) 0.9 0.68 0.403 0.004

6 Ours (1KF/sec) 1.26 1.28 0.321 0.006
7 Ours (2KF/sec) 1.14 1.2 0.347 0.006
8 Ours (3KF/sec) 1.05 1.1 0.365 0.005

Table 4. Evaluation of editing on subject 024 in VOCAset [6]
and HDTF [57] by varying the imputation signal. From the ta-
ble, we observe significant improvements in synthesis quality with
increase in imputation signal, indicating that the model closely
matches the imputation signal and produces realistic motion.

tweening (In mask) based guidance on the synthesis qual-
ity. It demonstrates that employing sparsely-guided motion-
diffusion improves the diversity of head-motion with min-
imal impact on overall quality, while offering additional
editing capabilities.

• Is the performance of motion editing consistent across
varying degrees of imputation signal? We evaluate the
robustness of motion editing with respect to the imputa-
tion signal in both the inbetweening and keyframing sce-
nario. To this end, we preserve 5%, 10%, 20%, and 50%
of the starting and ending frames, and then perform inbe-

tweening for the intermediate motion sequences. Further,
we randomly insert keyframes at different rates: 1KF/sec,
2KF/sec, and 3KF/sec and fill the motion with our method.
For facial motion, these evaluations are conducted for all
sequences of the test subject 024 from the VOCAset [6],
and the resulting metrics are presented in Table 4. Simi-
larly for head motion, these evaluations are conducted in the
HDTF [57] test set. For the Table 4, it is evident that as the
imputation signal strength increases, the synthesis’s fidelity
improves, indicating that model matches the imputation sig-
nal and produces realistic motion. This allows animators to
insert any number of keyframes for fine-grained control.

7. Discussion
Our proposed method excels in synthesizing and editing di-
verse holistic 3D facial animations based on speech. Simi-
lar to [47], for personalization, our method depends on the
quality of the face tracker. However, through qualitative re-
sults, we demonstrate that our method is able to personalize
from both high-quality motion capture sequence from VO-
CAset and monocular head trackers applied to in-the-wild
videos. In this work, we employ a sparsely-guided motion
diffusion to tackle the imputation signal neglect in the head-
motion synthesis and editing. In contrast to head motion,
for face motion editing, style-personalization is the critical
contribution to enable seamless editing. For completeness,
we include an experiment evaluating the personalization of
head-motion and sparse-guidance for facial motion train-
ing in the supplemental documenet. One key capability of
our method is that it offers control to animators and cre-
ators via keyframes, which can be additionally extended to
an explicit natural language based condition to control the
synthesis, which we leave for future works.

8. Conclusion
With 3DiFACE, we presented a method that can both gen-
erate and edit diverse holistic 3D facial animations from
speech input. Through detailed experiments, we demon-
strated precise control and ability to edit parts of an anima-
tion sequence. Our work combines the precise control from
procedural methods with the diverse multi-modal synthesis
from learning-based methods. We believe that these prop-
erties will make 3DiFACE a powerful tool that can reduce
production time and costs, making high-quality animations
more accessible, helping create lifelike avatars for movies,
games, and VR, expanding creative possibilities.
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