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Abstract

To alleviate the high cost of manually annotat-001
ing Question Answering (QA) datasets, Ques-002
tion Generation (QG) has been proposed, which003
requires the model to generate a question re-004
lated to the given answer and passage. This005
work primarily focuses on Multi-Span Ques-006
tion Generation (MSQG), where the generated007
question corresponds to multiple candidate an-008
swers. We observe that traditional QG meth-009
ods may not suit MSQG as they typically over-010
look the correlation between the candidate an-011
swers and generate trivial questions. To ad-012
dress it, we propose REGULAR, a framework013
of RElation-GUided MuLti-SpAn Question014
GeneRation. REGULAR first converts pas-015
sages into knowledge graphs and extracts candi-016
date answers from the knowledge graphs. Then,017
REGULAR utilizes a QG model to generate018
a set of candidate questions and a QA model019
to obtain the optimal question. We construct020
over 100,000 questions using Wikipedia and021
PubMed corpora, named REGULAR-WIKI022
and REGULAR-MED respectively, and con-023
duct experiments to compare our synthetic024
datasets with other synthetic QA datasets. The025
experiment results show that models pre-fine-026
tuned with our synthetic dataset achieve op-027
timal performance. We also conduct ablation028
studies and statistical analysis to verify the qual-029
ity of our synthetic dataset. 1030

1 Introduction031

Question Answering (QA) (Rajpurkar et al., 2018;032

Kwiatkowski et al., 2019) requires the model033

to provide accurate answers for a given ques-034

tion, which has wide-ranging applications like035

chat systems(OpenAI et al., 2024), information036

retrieval(Esteva et al., 2021), and AI education (Ra-037

bin et al., 2023). As a subtype of the QA task,038

Multi-Span Question Answering (MSQA) (Li et al.,039

1Our code and data are available at https://anonymous.
4open.science/r/REGULAR-BC26

Passage:
Ben Kirk, played by Noah Sutherland, made his first on-screen 
appearance on 14 December 2001. Ben is the son of Libby 
Kennedy (Kym Valentine) and Drew Kirk (Dan Paris). Ben's 
birth placed Libby's life in danger and she was rushed to 
intensive care with blood loss, but she eventually recovered...

Answers (extracted by NER tools): Ben Kirk, Noah, Libby 
Kennedy, Kym Valentine, Drew Kirk, Dan Paris, Ben
Question: Who are the people in this passage?

Answers (extracted by human): Libby Kennedy, Drew Kirk
Question: Who are the parents of Ben Kirk?

Figure 1: An example where humans and the NER
tool extracted different answers, leading to different
questions. The entities extracted by the NER tool are
highlighted with underlines.

2022; Yue et al., 2023) requires the model to ex- 040

tract multiple non-redundant answers from a given 041

passage. However, the models may need a large 042

amount of training data to facilitate either MSQA 043

or other QA tasks. To alleviate the high cost of 044

manually annotating QA datasets, Question Gener- 045

ation (QG) has been proposed, which requires the 046

model to generate a question related to the given 047

answer and passage. 048

Traditional QG research (Shakeri et al., 2020; 049

Lyu et al., 2021a; Lee et al., 2023) has considered 050

cases where the answer is not provided, meaning 051

that the task is to generate a question and its cor- 052

responding answer from a given passage. Exist- 053

ing methods typically use rule-based methods or 054

model-based methods to extract candidate answers, 055

and then employ a Language Model (LM) to gener- 056

ate the question. For example, Shakeri et al. (2020) 057

use a Sequence-to-Sequence LM (Sutskever et al., 058

2014) to generate questions and answers in an end- 059

to-end manner, while Lyu et al. (2021a) and Lee 060

et al. (2023) utilize Named Entity Recognization 061

(NER) tools to extract answers. Some other works 062

(Guo et al., 2024; Wu et al., 2024) explore improv- 063

ing the ability of Large Language Models (LLMs) 064
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to generate questions by incorporating additional065

information into the prompt.066

This work primarily focuses on Multi-Span067

Question Generation (MSQG), where the gener-068

ated question corresponds to multiple candidate069

answers. Unfortunately, traditional QG struggles070

with MSQG. Taking Figure 1 as an example, us-071

ing NER tools to extract all the person names re-072

sults in a set of unrelated entities, which leads to073

a trivial question. The reason may be that tradi-074

tional QG methods primarily focus on generating075

single-answer questions, without considering the076

correlation between multiple answers in the MSQG077

task. Although LIQUID (Lee et al., 2023) employs078

an additional QA model to refine the initial can-079

didate answers, the correlation between candidate080

answers is still not guaranteed.081

We observe that knowledge graphs may help082

obtain relevant candidate answers, as edges con-083

nect different entities with relationship types in the084

knowledge graph. Based on this observation, we085

define Commonality Entities (CE) as a group of086

entities that share the same relation type with a spe-087

cific entity in a knowledge graph. Then we propose088

REGULAR, a framework for RElation-GUided089

MuLti-SpAn Question GeneRation. For a given090

passage, REGULAR converts it into a knowledge091

graph and employs a graph traversal algorithm to092

extract CE as candidate answers. After extract-093

ing candidate answers, REGULAR utilizes a QG094

model to generate a set of candidate questions and095

a QA model to obtain the optimal question. Com-096

pared with traditional QG methods, REGULAR097

considers the relevance between candidate answers,098

avoiding the negative impact of irrelevant answers099

on the synthetic datasets.100

We construct over 100,000 questions us-101

ing Wikipedia and PubMed corpora, named102

REGULAR-WIKI and REGULAR-MED respec-103

tively2, and evaluate them through 2-step fine-104

tuning experiments. The experiment results show105

that models pre-fine-tuned with REGULAR dataset106

achieve optimal performance. For instance, after107

training with REGULAR-WIKI, the Tagger model108

(Li et al., 2022) improves the Exact Match F1 by109

2.95% on MultiSpanQA(Li et al., 2022) compared110

with the model pre-fine-tuned with the LIQUID111

dataset (Lee et al., 2023). Additionally, we conduct112

ablation studies and statistical analysis to verify the113

quality of the REGULAR datasets.114

2For simplicity, we also refer them to REGULAR datasets.

In summary, our contributions are listed as fol- 115

lows: 116

• To obtain relevant candidate answers in 117

MSQG, we explore extracting entities from 118

the knowledge graph as candidate answers. 119

We define CE as a group of entities that share 120

the same relation type with a specific entity in 121

a knowledge graph and design a graph traver- 122

sal algorithm to extract CE. 123

• We propose REGULAR, which extracts 124

CE from graph structures as candidate an- 125

swers and generates corresponding questions. 126

We construct over 100,000 questions from 127

Wikipedia and PubMed corpora, respectively. 128

• Experiment results demonstrate that our syn- 129

thetic datasets can be used to train QA models 130

and achieve better performance. We also con- 131

duct ablation studies and statistical analysis to 132

validate the quality of the synthetic dataset. 133

2 Related Work 134

2.1 Question Generation 135

QG requires models to generate a question that 136

matches the given passage and the answer. This 137

work primarily focuses on MSQG where the gener- 138

ated question corresponds to multiple answers. In 139

real-world applications, the answers are often un- 140

known, so obtaining the answers is necessary first 141

and then generating the corresponding questions. 142

Traditional methods typically utilize LMs or 143

rule-based tools to extract candidate answers. Puri 144

et al. (2020) train a BERT (Devlin et al., 2019) to 145

extract candidate answers. Shakeri et al. (2020) use 146

a Sequence-to-Sequence LM to end-to-end gener- 147

ate both questions and answers. Lyu et al. (2021a) 148

extract summarization of the given passage and 149

then use NER tools and syntactic parsing tools 150

to extract candidate answers. LIQUID (Lee et al., 151

2023) first extracts multiple candidate answers with 152

a summarization model and NER tool, and gener- 153

ates multi-answer questions, followed by iterative 154

updates to both the questions and candidate an- 155

swers. However, these methods fail to consider the 156

correlation between candidate answers. In contrast, 157

we extract CE in the knowledge graph, ensuring 158

the correlation among the candidate answers and 159

improving the quality of the synthetic datasets. 160
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1. Convert Passage to Knowledge Graph (KG).

LIVE_IN

Passage:
John lives in New York. He likes playing basketball and baseball...

JohnNew York

basketball

baseball

KG:
LIKE

LIKE

2. Extract Commonality Entities (CEs) from KG.

LIVE_IN
JohnNew York

basketball

baseball

KG:

LIKE

LIKE

CE: {basketball , baseball} 
Relation: LIKE

Graph traversal 
algorithm

LangChain
+LLM

3. Generate k Questions with QG Model. 4. Select Optimal Question from Step 3.

QG Model

Inputs: Passage + CE + Relation

Output Questions (k = 3):
Q1: Who does John look like? 

Q2: What does John like?
Q3: What sports does John like?

UnifiedQA
Q1
Q2
Q3

Optimal Question: What sport does John like?
Answers: basketball, baseball

Score
Q1 score: 0
Q2 score: 0.9
Q3 score: 1.0

Passage

Figure 2: The pipeline of our REGULAR framework.

2.2 LLM-based Question Generation161

Recently, LLMs (Grattafiori et al., 2024; Ope-162

nAI et al., 2024) have gained widespread attention163

due to their powerful language modeling and text164

generation capabilities. Recent studies have ex-165

plored methods such as In-Context Learning (ICL)166

(Brown et al., 2020) and Chain-of-Thought (CoT)167

(Wei et al., 2022; Kojima et al., 2022) to further168

improve the performance of LLMs in QG tasks.169

For example, TASE-CoT (Lin et al., 2024) first170

uses the T5 (Raffel et al., 2020) model to predict171

the question type and key fragments within the172

question, then designs a three-step CoT approach173

to guide the LLM in generating multi-hop ques-174

tions. Similarly, SGSH (Guo et al., 2024) addresses175

Knowledge Base Question Generation (KBQG) by176

using a fine-tuned BART (Lewis et al., 2020) model177

to provide the question prefix before generating178

questions with GPT-3.5. Li and Zhang (2024) fo-179

cus on controllable question generation and pro-180

pose the PFQS framework. This framework first181

generates an initial plan based on the question label,182

adjusts it with the context, and then generates the183

question based on the article, answer, and plan. In184

addition to text-only question generation, Wu et al.185

(2024) focus on Multi-Modal Question Generation186

(MMQG) and they propose SMMQG, which sam-187

ples multi-modal sources and generates different188

types of questions with GPT-4.189

In this work, we primarily utilize advanced190

LLMs to convert passages into knowledge graphs191

and use fine-tuned LLMs to generate questions.192

3 Method 193

The MSQG task can be described as: Given a pas- 194

sage p, models are required to first extract a set of 195

non-redundant text spans as the candidate answers 196

A, and then generate the corresponding question q, 197

as shown in Equation 1: 198

A = Extract_Answers(p)

q = MQG(p,A)
(1) 199

where MQG refers to the QG model. Figure 2 200

shows the architecture of our REGULAR frame- 201

work. Different from existing work, we extract 202

CE from the knowledge graphs as the candidate 203

answers to ensure relevance among the answers 204

and then generate corresponding questions. Specif- 205

ically, the REGULAR framework consists of four 206

steps: (1) Convert the given passage to a knowledge 207

graph; (2) Extract CE from the knowledge graph 208

as candidate answers; (3) Utilize a QG model to 209

generate a set of candidate questions; (4) Score 210

each candidate question with a QA model and se- 211

lect the optimal question with the highest score for 212

constructing the MSQA dataset. 213

Next, we will introduce the definition of CE in 214

Section 3.1, and elaborate on each step from Sec- 215

tion 3.2 to Section 3.4. 216

3.1 Commonality Entities 217

The definition of CE can be described as follows: 218

Given a reference entity v̄ and a relation r, CE is 219

defined as a set of entities that connect to v̄ with 220

the edges that share the same relation r. The above 221
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definition can be represented by Equation 2.222

CE(v̄, r) = {v|v ∈ N(v̄) ∧R(v,v̄) = r} (2)223

where N(v̄) represents the neighbor entities of v̄224

and R(vi, v̄) represents the relation of the edge225

between vi and v̄.226

3.2 Extracting CE as candidate answers227

In MSQG tasks, selecting multiple candidate an-228

swers is important because unrelated candidate an-229

swers may result in low-quality questions (Lyu230

et al., 2021b; Lee et al., 2023). Existing methods231

(Lee et al., 2023) typically utilize NER tools (e.g.,232

SpaCy 3) to extract named entities. However, these233

approaches fail to consider the correlations among234

candidate answers, thereby limiting the quality of235

the synthetic data.236

We propose extracting CE as candidate answers,237

considering that CE in a knowledge graph is con-238

nected to a specific entity through the same edges,239

ensuring relevance among these entities. This pro-240

cess contains two steps: converting passages into241

knowledge graphs and extracting CE in the knowl-242

edge graph.243

Converting Passages into Knowledge Graphs244

We utilize LangChain LLMGraphTransformer4 to245

convert passages into knowledge graphs. This pro-246

cess can be described as Equation 3:247

G = LLM(p) (3)248

where p refers to the passage and G refers to249

the knowledge graph and LLM() refers to the250

LangChain tool.251

Extracting CE in the Knowledge Graph We252

design a graph traversal algorithm that identifies253

CE by counting the 1-hop neighbors of each node.254

We extract CE with two or more entities as candi-255

date answers A. This process can be described as256

Equation 4:257

A = Extract_Answers(G) (4)258

where G refers to the knowledge graph. We provide259

a detailed algorithm in Appendix A.260

3https://spacy.io/
4https://python.langchain.com/api_

reference/experimental/graph_transformers/
langchain_experimental.graph_transformers.llm.
LLMGraphTransformer.html

3.3 Generating Questions 261

Generating Questions with CE We utilize a 262

generative LM MQG as the QG model to gener- 263

ate questions. The inputs of MQG are the pas- 264

sage p, the candidate answers A, reference entity 265

v, and relation r. We sample k candidate ques- 266

tions Q = {q1, ..., qk}, where k is the number of 267

generated questions, shown in Equation 5: 268

Q = MQG(p,A, v̂, r) (5) 269

Extracting Relations for Training the QG Model 270

Existing MSQA datasets such as MultiSpanQA(Li 271

et al., 2022) and MA-MRC(Yue et al., 2023) do 272

not include commonality relation we need. Intu- 273

itively, we could use a prompted LLM to extract the 274

commonality relation from the question. However, 275

this may introduce bias between training and gen- 276

erating. To address this problem, we first prompt 277

an LLM to convert the question-answer pairs into 278

declarative sentences. Then, following the method 279

proposed in Section 3.2, we check whether the an- 280

swers satisfy the definition of CE. If the candidate 281

answers are CE, we add the corresponding com- 282

monality relation r to the training data, otherwise, 283

we discard this data. 284

3.4 Obtaining Optimal Question 285

Existing QG researches (Lee et al., 2023; Mo- 286

hammadshahi et al., 2023) typically employ a QA 287

model to validate the generated questions. In this 288

work, we employ a QA model MQA fine-tuned on 289

the MSQA datasets to score the candidate questions 290

generated in Section 3.3 and select the question 291

with the highest score. For each candidate question 292

qi ∈ Q and its corresponding passage p, we predict 293

its answers with MQA. Then we calculate the F1 294

score of the predicted answers and obtain the opti- 295

mal question q̂ that maximizes the F1 score. This 296

process can be described as Equation 6: 297

Oi = MQA(p, qi)

sqi = F1_Score(Oi, A)

q̂ = argmax
qi∈Q

(sqi)
(6) 298

where F1_Score(Oi, A) refers to the F1 score of 299

Oi when A is used as the reference5. 300

Finally, we construct synthetic dataset D with 301

the candidate answers A and the generated question 302

5When calculating the F1 score, we take the average of the
Exact Match F1 and Partial Match F1 scores. Details of Exact
Match and Partial Match are shown in Section 4.1
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MultiSpanQA MA-MRC QUOREF
EM F1 PM F1 EM F1 PM F1 EM F1 PM F1

Tagger 68.58 83.62 79.69 87.50 66.77 81.78
+ QAGen-WIKI 67.04 82.89 79.48 87.19 68.86 82.20
+ LIQUID-WIKI 67.50 83.26 80.31 87.59 73.91 85.67
+ REGULAR-WIKI 70.45 84.57 80.27 87.99 75.89 84.77
SpanQualifier 71.58 83.50 79.85 86.83 62.21 75.36
+ QAGen-WIKI 69.81 83.26 57.68 73.74 58.29 73.02
+ LIQUID-WIKI 70.76 84.52 80.66 87.28 71.95 80.31
+ REGULAR-WIKI 72.98 83.19 81.38 88.06 72.98 83.19
BART-base 65.14 80.15 75.38 84.40 66.80 75.38
+ QAGen-WIKI 66.98 81.32 74.29 83.97 61.97 73.62
+ LIQUID-WIKI 66.67 81.14 75.84 84.60 67.24 77.17
+ REGULAR-WIKI 68.98 82.59 75.88 85.28 67.44 78.51
T5-base 69.24 82.93 78.39 86.21 65.47 76.40
+ QAGen-WIKI 69.81 83.26 78.89 86.32 61.41 73.25
+ LIQUID-WIKI 70.29 81.83 79.26 86.78 67.64 75.94
+ REGULAR-WIKI 73.09 85.19 79.40 86.87 67.66 76.23

Table 1: Exact Match and Partial Match F1 scores of the MSQA models. The first line of each MSQA model refers
to the original performance. "QAGen-WIKI" and "LIQUID-WIKI" refer to the 2-step fine-tuning baselines where
models are firstly trained on synthetic datasets from Wikipedia corpus. The best results are in bold.

q̂, shown in Equation 7:303

D = {(pj , Aj , q̂j)}nj=1 (7)304

where n refers to the question number of D.305

4 Experiments306

Inspired by (Lee et al., 2023), we use a 2-step fine-307

tuning approach to compare the quality differences308

of the synthetic datasets generated by REGULAR309

and other QG methods. In the first step, the QA310

models are pre-fine-tuned on the synthetic datasets,311

and in the second step, the QA models are grained-312

fine-tuned on the downstream MSQA benchmarks.313

For a fair comparison, we randomly select 50,000314

questions for the pre-fine-tuning.315

4.1 Experimental Setup316

Corpus We select the open-source corpus317

PubMed 6 and Wikipedia 7 and construct over318

100,000 questions using each of these two corpus,319

named REGULAR-WIKI and REGULAR-MED320

respectively. The PubMed corpus focuses on the321

biomedical field, while Wikipedia covers general322

knowledge.323

QG Baselines We select synthetic datasets, in-324

cluding QAGen (Shakeri et al., 2020), LIQUID-325

MED (Lee et al., 2023) and LIQUID-WIKI (Lee326

et al., 2023) as the baselines. Details of these base-327

lines are shown in Appendix B.3.328

6https://pubmed.ncbi.nlm.nih.gov/
7https://www.wikipedia.org/

MSQA Datasets We select the MultiSpanQA 329

(Li et al., 2022), MA-MRC (Yue et al., 2023), and 330

QUOREF (Dasigi et al., 2019) for our experiments. 331

Considering that the MA-MRC dataset contains a 332

large amount of training data, we randomly sam- 333

ple 10,000 training data and 1,000 validation data 334

and obtain MA-MRC-10k. Details of the MSQA 335

dataset are shown in Appendix B.1. 336

MSQA Models We select two discriminative 337

models: Tagger (Li et al., 2022) and SpanQuali- 338

fier (Huang et al., 2023),as well as two generative 339

models: BART (Lewis et al., 2020) and T5 (Raffel 340

et al., 2020) for our experiments. Details of these 341

models are shown in Appendix B.2. 342

Evaluation Metrics Following (Li et al., 2022), 343

we use Exact Match (EM) and Partial Match 344

(PM) as the main metrics. EM assigns a score of 345

1 when a prediction fully matches one of the gold 346

answers and 0 otherwise, while PM considers the 347

overlap between the predictions and gold answers. 348

We report F1 scores in our experiments. 349

Implementation Details Implementation details 350

are shown in Appendix B.4. 351

4.2 Main Results 352

The main results are shown in Table 1 and Ap- 353

pendix Table 5. Based on these results, the follow- 354

ing conclusions can be made: (1) Traditional QG 355

Methods (e.g., QAGen (Shakeri et al., 2020)) are 356

not suitable for constructing MSQA datasets. 357

We observe that after pre-fine-tuning with the QA- 358

Gen dataset, the model’s performance decreases in 359

5
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MultiSpanQA
EM F1 PM F1

Tagger 68.58 83.62
Ablation on Question Generation Steps
w/o KG (Step 1) 67.52 83.16
w/o CE (Step 2) 68.06 71.53
w/o relation (Step 3) 70.48 84.61
Random Question (Step 4) 67.44 83.16
Worst Question (Step 4) 66.65 81.98
REGULAR 70.51 85.14
Ablation on Fine-Tuning Strategies
Merged FT 70.03 84.98
Domain-Shift FT 60.25 75.51
REGULAR 70.51 85.14

Table 2: Ablation Study on question generation steps
and fine-tuning strategies on the validation set of Multi-
SpanQA. The best results are in bold.

most settings. This suggests that synthetic datasets360

generated by QAGen do not contribute to improv-361

ing the performance of the MSQA models; (2) The362

LIQUID datasets slightly improve the perfor-363

mance of MSQA models in some settings. For in-364

stance, on the MA-MRC-10k dataset, the LIQUID-365

MED setting improved the EM F1 score of the366

Tagger model from 79.69 to 80.31. However, in367

other settings, the performance shows a slight de-368

cline. This indicates that the quality of the LIQUID369

dataset still needs improvement. (3) Our synthetic370

datasets perform best in most settings. This is371

because the REGULAR framework extracts CE372

from the knowledge graph, ensuring the correlation373

between candidate answers, and thereby improves374

the quality of the synthetic dataset.375

We also conduct experiments with the open-376

source LLMs. Details and results are shown in377

Appendix C.2.378

4.3 Ablation Study379

Ablation on Question Generation Steps We hy-380

pothesize that each step in REGULAR contributes381

to constructing a higher-quality synthetic dataset.382

To validate this, we conduct ablation studies on383

each synthetic step of REGULAR and evaluate the384

validation set of the MultiSpanQA dataset. We im-385

plement the following ablation strategies: (1) w/o386

KG: Use NER tools to extract candidate entities387

from the passage. (2) w/o CE: Randomly select388

entities and their neighbors as candidate answers389

instead of CE. (3) w/o relation: Remove the com-390

monality relation and key entity when generating391

questions. (4) Random Question: Randomly se-392

lect a candidate question instead of the highest-393

scoring question. (5) Worst Question: Select394

10 20 30 40 50 60 70 80 90 100
Data Size (k)

67

68

69

70

71

72

EM
 F

1 
(%

)

EM F1: 68.58

w PRE-FT
w/o Pre-FT

Figure 3: Ablation study on data scale with Tagger on
the validation set of MultiSpanQA. "w PRE-FT" refers
to the pre-fine-tuning results and "w/o PRE-FT" refers
to the original result without pre-fine-tuning.

the lowest-scoring question instead of the highest- 395

scoring question. 396

As shown in Table 2, all ablation settings lead to 397

a decline in model performance. Notably, the abla- 398

tion of Step 1 and Step 2 results in a significant drop 399

in performance, as the candidate answers selected 400

under these conditions lack correlation, which lim- 401

its the quality of the synthetic dataset. Further- 402

more, randomly selecting questions or choosing 403

the worst-performing questions also has a negative 404

impact, indicating that the quality of the generated 405

questions also influences the overall quality of the 406

synthetic dataset. 407

Ablation on Fine-Tuning Strategies Inspired 408

by Lee et al. (2023), we employ a 2-step fine- 409

tuning strategy to demonstrate the quality of the 410

synthetic dataset. To explore whether other fine- 411

tuning strategies might perform better, we test two 412

other fine-tuning strategies: (1) Merge FT: We mix 413

the synthetic dataset with the downstream bench- 414

mark dataset and fine-tune them simultaneously. 415

(2) Domain-Shift FT: We only fine-tune models 416

on the synthetic dataset. 417

We compare these strategies on the Multi- 418

SpanQA validation set. As shown in Table 2, 419

Merge FT and Domain-Shift FT perform worse 420

than the 2-step fine-tuning strategy. We hypothe- 421

size that the model learns to reason, generalize, and 422

summarize within context using a large amount of 423

data in the pre-fine-tuning phase. In contrast, in 424

the grained-fine-tuning phase, the model adapts to 425

the domain and question format of the downstream 426

tasks, which leads to better performance on the 427

validation set. 428
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Figure 4: Left: Number of answers in the MultiSpanQA and the REGULAR-WIKI datasets; Right: Types of answers
in the MultiSpanQA and the REGULAR-WIKI datasets. The numbers in the figures represent the percentage.
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Figure 5: Types of questions in the MultiSpanQA and
the REGULAR-WIKI datasets.

Ablation on Data Scale To investigate the im-429

pact of dataset scale on the fine-tuning results,430

we conduct pre-fine-tuning on Tagger with dataset431

sizes ranging from 10,000 to 100,000, followed by432

grained-fine-tuning on the MultiSpanQA dataset.433

As shown in Figure 3, the model achieves optimal434

performance when the pre-fine-tuning dataset size435

reaches 60,000. When the pre-fine-tuning dataset436

size is too small, the model performs worse than437

the original result. This may be because a smaller438

dataset cannot fully leverage the advantages of pre-439

fine-tuning. On the other hand, when the dataset440

size exceeds a certain threshold, the model’s per-441

formance does not improve further. This suggests442

that choosing an appropriate dataset size for pre-443

fine-tuning is important.444

5 Analysis on the Synthetic Dataset445

In this section, we statistically analyze the an-446

swer types, number of answers, and question447

types in the REGULAR-WIKI and MultiSpanQA448

datasets. We also conduct a case study to compare449

REGULAR-WIKI with QAGen-WIKI. The analy- 450

sis for the REGULAR-MED dataset is presented 451

in Appendix E. 452

5.1 Number of Answers 453

We analyze the number of answers for each ques- 454

tion in the MultiSpanQA and REGULAR-WIKI 455

datasets, as shown in Figure 4. Compared with 456

the MultiSpanQA dataset, the REGULAR-WIKI 457

dataset has a higher proportion of questions with 458

2 answers and a lower proportion with more than 459

3 answers. This may be because REGULAR ex- 460

tracts answers with specific topological structures 461

(i.e. CE), limiting the number of answers. 462

5.2 Types of Answers 463

We use SpaCy to analyze the answer types in the 464

MultiSpanQA and REGULAR-WIKI datasets. Fig- 465

ure 3 shows the proportion of named entity answers 466

with top-5 frequencies and non-named entity an- 467

swers. Surprisingly, we observe that the proportion 468

of non-entity answers in REGULAR-WIKI was 469

much higher than in MultiSpanQA. This may be 470

because both named and non-named entities were 471

included as nodes during the knowledge graph ex- 472

traction process. The reason may be that incorpo- 473

rating more non-named entities as candidate an- 474

swers helps enhance the diversity of questions and 475

answers. 476

5.3 Types of Questions 477

We further analyze the distribution of question 478

types in REGULAR-WIKI and MultiSpanQA 479

datasets. We adopt the categories proposed by Lee 480

et al. (2023): Simple Questions, Lexical Variation, 481

Inter-sentence Reasoning, Number of Answers, and 482

Entailment, where a question may correspond to 483

multiple types. We sample 200 questions and use 484
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Passage:
In 1940, Hanna Maron joined Habimah. During World War II, she 
volunteered for the Auxiliary Territorial Service of the British 
Army, serving two years before joining the Jewish Brigade's 
entertainment troupe. In 1945 she joined the Cameri Theater in 
Tel Aviv...

Answers (generated by QAGen): 
Habimah; British Army
Question: 
What is Habimah's allegiance?

Answers (Generated by REGULAR): 
Habimah, Jewish Brigade
Question: 
What movement did Hanna Maron join during World War II?

Passage:
Gartrell Johnson ran for two touchdowns and caught a 
touchdown pass, leading Colorado State to a 42–34 victory over 
Georgia Southern Saturday. Johnson finished with 136 yards on 
the ground. Caleb Hanie completed 13-of-16 passes for 244 
yards and two touchdowns, and Damon Morton caught four 
passes for 100 yards and a score for Colorado State (2–9)...

Answers (generated by QAGen): 
Colorado State; Georgia Southern
Question: 
Who are the people in this passage?

Answers (Generated by REGULAR): 
Gartrell Johnson; Caleb Hanie; Damon Morton
Question: 
Who ran for the touchdowns in the Colorado State?

Figure 6: Case study. The examples are selected from the QAGen-WIKI and REGULAR-WIKI. We mark answers of
QAGen-WIKI with bold and REGULAR-WIKI with underline. The numbers in the figure represent the percentage.

GPT-4o to classify each question. Detailed defini-485

tions of the five types of questions can be found in486

Appendix D.487

The statistical results are shown in Figure 58.488

Compared with the MultiSpanQA dataset, the489

REGULAR-WIKI dataset contains fewer Simple490

Questions. These questions typically have an-491

swers within a single sentence, but the answers492

in REGULAR-WIKI are derived from knowledge493

graphs and might span multiple sentences. On the494

other hand, REGULAR-WIKI contains more En-495

tailment questions, perhaps because the generated496

questions implicitly contain prior knowledge from497

the QG model. Overall, the question distribution498

in REGULAR-WIKI is more balanced, suggest-499

ing that the REGULAR framework can generate a500

wider variety of questions.501

5.4 Case Study502

We conduct a case study demonstrating that the503

REGULAR method can generate better synthetic504

datasets. Figure 6 shows examples of questions505

and answers generated by QAGen and REGULAR506

for the same passage. In the first example, QA-507

Gen generates an inaccurate question, "Who is the508

host of Gartell Johnson?" Although the question is509

grammatically correct, the corresponding answers,510

"Colorado State" and "Georgia Southern" do not511

match the question. In contrast, REGULAR ex-512

tracts three names from the knowledge graph, all513

of whom participate in the game, and thus the ques-514

tion, "Who ran for the touchdowns in Colorado515

State?" is more accurate. Similarly, in the second516

8Due to differences in sampling data and evaluation meth-
ods, the analysis results may differ from the results in (Lee
et al., 2023).

example, REGULAR extracts two organizations 517

Hanna Maron joined during World War II and gen- 518

erates the corresponding question. These examples 519

demonstrate that the REGULAR method, by ex- 520

tracting CE, can generate higher-quality questions 521

and answers. 522

6 Conclusion 523

In this work, we focus on the MSQG task and pro- 524

pose REGULAR, a framework of relation-guided 525

Multi-Span Question Generation. REGULAR con- 526

verts passages into knowledge graphs and extracts 527

CE as the candidate answers. Then, REGULAR 528

utilizes a QG model to generate a set of candi- 529

date questions and a QA model to obtain the op- 530

timal question. We construct over 100,000 ques- 531

tions using Wikipedia and PubMed corpora, named 532

REGULAR-WIKI and REGULAR-MED respec- 533

tively, and conduct 2-step fine-tuning experiments. 534

The experiment results show that models pre-fine- 535

tuned with the REGULAR dataset achieve optimal 536

performance, indicating that the quality of the REG- 537

ULAR datasets is higher than other synthetic QA 538

datasets. 539

7 Limitations and Future Work 540

In this work, we utilize LangChain to convert pas- 541

sages into knowledge graphs. However, this step re- 542

lies on advanced LLMs (e.g., GPT-4o-mini), which 543

may incur significant costs. Although we assume 544

that advanced LLMs have mastered the ability to 545

extract knowledge graphs during their training, we 546

have not explicitly addressed the potential errors 547

that may occur. On the other hand, we primarily 548

focus on generating multi-answer questions. We 549

8



do not consider other types of question genera-550

tion (e.g., multi-hop reasoning questions, multiple-551

choice questions, etc.).552

In future work, we plan to improve the ability of553

LLMs to extract knowledge graphs with the open-554

source LLMs (e.g., Llama, Qwen). Additionally,555

we will explore how this method can be applied to556

generate other types of questions.557
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#train #dev average answer
number

average
context length

average
question length

MultiSpanQA 5,230 658 2.89 279 10
MA-MRC (10k) 10,000 1000 2.31 77 10
QUOREF 1,963 215 2.45 431 19

Table 3: Dataset Statistic.

neighbor nodes V̄ via edges of the same type, or if1030

V̄ point to v using edges of the same type, then V̄1031

are considered as CE.1032

B Experimental Setup1033

B.1 MSQA Datasets1034

MultiSpanQA (Li et al., 2022) MultiSpanQA1035

focuses on questions with more than one answer.1036

The raw questions and contexts are extracted from1037

the Natural Question dataset (Kwiatkowski et al.,1038

2019).1039

MA-MRC (Yue et al., 2023) MA-MRC is a1040

large-scale dataset containing over 100,000 ques-1041

tions, including both multi-span questions and1042

single-span questions. In this work, we randomly1043

sample 10,000 training data and 1,000 validation1044

data and obtain MA-MRC-10k for our experiment.1045

QUOREF (Dasigi et al., 2019) The QUOREF1046

dataset is sourced from Wikipedia and contains1047

over 4,700 passages and more than 24,000 ques-1048

tions. The QUOREF dataset requires the model to1049

possess certain co-reference resolution and reason-1050

ing abilities. In this work, we select questions with1051

multiple answers for our experiment.1052

Since the official test sets of these datasets are1053

not public, we report the performance on validation1054

sets. Some statistics about the four datasets are1055

shown in Table 3.1056

B.2 MSQA Models1057

Tagger (Li et al., 2022) Tagger utilizes BIO tags1058

to label each token in context: the first token of the1059

answer is labeled with "B", the other tokens of the1060

answer are labeled with "I" and the tokens not in1061

an answer are labeled with "O". In this work, we1062

use RoBERTa-base 9 as the encoder.1063

SpanQualifier (Huang et al., 2023) : SpanQual-1064

ifier enumerates all possible answer spans and ob-1065

tains their corresponding confidence scores as cor-1066

rect predictions, then utilizes a learnable threshold1067

9https://huggingface.co/FacebookAI/
roberta-base

Hyper-Parameter Value Value
(1st-tune) (2nd-tune)

Learning Rate 3e-5 3e-5
Warmup Steps 100 100
Max Steps 15,000 8,000
Training Batch Size 32 8
Max Input Length 512 512
Max Output Length 64 64
Random Seed 1111 1111
Epochs 5 5
Optimizer Adam Adam

Table 4: Training Hyper-parameters. "1st-tune" and
"2nd-tune" refer to the first step and the second step of
the 2-step fine-tuning strategy, respectively.

to select the correct prediction spans. In this work, 1068

we also use RoBERTa-base as the encoder. 1069

BART (Lewis et al., 2020) and T5 (Raffel et al., 1070

2020) : Both BART and T5 are pre-trained mod- 1071

els with encoder-decoder architecture, which are 1072

commonly used in text generation tasks. In this 1073

work, we use the delimiter "#" to concatenate mul- 1074

tiple answers. 1075

B.3 QG Baselines 1076

QAGen (Shakeri et al., 2020) QAGen uses a 1077

generative model to generate questions and an- 1078

swers. In this work, we fine-tune a Llama-3.2- 1079

1B-Instruct to generate questions and answers. 1080

LIQUID (Lee et al., 2023) LIQUID first uses 1081

a summarization model and NER tools to extract 1082

named entities as candidate answers. Then, LIQ- 1083

UID employs a QG model to generate questions, 1084

and the questions and candidate answers are up- 1085

dated through multiple iterations. Lee et al. (2023) 1086

construct two synthetic datasets using Wikipedia 1087

and PubMed corpus. We refer to them as LIQUID- 1088

WIKI and LIQUID-MED, respectively 10. 1089

10We download the LIQUID-WIKI and LIQUID-MED
datasets from https://github.com/dmis-lab/LIQUID
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B.4 Implementation Details1090

When converting passages to knowledge graphs,1091

we utilize the LangChain LLMGraphTransformer1092
11 and invoke GPT-4o-mini 12. When generating1093

questions, we select Llama-3.2-1B-Instruct 13 and1094

conduct Supervise Fine-Tuning (SFT) on Multi-1095

SpanQA and MA-MRC datasets. When select-1096

ing the optimal question, we select UnifiedQA-1097

T5-large14 and fine-tune it on MultiSpanQA and1098

MA-MRC datasets. Training hyper-parameters are1099

shown in Table 4.1100

C Additional Experiment Results1101

C.1 Main Results with REGULAR-MED1102

Table 5 shows the results of the 2-step fine-tuning1103

experiment using the dataset constructed from1104

PubMed corpus. We observe that REGULAR-1105

MED achieves the best performance in most set-1106

tings, which is consistent with the results in Table 1.1107

Interestingly, despite the domain bias, the perfor-1108

mance of the model trained with the REGULAR-1109

MED dataset is quite close to the model trained1110

with the REGULAR-WIKI dataset (for example,1111

on the MultiSpanQA dataset, the Tagger model1112

achieved EM F1 scores of 70.45 and 70.51, re-1113

spectively). This suggests that during the pre-fine-1114

tuning phase, the model primarily learns inductive1115

reasoning abilities, and in the grained-fine-tuning1116

phase, the model adapts to the domain of the down-1117

stream task.1118

C.2 Supervised Fine-Tuning Results1119

We utilize Llama(Grattafiori et al., 2024) and1120

Qwen(Qwen et al., 2025) for our experiments.1121

Specifically, we select Llama-3B15, Llama-8B16,1122

Qwen2.5-3B17, and Qwen2.5-7B18, and conduct1123

both In-Context Learning (ICL) (Brown et al.,1124

2020) and LoRA (Hu et al., 2021) fine-tuning exper-1125

iments. For the ICL experiments, we add 3 exam-1126

ples for each question; For the LoRA experiment,1127

we set up two fine-tuning strategies: "Original"1128

11https://python.langchain.com/
12https://openai.com/api/
13https://huggingface.co/meta-llama/Llama-3.

2-1B-Instruct
14https://huggingface.co/allenai/

unifiedqa-t5-large
15https://huggingface.co/meta-llama/Llama-3.

2-3B-Instruct
16https://huggingface.co/meta-llama/Llama-3.

1-8B
17https://huggingface.co/Qwen/Qwen2.5-3B
18https://huggingface.co/Qwen/Qwen2.5-7B

and "Merged." "Original" refers to fine-tuning with 1129

the original training data, while "Merged" refers to 1130

replacing 50% of the questions in the original train- 1131

ing data with questions from the REGULAR-WIKI 1132

dataset. 1133

The experimental results are shown in Table 6. It 1134

can be seen that replacing part of the training data 1135

with REGULAR-WIKI leads to some performance 1136

degradation. However, the results still outperform 1137

the ICL experiment, indicating that the REGULAR- 1138

WIKI dataset can be used to train LLMs and en- 1139

hance their performance on QA tasks. 1140

D Definition of the Types of Question 1141

Lee et al. (2023) proposes a category for question 1142

types based on the reasoning required to answer 1143

these questions, listed as follows: 1144

• Simple questions: Questions simply derived 1145

from evidence texts with few lexical varia- 1146

tions. 1147

• Lexical variation: Questions created with 1148

lexical variations using synonyms and hyper- 1149

nyms. 1150

• Inter-sentence reasoning: Questions that re- 1151

quire high-level reasoning such as anaphora, 1152

or answers that are distributed across multiple 1153

sentences. 1154

• Number of answers: Questions that specify 1155

the number of answers, which is a characteris- 1156

tic of a list of questions. 1157

• Entailment: Questions that require textual 1158

entailment based on the evidence texts and 1159

commonsense. 1160

E Analysis on REGULAR-MED Dataset 1161

E.1 Number of Answers 1162

We analyze the number of answers for each ques- 1163

tion in the REGULAR-MED datasets, as shown in 1164

Figure 7. The distribution of the number of answers 1165

in the REGULAR-MED dataset is quite similar to 1166

that of the REGULAR-WIKI dataset. 1167

E.2 Types of Answers 1168

We analyze the types of answers for each ques- 1169

tion in the REGULAR-MED datasets, as shown 1170

in Figure 7. The types of answers are different 1171
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MultiSpanQA MA-MRC QUOREF
EM F1 PM F1 EM F1 PM F1 EM F1 PM F1

Tagger 68.58 83.62 79.69 87.50 66.77 81.78
+ QAGen-MED 67.04 82.89 79.48 87.19 68.86 82.20
+ LIQUID-MED 67.50 83.26 80.31 87.59 73.91 85.67
+ REGULAR-MED 70.45 84.57 80.27 87.99 75.89 84.77
SpanQualifier 71.58 83.50 79.85 86.83 62.21 75.36
+ QAGen-MED 69.81 83.26 57.68 73.74 58.29 73.02
+ LIQUID-MED 70.76 84.52 80.66 87.28 71.95 80.31
+ REGULAR-MED 72.98 83.19 81.38 88.06 72.98 83.19
BART-base 65.14 80.15 75.38 84.40 66.80 75.38
+ QAGen-MED 66.98 81.32 74.29 83.97 61.97 73.62
+ LIQUID-MED 66.67 81.14 75.84 84.60 67.24 77.17
+ REGULAR-MED 68.98 82.59 75.88 85.28 67.44 78.51
T5-base 69.24 82.93 78.39 86.21 65.47 76.40
+ QAGen-MED 69.81 83.26 78.89 86.32 61.41 73.25
+ LIQUID-MED 70.29 81.83 79.26 86.78 67.64 75.94
+ REGULAR-MED 73.09 85.19 79.40 86.87 67.66 76.23

Table 5: Additional Exact Match and Partial Match F1 scores of the MSQA models. The first line of each MSQA
model refers to the original performance. "QAGen-MED" and "LIQUID-MED" refer to the 2-step fine-tuning
baselines where models are first trained on the PubMed corpus’s synthetic datasets. The best results are in bold.

Llama3-3B Llama3-8B QWen2.5-3B QWen2.5-7B
EM F1 PM F1 EM F1 PM F1 EM F1 PM F1 EM F1 PM F1

Zero-Shot 57.31 75.23 58.41 76.66 59.45 76.24 68.06 82.79
Few-Shot 64.98 80.06 68.73 84.13 65.48 79.90 70.64 84.56
SFT(Merged) 75.19 87.73 76.61 88.68 73.46 86.08 76.13 88.25
SFT(Original) 75.69 87.89 77.18 88.97 76.35 88.47 78.58 90.27

Table 6: Supervised Fine Tuning (SFT) on the MultiSpanQA dataset. We employ In-Context Learning (ICL) in
the "Zero-Shot" and "Few-Shot" settings. "SFT(Merged)" refers to fine-tuning with LoRA using both the original
training data and the synthetic data, while "SFT(Original)" refers to fine-tuning with LoRA using only the original
training data.
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Figure 7: Left: Number of answers in the REGULAR-MED dataset; Right: Types of answers in the REGULAR-
MED dataset. The numbers in the figures represent the percentage.

from the REGULAR-WIKI dataset. This is be-1172

cause the REGULAR-MED dataset is focused on1173

the biomedical domain, so the extracted candidate1174

answers are more likely to be specialized terms.1175

E.3 Types of Questions1176

We analyze the question type of each question1177

in the REGULAR-MED datasets, as shown in1178

Figure 8. The question type distribution in the1179

REGULAR-MED dataset is also similar to that of1180

REGULAR-WIKI, but the proportion of the "Num- 1181

ber" type is higher. This may be because more 1182

numeric terms are included in the generated ques- 1183

tions. 1184
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Figure 8: Types of questions in the REGULAR-MED dataset. The numbers in the figure represent the percentage.

Algorithm 1: Extracting Commonality Entities
Input: G = {V,E} : Knowledge Graph
Output: CE_list : Commonality Entities List

1 Function ExtractCommonalityEntities(G):
2 CE_list← ∅;

/* Initialize adjacency matrix M of G. */
3 M ← adjacency_matrix(G);

/* Find commonality entites with the structure like B ← A→ C or B → A← C. */
4 foreach entity v in V do

/* Initialize Groups1 and Groups2 as a map. */
5 Groups1 ← map();
6 Groups2 ← map();
7 foreach entity u in V do

/* If there exists edge from v to u, then M [u][v] > 0. */
8 r1 ←M [v][u];
9 r2 ←M [u][v];

10 if r1 > 0 then
11 Groups1[r1]← Groups1[r1] ∪m;

12 if r2 > 0 then
13 Groups2[r1]← Groups2[r1] ∪ n;

14 foreach group in Groups1 do
/* Add groups with more than 2 elements to CE_list */

15 if len(group) > 2 then
16 CE_list← CE_list ∪ group

17 foreach group in Groups2 do
18 if len(group) > 2 then
19 CE_list← CE_list ∪ group

20 return CE_list;
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