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Abstract
Recent work on one-shot permutation-based model merging has shown impressive low- or zero-
barrier mode connectivity between models from completely different initializations. However, this
line of work has not yet extended to Transformers, despite their dominant popularity in the language
domain. Therefore, in this work, we investigate the extent to which separate Transformer minima
learn similar features, and propose a model merging technique to investigate the relationship between
these minima in the loss landscape. The specifics of the architecture, like its residual connections,
multi-headed attention, and discrete, sequential input, require specific interventions in order to
compute model permutations that remain within the same functional equivalence class. In merging
these models with our method, we consistently find lower loss barriers between minima compared
to model averaging for several models trained on a masked-language modeling task. Our results
show that the minima of these models are less sharp and isolated than previously understood, and
provide a basis for future work on further understanding Transformer solutions.

1. Introduction

The geometry of loss landscapes is the subject of extensive prior work attempting to understand the
behavior and properties of different solutions [7, 15, 17]. Prior work has found different types of
geometric paths of low loss between converged models, demonstrating a degree of connectedness
between separately trained minima [10, 11, 26]. Much of this work has involved permuting the
weights of these models in order to compare them within a more similar loss space.

While this research has led to important conclusions about loss landscapes between separately
trained models, the Transformer architecture has been largely unexplored in terms of understanding
its permutation symmetries and loss landscape geometry. Prior work has emphasized the importance
of understanding loss landscape geometry, as a better understanding can lead to improvements
in optimization and ensembling techniques [1, 11]. There has been some prior work in merging
Transformers [13, 14], but these do not provide insights on their loss landscape properties [2].

Therefore, in this work, we explore the extent to which separately trained Transformer models
learn similar representations, and then propose a permutation-based merging method to align repre-
sentations from these separate models. We specifically investigate their connectivity through the lens
of permutation-invariant linear interpolation [8].

Our contributions are the following:
1. We introduce a new model merging algorithm based on model permutations that combines

Transformers from separate initializations.1

1. We release our code at https://github.com/nverma1/merging-text-transformers
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2. We demonstrate reduced loss barriers between masked language models trained from com-
pletely separate initializations compared to vanilla merging.

2. Proposed Transformer Merging Method
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Figure 1: Example of a Transformer layer with parameters in blue, specific hidden states as circles,
the flow of operations indicated with arrows, and proposed permute/unpermute matrices
indicated.

In this section, we describe the components of our method that address how to permute specific
portions of a Transformer model θB in order to bring them into alignment with a separately trained
model, θA. We diagram a Transformer layer in Figure 1, and the proposed permutation operations
that we describe in detail throughout this section. We focus on parameters from Multi-Headed
Attention and Feed-Forward layers in this section. We also describe merging parameters involved in
Add&Norm or residual computations in Appendix B, as they do not appear in our final method.

2.1. Computing Correlation and Permutation Matrices

Given two separately trained minima θA and θB , we compute post-activation features for each
sublayer parameter Wℓ ⊂ θ in order to find corresponding features between these models [1, 25].
We compute d-dimensional activations across n tokens from both models, and then cross-correlation
matrix C ∈ Rd×d. The optimal permutation π is computed as: argmaxπ

∑d
i=1Ci,π(i). This

assignment problem is solved using the Jonker-Volgenant algorithm [1, 3, 26].
After converting π to its corresponding permutation matrix P , we can apply P to the original

weight matrix WB
ℓ ⊂ θB so that the order of the layer’s features most closely resembles that of

WA
ℓ ⊂ θA before finally interpolating the models: WB′

ℓ ← PWB
ℓ . We also apply PT = P−1 to

the next layer in order to unpermute the new ordering in model θB: WB′
ℓ+1 ←WB

ℓ+1P
T.

2.2. Multi-Headed Attention

Since our models are trained separately, the correspondence of their attention heads may differ in
addition to the features within each head. To align attention features, we collect hidden states just
before the linear layer following dot-product attention. We partition the attention correlation matrix
by heads into #heads×#heads correlation matrices, for each potential head pair. Let Cjk be the block
of the correlation matrix corresponding to head pair (j, k). We then compute the optimal permutation
for each unique pair, and store its head-internal permutation and cost from the following:

cost(j, k) = max
π

dk∑
i=1

Cjk
i,π(i). (1)

We then compute the outer head correspondence permutation with a new assignment problem:
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πouter = argmax
π

h∑
j=1

cost(j, π(j)). (2)

The outer permutation dictates the subset of previously computed inner permutations used in
the final permutation, and the order in which to concatenate them, resulting in our 2-staged MHA
permutation. The resulting permutation matrix PMHA applies as following: PT

MHA can apply to
attention linear layer WO, and we apply PMHA to each of WV ,WK , and WQ.
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Figure 2: Example permutation matrices resulting from different strategies for attention head align-
ment. Each Pi reflects permutations for features within attention heads.

We show an example of an output from our proposed algorithm in Figure 2, as well as some
baseline approaches. The first permutation matrix shows the resulting block-diagonal structure of
assuming that heads are aligned between different minima. The second matrix shows an example
from our method, and the third matrix disregards head structure and allows permuting features across
heads.2

2.3. Feed-Forward Layers

Unlike the residual stream or Multi-Headed attention, Feed-Forward sub-layers require no special
attention in order to permute them into a new space. We simply compute correlations from the
features after the computation of the first Feed-Forward layer (W1), and compute P ,PT separately
for each Transformer layer. We apply these permutations as described in Section 2.1.

3. Experimental Settings

3.1. Models and Datasets

We use 5 different BERT models, seeds 1 through 5, from the MultiBERTs reproductions throughout
this work[4, 22]. These models differ by their random initialization and batch ordering. All of our
reported experiments include a mean and standard error across the

(
5
2

)
= 10 unique pairings.

We use masked language modeling performance as our evaluation. We use the validation set
of the Wikitext-103 benchmark as our evaluation data [19]3. For computing model activations, we
extract a random4 sample of 100k sentences of the Books corpus [29], as it was part of the original
BERT pre-training data [4].

2. We note that ignoring heads will not lead to a valid permutation π where f(x;θ) = f(x;π(θ)), but we still include it
for experimental comparisons.

3. We obtain the wikitext-103-raw-v1 version, available from https://huggingface.co/datasets/wikitext
4. We take a diverse sample across different genres among the books available.
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3.2. Evaluation

To compute loss barriers, we compute 21 evenly spaced interpolations of θA and θB , as λθA + (1−
λ)θB . We use the definition of loss-barrier as Frankle and Carbin [9]5, defined as the maximum
difference between the loss of an interpolation and the average loss of the base models:

max
λ
L(λθA + (1− λ)θB)−

1

2
(L(θA) + L(θB)). (3)

To compute MLM loss/pseudo-perplexity, we use a masking probability of p = 0.15 across block
sizes of 128 tokens. For N masked samples in text W, we compute pseudo-perplexity as:

Pseudo-PPL(W;θ) = 2
− 1

N

N∑
i=1

log2 pθ(wi|W−i)
(4)

4. Results and Analysis

4.1. By component

Figure 3: Pseudo-perplexity scores of BERTs, trained on
the masked language modeling task, combined
using our method. Results across 10 merges are
shown with standard error.

We report results on the 10 MultiBERTs merges after merging different sets of Transformer com-
ponents described in Section 2. We show pseudo-perplexity results across the range of interpolations,
displayed Figure 3. We report vanilla averaging, merging all feed-forward sublayers, merging all
multi-headed attention sublayers, and merging all feed-forward and multi-headed attention sublayers.
Aligning and merging either the feed-forward sublayers or the attention sublayers clearly leads to a
perplexity reduction over the baseline, and their combination leads to a stark reduction, of almost
7× the original perplexity at λ = 0.5. We do not include permuting parameters involved in residual
connections (Section B) and the output projection (Section 2.3) here as they do not outperform
merging only feed-forward and attention sublayers. We leave further investigation of the difficulty of
merging residual-involved weights for future work.

The consistently reduced barrier between minima indicates that these different models are
connected with a lower loss path than seen without considering these models within a more similar
loss space. We note that we do not observe a linear or convex loss path between these models, as
sometimes observed in previous work on MLPs, ResNets, and VGGs [1, 8, 26]. Many possible
reasons exist for this discrepancy. For example, in this prior work, the same data is generally used
to train models, compute activations for alignment and merging, and compute loss barriers. Due
to the extensive pretraining data of these masked language models, and the limited alignment and

5. Referred to as linear interpolation instability in this work.
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evaluation data we use, we do not test for linear mode connectivity in the same manner. Instead, the
stark loss reduction seems to indicate that minima are connected with a barrier at least as high as
what we report.

4.2. Multi-headed attention

Table 1: Loss Barriers of merged MultiBERTs with feed-forward and attention components merged
with different methods. Maintaining head structure in the permutation while allowing
different head correspondences between models is the most optimal permutation.

Method Loss Barrier ↓ Std. Err.

Vanilla Attention Avg. 4.31 0.21
Monotonic Head Alignment 4.13 0.20
Ignore-Heads 3.97 0.25
Head-Perm 3.71 0.23

We report loss barriers for our Head-Permutation MHA approach as compared to some al-
ternatives also described in Section 2.2 in Table 1. These results reflect permuting both attention
parameters as well as feed-forward parameters. We see that our proposed Head-Permutation approach
for the attention sub-layer outperforms simple attention averaging, as well as approaches ignoring the
multi-headed structure of the weight parameters (Ignore-Heads), and not allowing for different head
correspondences across different models (Monotonic). We also show an example correlation matrix
between the first multi-headed attention layer from 2 different MultiBERTs models in Figure 4. The
correlation matrix shows clear attention head boundaries, as well as a scattered pattern that supports
our proposed technique that does not assume any monotonically ordered head correspondence.

Figure 4: Visualization of correlation matrices
between features before and after per-
muting. These features are from the
seventh multi-headed attention layer
from 2 different MultiBERTs models.

5. Discussion and Conclusion

By considering the set of functionally equivalent Transformers reachable using permutation mappings,
we consistently find linear paths between models with lower loss than vanilla interpolation. This
conclusion about the connectedness between these models has implications on our understanding of
the “smoothness” of Transformer loss space and the sharpness of their minima. This understanding
of the geometric properties of minima can have implications in how we design optimization methods,
ensembles of models, and additional merging techniques. For example, it is widely contested whether
sharp minima can generalize as well as flat minima across many deep learning models [5, 16]. As we
take only a first attempt at connecting separately trained Transformers along a lower loss path, there
is much room for future work in understanding Transformer loss landscapes.
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Appendix A. Related Work

Loss Landscape & Mode Connectivity. Loss landscapes of neural networks trained with an SGD
variant have been shown to contain infinitely many global minimizers that are equally reachable via
SGD [7, 15]. Overparameterization is one of the reasons behind the abundance of minima leading to
different functions that behave similarly on the training data [18, 20, 23]. Permutation and scaling
invariances also lead to functionally identical minima that differ in the weight space [8, 26].

Prior work has established that the optima of neural networks are connected by simple curves over
which training and test accuracy are nearly constant (no loss barrier) [6, 10, 11]. This phenomenon is
referred to as mode connectivity. Entezari et al. [8] conjectured that if the permutation invariances of
neural networks are taken into account, these optima are linearly mode connected, i.e. the linear path
connecting these two models has no loss barrier. This is linear mode connectivity.

Interpolating Models Empirically, linear interpolation between neural network weights has be-
come an important tool. In the context of fine-tuning the same large pre-trained model, averaging
models enabled state-of the art accuracy on ImageNet [27]. Rame et al. [21], Wortsman et al. [27]
established that if fine-tuned models lie in a single low error basin, then weight averaging performs
similarly to ensembling.

Prior work on linear interpolation-based model merging has focused on improving the algorithms
used to bring the hidden units of two networks into alignment, in order to reduce the barrier to
interpolation between them. Such algorithms have included an optimal transport-based method
between ResNets [12, 24], and a simulated annealing based method [8, 28] between wide MLPs.
Ainsworth et al. [1] develop several permutation-based algorithms for MLPs and ResNets, and
demonstrate zero-barrier linear mode connectivity on widened ResNets. Stoica et al. [25] extend this
work and allow for feature merges to happen within each model as well, improving model merging
outcomes.

Appendix B. Merging Residual Connection Parameters

We diagram the residual connections of a Transformer layer and their relationships to model pa-
rameters in Figure 1. The connections can be formulated as the following, where LN refers to
LayerNorm:

xr
a = LN(WOMHA(x) + x),

xr
f = LN(W2ReLU(W1x

r
a) + xr

a). (5)

As seen in the equations, the input and output of both sublayers are added to create a new output,
which implies that if a permutation operation is applied to the output state, the permutation needs to
be the same for both addends.

We note that the addends are normalized via the LayerNorm module, and any permutation to
the output would need to permute the features of the LayerNorm module as well. We apply the
permutation to the weights of LN. Because LN is not a full weight matrix, and maintains the same
feature ordering as its input, we must apply the permutation to the addends of the residual connections
as well [25].
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Now, ignoring the parameters from the LayerNorm module for a moment, we see that applying
the permutation to the output of the second residual connection leads to the following:

Pxr
f = P (W2ReLU(W1x

r
a) + xr

a)

= PW2ReLU(W1x
r
a) + Pxr

a

= PW2ReLU(W1x
r
a) + P (WOMHA(x) + x). (6)

We see that due to the residual structure, any permutation applied to second feed-forward weight
parameter, W2, must also be applied to MHA, or more specifically the WO matrix. To unpermute
these features, we apply PT to where the permuted xr

a and xr
f states become inputs, which are W1

and {WQ,WV ,WK}, respectively.
Because the input to each layer must be permuted Px, and the output of each layer is also

permuted Pxr
f , we can see that the entire Transformer architecture uses the same {P ,PT} matrices

for all the weights involved in residual connections. This is unlike our other proposed permutations
for multi-headed attention which are specific to each Transformer layer. At the ends of the models,
namely the embedding layer(s) and output layer(s), we also apply these transformations, as the input
to the first Transformer block and the output of the last Transformer block are permuted. We apply
this P to the embedding weights, including positional and any special token embeddings, and at
the final layer, we apply PT to the weight matrix immediately following the last Transformer block
LayerNorm. This is usually a pooling or dense layer, depending on the model task.

Because of the multiple potential features, that could contribute to the computation of the residual
permutations, from both xr

a and xr
f across all layers, we use features from all xr

f , and xr
a in the

forward pass.
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