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ABSTRACT

Test-Time Adaptation (TTA) has been effective for mitigating the distribution
shifts of test datasets by adapting a pre-trained model. The existing TTA ap-
proaches update the model parameters online toward the gradient descent direc-
tion by averaging individual objectives in the current batch. The averaged gradient
can be biased by only a few instances in the batch, leading to conflict among in-
dividual objectives when updating the model. To prevent a negative effect from
the gradient conflict among test instances, a model could have been updated by
the gradient that is agreeable by all objectives in the batch. Therefore, we propose
a new approach to update the model parameters toward Pareto-Optimality across
all individual objectives in TTA. Particularly, this paper suggests an extended ver-
sion of the Pareto optimization to anticipate unexpected distribution shifts during
testing time. This extension is enabled by merging the sharpness-aware minimiza-
tion into the Pareto optimization. We demonstrate the effectiveness of the pro-
posed approaches through experiments on three benchmark datasets: CIFAR10-
to-CIFAR10C, CIFAR100-to-CIFAR100C, and ImageNet-to-ImageNetC.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved successful performance in many applications (He et al.,
2016; Wang et al., 2018). However, the trained DNNs suffer from the performance degradation when
there are distribution shifts between training data and test data (Ganin & Lempitsky, 2015; Zhou
et al., 2022a). In real-world applications, these distribution shifts often appear as environmental
changes, including natural phenomena such as weather conditions (e.g., snow, brightness, or fog),
sensor-related noise (e.g., Gaussian noise, impulse noise, or glass blur), etc (Hendrycks & Dietterich,
2019). These factors are usually unseen when training the models, so the pretrained model often
leads to unexpected decisions under this distribution shift. Therefore, given the knowledge from a
trained model, it is necessary to adapt the model effectively to perform well on such unseen test
data. In addition to distribution shifts, due to privacy concerns or memory issues, the training data
is generally unavailable during the inference phase of testing (Liang et al., 2020). Furthermore, the
model adaptation needs to be performed in an online manner, i.e, streamed test data, because testing
environment often faces a series of queries for model outputs (Wang et al., 2020).

Given the necessity of model adaptation, Test-Time Adaptation (TTA) is proposed recently to mit-
igate the distribution shifts under these constrained scenario (Sakaridis et al., 2021; Wang et al.,
2022), and TTA has shown remarkable performance improvement. The goal of TTA is to adapt
the source-trained model to perform well on the unseen test data during the testing phase on the
fly. Specifically, current TTA approaches design objectives, such as entropy loss on the test data
(Wang et al., 2020); and these approaches update the model parameters by aggregating individual
objectives in the batch. This batch-wise model updating is favored for its efficiency and practicality.
However, it is well-known that the averaged gradients greedily minimize the batch-wise learning
loss (Parascandolo et al., 2020). The averaged gradient direction can be biased only by a subset of
instances in the batch, potentially causing conflict to individual objectives. Therefore, TTA needs
to find the updating direction to ensure effective adaptation across all instances in the batch without
conflicts, rather than being influenced mainly by a subset of instances.

This paper provides the first empirical result of an average gradient from a batch causing conflicts
among individual objectives. We also show the degradation of adaptation performance because
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of this conflict. To address this problem, we propose a new gradient-based update approach for
TTA, that aims to improve the performance of all individual objectives in the batch. We leverage
Pareto-Optimality across the individual objectives in the batch, guiding the model towards a state
where none of the individual objectives can be improved further. The Pareto-oriented gradient-
based update leads to reduce the individual conflicts, thereby preventing model collapse due to error
accumulation during online updating.

Whereas Pareto optimization reduces these conflicts from individual gradients, we strengthen this
optimization also by seeking the flat-minima from the Pareto-optimization gradients. The online
updating of TTA models can exhibit instability in extreme scenarios, including mixed distribution
shifts, label distribution shifts, or small batch sizes (Niu et al., 2023). Inspired by Sharpness-Aware
Minimization (SAM) (Foret et al., 2020), TTA approach aimed at seeking flat minima have been
proposed in order to address these extreme cases, called SAR (Niu et al., 2023). Fundamentally,
SAR identifies the direction of maximal perturbation from the averaged objective, i.e., by averaging
individual entropy losses. However, the maximally perturbed direction from the averaged objective
is still susceptible to conflicts among individual instances, which hinder to find flatness of the indi-
vidual objectives appropriately. Therefore, when we consider flatness of the individual objectives
in the batch, we need to find the perturbation direction without the conflicts among instances. To
address this limitation, we propose a sharpness-aware Pareto-oriented gradient optimization.

We summarize our contributions as follows. We claim that the existing approaches aggregate the
individual objectives in the batch without considering conflicts, resulting in the biased direction.
Therefore, we introduce Pareto-Optimality to improve all individual objectives from updating the
model. Furthermore, combined with SAM approach, we propose a new approach to find the per-
turbed direction in order to maximize all individual objectives, not an aggregated objective from
individuals. We demonstrate the effectiveness of the proposed approaches through experiments on
benchmark datasets for classification tasks.

2 PRELIMINARY

2.1 ENTROPY-BASED TEST-TIME ADAPTATION

This section starts by introducing notations. Let DS = {(xi
s, y

i
s)}

ns
i=1 be the dataset from source

domain; and let DT = {(xi
t, y

i
t)}

nt
i=1 be the dataset from the target domain where {yit}

nt
i=1 is not

available. DS and DT are sampled from two different distributions of a source domain, ps(x, y),
and a target domain, pt(x, y), respectively. fθ(x) is a model with parameters θ, trained by a source
dataset, DS . TTA assumes that we only have access on a pre-trained model fθ without the source
dataset DS used for the training. Therefore, the goal of TTA is adapting the source-trained model to
the target domain during the testing phase on the fly. Since label information for the target domain
is not available, one possible objective of TTA is to minimize the entropy of its predictions from the
source-trained model. We summarize such entropy-based approach, TENT (Wang et al., 2020).

We denote an instance xi
t from the target dataset as xi for simplicity, due to the absence of source

datasets. The objective of entropy loss, L(θ), with the batch size of B is defined as,

min
θ
L(θ) = min

θ

∑B

i=1

1

B
ℓ(xi; θ), (1)

where ℓ(xi; θ) represents an individual entropy loss for an instance xi. TENT (Wang et al., 2020)
then optimizes the model parameters to minimize L(θ) that is the averaged entropy loss from indi-
vidual test instances, so the minimized entropy will finetune the decision boundary to be more clear.
Gradient-based optimization (Amari, 1993) updates the model parameter θ in the descent direction
of d as follows:

θ′ ← θ − ηd where d =
∑B

i=1

1

B
∇θℓ(xi; θ). (2)

Here,∇θℓ(xi; θ) is the gradient of an individual entropy loss with respect to the model parameter θ.

2.2 SHARPNESS-AWARE MINIMIZATION

Understanding the loss landscape plays an important role in training a model for the perspective of
generalization ability (Jiang et al., 2019). Especially, optimizing model parameters toward flat min-
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(a) Updating gradients (b) Averaged (c) Pareto (Ours)

Figure 1: (a) Illustration of relationship between the individual gradients and updating gradients using Aver-
aged and Pareto (Ours) approaches, respectively. (b)-(c) Visualization of gradient conflicts analyzed through
cosine similarity between the updating gradients and individual gradients in the batch. (red represents the con-
flict with individual objective due to the updating direction, while blue denotes alignment.)

ima is known to improve model robustness against distribution shifts (Jiang et al., 2019). Recently,
sharpness-aware minimization (SAM) has received great attention because of its effectiveness and
scalability Foret et al. (2020). Inspired by the relationship between the population risk and the
worst-case training loss in the neighborhood, SAM proposes the following optimization problem:

min
θ
LSAM (θ) + γ∥θ∥22 where LSAM (θ) = max

∥ϵ∥p≤ρ
L(θ + ϵ), (3)

where ρ > 0 is the maximum magnitude of the perturbation, γ > 0 is an adjusting hyperparameter
of the weight decay term, and p ∈ [1,∞] is the degree of the norm. To efficiently solve the inner
optimization, SAM utilizes the first-order Taylor approximation of L(θ + ϵ):

ϵ̂(θ) = argmax
∥ϵ∥p≤ρ

L(θ + ϵ) ≈ argmax
∥ϵ∥p≤ρ

{
L(θ) + ϵT∇θL(θ)

}
= argmax

∥ϵ∥p≤ρ

ϵT∇θL(θ) (4)

By doing this approximation, we can get the closed form of ϵ̂ (Equation 2 in Foret et al. (2020)).
Given the maximally perturbed direction ϵ̂, the original objective of SAM can be written as follows:

min
θ
L(θ + ϵ̂) + γ∥θ∥22. (5)

2.3 PARETO-OPTIMALITY IN MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization is an optimization on multiple objective functions that possibly have
conflicts between two or more objectives. Since there will be trade-offs in different efficiency be-
tween conflicting objectives, we can not greedily optimize each of objective functions, individually.
Therefore, the goal of multi-objective optimization is finding solutions to improve a set of objec-
tives without reducing the other objectives, which is called Pareto-Optimality. Pareto-Optimality is
widely used in many machine learning areas such as Multi-task learning (Sener & Koltun, 2018; Lin
et al., 2019; Liu et al., 2021), Reinforcement learning (Pirotta & Restelli, 2016; Yang et al., 2019),
and Bayesian optimization (Belakaria et al., 2020; Konakovic Lukovic et al., 2020).

If we narrow the multi-objective optimization into adapting three testing instances, Figure 1a shows
the illustrated concept of Pareto-Optimality. Let’s assume that we have three black directions of
gradient signals from individual test data instances. Their average direction becomes the blue arrow,
which have the negative cosine similarity with one of the gradient: ∇θℓ1 · d < 0. This negative
cosine similarity indicates its test instance to be reduced in its testing performance. Meanwhile, our
suggestion, as red arrow, has positive cosine similarity with gradients from all test instances.

3 METHODOLOGY

3.1 MOTIVATION

The existing approaches for TTA update the model parameters toward the gradient descent direction
by averaging individual gradients in the current batch (Niu et al., 2022; 2023). However, the aver-
aged gradient can be biased toward only few instances in the batch, which makes conflict among
individual gradients (Parascandolo et al., 2020). If there is a conflict between the updating gradient
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direction d and individual gradients of ∇θℓ(xi; θ), this conflict causes a negative effect to adapt the
test instances causing the conflict, as illustrated at Figure 1a. Therefore, updating the model should
have a direction to adapt well on all instances in the batch. Figure 1 represents the cosine similarity
between the updating direction d and the individual gradients in the batch. Figure 1b shows that the
averaged gradient leads to conflicts (red color) to many individual gradients. This conflict increases
the entropy loss of Eq. 1 due to the negative cosine similarity. This means that the direction d is
not able to adapt the instances with conflict in the batch. Given this motivation, we need to find the
gradient direction to reduce conflict to individual gradients in order to adapt well. Therefore, we
propose a new way of gradient-based optimization for TTA, which is explained in the next section.
We note that the proposed approach is applicable in existing TTA algorithms as an independent and
orthogonal contribution.

3.2 PARETO OPTIMALITY FOR TEST-TIME ADAPTATION

We proposed to find the updating direction for minimizing all individual entropy losses in the update.
TTA has a streamlined test batches whose adaptation will change the long-trained original model
parameters. Therefore, this paper suggests to adapt the model at the test-time by the gradient-based
optimization without conflicts among individual test losses in the batch.

The Pareto optimization is one of such conflict-free optimization on model parameters. As we do
not assume to store any data instances from source or previous test datasets, we consider the Pareto
optimization on the individual losses from a working test batch. Therefore, we define the objective
of test-time adaptation from the aggregated loss, defined as Eq. 1, to vector-valued loss for the
Pareto optimization in the below.

min
θ

L(θ) = min
θ

[ℓ(x1; θ), ℓ(x2; θ), ..., ℓ(xB ; θ)]
⊤ (6)

Definition 3.1 (Pareto-Optimality) For any two parameters θ and θ′, we say that θ dominates θ′,
denoted as θ ≺ θ′, if ℓ(xi; θ) ≤ ℓ(xi; θ

′) for all i and L(θ) ̸= L(θ′). A parameter θ∗ is called
Pareto-Optimal if there exists no solution θ that dominates θ∗.

Based on the Definition 3.1, we need to find the updating direction towards Pareto-Optimality to
minimize all individual entropy losses. There is a necessary condition for Pareto-Optimality, which
is called Pareto-criticality (Zhou et al., 2022b).

Definition 3.2 (Pareto-Criticality) A parameter θ∗ is called Pareto-Critical if there is no common
gradient descent direction d such that ∇θℓ(xi; θ

∗)T d < 0 for all i.

From the definition, if a parameter is not positioned at the Pareto-critical point, there exists a descent
direction that improves the objective of all instances, entropy loss in this paper. Therefore, we design
a gradient-based optimization for finding Pareto-critical point. Following MGDA (Sener & Koltun,
2018), we find a Pareto-critical point by solving the subproblem:

(ŵ1, ..., ŵB) = argmin
w1,w2,..,wB

{∥∥∥∑B

i=1
wi∇θℓ(xi; θ)

∥∥∥2
2

∣∣∣ ∑B

i=1
wi = 1, wi ≥ 0 ∀i

}
(7)

MGDA (Sener & Koltun, 2018) showed that, the optimal solution of this subproblem is 0 when θ
is the Pareto-critical point; otherwise, the weighted sum of the gradients by optimal weights of this
subproblem,

∑B
i=1 ŵi∇θℓ(xi; θ), is a common descent directions of tasks. This indicates that the

weighted sum of gradients does not conflict with the gradients of individual tasks. Therefore, we
apply a gradient descent step that utilizes this weighted sum of gradients toward the Pareto-critical
point by optimizing the subproblem of Eq. 7:

θ′ ← θ − ηd where d =
∑B

i=1
ŵi∇θℓ(xi; θ). (8)

Compared to Eq. 2, the proposed gradient direction of d finds the adaptive individual weights ŵi for
reducing the conflicts between individual losses (see Figure 1c).

3.3 PROBLEM OF SHARPNESS-AWARE MINIMIZATION FOR TEST-TIME ADAPTATION

Our proposed direction is effective in mitigating the conflicts when updating the model. Neverthe-
less, when dealing with real-world problems in TTA, the online updating of TTA models can become
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unstable due to wild distribution shifts. Consequently, SAM-based TTA approach, called SAR, has
been introduced to address these distribution shifts by aiming to seek flat minima in TTA objectives
(or losses) (Niu et al., 2023). Fundamentally, SAR identifies the direction of maximal perturbation
in the loss, averaged across instances, and then optimize the model parameters to minimize the loss
resulting from these perturbed parameters.

In spite of the recent study of flat minima by SAR, this method is still susceptible to the concerns
raised in Section 3.2: SAR do not account for the conflicts among individual instances. This be-
comes particularly problematic in the scenario of TTA because TTA has a few instances to learn
from, so the conflicts among instances need to be resolved. In detail, identifying the perturbation
direction based on the averaged loss does not maximize the loss for all individual instances. In other
words, the perturbation vector by SAR may conflict to the gradient from individual losses, which
calls for the expansion of Pareto-gradient optimization to the study of optimal perturbation. In light
of this limitation, we propose an alternative approach known as sharpness-aware Pareto-oriented
gradient optimization.

3.4 SHARPNESS-AWARE PARETO OPTIMALITY FOR TEST-TIME ADAPTATION

This paper formulates the sharpness-aware Pareto optimization, and this is the first proposal of merg-
ing two concepts of flat-minima and Pareto optimality, to our knowledge. The suggested objective
is:

min
θ

max
∥ϵ∥≤ρ

L(θ + ϵ) = min
θ

max
∥ϵ∥≤ρ

[ℓ(x1; θ + ϵ), ℓ(x2; θ + ϵ), ..., ℓ(xB ; θ + ϵ)]⊤. (9)

The maximally perturbed direction ϵ, calculated using the averaged loss, can be biased towards a
few instances, as discussed in Section 3.2. Consequently, there is no guarantee that this direction
maximizes all individual losses on the perturbed parameters. Thus, it motivates us to seek a pertur-
bation direction that maximizes all individual losses. We propose to formulate a subproblem to find
ϵ toward Pareto-Optimality for improving (maximizing) individual losses as below,

(α̂1, ..., α̂B) = argmin
α1,α2,..,αB

{∥∥∥∑B

i=1
αi∇ϵℓ(xi; θ + ϵ)

∥∥∥2
2

∣∣∣ ∑B

i=1
αi = 1, αi ≥ 0 ∀i

}
. (10)

Eq. 10 follows the same way with Eq. 7, but the individual objective is different, as ϵ,∇ϵℓ(xi; θ+ϵ).
First, we solve the subproblem of Eq. 10 to find α̂i. Then, we determine the direction ϵ̂ by applying
the constraints for perturbation boundness in ρ, as below,

ϵ̂ = ρ
ΣB

i=1α̂i∇ϵℓ(xi; θ + ϵ)

∥ΣB
i=1α̂i∇ϵℓ(xi; θ + ϵ)∥

. (11)

We call a Pareto-oriented maximally perturbation direction ϵ̂, which is not explored even in fields
of SAM researches. Consequently, we re-formulate a vector-valued perturbation loss to incorporate
individual perturbed loss, as below,

min
θ

L(θ + ϵ̂) = min
θ

[ℓ(x1; θ + ϵ̂), ℓ(x2; θ + ϵ̂), ..., ℓ(xB ; θ + ϵ̂)]⊤. (12)

As we propose the Pareto-oriented gradient updates to optimize the model without conflicts, this op-
timization minimizes the model’s perturbed loss in all individual instances without conflict. There-
fore, we find the update direction toward Pareto-critical point over the individual perturbed loss,

θ′ ← θ − ηd where d =
∑B

i=1
ŵi∇θℓ(xi; θ + ϵ̂), (13)

where we calculate ŵi by solving a subproblem as we design in Eq. 7 by replacing ∇θℓ(xi; θ) to
∇θℓ(xi; θ+ ϵ̂). It should be noted that the objective of the perturbed loss from SAM can be consid-
ered as the summation of sharpness and original loss, i.e., max∥ϵ∥≤ρ ℓi(θ+ ϵ) = {max∥ϵ∥≤ρ ℓi(θ+
ϵ)− ℓi(θ)}+ ℓi(θ). Therefore, we optimize the model to minimize both sharpness and task loss of
individual instances without conflicts.

3.5 TRAINING ALGORITHMS

In order to find the proposed gradient update direction, we need to solve a sub-problem of Eq. 7 and
Eq. 10 towards the Pareto-critical point. Following the approach in MGDA (Sener & Koltun, 2018),
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Table 1: Accuracy (%) on ImageNet-C (severity level 5) under standard online adaptation with ResNet50-
GN. The improvement by the proposed approaches are marked as bold in each corruption. The underline
represents the best results on each corruption case. (Avg.: Average performance over all corruptions.)

Method
Noise Blur Weather Digital

Avg.
Gauss. Shot Impul. Defoc. Glass Mot Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG

Source 22.1 23.0 22.0 19.8 11.4 21.5 25.0 40.3 47.0 34.0 68.8 36.2 18.5 29.2 52.6 31.4

TENT 23.8 28.2 25.1 15.1 8.0 21.8 22.7 26.6 33.1 3.6 69.8 42.3 10.8 48.5 54.5 28.9
w/ Pareto 21.6 24.7 23.8 16.4 10.6 22.2 24.8 36.5 39.6 14.3 69.3 41.6 15.6 45.4 54.3 30.7±0.1

w/ ParetoSAM 25.8 31.5 27.9 14.9 12.3 25.3 25.4 37.6 39.4 25.1 69.3 43.9 16.0 45.8 54.6 33.0±0.2

SAR 32.1 34.3 33.4 18.6 19.3 30.4 30.8 42.1 43.2 46.1 70.2 43.9 15.7 49.1 55.4 37.6
w/ ParetoSAM 41.2 43.5 42.5 17.9 20.6 39.8 41.2 49.2 47.7 34.7 69.1 48.7 31.0 46.0 54.0 41.8±0.4

Table 2: Accuracy (%) on ImageNet-C (severity level 5) under online imbalanced label shifts with ResNet50-
GN. The improvement by the proposed approaches are marked as bold in each corruption. The underline
represents the best results on each corruption case. (Avg.: Average performance over all corruptions.)

Method
Noise Blur Weather Digital

Avg.
Gauss. Shot Impul. Defoc. Glass Mot Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG

Source 17.9 19.9 17.9 19.7 11.3 21.3 24.9 40.4 47.4 33.6 69.2 36.3 18.7 28.4 52.2 30.6
MEMO 18.4 20.6 18.4 17.1 12.7 21.8 26.9 40.7 46.9 34.8 69.6 36.4 19.2 32.2 53.4 31.3

TENT 2.6 3.3 2.7 13.9 7.9 19.5 17.0 16.5 21.9 1.8 70.5 42.2 6.6 49.4 53.7 22
w/ Pareto 18.9 19.8 20.0 14.4 8.5 19.3 22.4 34.6 36.3 13.5 69.3 41.3 15.2 46.4 54.2 28.9±0.2

w/ ParetoSAM 18.7 19.8 18.9 14.5 8.5 18.8 22.5 34.8 35.6 14.4 69.3 41.1 14.9 45.9 54.1 28.8±0.1

EATA 27.0 28.3 28.1 14.9 17.1 24.4 25.3 32.2 32.0 39.8 66.7 33.6 24.5 41.9 38.4 31.6
SAR 33.1 36.5 35.5 19.2 19.5 33.3 27.7 23.9 45.3 50.1 71.9 46.7 7.1 52.1 56.3 37.2

w/ ParetoSAM 41.7 43.0 43.2 15.4 13.7 40.4 30.7 36.2 46.3 44.9 69.7 51.7 12.5 53.6 56.6 40.0±0.4

we employ Frank-Wolfe algorithm to solve the constrained optimization problem (Jaggi, 2013).
Consequently, the solver’s computations cause additional computation time, which is proportional
to the number of output dimensions, corresponding to the batch size B in our case. There are some
techniques to reduce the computations in multi-objective optimization fields (Liu et al., 2021), such
as sampling the subset of the multiple objectives. However, it is not suitable in TTA since we need
to adapt the model over all instances in the batch.

We introduce a practical technique to minimize the computational load on the solver during TTA.
First, we set the number of groups, denoted as ng, such that ng ≤ B when B is the batch size
B. Afterwards, we randomly partition the instances within the batch into ng groups, and we utilize
the group-averaged losses to enumerate ∇ϵℓ(xi; θ + ϵ) in Eq. 10 and ∇θℓ(xi; θ + ϵ̂) in Eq. 7. This
approach reduces the computational overhead from O(B) to O(ng), and subsequently, the computed
weights are evenly distributed among the instances within each group, followed by normalization to
ensure they sum up to one. We provide the impact of ng towards the performance from the sensitivity
analysis of Figure 4 in Appendix. Algorithm of our proposed model update is in Appendix A.1.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets We evaluate the proposed approaches using three benchmark datasets (Hendrycks &
Dietterich, 2019) for test-time adaptation: CIFAR10-to-CIFAR10C, CIFAR100-to-CIFAR100C,
and ImageNet-to-ImageNetC, all designed for image classification tasks. For instance, the
CIFAR10-to-CIFAR10C scenario simulates adapting the original model, initially trained on CI-
FAR10 (Krizhevsky et al., 2009), to a stream of test batches from CIFAR10C. In this context,
CIFAR10C represents a corrupted version of CIFAR10, which originates from evaluating the ro-
bustness of classification networks. Each corrupted dataset contains 15 types of corruptions from
four main categories with 5 levels of severity: noise, blur, weather, and digital, all applied to the
original dataset. CIFAR100C and ImageNetC have same types of corruptions with CIFAR10C.

Task We focus on the online test-time adaptation task, which entails the non-resetting of model
parameters after updating them in the current batch, followed by (Wang et al., 2020). We evalu-
ate the proposed model and baselines on CIFAR10-to-CIFAR10C, CIFAR100-to-CIFAR100C, and
ImageNet-to-ImageNetC as this standard online setting. Followed by SAR (Niu et al., 2023), we

6



Under review as a conference paper at ICLR 2024

Table 3: Accuracy (%) on CIFAR10-C (left) and CIFAR100-C (right) under standard online adaptation with
WideResNet-28. The improvement by ours are marked as bold in each batch size setting. The underline
represents the best results on each case. We reported average accuracy over 15 corruption types.

CIFAR10-C Batch size
8 16 32 64

Source 56.5 56.5 56.5 56.5

TENT 67.0 78.6 81.2 81.1
w/ Pareto 74.8 79.6 81.1 81.3

w/ ParetoSAM 74.1 80.0 81.3 81.4
SAR 64.3 78.1 81.1 81.5

w/ ParetoSAM 72.7 79.1 81.0 82.0

CIFAR100-C Batch size
8 16 32 64

Source 51.9 51.9 51.9 51.9

TENT 5.8 19.4 53.1 66.6
w/ Pareto 27.9 44.4 60.9 67.7

w/ ParetoSAM 21.5 40.0 60.7 67.6

SAR 4.0 23.7 58.9 67.4
w/ ParetoSAM 13.8 47.8 61.2 67.5

evaluate the models on ImageNet-to-ImageNetC for extreme distribution shift environment, such as
the label distribution shift and mixed shift. The label distribution shift means using label distribu-
tion changing by timesteps and its label proportions. The mixed shift specifies a model to use a
batch sampled from a mixture distribution of 15 corruption types, evaluating robustness on multiple
shifted domain. The details are in Appendix A.2

Baselines We compare our Pareto-based approach to entropy-based methods as a base structure
of TTA. Then, the entropy loss of an instance becomes an individual objective. We first apply the
Pareto-orient optimization to TENT (Wang et al., 2020) to show the effects of reducing the conflicts
over individual objectives, denoted as TENT w/ Pareto. Additionally, we apply the sharpness-aware
Pareto-oriented optimization to TENT for generalization ability, denoted as TENT w/ ParetoSAM.
Moreover, we provide modified SAR to incorporate the Pareto-oriented optimization, denoted as
SAR w/ ParetoSAM. We provide the details of the implementation in Appendix A.2.

4.2 EXPERIMENTAL RESULTS

Standard Online Adaptation Table 1 shows the accuracy on ImageNet-C (with severity level 5)
under a standard online adaptation setting. When our Pareto-oriented optimization (w/ Pareto, w/
ParetoSAM) improves the baseline performances, we indicated such improvement by bold fonts.
TENT shows the lower performance than source pre-trained model, which means that TENT de-
grades as adaptation proceeds. Compared to the vanilla version of TENT, incorporating Pareto and
ParetoSAM into TENT significantly improve the performance of TENT. The proposed approaches
update the model by improving all individual objectives without conflicts. Therefore, this Pareto-
oriented optimization prevents from degrading the model performance over adaptation procedure.
In addition, when we apply the proposed approach to SAR, SAR with ParetoSAM enhances the
performances with statistically significant gains. SAR with ParetoSAM finds the perturbation di-
rection to individually maximize all individual objectives while the original version of SAR finds
the perturbation direction to maximize the averaged loss regardless of the conflict. Therefore, these
results imply that the perturbation direction should take into account individual objectives in order
to reduce conflicts and enhance robustness.

Performance on Small Testing Batches Table 3 represents the accuracy on CIFAR10-to-
CIFAR10C and CIFAR100-to-CIFAR100C (with severity level 5) with various batch sizes. Similar
to Table 1, Pareto-oriented approaches improve the baseline performances over batch sizes. TENT
is not robust when using small batch, since it tends to collapse to a trivial solution (i.e., predict all
instances to the same class) Wang et al. (2020). Therefore, as the batch size decreases, the perfor-
mance of TENT decreases in both CIFAR10-C and CIFAR100-C. The variations with Pareto and
ParetoSAM provides larger performance gains than the original TENT as the batch size becomes
smaller. SAR also encounters performance drops in small batch size, as well. The ParetoSAM ap-
plied to SAR consistently outperforms compared to the original SAR, and the improvement gain is
larger when the batch size is smaller.

Extreme Distribution Shifts Table 2 shows the accuracy performance on ImageNet-C (with
severity level 5) under online imbalanced label shifts. This setting contains the real-
world problem of label distribution changing by timesteps and its label proportions. On-
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(a) Small Batch Setting (B = 16) (b) Large Batch Setting (B = 200)

Figure 2: Accuracy (%) of CIFAR100-C (severity level 5) under continual adaptation setting.

line updating of TTA models can become unstable due to distribution shifts. There-
fore, the performance of SAR, SAM-based entropy loss, is better than source and TENT.

Table 4: Accuracy (%) on ImageNet-
C under mixture of 15 corruption
types.

Method Level 5 Level 3

Source 30.6 54.0
MEMO 31.2 54.5
DDA 35.1 52.3

TENT 13.4 33.1
w/ Pareto 29.1±0.14 54.6±0.04

w/ ParetoSAM 29.4±0.05 54.6±0.01

EATA 38.1 56.1
SAR 38.3 57.4

w/ ParetoSAM 39.2±0.16 58.4±0.04

It indicates the necessity of flatness in real-world TTA prob-
lems. SAR with ParetoSAM outperforms SAR with statisti-
cally significant improvement. Therefore, these results imply
that perturbation for flatness should have a direction that max-
imizes all individual objectives, not an aggregated objective.
We provide the detailed ablation studies in terms of SAM and
ParetoSAM in the next subsection. Table 4 shows the accuracy
on ImageNet-C (with severity level 5 and 3) under mixture
of 15 corruption types. Similar to Table 2, Pareto and Pare-
toSAM consistently outperform the baselines, which indicates
that Pareto-oriented optimization is robust to distribution shift,
even in mixed environment.

Reasoning of Robust Performance from Pareto Optimality
We conjecture that the Pareto-oriented optimization prevents
TTA to be degraded into a simple biased classifier (i.e. always
predicting a majority class) because the Pareto optimality preserves the individual gradient signal.
The preserved individual gradient becomes particularly important when a class becomes minority.
Also, a small batch size would turn a class into a minority or a majority class with a small skewness
of instance distribution. The same effect can be caused by a biased testing sampler as discussed
in experiments on extreme distribution shifts. Given these rational, we observe that the Pareto
optimality variations operate robustly under small batch sizes and biased testing sample samplers.

Analysis on Continual Adaptation TTA methods update the model based on the unlabeled loss,
which can lead to error accumulation due to noisy predictions as adaptation progresses. To demon-
strate the effectiveness of mitigating this error accumulation, we expand our experiments to include
continual adaptation, where model parameters are not being reset after each corruption task. In the
continual setting, Figure 2 shows the performances of TENT, TENT with Pareto, and TENT with
ParetoSAM on CIFAR100-C with small (16) and large (200) batch size. Similar to the previous
results in Table 3, TENT shows performance degradation in the early stages, particularly in small
batches, due to accelerated collapse. However, in the case of our proposed approach, we observed
that less degradation occurs even in continually adapting setting. In large batch case, TENT ini-
tially performs well, but eventually shows decline in performances. Conversely, the proposed mod-
els, Pareto and ParetoSAM, consistently outperform the baseline and maintain higher performance
through the continual adaptation process.

Conflict Analysis of Perturbation Direction Figure 3 shows the visualization of the cosine sim-
ilarity between the perturbation direction ϵ̂ and individual maximally perturbed direction in the
batch. In order to compare the effectiveness of ParetoSAM, we provide the cosine similarity by
TENT+ParetoSAM and TENT+SAM. The main difference is that SAM find ϵ̂ from averaged losses,
and ParetoSAM is designed to pursue Pareto-Optimality. As shown in Figure 3a, the perturbation by
SAM has many conflicts to individual directions. It indicates that the maximal perturbed direction
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(a) SAM (b) ParetoSAM (Ours)

Figure 3: Visualization of cosine similarity between the actual perturbation direction ϵ̂ and individually max-
imal perturbation direction in the batch, where (a) ϵ̂ is from the averaged loss by SAM, and (b) ϵ̂ is toward the
proposed Pareto-Optimality, by ParetoSAM. The analysis is on the last batch of Gaussian noise corruption in
CIFAR10-C under standard online setting with ρ = 0.05.

on the average loss is not aligning with the maximal perturbed direction on the individual losses.
Meanwhile, as shown in Figure 3b, ParetoSAM shows fewer conflicts. It means that Pareto-oriented
maximal perturbation effectively find the direction to maximize all individual losses. Therefore,
we claim that SAM based perturbation may not be the maximization direction for some individual
objectives. In order to provide flatness of all individual objectives, the perturbation should have a
direction towards Pareto-Optimality.

Table 5: Ablation Study on ParetoSAM

Perturbation (ϵ̂) L(θ + ϵ̂) ↓ Avg.

TENT w/ SAM Average Average 65.8

TENT
w/ ParetoSAM

Pareto Average 66.1
Average Pareto 74.5
Pareto Pareto 75.4

Ablation Study on Perturbation Direction
We provide ablation studies in order to demon-
strate the effectiveness of ParetoSAM, qualita-
tively. ParetoSAM contains two phases of Pareto-
Optimality: 1) to find the perturbation direction ϵ̂,
2) to minimize the objective L(θ+ ϵ̂). In the first
phase, as we discussed at the previous analysis,
we find the perturbation direction to provide in-
dividual flatness. Given the perturbed direction ϵ̂,
we minimize the perturbed objectivesL(θ+ϵ̂) towards Pareto-Optimality in order to reduce conflicts
among individual objectives. In order to analyze the effects of each Pareto-Optimality, we conduct
ablation studies by replacing the Pareto objective by the averaged individual objectives (Average), on
CIFAR10-C of continual adaptation setting. For example, when we apply Average on both phases,
the ablated model becomes equivalent to SAM. Table 5 represents the results of ablating the two
phases of 1) Pareto optimal perturbation (see Eq. 11), denoted as Pertrubation (ϵ̂) and 2) Pareto
optimal gradient update (see Eq. 13), denoted as L(θ + ϵ̂) ↓. Compared to TENT with SAM, when
we apply Pareto to find ϵ̂, the accuracy increases with small margin. This small gain is caused by
still existing conflicts when minimizing averaged objectives. Meanwhile, when we apply Pareto
optimization to minimize the objectives, ParetoSAMs outperforms SAM, significantly. These re-
sults indicates that 1) minimizing the individual objectives towards Pareto-Optimality is important,
and 2) minimizing individual flatness towards Pareto-Optimality improves the model performance
compared to the average objective.

5 CONCLUSION

We propose a new approach to update the model parameters toward Pareto-Optimality across all
individual instances in the scenario of test-time adaptation. Pareto-oriented optimization updates
the model by the gradient that is agreeable by all instances in the batch, preventing a negative effect
from the gradient conflict among test instances. Particularly, this paper suggests an extended version
of the Pareto optimization to anticipate unexpected distribution shifts in the test phase by merging
the Pareto optimization into sharpness-aware minimization. Therefore, we propose Sharpness-aware
Pareto-Oriented optimization to update a model parameter by pursuing individual objectives and
flatness. We demonstrate the effectiveness of the proposed approaches through experiments on three
benchmark datasets, and our experiments consistently and significantly supports the merit of the
proposed optimization.
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A APPENDIX

A.1 ALGORITHM

Algorithm 1 specifies the procedure of our proposed sharpness-aware Pareto-oriented model update.

Algorithm 1 The proposed Sharpness-aware Pareto-oriented model updates at time t

1: Input: the current batch, {xi}Bi=1, the current model parameters θt, the learning rate η.
2: Compute individual gradients with respect to ϵ, {∇ϵℓ(xi; θt + ϵ)}Bi=1.
3: Compute (α̂1, ..., α̂B) by Eq. 10 via Frank-Wolfe Algorithm.
4: Compute ϵ̂ by Eq. 11
5: Compute (ŵ1, ..., ŵB) by 7 with∇θℓ(xi; θ + ϵ̂).
6: Compute individual gradients on the perturbed loss with respect to θ, {∇θℓ(xi; θ + ϵ̂)}Bi=1.
7: Update θt+1 ← θt − ηd where d =

∑B
i=1 ŵi∇θℓ(xi; θt + ϵ̂)

8: Output: updated parameters θt+1

A.2 ADDITIONAL EXPERIMENTAL SETTINGS

Implementation Details Our base structure of TTA follows the practice of SAR (Niu et al., 2023).
Specifically, the model structure is ResNet50-GN (Wu & He, 2018) on ImageNet-C experiments.
For CIFAR10-to-CIFAR10C and CIFAR100-CIFAR100C, we follow the settings from Wang et al.
(2020; 2022), using WideResNet-28 (Zagoruyko & Komodakis, 2016). We use SGD optimizer with
learning rate of 2.5×10−4 and momentum of 0.9, and we utilize other hyperparameters of baselines
as they utilized. Following the previous studies (Wang et al., 2020; Niu et al., 2023), we adopt the
affine parameters of the group normalization layers. We set ng as 8 for all cases of batch sizes, and
ρ as 0.05.

Task During testing, corrupted batches are provided to the network in an online manner. We
follow the evaluation of adaptation performance as standard online test-time adaptation Wang et al.
(2020). In this standard online setting, we assess performance for each corruption type individually
(Wang et al., 2020; Niu et al., 2022), which means that we reset the model before adapting to a new
corruption type. In the continual setting as an analysis, we iteratively adapt the source pre-trained
model across a sequence of corruption types without resetting the model, creating more challenging
environment (Wang et al., 2022).

A.3 EXPERIMENTAL ANLAYSIS
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Figure 4: Sensitivity on group
size (ng) of TENT w/ Pareto.

Ablation Study on Group Size In order to verify the efficacy of
grouping instances to reduce the computational load on solver for
Pareto-Optimality, we conduct the sensitivity study on the different
size of groups, on CIFAR100 of continual adaptation setting. Fig-
ure 4 shows the performance change by different variations of group
sizes when the batch size is 200. As a results, there is a trade-off
between the performance and computation time depending on the
group size. However, when the group size is small, TENT with
Pareto shows the competitive performances. As the group size in-
creases, the proposed model improves significantly. Therefore, we
efficiently reduce the computational times while maintaining the
model performances.
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