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Abstract

In science and social science, we often wish to explain why an outcome is different
in two populations. For instance, if a jobs program benefits members of one city
more than another, is that due to differences in program participants (particular
covariates) or the local labor markets (outcomes given covariates)? The Kitagawa-
Oaxaca-Blinder (KOB) decomposition is a standard tool in econometrics that
explains the difference in the mean outcome across two populations. However,
the KOB decomposition assumes a linear relationship between covariates and
outcomes, while the true relationship may be meaningfully nonlinear. Modern
machine learning boasts a variety of nonlinear functional decompositions for the
relationship between outcomes and covariates in one population. It seems natural
to extend the KOB decomposition using these functional decompositions. We
observe that a successful extension should not attribute the differences to covariates
— or, respectively, outcomes given covariates — if those are the same in the
two populations. Unfortunately, we demonstrate that, even in simple examples,
two common decompositions — the functional ANOVA and Accumulated Local
Effects — can attribute differences to outcomes given covariates, even when they
are identical in two populations. We provide and partially prove a conjecture
that this misattribution arises in any additive decomposition that depends on the
distribution of covariates.

1 Introduction

Motivating Example. The mayor of City K compares the results of a job training program to a
similar one in City H. She collects data about participants’ income after the program (Y ), and other
covariates like age and employment before the program (X). She notices that program graduates in
her city have lower post-program income than those in City H (EK [Y ] 6= EH [Y ]). If she can figure
out why this difference occurs, perhaps she can modify the job training program or its recruitment
strategy to make it more effective. Before committing to a potentially costly causal analysis, can she
use the available covariates to develop hypotheses for why program outcomes differ in her city?

Many scientific questions reduce to comparisons between two populations. A common follow-up
question to observing differences is why they occur. One reason might be that the populations differ
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on meaningful traits. In our example, perhaps the distribution of X is unequal: say, both training
programs are best for people who have never been employed, but city K’s program enrolled more
trainees with past jobs than city H’s program. In this case, covariates X drive the difference. Or,
perhaps jobs in city K may pay less than those in city H’s for trainees without a high school diploma.
In this case, outcomes given covariates Y | X drive the difference. A useful explanation for mean
differences between populations would distinguish between these possibilities, as well as describe
which aspects of the covariates or outcomes given covariates explain the difference.

The Kitagawa-Oaxaca-Blinder (KOB) decomposition (Kitagawa, 1955; Oaxaca, 1973; Blinder, 1973)
is widely used in the econometrics literature to solve exactly this problem. The KOB decomposition
separates difference of means into components that depend on the distribution of covariates, X , and
those that depend the conditional expectation of outcomes given features, E[Y |X]. However, it relies
on parametric linear models of the conditional expectation. A natural extension would allow for
non-linear or nonparametric models for E[Y |X]. Such an approach could account for shifts in the
distribution of X through a generic step-wise transformation that moves the distribution of X from
population H to population K. Importance can be assigned to individual features in the change in
conditional expectation E[Y |X] through the use of additive functional decomposition methods.

Such a generalization requires a choice of the functional decomposition. Fortunately, modern
machine learning offers multiple options. For example, the functional ANOVA (FANOVA) (Stone,
1994; Huang, 1998; Hooker, 2007) and Accumulated Local Effects (ALE) (Apley and Zhu, 2020)
decompositions have been widely used in sensitivity analysis (Chastaing et al., 2012; Antoniadis
et al., 2021), machine learning interpretability (Lengerich et al.; Limmer et al., 2024), finance (Liang
and Cai, 2022; Belhadi et al., 2021), and environmental and climate sciences (Huang et al., 2023;
Peichl et al., 2021; Hill et al., 2023).

The success of such decompositions makes them seem like natural choices for use in explaining the
difference in means. However, we demonstrate that common functional decomposition – the FANOVA
and ALE – are ill-suited for this task. We further conjecture and partially prove that any functional
decomposition method that depends on the covariate distribution in H or K (which includes the
FANOVA and ALE) must misattribute differences stemming from a changing distribution of X to
differences stemming from changing Y | X . We thus argue that common functional decomposition
methods are, despite their broad success in many areas, inappropriate for use for explaining differences
between two populations.

2 Related work and notation

2.1 Kitagawa-Oaxaca-Blinder decomposition

The Kitagawa-Oaxaca-Blinder (KOB) decomposition provides a framework for explaining differences
in means between two populations by decomposing them into components attributable to differences
in covariates and conditional expectations. In its original form, KOB assumes a linear relationship
between the covariates X ∈ Rd and the outcome Y ∈ R:

EHY |X [Y |X] = XβH and EKY |X [Y |X] = XβK ,

where HY |X is the conditional distribution of Y | X in population H; similarly for population K. X
are finite-dimensional covariates, and βH and βK represent the respective coefficients for the linear
relationship in each population. KOB decomposes the difference EK [Y ]− EH [Y ] as

EKX
[EKY |X [Y |X]− EHY |X [Y |X]]︸ ︷︷ ︸

Y | X effect

+EKX
[EHY |X [Y |X]]− EHX

[EHY |X [Y |X]]︸ ︷︷ ︸
Covariate effect

(1)

=

d∑
j=1

EKX
[Xj ](β

K
j − βHj )︸ ︷︷ ︸

Y | X effect for jth covariate

+

d∑
j=1

(EKX
[Xj ]− EHX

[Xj ])β
H
j︸ ︷︷ ︸

Covariate effect for jth covariate

, (2)

where HX and KX represent the distribution of the covariates for the respective populations. Note
that throughout, when referring to a marginal distribution or a conditional distribution, we will specify
it as a subscript of the joint distribution of X,Y , which will be denoted as H or K. For instance, Hi

represents the marginal distribution of feature xi, and H1:i refers to the joint distribution of the first i
covariates in X for population H .
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As we will see in the next section, there is a natural extension of the KOB decomposition that
offers a similar interpretation for more general functional decomposition methods. The existing
literature provides several such methods; however, we focus on two—FANOVA and ALE—that
decompose functions into additive components. Other functional decomposition methods, such as
Partial Dependence Plots (Friedman, 2001), do not offer additive decompositions, and thus cannot be
immediately used as a part of KOB-like decompositions.

2.2 FANOVA

FANOVA measures the importance of features in determining the output of the function and in
identifying underlying additive interactions between subsets of variables (Hooker, 2004). It presents
a natural representation of the functional in terms of low-order components (Hooker, 2007) by
stating that a square integrable function f(x) with x ∈ Rd can be written uniquely as f(x) =∑
S∈2[d] L(f,W, S)(x), where 2[d] denotes the power set of [d] = {1, 2, . . . , d}, W is a general

measure of the covariates, and the components are jointly defined by satisfying

{L(f,W, S) | S ∈ 2[d]} = arg min
{L(f,W,S)∈L2(Rd)}

S∈2[d]

∫  ∑
s∈2[d]

L(f,W, s)(xs)− f(x)

2

W (x)dx,

(3)

subject to hierarchical orthogonality conditions among them.

2.3 Accumulated Local Effects (ALE)

ALE is another additive functional decomposition method that is particularly suitable for visualizing
the effects of predictors (Apley and Zhu, 2020). Although ALE is more generally defined, the case
for d = 2 with a differentiable f(x1, x2) suffices for our illustrative purposes. The ALE component
for x1 is then defined as:

L(f,W, {1}) =

∫ x1

xmin,1

EX2∼W2

[
∂f(X1, X2)

∂X1

∣∣∣X1 = z1

]
dz1 − constant, (4)

where ∂f(x1,x2)
∂x1

is the partial derivative of the function f with respect to x1, and xmin,1 is a lower
bound of the support of W1. The term L(f,W, {2}) is defined similarly; for the definition of
L(f,W, {1, 2}) and for the d > 2 case, see (Apley and Zhu, 2020).

3 Additive decompositions of population differences

As discussed in Section 1, a natural and desirable extension of KOB, Section 2.1, would allow for
arbitrary flexible regression models by extending it to non-linear functional forms. Recall the KOB
decomposition in Equation 2 separates a difference in means into a Y | X effect and a covariate
effect. To extend the KOB decomposition to more flexible models, we assume a general functional
form for the conditional expectation. Specifically, we assume that a flexible regression model is
fitted such that fK(X) ≈ EKY |X [Y |X], and similarly for population H . Our goal is to decompose
Equation 1 into smaller, interpretable components just as in the KOB decomposition. To achieve this
goal, and in the spirit of FANOVA and ALE discussed in Section 2, we assume a generic additive
functional decomposition, denoted by L, which operates on arbitrary functions f of the covariates,
distributions over the covariatesHX , and subsets of features S. This decomposition yields an additive
representation that holds for all x ∈ Rd.

f(x) =
∑
S∈2[d]

L(f,HX , S)(x), (5)

Given such an additive functional decomposition, it is straightforward to extend the KOB decomposi-
tion. We define two types of swaps, analagous to the terms in the KOB decomposition. First, we can
swap out distributions over covariates one dimension of X at a time; we call such terms the difference

3



due to the changing distribution of Xi. Second, we can swap out the functional decomposition terms
of fH for those of fK ; we call such terms the difference due to differences in Y | X . We define the
KOB extension decomposition for the general case below:

Definition 1. Let S define an ordering of all subsets S ⊂ 2[d]; we refer to the ith subset in this
ordering as Si. We define the importance decomposition to be:

EK [Y ]−EH [Y ] =

|S|∑
i=1

δ
Y |X
Si

+

d∑
j=1

δXj , (6)

where: δY |XSi
:= EHX

 i∑
j=1

L(fK ,KX , Sj) +

|S|∑
j=i+1

L(fH , HX , Sj)


− EHX

i−1∑
j=1

L(fK ,KX , Sj) +

|S|∑
j=i

L(fH , HX , Sj)


δXj := EK1:j|j+1:dHj+1:d

[
fK(X)

]
− EK1:j−1|j:dHj:d

[
fK(X)

]
Note that the sums in δY |XSi

differ at index i, so that δY |XSi
= EHX

[L(fK ,KX , Si)−L(fH , HX , Si)].

We therefore call δY |XSi
the difference due to the dependence of Y | X on feature subset Si. Likewise,

the distributions over covariates in δXj differ in whether Xj follows a distribution determined by H
or K. We therefore call δXj the difference due to the change in distribution of covariate j.

Definition 1 is an extension of the KOB decomposition from Section 2, which also defines differences
from swapping out distributions of covariates, as well as differences in swapping out (a model for)
Y | X . The main difference is that Definition 1 uses a generic additive decomposition of Y | X ,
whereas the KOB decomposition assumes a linear model.

This decomposition – like the KOB decomposition – makes a series of specific choices: first swapping
S1, then S2, ... then finally swapping S|S|, and then swapping covariate one, then covariate two, etc.
Why not swap S2 first? Why not swap covariate three immediately after S1? In general, there is no
reason to prefer any one ordering, and different orderings will produce different results. With no
preferred ordering of swaps, one may prefer to average over all possible orderings and report the
resulting averages as the definitions of δY |XSi

and δXj .2 Our results here apply to any fixed order; we
leave the extension to averaging over all orderings as future work.

4 Failure of existing decompositions

Once a user has specified the functional forms of fH(X) and fK(X), the only decision to be made
before using Definition 1 is the choice of functional decomposition L. At first glance, options such
as ALE or FANOVA from Section 2.2 and 2.3 seem like excellent choices: they provide additive
decompositions of generic functions with properties that make them well-suited for understanding
functions in other applications. However, we conjecture that a broad class of functional decomposi-
tions, including FANOVA and ALE, are inappropriate for explaining population differences in the
sense of Definition 1, despite their great success in other applications. In particular, we conjecture
that such decompositions incorrectly state that differences stem from changes in Y | X .

Recall that Definition 1 defines δY |XSi
to be the difference due to the dependence of Y | X on feature

subset Si. Suppose that the distributions Y | X are in fact identical across the two populations H
and K, and thus fK = fH = f . In such situations, any reasonable decomposition should lead us to
believe there is no difference due to differences in Y | X; that is, δY |XSi

= 0. Unfortunately, the next
example shows that FANOVA can misattribute differences to differences in Y | X .

Example 1. To begin with, note that when fK = fH = f , δY |XS reduces to

∆(f,HX ,KX , S) := δ
Y |X
S = EHX

[L(f,KX , S)− L(f,HX , S)] . (7)

2Shorrocks (2013) describes such averages as applying logic of Shapley values to functional decompositions.
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Consider the case where the fitted model is additive and has two covariates: fK = fH = f(x) =
x1 + x2. Suppose that population H has covariates X1, X2, with EHX

[X1] = EHX
[X2] = 0, while

in population K, EKX
[X1] = µ and EKX

[X2] = 0 for µ 6= 0. In both populations, X1 and X2 are
independent and have finite variance.

Then, following the FANOVA decomposition in Equation 3, the components for each subset satisfy
the following for each population:

f̂H∅ (x) = 0, f̂H{1}(x) = x1, f̂H{2}(x) = x2, f̂H{1,2}(x) = 0,

f̂K∅ (x) = µ, f̂K{1}(x) = x1 − µ, f̂K{2}(x) = x2, f̂K{1,2}(x) = 0.

Hence, the difference in means due to differences in Y | X for the component of S = {1}, is given by,

∆(f,HX ,KX , {1}) = EHX

[
f̂K{1}(x)− f̂H{1}(x)

]
= EHX

[x1 − µ− x1] = −µ 6= 0,

which is not equal to zero, so FANOVA misattributes effects to Y | X in this example.

In Appendix 2, we provide an example for ALE where fK = fH but δY |XSi
6= 0. Thus either ALE or

FANOVA can misattribute differences to differences in Y | X .

Without a clear understanding of when such misassignments will occur, the decomposition of
Definition 1 is of little value, as practitioners would never know when to trust its outputs. To resolve
this problem, we attempt to characterize how properties of the functional decomposition L cause this
misassignment. In particular, we conjecture that if L depends on its input probability distribution,
then it can misassign the effects, and the output of Definition 1 is not to be trusted. This holds true
for both ALE and FANOVA; given that both see broad use in the machine learning and statistics
literature, we conclude that requirements for understanding population differences are different than
requirements in other applications. Further, we conjecture the converse is true: Definition 1 does not
have this misassignment only if L does not depend on its input distribution. To prove this, we need to
define what we mean by dependence of L on the input distribution and misassignment of effects.

Definition 2. We say that a functional decomposition L does not depend on its input distribution if
for all f,HX ,KX and S, L(f,KX , S)− L(f,HX , S) ≡ 0.

Definition 3. We say that a functional decomposition L misattributes effects of Y | X if
∆(f,HX ,KX , S) 6= 0 for any f,HX ,KX , S.

Therefore, we aim to characterize conditions on the functional L under which ∆(f,HX ,KX , S)
does or does not equal zero for all fX , HX ,K.

5 When do functional decompositions misattribute effects?

We conjecture that, under regularity assumptions on L(f,KX , S), the function f , and the densities
HX and KY , a functional decomposition L does not misattribute the effects of Y | X if and only if it
does not depend on its input distribution.

Suppose L(f,KX , S) is a continuous functional in its first argument f , Lebesgue measurable in
its second argument, KX , and square integrable, in the L2 sense, for all triplets (f,KX , S). For
example, our first condition is satisfied in cases, such as in FANOVA, when L is the integral operator
with respect to any probability measure or the Lebesgue measure. The third assumption is identical
to those in FANOVA and ALE, which both require L to belong to the space of square integrable
functions, L2. Lastly, we assume that the densities KX belong to the space of compactly supported
functions, denoted by P(X). Note that not only the definition of ALE decomposition assumes
compactly support densities, but also this assumption is fairly mild. In practice, most distributions
can be restricted to a compact region (e.g., age, income, and years of education are all bounded).

We parameterize perturbations around a density KX as KX + φ, for admissible3 functions φ. We
denote by DK , the set of admissible perturbation functions of KX . Under an additional condition,

3We require that φ be square integrable and that KX + φ be a valid probability density; see Appendix B.2
for details.
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assuming that L is continuously differentiable as a function of φ, we ensure that we can approximate
L(·, φ) with the linear approximation around zero:

L(·, φ) = L(·, 0) +DφL(·, 0)[φ].

Where DφL(·, 0)[φ] is known as the (Fréchet) derivative of L with respect to the function φ evaluated
at the zero function and it operates on φ. See Definition 4 and Appendix B.2 for a more rigorous
discussion of the perturbation functions. Although we have not yet verified that FANOVA and ALE
satisfy continuous differentiability with respect to perturbations, our conditions are mild, and so we
conjecture that this is the case.

We now attempt to characterize the behavior of the functional L under small perturbations of the
density KX . Our main theoretical result depends on the following conjecture:

Conjecture 1. Assume the above regularity conditions on L (Assumptions 1 and 2 in the Appendix).
Let KX ∈ P(X) and DK denote the set of admissible perturbation function of KX .

If,
Ex∼KX+φ [L(f,KX , S)(x)− L(f,KX + φ, S)(x)] = 0, for all φ ∈ DK .

Then,
DφL(·, 0)[φ] = 0,

and therefore L(f,KX , S)does not depend on its input distribution. That is,

L(f,KX , S) = L(f,KX + φ, S), for all φ ∈ DK .

While we have not yet fully proved Conjecture 1, we feel it is intuitively sensible: if a decomposition
L does not misassign effects of transport for any distribution, then it must be constant with respect
to its input distribution. See Appendix B.3 for a partial proof. Regardless, if Conjecture 1 is true, it
leads to our main result:

Theorem 1. Under the assumptions of Theorem 1, a functional decomposition L(f,KX , S) does
not misattribute effects of Y | X if and only if it does not depend on its input distribution.

Proof. The "if" part is straightforward: by definition, if L(f,KX , S) − L(f,HX , S) = 0 for all
f,KX , HX , S, then ∆(f,KX , HX , S) = 0. The proof of the "only if" relies on Theorem 1. Since
KX was chosen arbitrarily in Definition 3, this result must hold over the entire defined probability
space, which implies that L(f,KX , S)− L(f,HX , S) = 0, for all f,KX , HX .

Conditional on Conjecture 1, Theorem 1 demonstrates that any decomposition method that depends
on its input distribution may misattribute effects. Our Examples 1 and 2, together with Theorem 1,
underscore that popular decomposition methods, such as FANOVA and ALE, are not suitable for
explaining differences between two populations, highlighting the need to develop novel decomposition
techniques to tackle this problem.

6 Conclusion

In this work, we note that functional decompositions like FANOVA and ALE seem at first glance
like excellent candidates for decomposing differences in two populations. However, we here provide
simple counterexamples showing that both FANOVA and ALE can incorrectly assign differences in
the distribution of covariates X to differences in the outcome-given-covariates, Y | X . We further
conjecture that this phenomenon is more general: any functional decomposition method that depends
on its input distribution will have this problem. Our result calls for the use of decompositions that do
not depend on their input distribution for use in explaining population differences. Fortunately, such
decompositions exist. In fact, an early version of the FANOVA did not depend on the input distribution
(Hooker, 2004). While this non-dependence is often cited as a detriment to the interpretability of a
functional decomposition in one population (Hooker, 2007; Apley and Zhu, 2020), our results give
evidence that this non-dependence is necessary when comparing multiple populations. We leave
application of such decompositions to explaining population differences as future work.
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A Appendix / supplemental material

A.1 ALE misattributes the effect of transport

We present an example where fK = fH but δY |XS 6= 0 for the ALE decomposition, meaning it misattributes the
effects of transport of Y |X .

Example 2. Let fK = fH = f(x) = x1x2, and for population H , x1 ∼ N(1, 1), x2 ∼ N(0, 1), and for
population K, x1 ∼ N(0, 1), x2 ∼ N(µ, 1), where µ 6= 0. Assume we observed data {(xji,1, x

j
i,2)}ni=1, with n

sufficiently large, for j = H,K. The ALE (Apley and Zhu, 2020) main effect for X1 is given by:

f̂1,ALE(x1) ≡
∫ x1

xmin,1

E[f1(X1, X2)|X1 = z1]dz1 − c1

=

∫ x1

xmin,1

∫
p2|1(x2|z1)f1(z1, x2)dx2dz1 − c1,

where c1 is a centering constant and we define the effects for X2 analogously. Let,

xjmin,1 = min{xji,1}
n
i=1, xjmin,2 = min{xji,2}

n
i=1 for j = H,K.

We compute the main effects for each population:

fH1,ALE(x1) =

∫ x1

xHmin,1

E[X2 | X1 = z1] dz1 =

∫ x1

xHmin,1

0 dz1 = 0,

cH1 =
1

n

n∑
i=1

fH1,ALE(xHi,1) = 0,

fK1,ALE(x1) =

∫ x1

xKmin,1

µdz1 = µ(x1 − xKmin,1),

cK1 =
1

n

n∑
i=1

µ(xKi,1 − xKmin,1) = µ

(
1

n

n∑
i=1

xKi,1 − xKmin,1

)
≈ µ(0− xKmin,1) = −µxKmin,1,

fH2,ALE(x2) =

∫ x2

xHmin,2

E[X1 | X2 = z2] dz2 = x2 − xHmin,2,

cH2 =
1

n

n∑
i=1

fH2,ALE(xHi,2) =
1

n

n∑
i=1

(xHi,2 − xHmin,2) =
1

n

n∑
i=1

xHi,2 − xHmin,2 = 0− xHmin,2 = −xHmin,2,

fK2,ALE(x2) =

∫ x2

xKmin,2

E[X1 | X2 = z2] dz2 =

∫ x2

xKmin,2

0 dz2 = 0,

cK2 =
1

n

n∑
i=1

fK2,ALE(xKi,2) =
1

n

n∑
i=1

0 = 0.
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Centering the ALE Effects

f̂H1,ALE(x1) = fH1,ALE(x1)− cH1 = 0,

f̂H2,ALE(x2) = fH2,ALE(x2)− cH2 = (x2 − xHmin,2)− (−xHmin,2) = x2,

f̂K1,ALE(x1) = fK1,ALE(x1)− cK1 = µ(x1 − xKmin,1)− (−µxKmin,1) = µx1,

f̂K2,ALE(x2) = fK2,ALE(x2)− cK2 = 0.

Finally, we compute ∆(f,HX ,KX , S):

∆(f,HX ,KX , {1}) = EHX [fK1,ALE, centered(x1)−fH1,ALE, centered(x1)] = EHX [µx1−0] = µEHX [x1] = µ·1 = µ 6= 0.

∆(f,HX ,KX , {2}) = EHX [fK2,ALE, centered(x2)− fH2,ALE, centered(x2)] = EHX [0− x2] = −EHX [x2] = 0.

Therefore, for S = {1}, ALE misattributes the effects of Y | X .

B Mathematical framework

In this section, we describe in detail the mathematical framework defined in Section 5, along with the additional
necessary notation and assumptions required to prove our main theorem. We also explain the mathematical
definition of an admissible perturbation and prove that such perturbations exist for any compactly supported
density.

B.1 Additional notation

Let X ⊆ Rd be a compact set of features and C0(X) the set of continuous functions over X . In this work, we
focus on continuous compactly supported densities and everywhere positive on X . Let P(X) represent the
space of such probability densities. That is,

P(X) =

{
p(x) : p(x) ∈ C0(X),

∫
X

p(x) dx = 1, and p(x) > 0, for all x ∈ X
}

We can think of these densities as the Radon-Nikodym derivative of probability measures that are absolutely
continuous with respect to an underlying measure, typically the counting measure or the Lebesgue measure (λ).
Here, we focus on the Lebesgue measure, though we conjecture that our work holds for any underlying measure.

We denote byM(X) the space of Lebesgue measurable functions on the covariates (X) representing flexible
regression models for the conditional expectation of Y | X , that is,

M(X) = {f : X → R|f is λ-measurable}

Note that, since functions inM(X) are λ-measurable, they are also measurable with respect to the probability
measures that give rise to densities in P(X).

We make the following regularity and basic assumptions on the functional decomposition L(f,KX , S).

Assumptions 1. The following hold:

1. Continuity: For any (KX , S), the map f → L(f,KX , S) is continuous for almost all f ∈M(X).

2. Measurability: For any (f, S), the map KX → L(f,KX , S) is Lebesgue measurable for all KX ∈
P(X).

3. Integrability: The map (f,KX , S) 7→ L(f,KX , S) belongs to L2(X,λ), for all (f,KX , S) ∈
M(X)× P(X)× 2[d].

Where we have denoted by the usual notation L2(X,λ) the space of square integrable functions over X with
respect to the Lebesgue measure (λ), as in this work we will focus on the Lebesgue measure only, we omit it
from further notation.

B.2 Admissible perturbation functions

To define the admissible perturbation functions mentioned in Section 5, we first need to define Fréchet differen-
tiability (Cheney, 2001).
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Definition 4 (Fréchet differentiability). Let f : D → Y be a mapping from an open set D in a normed linear
space X into a normed linear space Y . Let x ∈ D. If there exists a bounded linear map A : X → Y such that

lim
h→0

‖f(x+ h)− f(x)−Ah‖
‖h‖ = 0,

then f is said to be Fréchet differentiable at x, or simply differentiable at x. Furthermore, A is called the
(Fréchet) derivative of f at x.

We now define a subspace of functions in L2(X) that will be useful to define perturbation functions.

Definition 5 (Zero-mean square integrable functions). We denote by W (X), the space of zero-mean functions
in L2(X) with respect to the Lebesgue measure.

W (X) =

{
φ ∈ L2(X) :

∫
X

φ(x) dx = 0

}
.

Where the L2(X) has the usual inner product and norm, ‖φ‖2L2 :=
∫
X
φ(x)2 dx <∞.

Definition 6 (Admissible perturbation function). We say a continuous function φ ∈ L2(X) is an admissible
perturbation for a density KX ∈ P(X) if KX + φ ∈ P(X) and has full support everywhere X .

We denote byDK the set of admissible perturbation functions ofKX : DK = {φ ∈ L2(X) : KX+φ ∈ P(X)},
and we show that DK 6= {0} for all KX ∈ P(X).
Lemma 1. For any density KX ∈ P(X), there exist an admissible perturbation function different than zero.

Proof. Let any smooth compactly supported function ψ ∈ L2(X). Then we can take,

φ̃(x) = ψ(x)− 1

λ(X)

∫
X

ψ(y)dy,

such that φ̃(x) ∈W (X), that is,
∫
X
φ̃(x) dx = 0. To ensure the positivity requirement, we can take a function

φ(x) = εφ̃(x), for ε > 0, which still is in L2(X) and integrates to zero. Such ε > 0 must satisfy that for a
given density KX(x),

KX(x) + εφ̃(x) > 0 ⇐⇒ εφ̃(x) > −KX(x), ∀ x ∈ X. (8)

Whenever φ̃(x) > 0, Equation 8 is always satisfied. Thus, the only relevant case is when φ̃(x) < 0, for which
Equation 8 is satisfied if and only if,

ε <
−KX(x)

φ̃(x)
, ∀ x ∈ X such that φ̃(x) < 0.

Or equivalently,

ε ≤ infx∈X KX(x)

supx∈X |φ̃(x)|
,

where by assumption the right hand side is strictly positive. Thus φ(x) is an admissible perturbation function of
KX(x).

Note that given a probability density KX , we can parameterize the functional decomposition in terms of φ(x)

as follows: L(f, φ, S) = L(f,KX + φ, S) :M(X)×DK(X)× 2[d] → L2(RS). For this parameterization,
in addition to Assumption 1, we need to assume the continuous differentiability of L as a function of φ (see
Assumption 2) to ensure that L is Fréchet differentiable as a map from the Banach space L2(X) into the Banach
space L2(XS) (Zeidler, 1986; Averbukh and Smolyanov, 1967), whereXS ∈ X denotes the subset of covariates
indexed by S .
Assumptions 2. The map φ→ L(·, φ(x)) is continuously differentiable as a map from L2(X) into L2(XS).

Under this new assumption, we can linearly approximate L(·, φ) around φ = 0 with a linear and bounded
functional.

L(·, φ) = L(·, 0) +DφL(·, 0)[φ] + o(‖φ‖L2).

Where DφL(·, 0)[φ] is the Fréchet derivative of L with respect to the function φ evaluated at the zero function
and o(‖φ‖L2) represents a higher-order functional that vanishes faster than ‖φ‖L2 as φ→ 0. More formally,
for any δ > 0, there exists a τ > 0 such that if ‖φ‖L2 < τ , then |o(‖φ‖L2)| ≤ δ‖φ‖L2 .
Remark 1. The Fréchet derivative is a linear and bounded functional which operates on functions φ ∈ L2(X).
That is, there exist a constant C > 0 such that,

‖DφL(·, 0)[φ]‖L2 ≤ C‖φ‖L2
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B.3 Proof of Theorem 1

We first show some lemmas that will be useful through the proof of Theorem 1.
Lemma 2. Given our assumptions, for any KX ∈ P(X) and φ ∈W (X), the following integrals are finite.∣∣∣∣∫

X

(DφL(·, 0)[φ](x)) φ(x) dx

∣∣∣∣ <∞, (9)∣∣∣∣∫
X

(DφL(·, 0)[φ](x))φ(x)KX(x) dx

∣∣∣∣ <∞. (10)

Furthermore, ∣∣∣∣ ∫
X

o(‖φ‖L2)(x)(KX(x) + φ(x)) dx

∣∣∣∣ = o(‖φ‖L2) (11)

Proof. KX is continuous and compactly supported on X , then by a direct consequence of the extreme value
theorem, it is bounded: there exists a B > 0 such that supx∈X |KX(x)| ≤ Bk < ∞; by a similar argument,
supx∈X |φ(x)| ≤ Bφ <∞. We first show Equation 9:∣∣∣∣∫

X

(DφL(·; 0)[φ](x))KX(x) dx

∣∣∣∣ ≤ ∫
X

|DφL(·; 0)[φ](x)|KX(x) dx

≤
(∫

X

(DφL(·; 0)[φ](x))2 dx

)1/2(∫
X

KX(x)2 dx

)1/2

≤ C · ‖φ‖L2 ·BK ·
√
λ(X)

≤ C ·Bφ ·BK · λ(X) <∞.

To show Equation 10:∣∣∣∣∫
X

(DφL(·; 0)[φ](x))φ(x) dx

∣∣∣∣ ≤ ∫
X

|DφL(·; 0)[φ](x)| |φ(x)| dx

≤
(∫

X

(DφL(·; 0)[φ](x))2 dx

)1/2(∫
X

φ(x)2 dx

)1/2

≤ C · ‖φ‖L2 ·Bφ
√
λ(X)

≤ B2
φ · C · λ(X).

To show Equation 11: For any δ > 0, there exist a τ > 0 such that if ‖φ‖L2 < τ , then o(‖φ‖L2) ≤ δ‖φ‖L2 ,
thus: ∣∣∣∣ ∫

X

o(‖φ‖L2)(x)(KX(x) + φ(x)) dx

∣∣∣∣ ≤ ∫
X

|o(‖φ‖L2)(x)|(KX(x) + φ(x)) dx

≤ (BK +Bφ)

∫
X

|o(‖φ‖L2)| dx

≤ (BK +Bφ) · δ‖φ‖L2λ(X)

= o(‖φ‖L2).

Lemma 3. Let X ⊂ Rd be a measurable set with finite Lebesgue measure λ(X) <∞. Then, the orthogonal
complement of W (X) in L2(X) is the space of constant functions on X; that is,

W (X)⊥ =
{
f ∈ L2(X) : f(x) = c, a.e. on X

}
.

Proof. Let
V =

{
f ∈ L2(X) : f(x) = c a.e. on X

}
.

We will prove that W (X)⊥ = V by first showing that V ⊆ W (X)⊥. Let f ∈ V ; then, for any ψ ∈ W (X),
we have ∫

X

f(x)ψ(x) dx = c

∫
X

ψ(x) dx = 0.

It remains to show that W (X)⊥ ⊆ V . Let f ∈ W (X)⊥, then
∫
X
f(x)ψ(x) dx = 0 for any ψ(x) ∈ W (X).

In particular, we can take an arbitrary measurable set A ⊂ X and define

ψA(x) = χA(x)− λ(A)

λ(X)
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where χA(x) is the indicator function over A and λ is the Lebesgue measure. Thus,

0 =

∫
X

f(x)ψA(x) dx =

∫
X

f(x)χA(x) dx−
∫
X

f(x)
λ(A)

λ(X)
dx

⇔
∫
A

f(x) dx =

∫
X

f(x)
λ(A)

λ(X)
dx = λ(A)

(∫
X
f(x) dx

λ(X)

)
(12)

Define µ(A) =
∫
A
f(x) dx, which is a signed measure absolutely continuous with respect to the Lebesgue

measure. On one hand, by the Radon-Nikodym Theorem for signed measures (Folland (1999); Theorem 3.8),
f(x) is the Lebesgue integrable Radon-Nikodym derivative. On the other, by Equation 12:

µ(A) = λ(A) · c, for any measurable set A ⊂ X, (13)

where c =
( ∫

X f(x) dx

λ(X)

)
. By the Lebesgue almost everywhere uniqueness of the Radon-Nikodym derivative, we

have form Equation 13 and definition of µ that

f(x) = c, a.e. x ∈ X.

Therefore, f ∈ V and W (X)⊥ ⊆ V .

We can now proceed to prove our main theorem. This is a work in progress, but there are several approaches to
consider for this statement. Some might require additional constraints, or we may need to restrict to specific
spaces.

Theorem 1. Take Assumptions 1 and 2. Let KX ∈ P(X). If,

Ex∼KX+φ [L(f,KX , S)(x)− L(f,KX + φ, S)(x)] = 0, for all φ ∈ DK .

Then,
DφL(·, 0)[φ] = 0, for all φ ∈ DK ,

and therefore L(f,KX , S) is invariant under perturbations of concentration. That is,

L(f,KX , S) = L(f,KX + φ, S), for all φ ∈ DK .

Proof. By assumption Ex∼KX+φ [L(f,KX , S)(x)− L(f,KX + φ, S)(x)] = 0, for all φ ∈ DK . i.e.,

0 =

∫
X

(L(f,KX , S)(x)− L(f,KX + φ, S)(x)) (KX(x) + φ(x)) dx,

=

∫
X

(L(·, 0)(x)− L(·, φ)(x)) (KX(x) + φ(x)) dx,

= −
∫
X

[DφL(·, 0)[φ](x) + o(‖φ‖L2(x))] (KX(x) + φ(x)) dx,

⇐⇒ 0 =

∫
X

[DφL(·, 0)[φ](x) + o(‖φ‖L2)(x)] (KX(x) + φ(x)) dx. (14)

Then, by Lemma 2, we can split the integrals, and rewrite Equation 14 as:

∫
X

(DφL(·, 0)[φ](x))KX(x) dx+

∫
X

(DφL(·, 0)[φ](x))φ(x) dx = −
∫
X

o(‖φ‖L2)(x)(KX(x)+φ(x)) dx.

Since this equation must hold for all φ ∈ DK , we can proceed as in the proof of Lemma 1. Specifically, let
φ(x) = εψ(x) for sufficiently small ε > 0 and ψ(x) ∈W (X), where W (X) is the set of mean zero functions
in L2 (see Definition 5). Furthermore, by Lemma 2, we know the following:

∫
X
o(‖φ‖L2)(x)(KX(x) +

φ(x)) dx = o(‖φ‖L2). Note also that o(‖εψ‖L2) = o(ε‖ψ‖L2) = o(ε) since ‖ψ‖L2 < ∞, then the above
equation simplifies to:∫

X

(DφL(·, 0)[εψ](x))KX(x) dx+

∫
X

(DφL(·, 0)[εψ](x))εψ(x) dx = o(ε).

Where by o(ε) we mean a constant that goes to zero faster than ε. By linearity of the Fréchet derivative, we can
take ε out of the operator, divide by it, and since o(ε)

ε
= o(1), we obtain:
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∫
X

(DφL(·, 0)[ψ](x))KX(x) dx+ ε

∫
X

(DφL(·, 0)[ψ](x))ψ(x) dx = o(1).

Taking ε→ 0, we get that the first integral is equal to zero:∫
X

(DφL(·, 0)[ψ](x))KX(x) dx = 0. (15)

Equation 15, states that for any ψ, the evaluation functional DφL(·, 0)[ψ](x)) is orthogonal to the density KX .

The proof is not yet complete, but we observe a very specific constraint on the functional L, namely that its
derivative must be zero when weighted by the density function. There are potential avenues to explore here,
such as working with RKHS to investigate specific forms of kernels and determine in which cases such kernels
would be equivalent to the zero function or impose additional constraints on the functional. These constraints
would still apply in many cases and indicate that the operator is locally constant.
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